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Abstract001

The image-based multimodal automatic speech002
recognition (ASR) model enhances speech003
recognition performance by incorporating004
audio-related image. However, some works005
suggest that introducing image information to006
model does not help improving ASR perfor-007
mance. In this paper, we propose a novel ap-008
proach effectively utilizing audio-related im-009
age information and set up VHASR, a mul-010
timodal speech recognition system that uses011
vision as hotwords to strengthen the model’s012
speech recognition capability. Our system uti-013
lizes a dual-stream architecture, which firstly014
transcribes the text on the two streams sep-015
arately, and then combines the outputs. We016
evaluate the proposed model on four datasets:017
Flickr8k, ADE20k, COCO, and OpenImages.018
The experimental results show that VHASR019
can effectively utilize key information in im-020
ages to enhance the model’s speech recognition021
ability. Its performance not only surpasses uni-022
modal ASR, but also achieves SOTA among023
existing image-based multimodal ASR.024

1 Introduction025

The unimodal ASR (Chan et al., 2015; Radford026

et al., 2023) only takes audio as input and produces027

corresponding transcription. In order to further re-028

duce transcription errors, additional information029

related to the speech can be input, which can be in030

textual or visual modality. The ASR model that uti-031

lizes audio-related information from various modal-032

ities is referred to as multimodal ASR.033

Common textual cues include hotwords, which034

are terms in certain professional fields or words that035

are easily confused with other homonyms. There036

have been many studies on how to freely customize037

hotwords and improve the recall of hotwords (Han038

et al., 2021; Shi et al., 2024). It is also possible039

to use captions as textual information (Moriya and040

Jones, 2018; Han et al., 2023).041

A
bel

A
dam

bear

hare

cloth

fare

teddy

a girl is holding teddy bare toy in her arms

a girl is holding teddy bear toy in her armscorrect transcription:

unimodal ASR result:

hotword embedding: …

Z
enia

correct transcription:

unimodal ASR result:

hotword embedding:

a cat is sleeping on top of a blanket on a bed

a cat is sitting on top of a blanket on a bed

Text Hotwords

Vision Hotwords

Figure 1: Comparison between text hotwords and the
vision hotwords proposed in this paper. Text hotwords
are a set of custom keywords that are prone to errors,
while image hotwords refer to patches of an image. The
hotword with a darker rectangle indicates that it is more
relevant to transcription.

Visual cues can be in the form of video or im- 042

age. Audio-Visual Speech Recognition (AVSR) 043

enhances the accuracy of speech recognition by 044

capturing lip movement information of characters 045

in video (Ivanko et al., 2023). Image-based mul- 046

timodal ASR extracts visual feature from image 047

associated with speech to correct transcription er- 048

rors. We abbreviate image-based multimodal ASR 049

as IBSR. Because the lip movement information of 050

video’s role is closely linked to his speech, it influ- 051

ences nearly every word in the transcribed text. In 052

contrast, IBSR only impacts a subset of the words 053

as the image is only associated with specific audio 054

clips (Oneat, ă and Cucu, 2022). IBSR currently 055

lacks a universal and effective method for utilizing 056

image information, leading to various experimental 057

results in different studies. Some works (Sun et al., 058

2016; Srinivasan et al., 2020a,c) have a positive 059

effect by incorporating image information, while 060

others (Srinivasan et al., 2020b; Oneat, ă and Cucu, 061

2022; Han et al., 2023), have the opposite effect. 062

In this paper, we propose a novel approach ef- 063
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fectively utilizing audio-related image information064

