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Abstract

We design differentially private algorithms for
the problem of prediction with expert advice
under dynamic regret, also known as tracking
the best expert. Our work addresses three nat-
ural types of adversaries, stochastic with shift-
ing distributions, oblivious, and adaptive, and
designs algorithms with sub-linear regret for
all three cases. In particular, under a shift-
ing stochastic adversary where the distribution
may shift S times, we provide an ε-differentially
private algorithm whose expected dynamic re-
gret is at most O

(√
ST log(NT ) + S log(NT )

ε

)
,

where T and N are the time horizon and
number of experts, respectively. For obliv-
ious adversaries, we give a reduction from
dynamic regret minimization to static regret
minimization, resulting in an upper bound
of O

(√
ST log(NT ) + ST 1/3 log(T/δ) log(NT )

ε2/3

)
on the expected dynamic regret, where S now de-
notes the allowable number of switches of the best
expert. Finally, similar to static regret, we estab-
lish a fundamental separation between oblivious
and adaptive adversaries for the dynamic setting:
while our algorithms show that sub-linear regret
is achievable for oblivious adversaries in the high-
privacy regime ε ≤

√
S/T , we show that any

(ε, δ)-differentially private algorithm must suffer
linear dynamic regret under adaptive adversaries
for ε ≤

√
S/T . Finally, to complement this lower

bound, we give an ε-differentially private algo-
rithm that attains sub-linear dynamic regret under
adaptive adversaries whenever ε ≫

√
S/T .
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1. Introduction
Online learning with experts is a fundamental problem
in machine learning, where an online algorithm interacts
with an adversary for T rounds (Cesa-Bianchi & Lugosi,
2006). In the general form of the problem with N ex-
perts, at each round t, the environment chooses a loss vector
ℓt : [N ] 7→ [0, 1], upon which the learner chooses an expert
Jt ∈ [N ] from the pool of N experts. In the classical setting
of online learning, we measure the loss of the learning algo-
rithm compared to the loss of the ‘best-expert’ in hindsight,
denoted as the (static) regret

RT =

T∑
t=1

ℓt(Jt)− min
j⋆∈[N ]

T∑
t=1

ℓt(j
⋆).

However, comparing against a single fixed expert can often
be unrealistic in practical applications. Even the best fixed
expert may perform poorly on average over the entire loss se-
quence, especially when loss sequences dynamically change
over time or undergo significant distributional shifts, as is
common in stochastic settings. This limitation motivates
the concept of dynamic regret (Herbster & Warmuth, 1998;
Wei et al., 2016), which provides a more flexible and robust
benchmark. Unlike static regret, which evaluates against
the best fixed expert, dynamic regret compares against a
sequence of changing experts, enabling the model to adapt
to evolving environments. In particular, the dynamic regret
is

DRT =

T∑
t=1

ℓt(Jt)− min
j⋆1 ,...,j

⋆
T∈[N ]

T∑
t=1

ℓt(j
⋆
t ),

subject to the constraint that the sequence {j⋆t } does not
switch too often. Intuitively, dynamic regret measures how
well the algorithm competes against the best possible se-
quence of decisions that could adapt to changes, constrained
by a limited number of switches between experts. This
notion is particularly relevant for real-world applications
like financial markets, where optimal strategies vary with
market conditions, or recommendation systems, where user
preferences evolve over time.

By inspecting definitions, it is clear that minimizing dy-
namic regret is harder than static regret. This difficulty
manifests even if one measures dynamic regret against se-
quences of experts with a single switch. As a result, exist-
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ing algorithms for minimizing dynamic regret modify the
standard Multiplicative Weights Algorithm (Littlestone &
Warmuth, 1994) to explicitly account for the fact that they
are being evaluated against sequences of experts that switch.

While dynamic regret in online learning offers a more prac-
tical approach to modeling non-stationary environments,
its applicability in sensitive real-world scenarios often re-
quires additional considerations, particularly around privacy.
In many online learning problems, the loss functions used
to guide expert selection are derived from sensitive data,
such as user interactions, medical information, or financial
records. Ensuring that the learning process does not in-
advertently reveal private details about the data is crucial
for maintaining trust and complying with legal and ethical
standards. This challenge motivates the integration of dif-
ferential privacy into online learning from experts in the
dynamic setting.

However, existing work on private online learning (Jain
et al., 2012a; Smith & Thakurta, 2013; Jain & Thakurta,
2014a; Agarwal & Singh, 2017a; Asi et al., 2023b; 2024)
is limited to the static setting. As a result, existing privacy-
preserving algorithms struggle to adapt to non-stationary
environments, where the optimal expert may shift over time,
leading to suboptimal performance.

Our work addresses this gap by initiating the study of pri-
vate online prediction from experts in the dynamic setting.
We formally define this problem and study it with respect
to three natural types of adversaries. We develop new al-
gorithms and lower bounds for each of these adversaries,
demonstrating the near-optimality of our algorithms in sev-
eral settings, and the hardness of the dynamic setting com-
pared to the well-studied static setting.

1.1. Our Contributions

In this work, we initiate and systematically study the prob-
lem of tracking the best expert privately through the lens
of online prediction with dynamic regret guarantees. We
present a comprehensive study of the problem for three
different types of adversaries: 1. Shifting stochastic adver-
saries where the losses are sampled from distributions that
may shift over time, 2. Oblivious adversaries which choose
the loss functions before the interaction with the algorithm,
and 3. Adaptive adversaries, the most powerful type of ad-
versary, which can choose their loss functions as a function
of the interaction with the learning algorithm. We highlight
the following key results:

Shifting stochastic adversaries. We design an ε-
differentially private algorithm with an expected dynamic
regret bound of O

(√
ST log(TN) + S log(TN)

ε

)
, where

T , N , and S represent the time horizon, number of experts,

and number of distribution shifts, respectively. We also give
a lower bound of Ω(

√
ST log(N)+S log(N/S)/ε) for this

setting, demonstrating the near-optimality of this algorithm.
Key to our algorithm is the sparse-vector-technique which
we deploy in order to identify a new shift in the distribution
without paying a large cost in privacy.

Oblivious adversaries. We develop a new algorithm for
the oblivious setting through a reduction from private online
prediction in the dynamic setting to the static setting. Apply-
ing this reduction with existing algorithms for private predic-
tion in the static setting (Asi et al., 2023b), we obtain an up-
per bound of O

(√
TS log(NT ) + ST 1/3 log(T/δ) log(NT )

ε2/3

)
on the expected dynamic regret.

Adaptive adversaries. We establish a separation between
oblivious and adaptive adversaries in the dynamic setting.
To this end, we show that any (ε, δ)-differentially private
algorithm must suffer linear dynamic regret Ω(T ) under
adaptive adversaries for ε ≤

√
S/T . In contrast, our upper

bounds for oblivious adversaries show that sub-linear regret
is still possible for ε ≤

√
S/T . Finally, we provide a

new algorithm that obtain sub-linear regret for ε ≫
√
S/T .

