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Abstract

Multilinguality is crucial for extending recent001
advancements in language modelling to diverse002
linguistic communities. To maintain high003
performance while representing multiple004
languages, multilingual models ideally align005
representations, allowing what is learned in one006
language to generalise to others. Prior research007
has emphasised the importance of parallel data008
and shared vocabulary elements as key factors009
for such alignment. In this study, we investigate010
an unintuitive novel driver of cross-lingual gen-011
eralisation: language imbalance. In controlled012
experiments on perfectly equivalent cloned013
languages, we observe that the existence of a014
predominant language during training boosts015
the performance of less frequent languages016
and leads to stronger alignment of model repre-017
sentations across languages. Furthermore, we018
find that this trend is amplified with scale: with019
large enough models or long enough training,020
we observe that bilingual training data with a021
90⁄10 language split yields better performance022
on both languages than a balanced 50⁄50 split.023
Building on these insights, we design training024
schemes that can improve performance in all025
cloned languages, even without altering the026
training data. As we extend our analysis to real027
languages, we find that infrequent languages028
still benefit from frequent ones, yet whether029
language imbalance causes cross-lingual030
generalisation there is not conclusive.031

1 Introduction032

In recent years, autoregressive language models033

(LMs) pretrained on massive text corpora have034

advanced the state of the art in NLP tasks across035

the board (Brown et al., 2020; Touvron et al.,036

2023a,b; Köpf et al., 2023). While most of the037

leading models are trained on English texts,038

multilingual capabilities are crucial to make these039

advances accessible to a broader user base with040

diverse linguistic backgrounds. Ideally, data in041

one language should improve these multilingual042

models’ performance in others. Such multilingual 043

models should thus display cross-lingual generali- 044

sation: by reusing circuits (Cammarata et al., 2020; 045

Elhage et al., 2021) and aligning their internal rep- 046

resentations across languages, they may generalise 047

concepts learned in a language to another.1 048

How can such cross-lingual generalisation 049

be achieved? This has been a focus of much 050

prior work. One previously identified driver of 051

cross-lingual generalisation is parallel training 052

data; empirical evidence shows that training the 053

model on either parallel sentence pairs (Lample 054

and Conneau, 2019) or on corpora which are 055

comparable across languages (Dufter and Schütze, 056

2020) improves generalisation. Another driver 057

of cross-lingual generalisation is the availability 058

of anchor points, i.e., vocabulary elements that 059

are shared between languages; these can be 060

naturally occurring subwords (e.g., computer 061

in English and computador in Portuguese may 062

share the subword comp; Pires et al., 2019; Wu 063

and Dredze, 2019), shared special tokens (e.g., 064

mask or bos symbols; Dufter and Schütze, 2020), 065

or even artificially inserted “code-switching” 066

augmentations (Conneau et al., 2020b; Reid and 067

Artetxe, 2022; K et al., 2020; Feng et al., 2022). 068

Beyond these two drivers, limited model capacity 069

has been found to improve generalisation by Dufter 070

and Schütze (2020), but to constrain multilingual 071

capabilities by Chang et al. (2023). 072

In this work, we identify a surprising new 073

factor that can boost cross-lingual generalisation 074

abilities: language imbalance. We first conduct 075

1A circuit is typically defined as a subgraph of a neural
network which performs a specific computation. E.g., a circuit
could be responsible for computing “greater than” compar-
isons between numbers in English sentences (Hanna et al.,
2024). If representations are aligned across languages (in
terms of how they encode, e.g., numbers) and circuits are
reused, a model should be able to apply what it learns in one
language (e.g., “greater than” comparisons in English) to per-
form similar computations in another language (e.g., French).
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experiments in a synthetic setting with perfectly076