and set up VHASR, a multimodal speech recogni-065

tion system that utilizes vision hotwords to enhance066

the model’s speech recognition capability. It cal-067

culates the similarity between different modalities068

to improve the effectiveness of cross-modal fusion.069

Drawing inspiration from text hotwords, we utilize070

Vision Transformer (ViT) to partition images into071

multiple visual tokens and consider each visual to-072

ken as an vision hotword. Our system adopts a073

dual-stream architecture. One stream is the ASR074

stream, which receives audio information and pro-075

duces transcribed text. The other stream is the vi-076

sion hotwords (VH) stream, which receives vision077

hotwords and audio hidden features, and generates078

corresponding text. In the VH stream, we calculate079

the similarity between audio and vision hotwords to080

reduce the weight of vision hotwords with low sim-081

ilarity. This process helps to extract fine-grained082

image information. When inferring, VHASR first083

transcribes the text separately from the ASR stream084

and the VH stream, and then merges the outputs.085

We ensure the high accuracy of the merged output086

by comparing the similarity of different modalities.087

Specifically, we first calculate the audio-image sim-088

ilarity to discard the VH stream if the similarity is089

low. Then, we calculate the image-text token simi-090

larity to compare the ASR stream and VH stream091

outputs by tokens. Finally, tokens with higher sim-092

ilarity are selected for the merged output.093

We evaluate the proposed model on four datasets:094

Flickr8k, ADE20k, COCO, and OpenImages. The095

experimental results show that VHASR can effec-096

tively utilize critical information in images to im-097

prove the model’s ASR performance. Its perfor-098

mance is not only better than ordinary unimodal099

ASR models but also surpasses existing IBSR mod-100

els. The contributions of this paper are as follows:101

(1) We demonstrate that through our idea of vi-102

sion hotwords, injecting audio-related image103

into the ASR model can help the model cor-104

rect transcription errors.105

(2) We propose VHASR, by utilizing a dual-106

stream architecture and calculating the cross-107

modal similarity, it promote effective utiliza-108

tion of visual information in vision hotwords.109

(3) The proposed model achieves SOTA on four110

datasets: Flickr8k, ADE20k, COCO, and111

OpenImages.112

2 Related Work 113

Image-based multimodal ASR. Sun et al. (2016) 114

introduces a multimodal speech recognition sce- 115

nario based on RNN. This approach utilizes im- 116

ages to assist the language model in decoding the 117

most probable words and rescores the top hypothe- 118

ses. Caglayan et al. (2019) proposes a novel multi- 119

modal grounding method implemented by LSTM 120

for sequence-to-sequence ASR. To utilize the vi- 121

sual modality, they first project the visual vector 122

into the speech feature space, and then use the vi- 123

sual vector as the initial hidden and cell state for 124

all LSTM layers. Srinivasan et al. (2020b) presents 125

a model for multimodal ASR that integrates visual 126

feature from object proposals. It calculates each 127

modality’s attention distributions separately and 128

combines attentions using a hierarchical attention 129

mechanism in the decoder. Oneat, ă and Cucu (2022) 130

combines speech and visual embeddings using two 131

fusion approaches. One approach fuses along the 132

embedding dimension, and another fuses along the 133

sequence dimension. They find that the first method 134

performs better. Han et al. (2023) proposes a novel 135

multimodal ASR model called ViLaS, which is 136

based on the continuous integrate-and-fire (CIF) 137

mechanism. It can integrate image and caption in- 138

formation simultaneously or separately to facilitate 139

speech recognition. Chang et al. (2023) proposes 140

a multimodal ASR system for embodied agents. 141

Their model is based on Transformer, where the vi- 142

sual feature vector is concatenated to the decoder’s 143

input word embedding at every timestep of genera- 144

tion. 145

Function of image information. Srinivasan et al. 146

(2020a) conducts the experiment called audio cor- 147

ruption, in which they mask the words related to 148

nouns and places with silence and white noise, 149

respectively. The study demonstrates that visual 150

representations help in recovering words that are 151

masked in the input acoustic signal. Srinivasan 152

et al. (2020c) thinks the previous work has only 153

masked a fixed set of words in the audio, which is 154

an unrealistic setting. So, they propose a method 155

called RandWordMask, where masking can occur 156

for any word segment to improve the audio cor- 157

ruption experiment. Kumar et al. (2023) proposes 158

two effective ASR error correction methods, which 159

use gated fusion and image captions as prompts, 160

respectively. Both methods demonstrate that vi- 161

sual information helps restoring incorrect words 162

in transcription. In short, image information helps 163
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Figure 2: The structure of our proposed model, VHASR. The green dashed box contains the modules of the ASR
stream, while the blue dashed box contains the modules of the VH stream. The data flow in the ASR part is indicated
by green and red lines. It only passes through the red lines during ASR model’s second pass of training. The VH
stream’s data flow is denoted by blue lines. The data flow for calculating audio-image similarity is represented by
yellow lines. The purple lines illustrate the data flow when merging two streams.

to recover incorrect words in transcription that are164

caused by masked acoustic signals or ASR model’s165

error.166

3 VHASR167

3.1 ASR Stream168

Follow Gao et al. (2022), we adopt this paral-169

lel Transformer (Vaswani et al., 2017) for non-170

autoregressive end-to-end speech recognition as171

the basic framework of our ASR stream. As shown172

in green dashed box of Figure 2, the adopted frame-173

work consists of four parts: speech encoder, predic-174

tor, sampler, and decoder. The framework adopts175

two-pass training and one-pass inference.176

3.1.1 Acoustic Representation Learning177

Let X be a speech sequence with T frames, X =178

{x1, x2, x3, . . . , xT }. Y is a sequence of tokens,179

and its length is N . Each token is in the vocabulary180

V , Y = {y1, y2, y3, . . . , yN | yi ∈ V }.181

The speech encoder adopts the SAN-M (Gao
et al., 2020) structure, which is a special Trans-
former Layer that combines self-attention mecha-
nism with deep feed-forward sequential memory
networks (DFSMN). It converts the input X1:T to
the hidden representation HE

1:T .

HE
1:T = SpeechEncoder(X1:T )

The predictor is a two-layer Deep Neural Net- 182

works (DNN) model that aligns speech and text 183

based on CIF. It is used to predict the length of 184

sentences N
′

and extract acoustic representation 185

Ea
1:N ′ from the speech encoder’s hidden represen- 186

tation HE
1:T . 187

N
′
, Ea

1:N ′ = Predictor(HE
1:T )

The sampler does not contain learnable parame- 188

ters and is only applied when training. It strength- 189

ens acoustic representation to semantic representa- 190

tion by incorporating text feature, aiming to better 191

train the context modeling ability of the speech 192

decoder. In the first pass of training, the sampler 193

selects the text vectors Ec
1:N ′ based on the number 194

of different tokens between Y
′
A and Y and their po- 195

sitions. Then, according to the position of incorrect 196

tokens, it mixes Ec
1:N ′ into Ea

1:N ′ to obtain seman- 197

tic feature Es
1:N ′ . The semantic feature is used for 198

the second pass of training. The sampler’s formula 199

is as follows, λ is the sampler ratio, and λ ∈ (0, 1). 200

Es
1:N ′ = Sampler(Ea

1:N ′ , Ec
1:N ′ , ⌈λ

N
′∑

i=1

(y
′
i ̸= yi)⌉)

3.1.2 Decoding Process 201

The speech decoder adopts the bidirectional SAN- 202

M structure. In the first pass of training, the hid- 203
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den representation HE
1:T obtained by the speech204

encoder and the acoustic representation Ea
1:N ′ gen-205

erated by the predictor are input to the speech de-206

coder to obtain the initial decoding result Y
′
A.207

Y
′
A = SpeechDecoder(HE

1:T , N
′
, Ea

1:N ′ )