This establishes ε ≈
√

S/T as a critical sharp threshold for
learning under adaptive adversaries in the dynamic setting,
where learning becomes infeasible for ε ≤

√
S/T but is

attainable for larger values of ε.

1.2. Related Works

Private Online Learning and Prediction with Expert
Advice. Differentially private online learning was first stud-
ied by Dwork et al. (2010a) in the context of continual
observations. Jain et al. (2012b) extend these results to
online convex programming by using gradient-based al-
gorithms to achieve differential privacy. Following this
work, Guha Thakurta & Smith (2013) privatize the Follow-
the-Approximate-Leader template to obtain sharper guar-
antees for online convex optimization. For prediction with
expert advice, Dwork et al. (2014) and Jain & Thakurta
(2014b) give private online learning algorithms with re-

gret bounds of O
(√

T log(N)

ε

)
. More recently, (Agarwal

& Singh, 2017b) study private online linear optimization
and achieve regret bounds that scale like O(

√
T ) + O( 1ε ).

Using this result, they show that for the setting of predic-
tion with expert advice, it is possible to obtain a regret
bound that scales like O

(√
T log(N) + N log(N) log2 T

ε

)
,

improving upon the work by Dwork et al. (2014) and Jain
& Thakurta (2014b). For large N , this upper bound was
further improved to O

(√
T log(N) + T 1/3 log(N)

ε

)
and

O
(√

T log(N) + T 1/3 log(N)
ε2/3

)
by Asi et al. (2023b) and
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Table 1. Summary of our bounds on the dynamic regret for different settings of the adversary. We omit logarithmic factors in T and 1/δ.

Upper Bound Lower Bound
Shifting Stochastic

√
ST logN + S logN

ε

√
ST logN + S log(N/S)

ε

Oblivious
√
ST logN + ST 1/3 logN

ε2/3

√
ST logN + S log(N/S)

ε

Adaptive
√
ST log1.5 N

ε + S logN
ε

√
ST logN + S

(ε log T
S+1 )

2

Asi et al. (2024) respectively, under an oblivious adversary.
Recent work also study private prediction with expert advice
in the realizable setting where there is a zero-loss expert (Asi
et al., 2023a).

Asi et al. (2023b) also study private prediction with expert
advice under stochastic and adaptive adversaries. Under
a stochastic adversary, they reduce private online learning
to private offline learning and give an (ε, δ)-differentially
private online learning algorithm with expected regret
O(
√
T log(N) + logN

ε ). Under adaptive adversaries, (Asi
et al., 2023b) prove a lower bound – any (ε, δ)-differentially
private online algorithm with ε ≤ 1√

T
cannot achieve sub-

linear regret under an adaptive adversary. This result estab-
lished a separation between the achievable regret bounds
under oblivious and adaptive adversaries.

Non-private Dynamic and Adaptive Regret Minimiza-
tion. In the context of prediction with expert advice, dy-
namic regret minimization is also known as tracking the best
expert (Littlestone & Warmuth, 1994; Herbster & Warmuth,
1998; Gyorgy et al., 2012; Bousquet & Warmuth, 2002;
Vovk, 1997). This setting was first introduced by Herbster
& Warmuth (1998; 2001), who noted that static regret is
only meaningful for stationary environments. Following
this work, there has been significant interest in obtaining dy-
namic regret bounds for various settings. For example, Wei
et al. (2016) study dynamic regret bounds in non-stationary
stochastic environments, while Zinkevich (2003); Hall &
Willett (2013) have studied dynamic regret for online op-
timization problems. Other works have also focused on
obtaining first- and second-order dynamic regret bounds
(Zhang et al., 2018; Lu & Zhang, 2019) and obtaining guar-
antees for dynamic regret for stochastic and oblivious ad-
versaries simultaneously (Luo & Schapire, 2015). Most
relevant to this paper is the work by Lu & Zhang (2019),
who provide a simple modification to the standard Multi-
plicative Weights Algorithm (Littlestone & Warmuth, 1994)
that obtains near optimal dynamic regret under an oblivious
adversary.

A closely related notion to dynamic regret is adaptive re-
gret (Littlestone & Warmuth, 1994; Hazan & Seshadhri,
2007). Here, the goal is to obtain sublinear regret within
every contiguous sub-interval of the time horizon. Several
works have established deep connections between adaptive

and dynamic regret for the setting of prediction with expert
advice (Adamskiy et al., 2012; Cesa-Bianchi et al., 2012;
Daniely et al., 2015). In fact, for prediction with expert
advice, it is known that the dynamic regret can be upper
bounded by the adaptive regret, and hence adaptive regret
minimization is sufficient for dynamic regret minimization
(Luo & Schapire, 2015). In this paper, we use this con-
nection between adaptive and dynamic regret minimization
to derive bounds on the dynamic regret under stochastic
adversaries under privacy constraints.

2. Preliminaries
Let N ∈ N denote the number of experts and ℓ : [N ] 7→
[0, 1] denote an arbitrary loss function that maps an expert
to a bounded loss. For an abstract sequence z1, . . . , zn, we
abbreviate it as z1:n. For a measurable space (X , σ(X )), we
let ∆X denote the set of all probability measures on X . For
N ∈ N, we also let ∆N denote the set of all distributions
over {1, . . . , N}. We let Laplace(λ) denote the Laplace dis-
tribution with mean zero and scale λ such that its probability
density function is fλ(x) = 1

2λ exp
(

−|x|
λ

)
. Finally, we let

[N ] := {1, . . . , N} for N ∈ N.

2.1. Prediction with Expert Advice and Static Regret

In the classical problem of online prediction with expert
advice, a learning algorithm A plays a sequential game
against an adversary over T ∈ N rounds. In full gen-
erality, the adversary first picks a sequence of functions
f1, f2, . . . , fT such that ft : [N ] × [N ]t−1 → [0, 1] for
all t ∈ [T ]. Then, in each round t ∈ [T ], the learner, us-
ing the history of the game, selects (potentially randomly)
expert Jt ∈ [N ]. Finally, the adversary reveals the loss
function ℓt := ft(·, J1:t−1) and the learner suffers the loss
ℓt(Jt). The goal of the learner is to adaptively select experts
J1, . . . , JT ∈ [N ] such as to minimize its expected (static)
regret

RA(f1:T , N) := EA

[
T∑

t=1

ft(Jt, J1:t−1)

− min
j⋆∈[N ]

T∑
t=1

ft(j
⋆, J1:t−1)

]
,
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where the expectation is taken only with respect to the ran-
domness of the learning algorithm.