equivalent cloned languages; this allows us to in-077

vestigate LMs’ generalisation abilities in isolation078

from the effects of languages’ dissimilarities, giv-079

ing us a rough upper bound on the generalisation080

we should expect to see between real language081

pairs. In this cloned language setting, we find that082

having a dominant main language improves gen-083

eralisation, significantly boosting the performance084

of less frequent languages. Furthermore, we find085

that this effect becomes stronger when we either086

increase our model’s size or when we train it for087

longer. Based on these insights, we design training088

curricula that improve performance in all cloned089

languages without any modifications to the training090

data. In the second part of our paper, we investigate091

to what extent our insights transfer to real language092

pairs. While we find that lower resource languages093

typically do benefit from higher resource ones,094

the impact of language imbalance on cross-lingual095

generalisation is much less clear in this more096

realistic setting. Overall, our results suggest an097

interesting attribute of model training dynamics:098

in some settings, having a main language can lead099

model components to be shared across languages.100

2 Cross-lingual Generalisation101

While natural languages differ widely in their typo-102

logical properties, any pair of languages will share103

at least a few grammatical and syntactic patterns.104

Further, as their semantics reflect the underlying105

processes of our world, language pairs should also106

have similarities in the types of messages their107

users typically convey. Intuitively, this suggests108

that what is learned about a language LA should109

be useful to model another language LB, and vice110

versa. The extent of such generalisation depends111

not only on how similar the two languages are, but112

also on the employed learning algorithm. We anal-113

yse such generalisation here, with a focus on how114

language imbalance influences multilingual LMs.115

Intuitively, if a model generalises well across116

languages, it should achieve better performance117

in each language (in terms of, e.g., perplexity)118

than a monolingual model trained on the same119

data. Concretely, a model trained on a multi-120

lingual dataset Dmulti = DA ∪ DB containing121

languages LA and LB should perform better than122

monolingual models trained only on DA or DB.123

This becomes clear when using definitions from124

information theory: Dmulti contains at least as125

much information about LA as DA. However, such126

a multilingual model could also perform worse. 127

This could happen, for instance, if the data from 128

different languages interfere with each other during 129

optimisation through conflicting gradient update 130

directions (Wang et al., 2020). It could also happen 131

if the model has limited capacity: the multilingual 132

model has to represent many languages, which 133

intuitively requires more capacity than a single 134

one, even if some parameters are shared across 135

them (Conneau et al., 2020a; Pfeiffer et al., 2022). 136

In an attempt to make models better across 137

many languages, many multilingual models these 138

days are trained on somewhat balanced data (Scao 139

et al., 2023; Faysse et al., 2024). In some of these 140

cases, low-resource languages are upsampled 141

to improve their performance under the model. 142

As mentioned above, however, while balancing 143

languages’ appearance in a model’s training set 144

should intuitively improve performance, this 145

is not necessarily true. In fact, (and perhaps 146

surprisingly) some recent large language models 147

trained in mostly English-focused settings perform 148

reasonably well in a large sample of languages 149

(Ahia et al., 2023; Blevins and Zettlemoyer, 2022; 150

Briakou et al., 2023). These models’ training 151

data is typically highly imbalanced, with only a 152

small fraction being composed of “non-English” 153

languages. It is thus unclear whether multilingual 154

models indeed benefit from training on datasets 155

with balanced languages (Ye et al., 2023). 156

In smaller training scales, the benefits of multi- 157

lingual training are better understood. In general, it 158

has been found that low-resource languages tend to 159

benefit from data in higher-resource languages, but 160

high-resource languages benefit much less from 161

each other (Conneau et al., 2020a; Chang et al., 162

2023). It is, however, unclear what causes cross- 163

lingual generalisation in this case. Is the model 164

in fact able to generalise better in the imbalanced 165

setting? Or does the model generalise equally 166

well in the balanced case, but its capacity bottle- 167

necks performance in higher-resource languages, 168

stopping us from observing performance gains? 169

We investigate the role of language imbalance in 170

cross-lingual generalisation here. Notably, Wendler 171

et al. (2024) recently showed that LMs seem 172

to perform internal computations in an abstract 173

“concept space” which is closest to their main 174

language (English in this case); representations are 175

then mapped back into the input language only in 176

the models’ final layers. Alabi et al. (2024) observe 177

a similar trend when using language adapters. 178
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3 Experimental Setup179

In this section, we provide a brief overview over180

models, data, and metrics used; for more details,181

see App. A. Our code will be made available182

on GitHub. All of our experiments use GPT-2-183

style decoder-only transformers (Radford et al.,184

2019). We base our implementation on the Lan-185

guini Kitchen codebase (Stanić et al., 2023), and186

unless otherwise noted, we use the gpt-small con-187

figuration with 85M non-embedding parameters,188

training on 1.2B tokens of English or French books.189

We use separate tokenisers for English and French.190

For some of our experiments, we treat their vocab-191

ularies as disjoint and do not merge them. If we192

merge subwords that occur in both vocabularies,193

we make this clear with the label anchored.194

As our main evaluation metric, we report195

our models’ perplexity (PPL) on the test set.196

Further, we define three metrics that allow for197

easy comparison of monolingual and multilingual198

models. Let tA and tB be the number of tokens a199

multilingual model is trained on in languages LA200

and LB, respectively. We define monolingual token201

equivalence (MLTE) as the number of tokens that202

would be required by a monolingual model, trained203

only in either language LA or LB, to achieve the204

same perplexity as the multilingual model does in205

that language. To determine MLTE, we fit a simple206

scaling law to predict perplexity from the number207

of training tokens (e.g., tA) using the results from208

our trained monolingual models (see App. B for209

details). Analogously, we define monolingual210

PPL equivalence (MLPE) as the perplexity a211

monolingual model would reach when trained on212

the same number of LA tokens (i.e., tA) as a given213

multilingual model. Finally, we define token effi-214

ciency (TEff ) as the fraction between MLTE and215

the number of tokens used for multilingual training,216

e.g., TEffA = MLTEA
tA

. Intuitively, if TEff > 1,217

performance improves due to multilinguality, while218

if TEff < 1, multilinguality hurts performance.219

4 Cloned Languages220

In this section, we examine the model’s capability221

to generalise across perfectly equivalent cloned222

languages. We create a cloned language by223

duplicating the language model’s vocabulary; this224

allows us to encode each sequence in either the225

original language (using the original vocabulary)226

or in the cloned language (using the cloned vocab-227

ulary). This experimental paradigm was originally228

proposed by K et al. (2020) and Dufter and229

Schütze (2020).2 Formally, let Lorig be an “original” 230

language with a vocabulary of subword units Σ; 231

we denote each subword w ∈ Σ. This language 232

can be described by a probability distribution 233

p(worig), where worig ∈ Σ∗. We clone language Lorig 234

by creating multiple instantiations of it: L1, L2, 235

. . .LN . These languages have vocabularies Σn, 236

each of which has symbols that are equivalent to 237

the original ones.3 Furthermore, these languages 238

define probability distributions which are isometric 239

to the original language. If we denote equivalence 240

as wn
◦
= worig for wn ∈ Σ∗

n and worig ∈ Σ∗, we 241

have wn
◦
= worig =⇒ p(wn) = p(worig). 242

Given dataset Dorig = {w(k)
orig }Kk=1 with w

(k)
orig ∼ 243

p(worig), we can now create a multilingual dataset 244

Dmulti by independently mapping each sequence 245

to one of the cloned languages: For each w(k), 246

we first sample a language L(k) ∼ p(L) from 247

a categorical distribution over languages, then 248

we map the sequence to L(k) by encoding it us- 249

ing the corresponding vocabulary. We can write 250

Dmulti =
⋃N

n=1Dn where 251

Dn =
{
w(k)

n

∣∣ w(k)
n

◦
= w

(k)
orig and L(k) = Ln

}
252

denotes the subset in language Ln. 253

Importantly, cloned languages are perfectly 254

equivalent, having the same syntax, semantics, and 255

distribution. They differ only in the symbols used 256

to encode their vocabularies. Any generalisation 257

we observe in this setting should thus serve as an 258

upper bound on the potential to generalise across 259

non-identical natural languages.4 In other words, 260

if our model cannot generalise across cloned lan- 261

guages, we would have strong reason to believe 262

it shouldn’t generalise across distinct languages. 263

If we observe that a model can generalise across 264

cloned languages, however, we may or may not 265

observe the same to happen across non-cloned lan- 266

guages. We’ll investigate the latter in Section 5. 267
2K et al. (2020) perform duplication on the character IDs,

i.e., before tokenisation, while Dufter and Schütze (2020)
adopt an approach equivalent to ours. Both of these works term
L2 a “fake” language. Since there is no distinction between
L1 and L2, however, we call them cloned languages instead.
Other related studies have investigated the effect of infinitely
many cloned languages on LMs’ performance (Huang et al.,
2023; Chen et al., 2023), or employed duplicated vocabularies
at the token level to study their impact on LMs’ memorisation
or performance (Kharitonov et al., 2021; Schäfer et al., 2024).