In the second pass of training, the hidden rep-
resentation HE

1:T and the semantic representation
Es

1:N ′ obtained by the sampler are input to the
speech decoder to obtain the second decoding re-
sult Y

′′
A

Y
′′
A = SpeechDecoder(HE

1:T , N
′
, Es

1:N ′ )

During the first pass, no gradient backpropaga-208

tion is performed, and Y
′
A is only used to determine209

the sampling number of the sampler. Y
′′
A obtained210

in the second pass is used to calculate the ASR loss.211

In inference, the model directly takes Y
′
A as output212

and does not calculate Y
′′
A .213

3.2 Vision Hotwords Stream214

3.2.1 Vision Representation Learning215

In the VH stream, we need to extract visual feature216

from images by the vision encoder firstly. A naive217

idea is to extract the feature from the entire image.218

Because most of the information in the image is un-219

related to the audio, especially the background of220

the image. The introduction of irrelevant informa-221

tion may cause the visual feature to become noise.222

Therefore, we should consider a strategy to extract223

fine-grained image information.224

The vision encoder is essentially ViT (Dosovit-225

skiy et al., 2020). ViT uses Transformer to ex-226

tract visual feature. It follows the application of227

the Transformer in natural language processing by228

initially dividing the image into multiple patches,229

considering each patch as a token, embedding the230

positional information, and then feeding visual to-231

kens into the Transformer. The feature outputted232

by ViT are the feature of each visual token. If the233

downstream task of ViT is classification, a trainable234

CLS token can be added in front of the visual token.235

The score on the CLS token can then be utilized236

for classification. It would be a good choice if we237

utilize each visual tokens’ feature instead of entire238

image’s feature. At the token granularity level, we239

can diminish the impact of tokens unrelated to au-240

dio and amplify the influence of tokens related to241

audio.242

So, our strategy is to calculate the feature of each 243

visual token and then adjust the weight of visual 244

tokens. For the ASR model with text hotwords, 245

it is often necessary to consider how to capture 246

involved hotwords and exclude unrelated hotwords 247

when there are many customized hotwords. This 248

is similar to our consideration, so we call each 249

visual token an vision hotword. Let Z be the input 250

image. First, utilize the vision encoder to transform 251

it into token-level visual feature HV
0:K , where K 252

represents the number of vision hotwords. The 253

initial feature of HV
0:K , corresponds to the feature 254

of the CLS token, while others are vision hotwords’ 255

features. 256

HV
0:K = VisionEncoder(Z)

HV
CLS = HV

0:K [ 0 ] ;HV
1:K = HV

0:K [ 1 :K ]

We determine the correlation between each vi- 257

sion hotword and audio by calculating their cosine 258

similarity. Specifically, the first step is to input 259

HV
1:K into the vision adapter, which is composed 260

of a linear layer, to obtain HV
′

1:K . Then, input the 261

acoustic feature HE
1:T output by the speech encoder 262

into the speech adapter, which is composed of a 263

Transformer layer, to obtain HE
′

1:T . 264

HV
′

1:K = VisionAdapter(HV
1:K)

HE
′

1:T = SpeechAdapter(HE
1:T )

Then, calculate cosine similarity between vision 265

hotwords and audio, denoted as SV ′A. 266

SV ′A = cos(HV
′

1:K , HE
′

1:T )

Finally, we adjust the weight of HV
1:K by SV ′A. 267

HV
1:K = HV

1:K × SV ′A

In order to enhance the effectiveness of 268

similarity-based weight adjustment, an additional 269

loss needs to be introduced to train the adapters. 270

We utilize the acoustic feature and the CLS token’s 271

feature of the image to calculate the image-audio 272

contrastive loss LV A to optimize the adapters. The 273

reason for using image-audio contrastive loss in- 274

stead of vision hotwords-audio contrastive loss is 275

that the former has a coarser granularity, making 276

it easier to converge. Moreover, during inference, 277

we need to use image-audio similarity for decoding 278

optimization, which will be explained at length in 279

Section 3.3. Figure 3 illustrates in detail our opti- 280

mization of visual representation by calculating the 281
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Figure 3: Using vision hotword-audio similitude and
image-audio similitude to learn fine visual representa-
tion.

similitude between vision hotwords and audio, as282

well as the similitude between image and audio.283

HV
′

CLS = VisionAdapter(HV
CLS)

LV A = ContrastiveLoss(HV
′

CLS , H
E

′

1:T )

3.2.2 Decoding Process284

The blue line in Figure 2 illustrates the data flow285

of the VH module. After extracting the fine visual286

representation of HV
1:K , we further refine it using287

an LSTM-based VH encoder to obtain HE
1:K .288

HE
1:K = VHEncoder(HV

1:K)

The next step is to use a text decoder to obtain289

the probability distribution of each token. Obvi-290

ously, if we only use HE
1:K which just contains291

image information as input, it will result in a sig-292

nificant deviation in the probability distribution of293

tokens, and the VH stream’s outcome will be com-294

pletely inconsistent with the correct transcription.295

So, we need to incorporate certain hidden features296

of the ASR stream to modify the output of the297

VH stream. Drawing lessons from the idea of Shi298

et al. (2024), we integrate the acoustic feature vec-299

tor Ea
1:N ′ outputted by the predictor and the hidden300

feature HD
1:N ′ outputted by the speech decoder with301

HE
1:K separately to derive Ea

′

1:N ′ and HD
′

1:N ′ , which302

have been influenced by image information. The303

VH decoder adopts the same bidirectional SAN-M304

architecture as the speech decoder.305

Ea
′

1:N ′ = VHEncoder(Ea
1:N ′ , HE

1:K)