2.2. Dynamic Regret

Motivated by concerns of distribution shift, there has been
significant interest in minimizing a stronger notion of ex-
pected regret termed expected dynamic regret (Herbster &
Warmuth, 1998). Unlike expected (static) regret, where the
goal is to compete against the best fixed expert in hindsight,
dynamic regret measures the performance of the player
against a comparison sequence of experts j1:T ∈ [N ]T . To
make the problem tractable, we constrain the comparison se-
quence of experts to have at most S switches, where S ∈ N
is known to the player before the game begins. Namely, a
sequence of T experts j1:T ∈ [N ]T has at most S switches
if
∑T−1

t=1 1{jt+1 ̸= jt} ≤ S. Then,

C(T, S) :=
{
j1:T ∈ [N ]T :

T−1∑
t=1

1{jt+1 ̸= jt} ≤ S
}
,

is the set of all T -length expert sequences with at most S
switches. For a sequence of functions f1, f2, . . . , fT , we
can now define the expected dynamic regret for an algorithm
A by comparing its cumulative loss to that of the best fixed
sequence of experts in C(T, S):

DRA(f1:T , N, S) := EA

[
T∑

t=1

ft(Jt, J1:t−1)

− min
j⋆1:T∈C(T,S)

T∑
t=1

ft(j
⋆
t , J1:t−1)

]
.

We make a few remarks about the definition of dynamic
regret. First, note that RA(f1:T , N) = DRA(f1:T , N, 0).
Second, DRA(f1:T , N, S1) ≤ DRA(f1:T , N, S2) for S1 ≤
S2, meaning that as S gets larger, the set of comparison
sequence of experts C(T, S) gets larger, making minimizing
dynamic regret harder. Lastly, we stress that while dynamic
regret restricts the number of switches in the comparison
sequence of experts, the player is not restricted in the num-
ber of switches it can make. This is crucial for being able to
obtain sublinear expected dynamic regret.

By placing restrictions on how f1, f2, . . . , fT can be chosen,
one gets different types of adversaries leading to different
definitions of worst-case expected dynamic regret. In this
paper, we consider three adversaries: (1) shifting stochastic,
(2) oblivious, and (3) adaptive.

The strongest of the three is the adaptive adversary. For an
adaptive adversary, no restrictions are placed - the adversary
can pick any sequence of functions f1, f2, . . . , fT leading
to the worst-case expected dynamic regret being defined as

DRadap
A (T,N, S) := sup

f1,...,fT

DRA(f1:T , N, S).

A weakening of the adaptive adversary is an oblivious
adversary. This adversary must first pick a sequence of
loss vectors ℓ1, . . . , ℓT independently of J1:T and then con-
struct the sequence of functions fℓ1 , fℓ2 , . . . , fℓT such that
fℓt(jt, j1:t−1) := ℓt(jt). We define the worst-case expected
regret under an oblivious adversary as

DRobl
A (T,N, S) := sup

ℓ1,...,ℓT

DRA(fℓ1 , . . . , fℓT , N, S).

Finally, the shifting stochastic adversary is the weakest of
the three. Here, the adversary must first pick a sequence of
S distributions D1, . . . ,DS ∈ ∆([0, 1]N ) and a sequence
of S − 1 time points t1, . . . , tS−1 ∈ [T − 1]. The adver-
sary draws loss functions ℓ1, . . . , ℓT such that ℓt ∼ Ds iff
t ∈ [ts, ts+1) and constructs functions fℓ1 , fℓ2 , . . . , fℓT .
Abusing some notation by omitting the dependence on
t1:S−1, the worst-case expected regret under a stochastic
adversary is

DRstoc
A (T,N, S) := sup

D1:S

Eℓ1:T∼D1:S
[DRA(fℓ1 , . . . , fℓT , N, S)] .

Note that in the definition of DRstoc
A (T,N, S), the same S

is used to constrain both the number of distributions that
the adversary can pick and the number of switches in the
comparison sequence of experts.

Analogous versions of worst-case expected (static) regret
under adaptive, oblivious, and shifting stochastic adversaries
follow by placing the same restrictions on how f1, . . . , fT
can be chosen. As an example, the worst-case expected
(static) regret under an adaptive adversary will be written as
Radap

A (T,N) = supf1,...,fT RA(f1:T , N). Without privacy
concerns, the worst-case expected regret is Θ(

√
T logN)

for all three types of adversaries and can be obtained by
running a single algorithm, the Multiplicative Weights Al-
gorithm (MWA) (Littlestone & Warmuth, 1994). Likewise,
the worst-case expected dynamic regret under stochastic,
oblivious, and adaptive adversaries is also known to be
Θ(

√
TS logN), and achieved by modifying MWA to en-

sure that the probability of playing any expert never drops
too low (where ”low” depends on S and T ) (Herbster &
Warmuth, 1998; Wei et al., 2016).

2.3. Differential Privacy

We adopt the notion of differential privacy for prediction
with expert advice from Asi et al. (2023b). Consider an
abstract space Z and consider a function ℓ : [N ] × Z →
[0, 1]. Every z ∈ Z now induces a loss function ℓ(·, z) ∈
[0, 1]N . Accordingly, stochastic, oblivious, and adaptive
adversaries can be equivalently defined in terms of picking
z1, . . . , zT ∈ ZT and a function ℓ : [N ]×Z → [0, 1]. For
completeness sake, we make this explicit below.
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A stochastic adversary under dynamic regret now picks a
sequence of S distributions D1, . . . ,DS ∈ Z , a sequence
of times points t1, . . . , tS−1, and a function ℓ : [N ]×Z →
[0, 1]. The loss function at time point t ∈ [ts, ts+) is ob-
tained by sampling zt ∈ Ds and outputting ℓt = ℓ(·, zt).
An oblivious adversary selects a sequence z1, . . . , zT ∈ ZT

and a function ℓ : [N ] × Z → [0, 1] before the game be-
gins. The loss function at time t ∈ [T ] is then defined
as ℓt := ℓ(·, zt). Finally an adaptive adversary picks a
sequence z1, . . . , zT ∈ ZT and a sequence of function
ℓt : [N ] × [N ]t−1 × Z → [0, 1]. The loss function at
time t ∈ [T ], is then defined by ℓt(·, J1:t−1, zt), where
J1:t−1 are the random variable representing the actions of
the player. Note that give an input z1:T , stochastic and
oblivious adversaries are fully parameterized by a function
ℓ : [N ] × Z → [0, 1], while adaptive adversaries are pa-
rameterized by a sequence of functions ℓ1, . . . , ℓT such that
ℓt : [N ]× [N ]t−1 ×Z → [0, 1].

With this equivalent representation in mind, we are now
ready to define our notion of differential privacy. A dataset
is as sequence of elements z1, . . . , zT . Two datasets, z1:T
and z′1:T , are neighboring if they differ exactly at one time
point t′ ∈ [T ]. Let A ◦ Adv(z1:T ) = J1, . . . , JT be the
sequence of random variables denoting the experts played
by A when interacting with the adversary Adv that is given
inputs z1:T .