3Unless otherwise noted, these vocabularies are defined
as disjoint sets in our experiments, meaning that no anchor
points exist across languages.

4As for most of our experiments we consider cloned
languages’ alphabets to be disjoint, in practice our results
only upper bound the cross-lingual generalisation of models
with no anchor points (i.e., with disjoint vocabularies).
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Figure 1: LM performance by imbalance ratio. (top)
LM perplexity. (bottom) LM accuracy on GLUE;
models were fine-tuned in EN1 and evaluated on either
EN1 and EN2.

4.1 Generalisation268

Due to the equivalence of cloned languages, one269

may expect language models to easily generalise270

across them. In that case, training a multilingual271

model on datasets D1 and D2 would lead to similar272

performance to training a monolingual model on273

the original dataset Dorig (note that |Dorig| = |D1|+274

|D2|). We perform this experiment here, training275

either monolingual models on English (EN), or276

multilingual models on cloned English (EN1 and277

EN2), setting p(EN1) = p(EN2) = 0.5. Perhaps278

surprisingly, when training in this balanced multi-279

lingual setting, language modelling performance is280

significantly worse than in the monolingual setting281

(see Table 1, rows 2 & 4). In fact, one would obtain282

better performance training two monolingual mod-283

els for half as many steps than training on this com-284

bined data. Training data in one language seems to285

hurt performance in the other language instead of286

boosting it. This indicates that the model is not able287

to generalise well across languages in this setting.288

Takeaway 1. The model does not generalise well289

across cloned languages given a 50⁄50 data split.290

4.2 Language Imbalance291

How does the balance of the languages’ data af-292

fect generalisation performance? Will the multi-293

lingual model still underperform its monolingual294

equivalents when trained on an uneven language295

distribution? When varying the ratio of EN1 to296

EN2 data shown during training (while keeping297

the total number of training steps constant), we298

observe that the rarer “lower resource” language,299

here always EN2, benefits from the presence of a300

dominant “main language”. Fig. 1 (left) shows that, 301

under higher imbalance, the model’s performance 302

on EN2 becomes much better than that of a mono- 303

lingual model trained on the same amount of EN2 304

data. For example, when training in the 90⁄10 regime, 305

we obtain a TEffEN2 of over 2 (see Table 1, row 306

5). Do these improvements translate to better cross- 307

lingual generalisation on downstream tasks as well? 308

We test this by fine-tuning models on the GLUE 309

benchmark (Wang et al., 2019) in EN1 only, and 310

evaluating them on EN1 and EN2. We observe that 311

models trained under higher language imbalance in- 312

deed have significantly better EN2 zero-shot perfor- 313

mance (see Fig. 1 right). Together, these results sug- 314

gest that cross-lingual generalisation is occurring. 315

Is this generalisation attained due to the model’s 316

internal computations being shared across lan- 317

guages? To answer this question, we analyse how 318

language imbalance affects the cross-lingual align- 319

ment of our models’ representations. Looking 320

at the cosine similarity of equivalent subwords 321

w1
◦
= w2 in EN1 and EN2, we find that similarity 322

steadily increases with higher imbalance: in the 323
50⁄50 setting, embeddings are not aligned (exhibiting 324

an average cosine similarity of 0.02), while, e.g., in 325

the 90⁄10 setting, equivalent subwords are much more 326

aligned, showing a similarity of 0.28 (details in 327

App. C). Comparing the cosine similarity of hidden 328

states when the LM is given equivalent sequences 329

w1
◦
= w2, we also observe stronger alignment 330

for a model trained in the imbalanced 90⁄10 regime, 331

compared to the 50⁄50 counterpart (see App. F). In- 332

terestingly, the cosine similarity between gradients 333

is also higher in the imbalanced setting: when pro- 334

cessing equivalent sequences, the gradients with 335

respect to w1 or w2 have an average cosine similar- 336

ity of 0.53 for the model trained in the 90⁄10 setting, 337

compared to 0.07 in the 50⁄50 setting (see full plots of 338

similarities per model component in App. G). This 339

suggests that the gradient updates with respect to 340

one language may benefit the optimisation process 341

of that language’s cloned counterpart more when 342

training under higher imbalance. 343

Takeaway 2. Language imbalance improves gen- 344

eralisation and leads to representations which are 345

more aligned across cloned languages. 346

4.3 Many Languages 347

How does this trend transfer to settings with more 348

than two languages? In such cases, sharing circuits 349

across languages might be even more crucial due 350

to the model’s limited capacity. Instead of cloning 351
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Training Data PPL TEff

Run Type Row # Tokens p(EN1) p(EN2) p(EN3), . . . , p(EN10) EN1 EN2 EN1 EN2

Monolingual
1 1.2B 100% 0% 0% 21.9 - 1 -
2 0.5 × 1.2B 100% 0% 0% 25.3 - 1 -
3 0.1 × 1.2B 100% 0% 0% 48.4 - 1 -

2 languages
4 1.2B 50% 50% 0% 26.1 26.1 0.89 0.89
5 1.2B 90% 10% 0% 22.5 32.8 1.00 2.08

10 languages
6 1.2B 10% 10% 10%, . . . , 10% 35.5 35.7 1.69 1.67
7 1.2B 50% 1

18
1
18 , . . . ,

1
18 24.6 33.4 1.15 3.56

Schedule
8 1.2B 100%

↰

0% 0% ↱ 100% 0% >1B 31.4 - 0.47
9 1.2B 90%

↰

10% 10% ↱ 90% 0% 26.5 24.4 0.83 1.18

2x data
10 2 × 1.2B 50% 50% 0% 23.3 23.3 0.73 0.73
11 2 × 1.2B 90%

↰

10% 10% ↱ 90% 0% 22.8 20.4 0.83 1.60

3x data
12 3 × 1.2B 50% 50% 0% 22.2 22.2 0.64 0.64
13 3 × 1.2B 90%

↰

10% 10% ↱ 90% 0% 21.5 19.3 0.77 1.63

Table 1: Performance of language models trained on different compositions of EN1 and EN2. a%