HD
′

1:N ′ = VHEncoder(HD
1:N ′ , HE

1:K)

The final input to the VH output layer is the 306

average of Ea
′

1:N ′ and HD
′

1:N ′ . 307

Y
′
V = argmax

yi∈V
(W V

1:V

(Ea
′

1:N ′ +HD
′

1:N ′ )

2
+ bV1:V )

3.3 Dual-stream Merging 308

…

ASR Output Bias Output Merged Output

a

cat is

sheeping

…

on

top of

bad

…

a cat in

sleeping

…

of top
of

bed

a

cat is

sleeping

Text Encoder
& Adapter

Vision Encoder
&Adapter

𝑌𝐴
′  

𝑌𝑉
′  

𝑎𝑟𝑔𝑚𝑎𝑥

Figure 4: The specific process of decoding optimization.

In this section, we will discuss how to merge the
outputs of the ASR stream and the VH stream. A
straightforward approach is to add the probability
distributions of tokens from two modules by assign-
ing a specific weight, denoted as M1. The formula
for M1 is as follows, where pA, pV , and pM are the
tokens’ probability distributions of the ASR stream,
VH stream, and merged result. α is the proportion
of pA, and α ∈ (0, 1).

pM = αSoftmax(pA) + (1− α)Softmax(pV )

Y
′
M1

= argmax
yi∈V

(pM )

The M1 has low flexibility, making it difficult to
achieve good results in practice. Figure 4 illustrates
a merging method based on image-token similarity,
referred to as M2. The vision encoder and adapter
are used to calculate the visual feature of the image,
HV

′

CLS , and the text encoder and adapter are used

to calculate the feature of each token, HT
′

1:N ′ . The

formula for HV
′

CLS has been provided in Section

3.2.1, and the formula for HT
′

1:N ′ is as follows. The
text encoder consists of Transformer layers, the text
adapter consists of a linear layer, and Embedding
is a additional embedding layer.

HT
1:N ′ = TextEncoder(Embedding(Y

′
))
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HT
′

1:N ′ = TextAdapter(HT
1:N ′ )

Based on HV
′

CLS and HT
′

1:N ′ , the cosine similarity
of the image and tokens, SV T ′ , can be calculated.

SV T ′ = cos(HV
′

CLS , H
T

′

1:N ′ )