Definition 2.1 (Adaptive Differential Privacy). A random-
ized algorithm A is (ε, δ)-differentially private against adap-
tive adversaries, if for all neighboring data sets z1:T , z′1:T ∈
ZT , any potentially adaptive adversary Adv, and all events
E ⊆ [N ]T , we have that

P [A ◦Adv(z1:T ) ∈ E] ≤ eεP [A ◦Adv(z′1:T ) ∈ E] + δ.

If δ = 0, we say that A is ε-differentially private.

The following mechanisms will also be useful building
blocks to several of our algorithms.

Laplace Mechanism. Let X be an arbitrary set and n ∈
N. Suppose f : Xn → R is a query with sensitivity ∆
(i.e. for all pairs of datasets x1:n, x

′
1:n ∈ Xn that differ in

exactly one index, we have that |f(x1:n)− f(x′
1:n)| ≤ ∆).

Then, for every ε, the Laplace mechanism M : Xn → R is
defined as M(x1:n) = f(x1:n) + Z, where Z ∼ Lap(∆ε ).

Lemma 2.2 ((Dwork & Roth, 2014), Theorem 3.6). The
Laplace Mechanism is ε-differentially private.

Report-Noisy-Max Mechanism. The report-noisy-max
mechanism is a differentially private algorithm that aims to
select the item with the highest count. More specifically,
given an input dataset x1:n ∈ Xn and K count queries
c1, · · · , cK : Xn → R that are 1-sensitive, report-noisy-

max returns

j = argmax
i∈[K]

ci(x1:n) + Zi, where Zi ∼ Laplace(2/ε).

Lemma 2.3 ((Dwork & Roth, 2014), claim 3.9). The report-
noisy-max algorithm is ε-differentially private.

Sparse vector technique. We recall the sparse-vector-
technique (Dwork & Roth, 2014). Given an input x1:n ∈
Xn, the algorithm takes a stream of queries q1, q2, . . . , qT :
Xn → R in an online manner and aims to identify queries
whose value is above zero. We assume that each qi is 1-
sensitive, that is, |qi(x1:n)− qi(x

′
1:n)| ≤ 1 for neighboring

datasets x1:n, x
′
1:n that differ in a single element. We have

the following guarantee.

Lemma 2.4 ((Dwork & Roth, 2014), Theorem 3.24). Let
x1:n ∈ Xn be an input dataset. For β > 0, there is an
ε-differentially private algorithm (AboveThreshold) that
halts at time k ∈ [T +1] such that for α = 8(log T+log(2/β))

ε
with probability at least 1− β,

• For all t < k, qi(x1:n) ≤ α;

• qk(x1:n) ≥ −α or k = T + 1.

To facilitate the notation for using AboveThreshold in our
algorithms, we assume that it has the following components:

1. InitializeSparseVec(ε, β): initializes a new instance of
AboveThreshold with privacy parameter ε, and failure
probability parameter β. This returns an instance (data
structure) Q that supports the following test-above-
threshold function.

2. Q.TestAboThr(q): tests if the query q is above thresh-
old. In that case, the algorithm stops and does not
accept more queries.

3. SVT-based Algorithm for Stochastic
Adversaries

We begin our algorithmic contribution by studying the
stochastic setting, where we develop an SVT based al-
gorithm that obtains

√
ST + S/ε dynamic regret against

stochastic adversaries. The starting point of our algorithm
is lazy algorithm of (Asi et al., 2023b) for private prediction
from experts with static regret. We show in Section 3.1 that
this algorithm obtains near-optimal adaptive regret (Hazan
& Seshadhri, 2007), that is, it obtains regret

√
w for any

sub-interval of size w for a stochastic adversary. Then, we
present our main algorithm in Section 3.2, which obtains
near-optimal dynamic regret against stochastic adversaries.

5



Tracking the Best Expert Privately

3.1. Optimal Adaptive Regret for Stationary
Environment

In this section, we consider the simple stochastic setting
where all losses are samples for a fixed distribution P . We
present that a version of the existing algorithm of (Asi et al.,
2023b) obtains a stronger guarantee than the original paper
proved: it obtains near-optimal adaptive regret for stochastic
adversaries, meaning that it obtains

√
w regret for any sub-

interval of size w.

Algorithm 1 Limited Updates for Online Optimization with
Stochastic Adversaries
Require: Privacy parameter ε

1: Set j0 ∈ [N ]
2: for t = 1 to T do
3: if t = 2ℓ for some integer ℓ ≥ 1 then
4: Run report-noisy-max procedure to get

jt = argmin
j∈[N ]

t−1∑
i=t/2

ℓi(j) + Zt(j),

where Zt(j) ∼ Laplace(2/ε)

5: else
6: Let jt = jt−1

7: end if
8: Receive ℓt : [N ] → [0, 1].
9: Pay cost ℓt(jt)

10: end for

The following theorem states the adaptive regret guarantees
of Algorithm 1. We defer the proof to Appendix B.1.

Theorem 3.1. Let ℓ1, . . . , ℓT : [N ] → [0, 1] be sampled
i.i.d. from a distribution P . Then, for any t ∈ [T ] and
w ∈ [T − t], Algorithm 1 is ε-differentially private and has
with probability 1− β,

t+w∑
i=t

ℓi(ji)− min
j∈[N ]

t+w∑
i=t

ℓi(j) ≤
16 log(NT/β) log(T )

ε

+ 9
√
w log(TN/β).

3.2. Optimal Dynamic Regret for Shifting Stochastic
Adversaries

In this section, we develop our main algorithm for the
stochastic setting. Our algorithm is based on iteratively run-
ning the algorithm for the stationary setting (Algorithm 1).
Moreover, to adapt to shifting distributions, our algorithm
uses the sparse-vector-technique to test whether the under-
lying distribution of the losses has changes. To this end, we
use SVT to test whether the regret of the internal algorithm
is too large, indicating a shift in the distribution. We present
the full details in Algorithm 2.

Algorithm 2 SVT-based algorithm
Require: Privacy parameter ε, failure probability β

1: t1 = 1, i = 1
2: Start new instance of Algorithm 1 from ti with privacy

parameter ε/2
3: Q = InitializeSparseVec(ε/2, β/T )
4: while t < T do
5: Receive new loss ℓt
6: Use Algorithm 1 to play jt
7: Define α = 16(2 log T+log(2/β))

ε and Regw :=
16 log(NT/β) log(T )

ε + 9
√

w log(TN/β)
8: For each w ≤ t− ti, define query

qtw :=

t∑
i=t−w

ℓi(ji)−min
j∈[N ]

t∑
i=t−w

ℓi(j)−Regw−α−1

9: if Q.TestAboThr(qtw) is true for some w then
10: i → i+ 1
11: ti = t
12: Go to line 2 and restart a new instance of Algo-

rithm 1
13: end if
14: end while

The following theorem summarizes the dynamic regret guar-
antees of Algorithm 2. We defer the proof to Appendix B.2.