↰

b% indicates an
immediate decrease from a% down to b% halfway during training. Analogously, a% ↱ b% indicates an immediate
increase.

the language only once, we now clone it nine times,352

obtaining in total 10 languages. In Table 1 (rows353

6 & 7), we report the performance when sampling354

the languages in a balanced way and when having355

a much stronger main language.356

Interestingly, when sampling uniformly, we ob-357

tain TEff ≈ 1.7; performance is thus better than358

with a monolingual model trained on an equiva-359

lent amount of monolingual data (compare rows360

6 & 3). This differs from our observations for361

the bilingual setting, where uniform language sam-362

pling performed worse than the equivalent mono-363

lingual models. Presumably, modelling this many364

languages effectively with limited model capacity365

may lead the model to share its circuits, improving366

cross-lingual generalisation (Dufter and Schütze,367

2020). The limit of infinite languages (in which368

a model never observes the same language more369

than once) was analysed by Huang et al. (2023);370

interestingly, LMs still seem to learn the language,371

to some extent, even in that setting.372

In the imbalanced setting where we sample373

a stronger “main language” 50% of the time,374

we observe even stronger performance on all375

languages. Despite the model seeing only roughly376

67M tokens in each of the rarer languages (1/18377

of all steps), it achieves better performance in378

these languages than in the uniform setting with379

120M tokens (1/10 of all steps) per language. In380

fact, on the rarer languages, the model achieves381

TEff ≈ 3.6, matching the performance of a382

monolingual model trained on 240M tokens.383

Takeaway 3. When training on many cloned lan-384

guages, sampling a main language disproportion-385

ately improves generalisation.386

Figure 2: TEff as we train LMs with (left) more data,
or (right) larger architectures. mini, small and medium
denote GPT sizes in Languini (Stanić et al., 2023), with
11M, 85M, and 303M non-embedding parameters.

4.4 Effect of scaling 387

Model and data size are crucial factors for the 388

performance of LMs. Here, we investigate how the 389

previously identified trends are affected by scaling 390

the model architecture or training data. Fig. 2 (left) 391

shows that the effect of imbalance on cross-lingual 392

generalisation appears to increase when we train 393

on twice as much data (2.4B tokens instead of 394

1.2B), reaching TEff > 3; this corresponds to 395

a “chinchilla-optimal” setup for our GPT small 396

model (Hoffmann et al., 2022). At the same time, 397

the TEff of the 50⁄50 setting seems to be decreasing 398

under prolonged training. This might be caused 399

by the heightened importance of model capacity 400

under longer training, which may have a stronger 401

impact on performance when representations 402

are less aligned across languages. Overall, the 403

disparity in effectiveness between the imbalanced 404

and balanced settings grows with longer training. 405

Remarkably, when training for 4.8B tokens, the 406
90⁄10 setting yields better performance in both 407

languages, compared to the 50⁄50 setting. 408

When decreasing the model size, we also 409
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observe higher performance benefits in the410

imbalanced setting (see Fig. 2 right), potentially411

due to the capacity argument described above.412

Interestingly, however, the effect of imbalance413

appears to be significantly stronger for larger414

models as well. When training a larger model415

with around 300M parameters (GPT medium in416

Languini; Stanić et al., 2023), in the 90⁄10 setting, we417

achieve better performance on both languages than418

under the 50⁄50 split. This might be because larger419

models generally exhibit better generalisation420

ability than smaller ones (Brown et al., 2020).421

Takeaway 4. Longer training and larger models422

lead to stronger performance benefits due to lan-423

guage imbalance.424

4.5 Language Sampling Schedule425

Knowing that language imbalance boosts general-426

isation, how can we use this insight to train better427

models? Is there a way to leverage our insights in428

order to improve performance on two languages,429

even with the same training data? In Table 1 (rows430

8, 9, 11, and 13), we report results when training431

with a language sampling schedule that ensures432

a language imbalance throughout all of training,433

but which still leads to an overall 50⁄50 split between434

EN1 and EN2 data seen by the model. We sample435

EN1 with a higher probability during the first half436

of training. Then, we sample EN2 more often to437

achieve a marginal split of 50⁄50.438

When showing exclusively EN1 at first, and then439

showing only EN2 (100

↰

0 ⁄ 0 ↱ 100; row 8), we observe440

bad overall performance. By the end of training,441

perplexity on EN1 is very high, presumably due442

to catastrophic forgetting (McCloskey and Cohen,443

1989; French, 1999). Further, EN2 does not seem444

to benefit from the EN1 data, achieving very low445

performance, which might be due to the lower446

learning rate in the second half of training. 5447

On the other hand, if we avoid catastrophic for-448

getting, making sure that the model encounters at449

least some samples of both languages at every point450

in training, via a 90

↰

10⁄10 ↱ 90 split (first sampling lan-451

guages with ratio 90⁄10, and then switching to 10⁄90452

after half of training), we can mitigate these issues.453

On our standard training set (1.2B tokens, row 9),454

we observe almost equivalent performance to uni-455

5Chen et al. (2023) find that an equivalent setting can still
be beneficial when using many more languages: they periodi-
cally reinitialise the learned embeddings (which is equivalent
to switching to a new cloned language) and obtain models that
are better adaptable to new languages.