When calculating Y
′
M2

, we first calculate the text309

feature of the ASR stream output Y
′
A and the VH310

stream output Y
′
V , respectively, namely H

T
′
A

1:N ′ and311

H
T

′
V

1:N ′ . Then calculate their cosine similarities with312

HV
′

CLS separately, namely SA
V T ′ and SV

V T ′ . Finally,313

a token by token comparison of the dual-stream is314

conducted according to SA
V T ′ and SV

V T ′ . Specif-315

ically, the value of these two similarities at any316

position represents the similarity score between the317

token at that position and the image. At the same318

position, Y
′
A and Y

′
V may obtain different tokens.319

We determine which token to choose as the final320

result by judging the value of SA
V T ′ and SV

V T ′ at321

that position. If SA
V T ′ > SV

V T ′ , we take the to-322

ken on Y
′
A, and vice versa. After completing N

′
323

comparisons, Y
′
M2

can be obtained.324

In Section 3.2.1, to achieve an fine-grained325

visual representation, we additionally introduce326

speech and vision adapters in VHASR to compute327

the similarity between vision hotwords and audio.328

Then, to train the adapter, we calculate contrastive329

loss between the image and audio. In the inference330

stage, we can further utilize the trained adapter to331

optimize M2 by calculating image-audio similarity.332

Specifically, we calculate the image-audio similar-333

ity SV A for a batch of data. If the audio of a piece334

of data does not match its own image, it is consid-335

ered that the correlation between this image and336

audio is low. Therefore, for this data, the output337

of the VH stream is discarded, and the output of338

the ASR stream is directly used as the final output.339

We introduce a novel merging method called M3.340

It involves initially filtering data with low image341

and audio correlation using SV A, followed by dual-342

stream merging as outlined in M2. We will conduct343

a detailed comparative experiment on these three344

merging methods in Section 4.345

4 Experiment346

4.1 Configuration347

Table 1 shows all the datasets used in this paper,348

with Flickr8k, ADE20k, COCO, and OpenImages349

used for training and testing, and SpokenCOCO 350

used for pre-training. Flickr8k is from Harwath 351

and Glass (2015) and SpokenCOCO is from Hsu 352

et al. (2021). ADE20k, COCO and OpenImages 353

are from Local Narratives proposed by (Harwath 354

et al., 2016). In order to shorten the experimental 355

period, we filter data with audio exceeding 40s in 356

ADE20k, and with more than 40 tokens or an audio 357

duration of more than 20 seconds in COCO and 358

OpenImages. We use word error rate (WER) as an 359

evaluation metric to evaluate the speech recognition 360

performance of ASR stream, VH stream, M1, M2, 361

and M3. 362

our baseline is 220M English Paraformer. In 363

Flickr8k, we compare our model with Acoustic- 364

LM-RNN proposed by Sun et al. (2016), model 365

utilizing object features as visual information (ab- 366

breviated as Multimodal (object) in the paper) from 367

Srinivasan et al. (2020a), Weighted-DF in Srini- 368

vasan et al. (2020c), MAG proposed by Srinivasan 369

et al. (2020b), model fusing the two modalities 370

along the sequence dimension (abbreviated as Mul- 371

timodal (emb) in the paper) from Oneat, ă and Cucu 372

(2022) and ViLaS in Han et al. (2023). 373

The modules in CLIP-Base (Radford et al., 2021) 374

is utilized to construct the vision encoder and vision 375

adapter for the VH stream, as well as the vision en- 376

coder and text encoder for M2. The vision module 377

of the VH stream freeze parameters during training, 378

and the M2’s modules do not require training. The 379

220M English Paraformer is chosen as the founda- 380

tional framework for ASR stream, initialized with 381

the same parameters as the baseline. λ of sampler 382

is set to 0.75 and α of M1 is set to 0.5. The exper- 383

imental environment is constructed using Funasr 384

(Gao et al., 2023) and ModelScope. We trained the 385

model until convergence, with a maximum of 80 386

training epochs. We consistently utilize the Adam 387

optimizer with a learning rate of 5e-5, and the train- 388

ing is conducted on GeForce RTX 3090. 389

Dataset Train Validation Test
Flickr8k 29,999 4,998 4,998
ADE20k 17,067 1,672 -
COCO 49,109 3,232 -
OpenImages 269,749 27,813 -
SpokenCOCO 592,187 25,035 -

Table 1: Datasets used in experiments.

4.2 Main Result 390

Table 2 presents the results of the proposed method 391

and baseline on four datasets. For the ASR stream 392
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Dataset Baseline VHASR

WER (↓) Pretrain WERASR (↓) WERVH (↓) WERM1 (↓) WERM2 (↓) WERM3 (↓)

Flickr8k 3.91 ✕ 3.82 3.91 3.79 3.56 3.51
✓ 3.68 3.75 3.66 3.37 3.35

ADE20k 10.51 ✕ 10.33 10.52 10.38 9.80 9.60
✓ 10.27 10.37 10.32 9.62 9.53

COCO 10.44 ✕ 10.35 10.34 10.28 9.63 9.61
✓ 10.25 10.36 10.28 9.60 9.59

OpenImages 8.72 ✕ 8.61 8.58 8.58 7.73 7.71
✓ 8.58 8.63 8.59 7.70 7.68

Table 2: Main results of proposed model in four datasets.

and VH stream, the WER of the ASR stream is393

lower. The VH stream can acquire the ability of394

transcribing by utilizing the hidden layer’s fea-395

tures of the ASR stream as VH decoder’s input.396

Among the three merge methods, M3 has the best397

results, followed by M2, and finally M1. This is398

consistent with our expected results. M1 has lim-399

ited flexibility, and the fixed weight proportion is400

not applicable to all data. By calculating image-401

token similarity, comparing the results of the ASR402

stream and VH stream token by token, and result-403

ing in a final output with the highest similarity, M2404

achieves WER that are better than both WERASR405

and WERVH. Furthermore, by calculating audio-406

image similarity in addition and excluding the VH407

stream with low similarity, M3 reduces the tran-408

scription error compared to M2. For the base-409

line and ASR stream, ASR stream performs better,410

indicating that joint training of the ASR stream,411

VH stream, and audio-image pairing improves the412

unimodal ASR’s performance. For the baseline413

and M3, M3 outperforms the baseline on all four414

datasets, demonstrating the effectiveness of our415

method. In addition, pre-training with large-scale416

corpora can further strengthen the performance of417

the model. We use SpokenCOCO, which contains418

the largest amount of data, to pre-train the proposed419

model, resulting in improvements in all five metrics420

of the model across all four datasets.421

4.3 Ordinary Multimodal Fusion vs Hotword422

Level Multimodal Fusion423

The comparison results are shown in the Tabel 3.424

Without vision information, Vilas (Han et al., 2023)425

performs better than our VHASR since they have426

done sufficient pretraining. With vision informa-427

tion, VHASR’s ASR performance has been signifi-428

cantly enhanced and it achieves the lowest WER.429

Obviously, our experimental results indicate that430

the incorporation of visual information aids in rec-431

tifying tokens for ASR transcription errors and de- 432

creasing WER. However, Srinivasan et al. (2020b), 433

Oneat, ă and Cucu (2022) and Han et al. (2023) ar- 434

gue that the speech in Flickr8k is sufficiently clear, 435

making it challenging to enhance transcription per- 436

formance by incorporating additional information 437

from other modalities. 438

Model
Word Error Rate (↓)

w/o vision w vision

Acoustic-LM-RNN (Sun et al., 2016) 14.75 13.81 (↓ 0.94)

Multimodal (object) (Srinivasan et al., 2020a) 16.40 14.80 (↓ 1.60)

Weighted-DF (Srinivasan et al., 2020c) 13.70 13.40 (↓ 0.30)

MAG (Srinivasan et al., 2020b) 13.60 13.80 (↑ 0.20)

Multimodal (emb) (Oneat, ă and Cucu, 2022) 3.80 4.30 (↑ 0.50)

ViLaS (Han et al., 2023) 3.40 3.40 (↓ 0)

VHASR 3.91 3.35 (↓ 0.56)

Table 3: Comparison results with benchmarks in F8k.