Theorem 3.2 (Upper bounds for Expected Dynamic Regret
for Shifting Stochastic Adversaries). Let A denote Algo-
rithm 2 when run with ε and β = 1/T . Then algorithm A
is ε-differentially private and has expected dynamic regret
DRstoc

A (T,N, S) upper bounded by

O

(√
ST log(NT ) +

S log(NT ) log(T )

ε

)
.

Proof. (sketch) The privacy proof follows directly from the
guarantees of SVT mechanism and Algorithm 1, as each
user is used in the instantiation of both Algorithm 1 and
SVT with parameters ε/2.

The utility proof follows from two main ingredients, which
we prove in Lemma B.3 and Lemma B.4. The first shows
that if the distribution shifts at most S times, then SVT
will return true at most S times with high probability. The
second result shows that as long as SVT has not restarted
the instantiation of the internal algorithm, its regret in any
sub-interval (adaptive regret) will be small. Building on
these two lemmas, we can prove an upper bound on the
dynamic regret (see Appendix B.2 for full details).

Lower bound for shifting adversary. We can extend the
lower bound of the static setting (Asi et al., 2023b) to our
dynamic setting. Indeed, the static setting has a lower bound

6



Tracking the Best Expert Privately

of log(N)/ε on the expected regret. We can construct an
adversary which splits the rounds to S phases, where in
each phase it uses the static lower bound over a disjoint
subset of the experts of size N/S. Given the independence
of these phases, this implies that the regret in each phase
is lower bounded by log(N/S)/ε. Summing over all S
phases, we get that the dynamic regret is lower bounded
by S log(N/S)/ε. Finally, note that in the most common
setting of parameters where S ≤ T ≤ N1−ρ for some
constant ρ > 0, this lower bound becomes Ω(S log(N)/ε),
matching our upper bound.

4. Upper bounds for Oblivious Adversaries
To obtain our upper bounds on expected dynamic regret
against oblivious adversaries, we reduce private dynamic
regret minimization to private static regret minimization.
That is, our main result is a conversion of a private on-
line learning algorithm minimizing static regret to a private
online learning algorithm minimizing dynamic regret. By
doing so, we are able to leverage the recent results by Asi
et al. (2024), who obtain the best-known expected (static)
regret guarantees for private online learning under oblivious
adversaries.

Theorem 4.1 (Private Static Regret =⇒ Pri-
vate Dynamic Regret). Let ε, δ ∈ (0, 1). Suppose
there exists an (ε, δ)-differentially private algorithm A
whose worst-case expected regret under an oblivious
adversary is at most Robl

A (T,N). Then, there exists
an (ε, δ)-differentially private algorithm B such that
DRobl

B (T,N, S) ≤ Robl
A (T, (NT )2S).

Proof. Let ε, δ ∈ (0, 1). Fix the time horizon T ∈ N, the
number of experts N ∈ N, and the number of switches
S ∈ N. Suppose there exists an (ε, δ)-differentially private
algorithm A whose worst-case expected regret under an
oblivious adversary is at most Robl

A (T,N).

Consider the following algorithm B. Let [T ]≤c be the set of
all strictly increasing tuples of size at most c. Before the
game beings, B first constructs the class of meta-experts E
such that

E =

S⋃
c=0

{
et1:c,j1:c+1 : t1:c ∈ [T ]≤c, j1:c+1 ∈ [N ]c+1

}
where the expert et1:c,j1:c+1 : [T ] → [N ] plays expert ji
from time point ti−1 to ti for every i ∈ [c + 1], where
t0 = 1 and tc+1 = T. Then, B initializes A with the set
of meta experts E . In each round t ∈ [T ], B queries A,
receives a (potentially random) meta-expert Et ∈ E from A,
and plays the expert Jt ∈ [N ] played by the meta-expert Et

on round t. That is, Jt := Et(t). After observing the true
loss vector ℓt : [N ] → [0, 1], B computes a meta-loss vector

ℓ̃t : E → [0, 1] such that ℓ̃t(e) := ℓt(e(t)) for all e ∈ E and
passes ℓ̃t to A, which then updates itself. We claim that: (1)
B′s expected dynamic regret is at most Robl

A (T, (NT )2S)
and (2) B is (ε, δ)-differentially private.

We start by proving Claim (1). Observe that

|E| =
S∑

c=0

(
T

c

)
N c+1 ≤ NS+1

S∑
c=0

(
T

c

)
≤ (NT )2S .

Therefore, by the guarantees of A, we have that

E

[
T∑

t=1

ℓ̃t(Et)

]
−min

e∈E

T∑
t=1

ℓ̃t(e) ≤ RA(T, (NT )2S).

By definition of the meta loss vectors, we have that

E

[
T∑

t=1

ℓt(Jt)

]
−min

e∈E

T∑
t=1

ℓt(e(t)) ≤ RA(T, (NT )2S).

Let j⋆1:T ∈ [N ]T be the minimizer of
∑T

t=1 ℓt(jt) such that
c⋆ :=

∑T−1
t=1 1{j⋆t+1 ̸= j⋆t } ≤ S. Let (t⋆1, t

⋆
2, . . . , t

⋆
c⋆) be

the time points where the switches in j⋆1:T occur. Observe
that there exists an expert e⋆ ∈ E which plays expert j⋆i
between time points t⋆i−1 and t⋆i for every i ∈ [c⋆]. Accord-
ingly, we have that e⋆(t) = j⋆t for all t ∈ [T ] and

E

[
T∑

t=1

ℓt(Jt)

]
−

T∑
t=1

ℓt(j
⋆
t ) ≤ Robl

A (T, (NT )2S),

completing the proof of Claim (1).

We now prove Claim (2). Consider two neighboring se-
quences of loss functions ℓ1, . . . , ℓT and ℓ′1, . . . , ℓ

′
T which

differ at exactly one time point t′. Consider the sequence
of meta loss vectors ℓ̃1, . . . , ℓ̃T and ℓ̃′1, . . . , ℓ̃

′
T that B would

construct and pass to A had it been run on ℓ1, . . . , ℓT
and ℓ′1, . . . , ℓ

′
T respectively. Observe that ℓ̃1, . . . , ℓ̃T and

ℓ̃′1, . . . , ℓ̃
′
T are also neighboring sequence of loss func-

tions that differ only at time point t′. Hence, the out-
puts of A when run ℓ̃1, . . . , ℓ̃T and ℓ̃′1, . . . , ℓ̃

′
T are (ε, δ)-

indistinguishable. The proof is complete after noting that
the outputs of B is the result of post-processing the output
of A since the outputs of the meta-experts are fixed, and do
not depend on the observed loss sequence.

We now provide concrete upper bounds on the expected
dynamic regret under oblivious adversaries by instantiating
Theorem 4.1 with existing private algorithms from literature.
First, we recall the regret guarantee of the private online
learning algorithm from Asi et al. (2024).