form language sampling on EN1, but significantly 456

improved performance on EN2. Under longer train- 457

ing, these benefits become more pronounced: this 458

language schedule improves performance on both 459

languages compared to the simple 50⁄50 setting (com- 460

pare row 10 vs 11 and row 12 vs 13). 461

Takeaway 5. Compared to uniform language 462

sampling, an imbalanced ratio throughout training 463

can lead to better results on all languages, even 464

if the overall language split remains balanced. 465

5 Real Languages 466

To verify whether the insights from our cloned- 467

language experiments hold in a more natural 468

setting, we now run experiments with multilingual 469

models on English (EN) and French (FR). 470

5.1 Generalisation 471

In the cloned setting, we observed no significant 472

generalisation when training on a balanced 473

language mix (i.e., TEff < 1, representations were 474

unaligned, and zero-shot GLUE accuracy on EN2 475

was bad). Similarly, when sampling EN and FR 476

data uniformly, we also obtain TEff < 1. A mul- 477

tilingual model’s performance is thus worse than a 478

monolingual model trained only in the same EN or 479

FR data (see Table 2, row 7). Notably, prior work 480

has identified anchors (shared vocabulary items 481

across languages) help generalisation (Dufter and 482

Schütze, 2020; Pires et al., 2019; Wu and Dredze, 483

2019). We thus experiment with similarly merging 484

vocabulary items shared between EN and FR, and 485

confirm this helps performance (compare Table 2, 486

row 7 vs 11). We run more experiments analysing 487

the impact of anchor points in both cloned and real 488

languages, see App. D. Note that, with an anchored 489

vocabulary, generalisation across EN and FR is 490

not necessarily upper bounded by our results on 491

disjoint cloned languages. In fact, in the 50⁄50 setting, 492

we observe a marginally higher TEff for EN–FR 493

models with an anchored vocabulary than for EN1– 494

EN2 models where we used disjoint vocabularies 495

(compare Table 1 row 4 and Table 2 row 11). 496

5.2 Language Imbalance 497

Analogous to the cloned setting, we observe that 498

an imbalanced EN/FR ratio leads to improved 499

performance (TEff > 1), on the rarer language 500

(see Table 2, rows 7-9 & 11-13). This is the case 501

for both, a 90⁄10 and a 10⁄90 EN/FR ratio. Fig. 3 shows 502

PPL and TEff in EN and FR as a function of 503

the language imbalance. We observe that large 504
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Training Data PPL TEff

Run Type Row # Tokens p(EN) p(FR) EN FR EN FR

Monolingual

1 1.2B 100% 0% 21.9 - 1 -
2 0.5 × 1.2B 100% 0% 25.3 - 1 -
3 0.1 × 1.2B 100% 0% 48.4 - 1 -
4 1.2B 0% 100% - 16.0 - 1
5 0.5 × 1.2B 0% 100% - 18.4 - 1
6 0.1 × 1.2B 0% 100% - 34.1 - 1

Multilingual
disjoint vocabs

7 1.2B 50% 50% 26.4 19.4 0.85 0.82
8 1.2B 90% 10% 22.5 31.9 1.00 1.05
9 1.2B 10% 90% 43.5 16.4 1.10 0.97
10 1.2B 90%

↰

10% 10% ↱ 90% 29.1 20.5 0.60 0.66

Multilingual
anchored vocabs

11 1.2B 50% 50% 26.0 19.0 0.91 0.88
12 1.2B 90% 10% 22.5 29.0 1.00 1.27
13 1.2B 10% 90% 39.5 16.5 1.33 0.96
14 1.2B 90%

↰

10% 10% ↱ 90% 28.9 19.3 0.61 0.83
15 1.2B 90%

↰

10% ↱50% →50% 10%↱90%

↰

50% →50% 26.4 18.5 0.85 1.00
16 1.2B 95%

↰

35% →35% →35% 5%↱65% →65% →65% 26.3 18.7 0.86 0.95

2x data
17 2 × 1.2B 50% 50% 23.0 16.9 0.79 0.76
18 2 × 1.2B 90%

↰

10% 10% ↱ 90% 26.1 17.1 0.44 0.70

3x data
19 3 × 1.2B 50% 50% 21.8 16.0 0.70 0.67
20 3 × 1.2B 90%

↰

10% 10% ↱ 90% 25.1 16.2 0.35 0.63

Table 2: Performance of language models trained on different compositions of EN and FR. a%→b%→c% →d%
indicates a four stage language schedule, switching immediately between, e.g., c% and d% after 75% of training.

imbalances generally seem to yield TEff > 1; the505

worst TEff is reached with a balanced EN/FR ratio.506

These trends are in line with our findings in the507

cloned setting. However, especially with disjoint508

vocabularies, the observed performance benefits509

due to generalisation are less significant. Presum-510

ably, this is due to EN and FR not being equivalent511

and thus generally allowing less generalisation.512

Does imbalance again improve generalisation513

due to a better alignment of the model’s represen-514

tations in the two languages? As in the cloned lan-515

guage setting, we investigate the cosine similarity516

between the models’ hidden states when process-517

ing “equivalent” sequences in the two languages.518

For real languages, however, we do not have ac-519

cess to perfectly equivalent sequences. Instead,520

we mimick this scenario using parallel translated521

sequences in the two languages, which should con-522

tain roughly similar properties. Differently from523

the cloned language setting, we do not observe524

higher hidden state similarities for models trained525

on imbalanced data (see App. F). Further, we find526

that gradient similarities barely differ across bal-527

anced and imbalanced settings when using disjoint528

vocabularies. For the anchored vocabulary they529

are even marginally higher in the balanced set-530

ting (see App. G). We thus do not find evidence531

that the improved TEff in the imbalanced setting532

is caused by a stronger alignment of model up-533

dates across languages in this setting. A possible534

reason for this discrepancy could be that, at the535

scales of our experiments, LMs tend to rely on536

Figure 3: LM performance on EN and FR by imbalance
ratio.

language specific surface-level features (which are 537

shared by cloned languages, but not by distinct real 538

languages) and show less understanding of com- 539

plex semantics which might be more generalisable. 540

Future research might thus consider investigating 541

these trends at larger scales. 542

Takeaway 6. Imbalanced multilinguality boosts 543

the performance of real low-resource languages. 544

However, this effect is weaker here than for cloned 545

languages. Further, for real languages, we do not 546

find evidence of language imbalance leading to 547

representations which are more cross-lingually 548

aligned. 549
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5.3 Effect of Scaling550