MAG (Srinivasan et al., 2020b) utilizes global 439

visual feature, which may introduce a significant 440

amount of information unrelated to audio and po- 441

tentially impact the model’s ASR performance. 442

They considered this issue and proposed MAOP, 443

which utilizes multiple fine-grained image feature 444

extracted from object proposals. But in terms of 445

clean Flickr8k, MAOP’s performance is not as 446

good as MAG’s. Oneat, ă and Cucu (2022) takes 447

a sequence of image feature vectors from the layer 448

preceding the global average pooling layer in the 449

vision encoder, for leveraging more fine-grained 450

characteristics of the image. However, they did 451

not consider that some image vectors in the se- 452

quence have low correlation with the audio. Intro- 453

ducing these vectors fully into the backbone will 454

still impact the model’s recognition ability. Han 455

et al. (2023) uses ViT as a vision encoder and uti- 456

lizes the image tokens for visual representation, 457

which aligns with our approach. However, they do 458

not reduce the weight of visual tokens with low 459

importance, as we do. This resulted in the intro- 460
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Dataset Mask Ratio Baseline VHASR

WER (↓) RR (↑) WERASR (↓) RRASR(↑) WERM2 (↓) RRM2 (↑)

Flickr8k
30% 30.68 79.78 29.20 81.76 23.89 81.84
50% 49.05 68.27 47.43 71.19 40.33 71.59
70% 63.93 58.00 65.33 58.52 56.54 58.99

ADE20k
30% 24.79 92.02 24.40 92.51 19.96 92.60
50% 34.16 89.18 32.95 89.86 26.91 90.06
70% 42.30 86.33 40.70 87.45 33.39 87.46

COCO
30% 25.60 92.02 24.23 92.85 20.13 92.87
50% 35.59 89.42 33.22 91.05 27.06 91.05
70% 44.00 87.76 41.35 89.26 33.84 89.32

Table 4: Experimental results of audio corruption with AWGN.

duction of visual information not improving the461

recognition performance of the model. Compared462

to these works that use ordinary multimodal fusion463

approach, our proposed method, which injects vi-464

sual modality information by vision hotwords, have465

made improvements in refining image representa-466

tion and eliminating irrelevant image information.467

Therefore, our proposed model can enhance perfor-468

mance using visual feature even when the dataset469

is of high quality and the baseline is strong.470

4.4 Ablation Result471

Dataset
WERM1 (↓) WERM2 (↓)

w/o refine w refine w/o refine w refine
Flickr8k 3.93 3.79 3.68 3.56
ADE20k 10.67 10.38 10.17 9.80
COCO 10.46 10.28 9.64 9.63
OpenImages 8.73 8.58 7.81 7.73

Table 5: Experimental results of ablation studies.

To demonstrate that the refined image represen-472

tation extracted by the method proposed in Section473

3.2.1 is more effective than the full image represen-474

tation, we conduct the ablation experiments. The475

experimental results are presented in Table 5. On476

four datasets, whether it is M1 or M2, the model477

using refined image representation has better per-478

formance. This not only shows the effectiveness479

of the method described in Section 3.2.1 but also480

offers one of reasons why our model is stronger481

than other benchmarks.482

4.5 Audio Corruption483

To further demonstrate that introducing image in-484

formation related to audio can reduce transcription485

errors in proposed model, we conduct an audio cor-486

ruption experiment proposed by Srinivasan et al.487

(2020a). We first use the timestamp prediction488

model proposed by Shi et al. (2023) to align audio489

and transcribed text. Then, we mask the words in 490

the audio to a certain proportion by replacing the 491

audio segments corresponding to the masked words 492

with Additive White Gaussian Noise (AWGN). We 493

use the recovery rate (RR) defined in Srinivasan 494

et al. (2020a) to calculate the proportion of masked 495

words recovered in the model transcription results. 496

Unlike Srinivasan et al. (2020a), our approach only 497

masks the test data, while the training data remains 498

unchanged. 499

We conduct this experiment on Flickr8k, 500

ADE20k, and COCO, and the experimental results 501

are shown in Table 4. In terms of baseline and 502

ASR stream, regardless of the mask ratio, the ASR 503

stream has lower WER and higher RR on all three 504

datasets. This suggests that the jointly trained ASR 505

stream exhibits stronger noise resistance and audio 506

content prediction abilities compared to unimodal 507

ASR. In terms of ASR stream and M2, by incorpo- 508

rating image information, M2 significantly reduces 509

WER and enhances RR, as evidenced by the mask 510

ratio across the three datasets. This indicates that 511

image information can assist the model in capturing 512

image-related words in audio, enabling the model 513

to accurately transcribe these words even if their 514

corresponding audio is masked. Furthermore, we 515

can argue that on normal unmasked data, image in- 516

formation can assist the model in correcting words 517

related to image but with transcription errors. 518

5 Conclusion 519

We propose VHASR, a multimodal speech recog- 520

nition system that utilizes vision hotwords to 521

strengthen the model’s speech recognition ability. 522

To improve the effectiveness of cross-modal fu- 523

sion, it calculates the similarity between different 524

modalities. Through extensive experiments, we 525

demonstrate that VHASR has powerful ASR per- 526

formance. 527

8



Limitations528

The Limitations of VHASR include: (1) currently,529

VHASR can only introduce image information to530

enhance the model’s speech recognition ability,531

which does not have sufficient versatility. In the532

future, we will enable VHASR to support input of533

audio-related text information (such as hotwords, ti-534

tles) and video information, enabling the model to535

extract feature beneficial for speech recognition536

from multiple modal information, and building537

a more versatile multimodal speech recognition538

model. (2) we have only demonstrated that vision539

hotwords is a effective way to utilize image infor-540

mation, and there may be other applicable methods.541

We will design more in-depth experiments in the542

following work to explore more feasible ideas.543

References544

Ozan Caglayan, Ramon Sanabria, Shruti Palaskar, Loic545
Barraul, and Florian Metze. 2019. Multimodal546
grounding for sequence-to-sequence speech recog-547
nition. In ICASSP 2019-2019 IEEE International548
Conference on Acoustics, Speech and Signal Process-549
ing (ICASSP), pages 8648–8652. IEEE.550

William Chan, Navdeep Jaitly, Quoc V Le, and Oriol551
Vinyals. 2015. Listen, attend and spell. arXiv552
preprint arXiv:1508.01211.553