Proposition 4.2 (Upper bound on Expected Regret for
Oblivious Adversaries (Asi et al., 2024)). Fix ε, δ ∈ (0, 1).
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There exists an (ε, δ)-differentially private algorithm A such
that

Robl
A (T,N, S) = O

(√
T logN +

T 1/3 log(T/δ) logN

ε2/3

)
.

Instantiating Theorem 4.1 with the algorithm guaranteed
by Proposition 4.2 then gives the following Corollary.

Corollary 4.3 (Upper bounds for Expected Dynamic Regret
for Oblivious Adversaries). Fix ε, δ ∈ (0, 1). There exists
an (ε, δ)-differentially private algorithm B such that

DRobl
B (T,N, S) = O

(√
ST log(NT )

+
ST 1/3 log(T/δ) log(NT )

ε2/3

)
.

We highlight that Corollary 4.3 provides the first known
upper bounds on expected dynamic regret under oblivious
adversaries and differential privacy. Unfortunately, unlike
our algorithms in Sections 3 and 5, the algorithm obtaining
the upper bound in Corollary 4.3 is not efficient as it requires
constructing a set of experts that is exponential in the time
horizon. In Section 5, we give an efficient ε-differentially
private algorithm whose expected dynamic regret is at most
O
(√

ST log1.5(NT )
ε + S log(NT )

ε

)
under an adaptive adver-

sary. Clearly, the same upper bound holds for oblivious
adversaries. However, this upper bound is weaker than the
one we get in Corollary 4.3.

We end this section by noting that efficient dynamic regret
minimizing algorithms for oblivious adversaries do exist if
one does not care about privacy. Unfortunately, unlike for
static regret, privatizing existing dynamic regret minimiz-
ing algorithms is not as straightforward. As an example,
Lu & Zhang (2019) give an efficient non-private algorithm
for minimizing dynamic regret by projecting the distribu-
tions over experts obtained after the multiplicative weights
update into a clipped simplex. This ensures that the prob-
ability of any playing any particular expert is sufficiently
lower bounded. Unfortunately, this clipping operation is
challenging under privacy constraints as now we have to
privatize each gradient separately instead of privatizing the
sum of gradients via the Binary Tree Mechanism (Dwork
et al., 2010a). We leave whether one can achieve the upper
bound in Corollary 4.3 via an efficient algorithm as an open
question.

5. Dynamic Regret for Adaptive Adversaries
Under expected (static) regret, Asi et al. (2023b) prove a
separation between oblivious and adaptive adversaries. In
particular, for every ε ≤ 1√

T
, there exists a (ε, δ) differ-

entially private online learning algorithm whose expected

regret under oblivious adversaries is sublinear in the time
horizon T . However, this is not the case under adaptive
adversaries: for any ε ≤ 1√

T
, every (ε, δ)-differentially pri-

vate online learning algorithm must suffer expected regret
which grows linearly with T . In this section, we prove a
qualitatively similar, but quantitatively stronger separation
between private expected regret minimization under oblivi-
ous dynamic adversaries and adaptive dynamic adversaries.

5.1. Lower Bounds for Adaptive Adversaries

Our first result is a lower bound which roughly shows that

when ε ∈ o(
√

S
T ), sublinear expected dynamic regret is

not possible under adaptive adversaries. Our lower bound
construction builds upon the lower bound construction by
Asi et al. (2023b) for expected (static) regret under adaptive
adversaries. Namely, if there are S switches, then our lower
bounds follows by using S different copies of the lower
bound construction from Asi et al. (2023b) for adaptive
adversaries.

Theorem 5.1 (Lower bound on Expected Dynamic Regret
for Adaptive Adversaries). Let S ≥ 0, T be sufficiently
large, and N ≥ 2T

S . Let ε ≤ 1 and δ ≤ (S+1)3

T 3 . If A is
(ε, δ)-differentially private, then

DRadap
A (T,N, S) = Ω

(
min

(
T,

S

(ε log T
S+1 )

2)

))
.

Theorem 5.1 roughly implies that when ε ≤
√

S
T , every

(ε, δ)-differentially private online learner must suffer ex-
pected dynamic regret Ω(T ) under an adaptive adversary.
This is in stark contrast to Theorem C.2 which shows that
sublinear expected dynamic regret is still possible when

ε ≤
√

S
T under an oblivious adversary. The proof of Theo-

rem 5.1 can be found in Appendix D.

5.2. Upper bounds for Adaptive Adversaries

Our second result is an upper bound which shows that sublin-
ear expected dynamic regret under an adaptive adversary is

possible as long as ε = ω(
√

S
T ). To do so, we modify an ex-

isting efficient (non-private) algorithm for regret minimiza-
tion under adaptive dynamic adversaries. Namely, we design
a private version of Algorithm 2 from Lu & Zhang (2019)
by adding independent Laplace noise to the loss vectors
before using them to update the distribution over the experts.
For completeness sake, we include this modified algorithm
below. Let ∆̃N := {w ∈ ∆N : minj w(j) ≥ S

NT } denote
the clipped simplex, ϕ : ∆N → R≤0 denote the negative
Shannon entropy function ϕ(w) :=

∑N
j=1 w(j) logw(j),

and Dϕ(·||·) : ∆N × ∆N → R≥0 denote the Bregman
divergence with respect to ϕ, defined as Dϕ(w1||w2) :=
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ϕ(w1)− ϕ(w2)− ⟨w1 − w2,∇ϕ(w2)⟩.

Algorithm 3 Private Online Learner for Adaptive Adver-
saries

1: Input: η > 0, ε > 0
2: Initialize: w1(i) =

1
N for i ∈ [N ]

3: for t = 1, 2, . . . , T do
4: Draw expert Jt ∼ wt

5: Observe loss vector ℓt and suffer loss ℓt(Jt)
6: Sample Zt(i) ∼ Laplace( 1ε ) and define ℓ̃t(i) =

ℓt(i) + Zt(i) for all i ∈ [N ]
7: Update wt+1 = argminw∈∆̃N

⟨w, ηℓ̃t⟩ +
Dϕ(w||wt)

8: end for

Theorem 5.2 (Upper bound on Expected Dynamic Regret
for Adaptive Adversaries). Let A denote Algorithm 3 when
run with ε ∈ (0, 1) and η = ε

√
S

T log(NT ) . Then A is
ε-differentially private and has

DRadap
A (T,N, S) = O

(√
ST log1.5(NT )

ε
+

S log(NT )

ε

)
.

The proof of Theorem 5.2 follows by combining techniques
from Lu & Zhang (2019) and Agarwal & Singh (2017a),
and is deferred to Appendix C.

6. Discussion
In this paper, we provide the first private online learning
algorithms for dynamic regret minimization against three
types of adversaries: switching stochastic, oblivious and
adaptive. We highlight important directions of future work.

Optimal bounds for Oblivious Adversaries.
In Section 4, we provided an upper bound of
O
(√

ST log(NT ) + ST 1/3 log(T/δ) log(NT )
ϵ2/3

)
on the

expected dynamic regret under an oblivious adversary. We
leave open whether one can prove a matching lower bound
or an improved upper bound.