In the cloned setting, we observed that prolonging551

training significantly decreased TEff in the 50⁄50 set-552

ting. We hypothesised that this might be caused553

by a stronger influence of the limited model ca-554

pacity with longer training, and poor sharing of555

representations between languages. As EN and556

FR are distinct languages that require at least some557

language specific representations, we might expect558

this trend to be even more pronounced for these559

languages. However, compared to the cloned set-560

ting, prolonging training leads to a smaller decline561

in TEff in the 50⁄50 setting here. Presumably, the562

anchored vocabulary allows for better generalisa-563

tion compared to the cloned setting, despite the564

languages being distinct.565

Further, unlike in the cloned setting, longer566

training significantly decreases the TEff of the567

lower-resource language in the imbalanced setting568

here (see Fig. 4). In fact, the 90⁄10 TEff even falls569

below 1, approaching the TEff of the 50⁄50 setting.570

This suggests that language imbalance might571

not improve generalisation across distinct real572

languages. Still, when scaling up the model, we573

observe an increase of almost 2x in the TEff of574

the lower-resource language (see Fig. 4). This is575

in line with our cloned languages observations,576

although the effect is weaker.577

Takeaway 7. Performance benefits for real low-578

resource languages tend to decrease or vanish with579

longer training. Larger models, however, appear580

to yield higher performance benefits in both the581

balanced and imbalanced setting.582

5.4 Language Sampling Schedule583

For equivalent cloned languages, we found that an584

imbalanced language sampling schedule can lead585

to improvements upon simple uniform sampling. If586

this held for real languages as well, it could have587

important practical implications for future multilin-588

gual LM training. However, whereas a 90

↰

10⁄10 ↱ 90589

schedule yielded strong performance on cloned lan-590

guages, matching or outperforming the 50⁄50 setting,591

this is not the case for EN and FR (see Table 2,592

row 10 vs 7 and row 14 vs 11). Furthermore, in593

line with the observations above, longer training594

does not make this schedule more effective, but595

instead increases its gap to the performance of the596
50⁄50 setting (see rows 17-20).597

The discrepancy between these results and the598

ones in cloned languages might be explained by599

Figure 4: TEff of models on EN and FR with anchored
vocab as we train them with (left) more data, or (right)
larger architectures.

the reduced effect of imbalance on the generalisa- 600

tion and representation alignment in real languages. 601

The schedules may be enough to force LMs to share 602

circuits across cloned languages, but not across real 603

ones. To investigate if this negative result was a 604

particular property of our chosen schedule, we ex- 605

plore other more complex scheduling options. 6 606

In general, none of the tested schedules appears 607

to outperform the 50⁄50 setting (see rows 15, 16) on 608

both languages. However, more complex 4-stage 609

schedules, can obtain better performance on one 610

language while incurring a slight performance drop 611

in the other. Intriguingly, this allows trading off the 612

performance of different languages without altering 613

the training data. 614

Takeaway 8. For real languages, we do not find 615

improvements on all languages due to the tested 616

language schedules. However, they allow for trad- 617

ing off performance in different languages. 618

6 Conclusion 619

We ran experiments to measure cross-lingual 620

generalisation in both a controlled setting with 621

cloned English languages, as well as with English 622

and French. In both settings, we find that, without 623

vocabulary overlap, our models do not show strong 624

cross-lingual generalisation when trained on a 625

balanced language set. However, when training 626

on an imbalanced mix of languages, we observe 627

increased performance compared to monolingual 628

settings. For cloned languages, we find that this can 629

be explained by a higher alignment of the model’s 630

representations across languages, which indicates 631

circuit reuse and improved cross-lingual generali- 632

sation. Yet, at the scales of our experiments, such a 633

correlation is less evident in real languages. While 634

our findings allow us to design an imbalanced lan- 635

guage schedule that yields improved performance 636

in the cloned setting, further research is required to 637

extend these improvements to real-world settings. 638

6Future research might design these more carefully, also
analysing the interplay of language- and learning rate schedule
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Limitations639

There are several limitations of our work, many of640

which present opportunities for future research.641

Data and model size. While we conduct exper-642

iments with varying data (up to 4.8B tokens) and643

model size (up to 336M parameters), it is uncertain644

whether the identified trends also apply at the scale645

of modern large language models. Additionally, for646

more capable models, cross-lingual generalisation647

might be relevant in different aspects, with, e.g.,648

semantics playing a larger role. As the semantic649

content communicated in different languages might650

be easily transferable, this might impact generali-651

sation dynamics.652

Languages. We only run experiments on English653

and French, two Indo-European languages. Further654

work could consider more languages and investi-655

gate the impact of language similarity in results656

more broadly.657

Model architecture. We run most of our exper-658

iments on a Transformer decoder (we also mea-659

sure embedding alignment for simpler Word2Vec660

models). Future research could analyse the effects661

of architecture in more depth to better understand662

the drivers of representation alignment. Conneau663

et al. (2020b), e.g., find that shared parameters in664

the top layers lead to better cross-lingual transfer.665

In our Word2Vec experiments, we do not observe666

improvements in representation alignment due to667

language imbalance (see Fig. 6), presumably due668

to no parameters being shared between the two lan-669

guages. Would this change when adding a shared670

layer to the Word2Vec model?671

Downstream performance. In our evaluation we672

mainly rely on perplexity as a metric, with a sin-673

gle experiment on GLUE accuracy. It might be674

insightful to analyze effects on downstream task675

performance more broadly.676

Quantifying generalisation. In this work, we677

mainly measure cross-lingual generalisation by678

comparing the performance of multilingual mod-679

els with that of monolingual models trained on680

the same amount of data in the given language.681

If a multilingual model on languages LA and LB682

requires fewer LA tokens to reach a given perplex-683

ity on LA than a monolingual model, we speak684

of cross-lingual generalisation, knowing that per-685

formance on LA must have been boosted by data686

in language LB. Future work could formalise this 687

measure and aim to model/quantify the relationship 688

between the number of training tokens seen in a lan- 689

guage LB and performance in another language LA, 690

depending on model size, language imbalance, lan- 691

guage similarity, anchor points, and other factors. 692

An accurate model of these relationships could be 693

of substantial practical value. 694
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A Experimental Setup1109

Model. We use a GPT-2-style decoder-only transformer architecture in our experiments (Radford et al.,1110

2019). Unless otherwise noted, we instantiate our model with 12 layers and a hidden size of 768, which1111

results in 85M non-embedding parameters; this corresponds to Languini’s gpt-small configuration. We1112

follow previous work and train our models with sequence length 512, batch size 128, the Adam optimiser1113

(Kingma and Ba, 2015), and a cosine learning rate schedule from 6e-4 to 6e-6 with 500 warmup steps.1114

Data. For the English settings, we use Languini’s default datasets to train and evaluate our models.1115

These are English books from a filtered version of the books3 subset from the Pile (Gao et al., 2020).1116