Allen Chang, Xiaoyuan Zhu, Aarav Monga, Seoho Ahn,554
Tejas Srinivasan, and Jesse Thomason. 2023. Multi-555
modal speech recognition for language-guided em-556
bodied agents. arXiv preprint arXiv:2302.14030.557

Alexey Dosovitskiy, Lucas Beyer, Alexander558
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,559
Thomas Unterthiner, Mostafa Dehghani, Matthias560
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.561
An image is worth 16x16 words: Transformers562
for image recognition at scale. arXiv preprint563
arXiv:2010.11929.564

Zhifu Gao, Zerui Li, Jiaming Wang, Haoneng Luo, Xian565
Shi, Mengzhe Chen, Yabin Li, Lingyun Zuo, Zhihao566
Du, Zhangyu Xiao, et al. 2023. Funasr: A funda-567
mental end-to-end speech recognition toolkit. arXiv568
preprint arXiv:2305.11013.569

Zhifu Gao, Shiliang Zhang, Ming Lei, and Ian570
McLoughlin. 2020. San-m: Memory equipped self-571
attention for end-to-end speech recognition. arXiv572
preprint arXiv:2006.01713.573

Zhifu Gao, Shiliang Zhang, Ian McLoughlin, and Zhijie574
Yan. 2022. Paraformer: Fast and accurate parallel575
transformer for non-autoregressive end-to-end speech576
recognition. arXiv preprint arXiv:2206.08317.577

Minglun Han, Feilong Chen, Ziyi Ni, Linghui Meng, 578
Jing Shi, Shuang Xu, and Bo Xu. 2023. Vilas: In- 579
tegrating vision and language into automatic speech 580
recognition. arXiv preprint arXiv:2305.19972. 581

Minglun Han, Linhao Dong, Shiyu Zhou, and Bo Xu. 582
2021. Cif-based collaborative decoding for end-to- 583
end contextual speech recognition. In ICASSP 2021- 584
2021 IEEE International Conference on Acoustics, 585
Speech and Signal Processing (ICASSP), pages 6528– 586
6532. IEEE. 587

David Harwath and James Glass. 2015. Deep multi- 588
modal semantic embeddings for speech and images. 589
In 2015 IEEE Workshop on Automatic Speech Recog- 590
nition and Understanding (ASRU), pages 237–244. 591
IEEE. 592

David Harwath, Antonio Torralba, and James Glass. 593
2016. Unsupervised learning of spoken language 594
with visual context. Advances in Neural Information 595
Processing Systems, 29. 596

Wei-Ning Hsu, David Harwath, Tyler Miller, Christo- 597
pher Song, and James Glass. 2021. Text-free image- 598
to-speech synthesis using learned segmental units. 599
In Proceedings of the 59th Annual Meeting of the 600
Association for Computational Linguistics and the 601
11th International Joint Conference on Natural Lan- 602
guage Processing (Volume 1: Long Papers), pages 603
5284–5300. 604

Denis Ivanko, Dmitry Ryumin, and Alexey Karpov. 605
2023. A review of recent advances on deep learning 606
methods for audio-visual speech recognition. Mathe- 607
matics, 11(12):2665. 608

Vanya Bannihatti Kumar, Shanbo Cheng, Ningxin Peng, 609
and Yuchen Zhang. 2023. Visual information matters 610
for asr error correction. In ICASSP 2023-2023 IEEE 611
International Conference on Acoustics, Speech and 612
Signal Processing (ICASSP), pages 1–5. IEEE. 613

Yasufumi Moriya and Gareth JF Jones. 2018. Lstm 614
language model adaptation with images and titles for 615
multimedia automatic speech recognition. In 2018 616
IEEE Spoken Language Technology Workshop (SLT), 617
pages 219–226. IEEE. 618

Dan Oneat, ă and Horia Cucu. 2022. Improving mul- 619
timodal speech recognition by data augmentation 620
and speech representations. In Proceedings of the 621
IEEE/CVF Conference on Computer Vision and Pat- 622
tern Recognition, pages 4579–4588. 623

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya 624
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas- 625
try, Amanda Askell, Pamela Mishkin, Jack Clark, 626
et al. 2021. Learning transferable visual models from 627
natural language supervision. In International confer- 628
ence on machine learning, pages 8748–8763. PMLR. 629

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock- 630
man, Christine McLeavey, and Ilya Sutskever. 2023. 631
Robust speech recognition via large-scale weak su- 632
pervision. In International Conference on Machine 633
Learning, pages 28492–28518. PMLR. 634

9



Xian Shi, Yanni Chen, Shiliang Zhang, and Zhijie Yan.635
2023. Achieving timestamp prediction while recog-636
nizing with non-autoregressive end-to-end asr model.637
In arXiv preprint arXiv:2301.12343.638

Xian Shi, Yexin Yang, Zerui Li, Yanni Chen, Zhifu639
Gao, and Shiliang Zhang. 2024. Seaco-paraformer:640
A non-autoregressive asr system with flexible and641
effective hotword customization ability. In ICASSP642
2024-2024 IEEE International Conference on Acous-643
tics, Speech and Signal Processing (ICASSP), pages644
10346–10350. IEEE.645

Tejas Srinivasan, Ramon Sanabria, and Florian Metze.646
2020a. Looking enhances listening: Recovering647
missing speech using images. In ICASSP 2020-2020648
IEEE International Conference on Acoustics, Speech649
and Signal Processing (ICASSP), pages 6304–6308.650
IEEE.651

Tejas Srinivasan, Ramon Sanabria, Florian Metze, and652
Desmond Elliott. 2020b. Fine-grained grounding for653
multimodal speech recognition. In Findings of the654
Association for Computational Linguistics: EMNLP655
2020, pages 2667–2677.656