Efficient algorithms for Oblivious Adversaries. Unlike
for stochastic and adaptive adversaries, our algorithm for
oblivious adversary is not efficient – it constructs a set of
experts that is exponential in the time horizon T . This moti-
vates the design of efficient algorithms for dynamic regret
minimization under oblivious adversaries with matching or
better regret bounds. Unfortunately, our current attempts
at designing efficient private algorithms against oblivious
adversaries have been unsuccessful, as it is not clear how
to privatize existing efficient non-private algorithms for dy-
namic regret. Perhaps central to the difficulty is the tension
between lazy updating and obtaining small dynamic regret.

Existing techniques for obtaining private online learning
algorithms under static regret rely on privatizing existing
(non-private) lazy algorithms that do not switch their played
experts too often (Asi et al., 2023c; 2024). Unfortunately, it
is reasonable that such lazy algorithms cannot obtain good
dynamic regret, as switching which expert is played is cru-
cial to “tracking” the best expert. We will make sure to add
a discussion of this in the camera-ready version.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Privacy Properties
Lemma A.1 (Basic Composition (Corollary 3.15 in (Dwork et al., 2014))). Let X ,Y1,Y2, . . . ,YT be arbitrary sets and
n ∈ N. Let A1,A2, . . . ,AT be a sequence of randomized algorithms where A1 : Xn → Y1 and At : Y1, . . . ,Yt−1,Xn →
Yt for all t = 2, 3, . . . , T. If for every t ∈ [T ] and every y1:t−1 ∈ Y1 × Y2 × · · · × Yt−1, we have that At(y1:t−1, ·) is
εt-differentially private, then the overall algorithm A : Xn → Y1 × Y2 × · · · × YT , defined as

A(x1:n) =
(
A1(x1:n),A2(A1(x1:n), x1:n), . . . ,AT (A1(x1:n),A2(A1(x1:n), x1:n), . . . , x1:n)

)
,

satisfies εT -differential privacy.

Lemma A.2 (Basic Composition (Corollary 3.15 in (Dwork et al., 2014))). Let X ,Y1,Y2, . . . ,YT be arbitrary sets and
n ∈ N. Let A1,A2, . . . ,AT be a sequence of randomized algorithms where A1 : Xn → Y1 and At : Y1, . . . ,Yt−1,Xn →
Yt for all t = 2, 3, . . . , T. If for every t ∈ [T ] and every y1:t−1 ∈ Y1 × Y2 × · · · × Yt−1, we have that At(y1:t−1, ·) is
εt-differentially private, then the overall algorithm A : Xn → Y1 × Y2 × · · · × YT , defined as

A(x1:n) =
(
A1(x1:n),A2(A1(x1:n), x1:n), . . . ,AT (A1(x1:n),A2(A1(x1:n), x1:n), . . . , x1:n)

)
,

satisfies εT -differential privacy.

Lemma A.3 (Advanced Composition (Dwork et al., 2010b; Kairouz et al., 2015)). Let X ,Y1,Y2, . . . ,YT be arbi-
trary sets and n ∈ N. Let A1,A2, . . . ,AT be a sequence of randomized algorithms where A1 : Xn → Y1 and
At : Y1, . . . ,Yt−1,Xn → Yt for all t = 2, 3, . . . , T. If for every t ∈ [T ] and every y1:t−1 ∈ Y1×Y2×· · ·×Yt−1, we have
that At(y1:t−1, ·) is εt-differentially private, then for every δ′ > 0, the overall algorithm A : Xn → Y1 × Y2 × · · · × YT ,
defined as

A(x1:n) =
(
A1(x1:n),A2(A1(x1:n), x1:n), . . . ,AT (A1(x1:n),A2(A1(x1:n), x1:n), . . . , x1:n)

)
,

satisfies (ε′, δ′)-differential privacy, where

ε′ ≤ 3

2

T∑
t=1

ε2t +

√√√√6

T∑
t=1

ε2t log

(
1

δ′

)
.

Post-processing and group privacy will also be useful.
Lemma A.4 (Post Processing (Proposition 2.1 in (Dwork et al., 2014))). Let X ,Y,Z be arbitrary sets and n ∈ N. Let
A : Xn → Y and B : Y → Z be randomized algorithms. If A is (ε, δ)-differentially private then the composed algorithm
B ◦ A : Xn → Z is also (ε, δ)-differentially private.

B. Missing Proofs for Section 3
B.1. Proof of Theorem 3.1

The proof of Theorem 3.1 is based on the following two lemmas. The first lemma is a concentration result which shows that
the average loss of each expert in each sub-interval is close to its expectation.
Lemma B.1. Let ℓ1, . . . , ℓT : [N ] → [0, 1] be sampled i.i.d. from a distribution P . Then with probability 1 − β, for all
j ∈ [N ], t ∈ [T ] and w ∈ [T − t], ∣∣∣∣∣

t+w∑
i=t

ℓi(j)− wEℓ∼P [ℓ(j)]

∣∣∣∣∣ ≤√2w log(TN/β).

The second lemma proves that the static regret of the algorithm with respect to the population minimizer is small.
Lemma B.2. Let ℓ1, . . . , ℓT : [N ] → [0, 1] be sampled i.i.d. from a distribution P . Then, with probability 1− 3β that for
all t ∈ [T ] and w ∈ [T − t]∣∣∣∣∣

t+w∑
i=t

ℓi(ji)− w min
j∈[N ]

E[ℓ(j)]

∣∣∣∣∣ ≤ 16 log(NT/β) log(T )

ε
+ 7
√
w log(TN/β).
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Building on Lemma B.1 and Lemma B.2, we can now proceed to prove Theorem 3.1.

Proof. (of Theorem 3.1)

The privacy follows immediately from the guarantees of the report-noisy-max mechanism (Lemma 2.3): indeed, the
algorithm uses the data only through the invocation of the report-noisy-max algorithm. Moreover, note that each data-point
ℓt is used in a single instantiation of the report-noisy-max mechanism.

Now we proceed to prove utility. Using Lemma B.1 and Lemma B.2, we have

t+w∑
i=t

ℓi(ji)− min
j∈[N ]

t+w∑
i=t

ℓi(j) =

(
t+w∑
i=t

ℓi(ji)− w min
j∈[N ]

E[ℓ(j)]

)
+

(
w min

j∈[N ]
E[ℓ(j)]− min

j∈[N ]

t+w∑
i=t

ℓi(j)

)

≤ 16 log(NT/β) log(T )

ε
+ 7
√
w log(TN/β) + max

j∈[N ]

(
wE[ℓ(j)]−

t+w∑
i=t

ℓi(j)

)

≤ 16 log(NT/β) log(T )

ε
+ 9
√
w log(N/β),

where the second inequality follows Lemma B.2 and the third inequality follows from Lemma B.1.