The train set consists of a total of 23.9B tokens, while the test set contains i.i.d. books, with a total of1117

roughly 11M tokens. This data is tokenised into a vocabulary of size 16k, obtained using a BPE tokeniser1118

trained with SentencePiece (Gage, 1994; Sennrich et al., 2016; Kudo and Richardson, 2018). For our1119

experiments in French, we use the French-PD-Books dataset (PleIAs, 2024), to which we apply the1120

preprocessing pipeline of the Languini Kitchen, but for French. We train a separate BPE tokeniser on1121

this French dataset, using a 16k-sized vocabulary. Depending on the experiment, the French and English1122

vocabularies are either kept separate (disjoint) or merged (anchored). Unless otherwise noted, we train1123

our models for 18,265 steps—i.e., the first 1.2B tokens in our dataset; this corresponds to a GPT small1124

model trained for 6h on an RTX 3090 GPU, the Languini GPT small 6h setting (Stanić et al., 2023). For1125

experiments where we compare hidden representations or gradients on parallel French–English or cloned1126

English sequences, we use data from the Europarl parallel corpus (Koehn, 2005).1127

Evaluation. When evaluating PPL (from which we also compute MLPE, MLTE and TEff) on the1128

held-out test set, we want to ensure sufficient context for all predictions. To this end, we use a sliding1129

window with steps of 128: we fill in a 512 tokens context, ignore the model’s outputs on the initial 384,1130

and evaluate it only using the last 128 tokens.1131
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B Fitted Scaling Laws 1132

To predict the performance of monolingual models depending on the amount of tokens they are trained on, 1133

we fit a power law curve to predict the relationship between number of training tokens and perplexity for 1134

models of all three sizes and for both languages (see Fig. 5).

Figure 5: Fitted power laws curves predicting perplexity depending on the fraction of training tokens (compared to
our standard 1.2B tokens) for different languages and model sizes.

1135
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C Alignment of EN1 and EN2 Representations1136

While, under balanced language sampling, embeddings of corresponding subwords are not much more1137

aligned than embeddings of random pairs, we observe an increase in cosine similarity with increasing1138

language imbalance: from 0.02 for 50⁄50 to 0.28 for 95⁄5 (see Fig. 6). Fig. 7 shows that this alignment is1139

higher for frequent subwords. This seems natural: at initialisation, subword embeddings are random and1140

not aligned. Then, they become more and more aligned over the course of training.1141

Interestingly, the embeddings of a simple word2vec (Mikolov et al., 2013) model do not show stronger1142

alignment under higher imbalance. This might be due to a lack of shared parameters between the languages1143

(Conneau et al., 2020b).1144

Figure 6: Embedding cosine similarity of corresponding duplicate subwords from EN1 and EN2 and random pairs
to control for anisotropy. Left: our GPT model. Right: Word2vec embeddings trained on the same data (computed
with Gensim).

Figure 7: Embedding cosine similarity of corresponding cloned subwords w1
◦
= w2 from EN1 and EN2, by

frequency.
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D Anchor Points 1145

D.1 Anchors on Cloned Languages 1146

As described earlier, previous works found that anchor points—i.e., lexical items which overlap between 1147

languages—can lead to better generalisation and alignment of representations (Dufter and Schütze, 2020; 1148

Pires et al., 2019; Wu and Dredze, 2019). In our cloned setting, we can investigate this in a controlled 1149

manner by varying the number of vocabulary elements we duplicate. While in the experiments described 1150

above we created EN2 by duplicating the entire vocabulary, we now duplicate only a fraction. The 1151

remaining vocabulary is shared between EN1 and EN2. In this experiment, we observe that a small 1152

number of anchor points already significantly boosts model performance (see Fig. 8), which indicates 1153

improved generalisation. 1154

Figure 8: Perplexity by percentage of anchor points, i.e., overlap between EN1 and EN2 vocabularies. Models
trained on balanced EN1/EN2 split.

D.2 Anchors on Real Languages 1155

English and French vocabularies naturally overlap, having common subwords. These shared elements 1156

potentially act as anchors, facilitating better cross-lingual generalisation. However, the effectiveness of 1157

such anchor points may be moderated by semantic differences; for instance, a shared subword might carry 1158

a different meaning or connotations in English and French, affecting its utility as an anchor. Despite these 1159

nuances, anchor points appear to boost generalisation between real languages: when we merge the EN 1160

and FR vocabularies, we obtain better performance on both languages (compare Table 2, row 7 vs 11) as 1161

well as higher alignment of gradients (see App. G). This aligns with our findings from the cloned language 1162

setting (see App. D.1). Given these benefits, it is natural to use an anchored (i.e., merged) vocabulary 1163

when possible.7 1164

7In practice, this is usually achieved by training a tokeniser on multilingual data, instead of merging monolingually trained
vocabularies.
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E Larger Models and More Data1165

Fig. 9 and Fig. 10 contain results for the full array of model- and dataset size combinations we ran for1166

cloned languages and for English and French, respectively.

Figure 9: Performance with balanced and imbalanced EN1 and EN2 data for different configurations of model- and
dataset size

1167
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Figure 10: Performance with balanced and imbalanced EN and FR data for different configurations of model- and
dataset size. Using anchored vocabulary.
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F Hidden State Similarity1168

Here, we compare the hidden states of our model when processing parallel sequences, both in cloned1169

languages (see Table 3) and in English and French (see Table 4). I.e., for a given trained model and1170

parallel sequences wa and wb, we first feed wa through the model, then wb, and finally compute the1171

cosine similarities for the hidden states of pairs of corresponding tokens from wa and wb (see App. H for1172

details on how these pairs are determined). We use 500 parallel sequences obtained from the Europarl1173

parallel corpus (Koehn, 2005). For cloned languages, we observe that hidden states of the model trained1174

under higher language imbalance generally have higher cosine similarity than the those of the model1175

trained in a balanced setting. For English and French such a trend is less clear. Interestingly, however, an1176

anchored vocabulary seems to lead to slightly higher similarities of the hidden states.1177

Training Data Layer

p(EN1) p(EN2) 1 2 3 4 5 6 7 8 9 10 11 12

50% 50% 0.55 0.79 0.83 0.88 0.85 0.83 0.78 0.66 0.56 0.46 0.25 -0.21
90% 10% 0.86 0.93 0.96 0.96 0.96 0.96 0.96 0.95 0.94 0.90 0.67 0.11

∆ 0.31 0.14 0.13 0.09 0.11 0.14 0.18 0.28 0.38 0.44 0.42 0.32

Table 3: Hidden states’ cosine similarity when LM is fed equivalent inputs in cloned languages. Similarity is
computed per token (i.e., comparing pairs of equivalent tokens).