Tejas Srinivasan, Ramon Sanabria, Florian Metze, and657
Desmond Elliott. 2020c. Multimodal speech recog-658
nition with unstructured audio masking. In Proceed-659
ings of the First International Workshop on Natural660
Language Processing Beyond Text, pages 11–18.661

Felix Sun, David Harwath, and James Glass. 2016.662
Look, listen, and decode: Multimodal speech recog-663
nition with images. In 2016 IEEE Spoken Language664
Technology Workshop (SLT), pages 573–578. IEEE.665

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob666
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz667
Kaiser, and Illia Polosukhin. 2017. Attention is all668
you need. Advances in neural information processing669
systems, 30.670

10



A Appendix671

A.1 Case Study672

In Section 4.5, we demonstrated that VHASR can673

use image information to correct words which is674

related to images and has transcription errors. In675

this section, we will use examples to explain how676

VHASR achieves this.677

Figure 5 shows three examples from Flickr8k.678

"A" refers to the transcription of the ASR stream,679

"V" refers to the transcription of the VH stream,680

"M" refers to the transcription obtained by M3, and681

"T" refers to the real transcription. We extract the682

attention score matrix from the last layer of the683

VH decoder and create a heatmap. The horizon-684

tal axis of the heatmap represents the subtoken,685

while the vertical axis represents the number of686

vision hotwords. We identify the subtokens that687

are transcribed incorrectly by the ASR stream but688

corrected by the VH stream. Then, we extract the689

top 5 vision hotwords that have the highest atten-690

tion scores with them. Chosen vision hotwords are691

marked on the original image.692

In the first example, the ASR stream incorrectly693

transcribes "grey" as "gry", while the VH stream694

doesn’t make this mistake. The combination of the695

two streams helps correct the error. specifically,696

the subtokens corresponding to "grey" focus on six697

vision hotwords, five of which are background, and698

one includes the grey pants of the dancer. There-699

fore, the vision encoder successfully extracts infor-700

mation about "grey" and helps the VH stream tran-701

scribe "grey" accurately. Furthermore, by merging702

the ASR stream and VH stream with M3, error in703

the ASR stream is rectified. In the second example,704

the ASR stream incorrectly transcribes "girls" as705

"girl", which was also corrected by the accurate VH706

stream. Among the vision hotwords corresponding707

to "girls", three are related to background, and two708

include the heads of the girls, so the VH stream709

successfully identified "girls". In the third example,710

the ASR stream incorrectly transcribes "river" as711

"room", but the VH stream correctly transcribes712

"river" by utilizing the information about "river"713

contained in the vision hotwords. By merging, the714

VH stream helps correct error in the ASR stream.715

These examples are not unique, and the same phe-716

nomenon occurs in many utterances. In Figure 6,717

we show another three examples from COCO for718

readers’ reference.719

Although the VH stream of VHASR has less720

speech recognition ability than the ASR stream, it721

can extract features from key vision hotwords and 722

capture keywords in transcription, thereby correctly 723

identifying words that may be difficult for the ASR 724

stream to recognize. After token-by-token merging 725

based on visual-token similarity, the VH stream 726

can correct some transcription errors in the ASR 727

stream, leading to a more accurate transcription. 728
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A: The break dancer is wearing a white shirt and gry 
pants.

V: The break dancer is wearing a white shirt and grey 
pants.

T: The break dancer is wearing a white shirt and grey 
pants.

M: The break dancer is wearing a white shirt and grey 
pants.

A: Little girl sitting in a circle on wooden floor 
surrounded by observer area.

V: Little girls sitting in a circle on wooden floor 
surrounded by observer area.

T: Little girls sitting in a circle on wooden floor 
surrounded by observer area.

M: Little girls sitting in a circle on wooden floor 
surrounded by observer area.

A: A man fly fishes in a large room.
V: A man fly fishes in a large river. T: A man fly fishes in a large river.

M: A man fly fishes in a large river.

Figure 5: Three examples about how VH stream helps to rectify ASR stream’s error.
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A: There is a train running on the railway track. For the train, there 
are handles, wipers, lights, doors, windows. On the two sides, there 
are grasses and trees, also there is a mirror for the tree.

V: There is a train running on the railway track. For the train, there 
are handles, wipers, lights, doors, windows. On the two sides, there 
are grasses and trees, also there is a mirror for the train.

T: There is a train running on the railway track. For the train, there 
are handles, wipers, lights, doors, windows. On the two sides, there 
are grasses and trees, also there is a mirror for the train.

M: There is a train running on the railway track. For the train, there 
are handles, wipers, lights, doors, windows. On the two sides, there 
are grasses and trees, also there is a mirror for the train.

A: In this picture there is a boy wearing a red shirt, blue track and 
holding a disk. in the background there is a wooden fence.

V: In this picture there is a boy wearing a red shirt, blue track and 
holding a disc. in the background there is a wooden fence.

T: In this picture there is a boy wearing a red shirt, blue track and 
holding a disc. in the background there is a wooden fence.

M: In this picture there is a boy wearing a red shirt, blue track and 
holding a disc. in the background there is a wooden fence.

A: As we can see, in the image there is a glass. On gas, there is a 
bowl. In bowl, there are carrot and onion pieces.

V: As we can see, in the image there is a gas. On gas, there is a 
bowl. In bowl, there are carrot and onion pieces.

T: As we can see, in the image there is a gas. On gas, there is a 
bowl. In bowl, there are carrot and onion pieces.

M: As we can see, in the image there is a gas. On gas, there is a 
bowl. In bowl, there are carrot and onion pieces.

Figure 6: More examples about case study.
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