Training Data Layer

p(EN) p(FR) 1 2 3 4 5 6 7 8 9 10 11 12

D
is

jo
in

t 50% 50% 0.68 0.80 0.84 0.88 0.86 0.84 0.80 0.75 0.62 0.53 0.34 -0.15
90% 10% 0.71 0.83 0.88 0.87 0.86 0.84 0.81 0.74 0.69 0.57 0.40 -0.17

∆ 0.03 0.03 0.04 -0.01 0.00 0.00 0.01 0.00 0.07 0.04 0.06 -0.03

A
nc

ho
re

d 50% 50% 0.73 0.84 0.88 0.91 0.89 0.88 0.85 0.78 0.71 0.61 0.36 0.10
90% 10% 0.78 0.87 0.89 0.91 0.89 0.87 0.84 0.77 0.72 0.63 0.28 0.06

∆ 0.05 0.03 0.01 0.00 0.00 -0.01 0.00 -0.01 0.00 0.02 -0.08 -0.04

Table 4: Hidden states’ cosine similarity for parallel inputs in EN and FR for anchored and disjoint vocabularies.
We first match which tokens correspond to each other in the two languages, and then compare their representations
(see App. H).
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G Gradient Similarity 1178

Here, we compare the cosine similarity of trained models’ gradients with respect to parallel sequences 1179

in two different (possibly cloned) languages. For cloned languages, the alignment between gradients is 1180

significantly higher for the model trained in the imbalanced 90⁄10 setting (see Fig. 11). For EN and FR 1181

data, this does not seem to be the case, whether the vocabulary is anchored (see Fig. 12) or disjoint (see 1182

Fig. 13). However, under the anchored vocabulary, the gradient similarities appear to be generally higher, 1183

suggesting better cross-lingual representation alignment. 1184

Figure 11: Similarity of gradients with respect to parallel sequences in EN1 and EN2 for models trained in balanced
and imbalanced settings. Macro average for 50⁄50: 0.07. Macro average for 90⁄10: 0.53.
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Figure 12: Similarity of gradients with respect to parallel sequences in EN and FR for models with anchored (i.e.,
merged) vocabulary, trained in balanced and imbalanced settings. Macro average for 50⁄50: 0.17. Macro average for
90⁄10: 0.14.

Figure 13: Similarity of gradients with respect to parallel sequences in EN and FR for models with disjoint
vocabularies, trained in balanced and imbalanced settings. Macro average for 50⁄50: 0.04. Macro average for 90⁄10:
0.05.
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H Matching Corresponding Tokens 1185

In our experiments in §5.2, we employ parallel sequences in different languages and compare both their 1186

hidden states’ and their gradients’ similarity. 1187

When comparing gradients (see App. G), we adopt a setup that is analogous to the training process as 1188

we aim to understand how one language might affect optimisation of the other: we compute gradients 1189

with respect to a full sequence in each language, and then compare these sequence-level aggregated 1190

gradients. Analogously, during training, gradient updates are also aggregated for entire sequences. (In 1191

fact, during training, these updates are also aggregated for an entire batch, but we use a batch size of 1 for 1192

this evaluation.) 1193

However, when comparing hidden states, we compare the individual representations of corresponding 1194

tokens in the two sequences. We first compute the cosine similarity of each equivalent token pair, and only 1195

then average over the sequence dimension; this provides us with a more informative signal. For parallel 1196

sequences wEN1

◦
= wEN2

in cloned languages, it is clear which token corresponds to which: At each given 1197

position t, we know that wEN1,t
◦
= wEN2,t so we can simply compare the hidden states position by position 1198

(see Table 3). 1199

Yet, this might not be the case for real languages EN and FR, e.g., due to differing word order or 1200

tokenisation. To ensure that we still compare the hidden states of tokens that approximately correspond to 1201

each other in the respective languages, we match them based on their cosine similarity scores. Concretely, 1202

we create a bipartite graph where the nodes consist of the tokens of the two sequences. For every pair 1203

of tokens wEN,t and wFR,t′ we add an edge which is weighed by the mean cosine similarity of their 1204

hidden states across all layers. We then compute a maximum weight full matching in this graph.8 Such a 1205

matching maximises the average similarity across all token pairs. Indeed, the resulting token pairs appear 1206

to approximately correspond to each other (see Fig. 14). We can then compare the hidden states of these 1207

pairs (see Table 4). 1208

Notably, the cosine similarities of hidden states of corresponding EN and FR tokens wEN,t and wFR,t′ 1209

computed in this way generally appear to be slightly higher than for corresponding tokens wEN1,t
◦
= wEN2,t 1210

of cloned languages (compare Table 4 (disjoint) and Table 3). This might seem unexpected, given that 1211

wEN1,t and wEN2,t are perfectly equivalent but wEN,t and wFR,t′ are generally not. Could this be an artifact 1212

of the employed matching strategy which always maximises the average similarity, potentially matching 1213

tokens that have very high similarity but are completely unrelated? If this is the case, we should also 1214

obtain higher similarity scores in the cloned setting when using the described matching strategy instead of 1215

comparing position by position. After running this experiment, we find that using the matching strategy 1216

the similarities under the 50/50 cloned language split are indeed marginally higher, although only in the 1217

last layers. Under the 90/10 split, however, we observe no notable changes. It thus seems that the proposed 1218

matching strategy does not artificially inflate similarity scores too strongly. 1219

... If _the _House _ag rees , _I _shall _do _as _Mr _Evans _has _suggested .

... Si _l ’ Assemblée _en _es’ _d ’ accord , _je _ferai _comme _M . _Ev ans _l ’ a _sug g éré .

...

...

Figure 14: Computed matching for an example sentence using a model trained under 50⁄50 split with anchored
vocabulary. Pointers to “...” denote a match with a token earlier or later in the sequence.

8We compute the matching using the NetworkX (Hagberg et al., 2008) implementation of the algorithm proposed by Karp
(1978).
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