Now, it remains to prove our two lemmas. We begin with the proof of Lemma B.1.

Proof. (of Lemma B.1) Fix j ∈ [N ], t ∈ [T ], and w ∈ [T − t]. Since ℓi(j) ∈ [0, 1], Hoeffding’s inequality [(Duchi, 2019),
Corollary 4.1.10] implies that

P

(∣∣∣∣∣
t+w∑
i=t

ℓi(j)− wEℓ∼P [ℓ(j)]

∣∣∣∣∣ >√2w log(TN/β)

)
≤ β

T 2N
.

Taking a union bound over all j, t, w proves the claim.

Finally, we prove Lemma B.2.

Proof. (of Lemma B.2) First, concentration of Laplace random variables [(Dwork & Roth, 2014), Fact 3.7] implies that
|Zt(j)| ≤ 2 log(NT/β)/ε for all j ∈ [N ] and t with probability at least 1 − β. Let j⋆ = argminj∈[N ] E[ℓ(j)]. Then,
Lemma B.1 implies that for all t = 2ℓ, we have

Eℓ∼P [ℓ(jt)] ≤
1

(t/2)

t−1∑
i=t/2

ℓi(jt) +

√
t log(TN/β)

t/2

≤ 1

(t/2)

 t−1∑
i=t/2

ℓi(j
⋆) + Zt(j

⋆)− Zt(jt)

+
2
√

log(TN/β)√
t

≤ 1

(t/2)

t−1∑
i=t/2

ℓi(j
⋆) +

8 log(NT/β)

tε
+

2
√

log(TN/β)√
t

≤ Eℓ∼P [ℓ(j
⋆)] +

8 log(NT/β)

tε
+

4
√
log(TN/β)√

t
,

where the second inequality follows from the definition of jt in the algorithm. Based on the lazy structure of the algorithm,
this implies that for all t ∈ [T ],

Eℓ∼P [ℓ(jt)] ≤ Eℓ∼P [ℓ(j
⋆)] +

16 log(NT/β)

tε
+

4
√

2 log(TN/β)√
t

.

12
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Now, we get that∣∣∣∣∣
t+w∑
i=t

ℓi(ji)− w min
j∈[N ]

E[ℓ(j)]

∣∣∣∣∣ ≤
∣∣∣∣∣
t+w∑
i=t

ℓi(ji)− E[ℓ(ji)]

∣∣∣∣∣+
∣∣∣∣∣
t+w∑
i=t0

(
E[ℓ(ji)]− min

j∈[N ]
E[ℓ(j)]

)∣∣∣∣∣
≤

∣∣∣∣∣
t+w∑
i=t

ℓi(ji)− E[ℓ(ji)]

∣∣∣∣∣+
∣∣∣∣∣
t+w∑
i=t

16 log(NT/β)

tε
+

4
√

2 log(TN/β)√
t

∣∣∣∣∣
≤

∣∣∣∣∣
t+w∑
i=t

ℓi(ji)− E[ℓ(ji)]

∣∣∣∣∣+ 16 log(NT/β) log T

ε
+ 6
√
w log(TN/β).

For the first term, note that for Wi = ℓi(ji)− E[ℓ(ji)], the sequence {Wi} is a bounded difference martingale. We can use
Azuma’s inequality [(Duchi, 2019), Corollary 4.2.4] to get that

P

(∣∣∣∣∣
t+w∑
i=t

ℓi(ji)− E[ℓ(ji)]

∣∣∣∣∣ >√w log(1/β)

)
≤ β.

This proves the claim.

B.2. Proof of Theorem 3.2

For our analysis, we build on the following two lemmas. The first shows that if SVT identifies an above threshold query,
then there must have been a distribution shift with high probability.

Lemma B.3. Fix i. Then there is a distribution shift in the range [ti, ti+1] with probability 1− 2β.

Proof. Assume towards a contradiction that there is no distribution shift in the range [ti, ti+1]. Based on Theorem 3.1, we
know that Algorithm 1 had near-optimal adaptive regret if the distribution does not change, that is, for all w ≤ ti+1 − ti we
have

ti+1∑
ti+1−w

ℓt(jt)− min
j∈[N ]

ti+1∑
ti+1−w

ℓt(j) ≤ Regw

However, as SVT identifies an above threshold query at time ti+1, the guarantee of SVT (Lemma 2.4) imply that there is
w ≤ ti+1 − ti such that qtw ≥ −α, implying that

ti+1∑
ti+1−w

ℓt(jt)− min
j∈[N ]

ti+1∑
ti+1−w

ℓt(j) ≥ Regw + 1.

Therefore, we get a contradiction.

Our second lemma shows that as long as SVT did not identify an above threshold query, the adaptive regret of the internal
algorithm will be small.

Lemma B.4. Fix i and let t′1, t
′
2 ∈ [ti, ti+1 − 1]. Letting w = t′2 − t′1, we have with probability 1− β

t′2∑
t=t′1

ℓt(jt)− min
j∈[N ]

t′2∑
t=t′1

ℓt(j) ≤ Regw + 2α+ 1.

Proof. Note that SVT did not identify an above threshold query at time t′2; otherwise we would have t′2 = ti+1. Therefore,
setting w = t′2 − t′1, the guarantees of the SVT mechanism for the query q

t′2
w imply that qt

′
2
w ≤ α and therefore

t′2∑
t=t′1

ℓt(jt)− min
j∈[N ]

t′2∑
t=t′1

ℓt(j) ≤ Regw + 2α+ 1.

This proves the claim.

13
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Now we are ready to prove Theorem 3.2.

The privacy proof follows directly from the guarantees of SVT mechanism and Algorithm 1, as each user is used in the
instantiation of both Algorithm 1 and SVT with parameters ε/2.

Now we proceed to prove utility. Based on Lemma B.3, for a shifting stochastic adversary with S shifts, the algorithm
restarts its internal procedure at most Ŝ ≤ S times. Let t1, . . . , tŜ denote these times. Note that the dynamic regret of the
algorithm is

max
j⋆1 ,...,j

⋆
T

1

{
T∑

t=1

1{j⋆t ̸= j⋆t+1} ≤ S

}
·

T∑
t=1

ℓt(jt)− ℓt(j
⋆
t ) =

S∑
i=1

ti+1∑
t=ti

ℓt(jt)− ℓt(j
⋆
t )

Let Li = ti+1 − ti and Si =
∑ti+1−1

t=ti
1{j⋆t ̸= j⋆t+1} be the number of switches in {j⋆t } that the adversary makes inside the

range [ti, ti+1]. We will prove that for all i with high probability

ti+1∑
t=ti

ℓt(jt)− ℓt(j
⋆
t ) ≤ 9

√
(Si + 1)Li log(TN/β) + (Si + 1)

(
16 log(NT/β)

ε
+ 2α+ 1

)
. (1)

Using inequality (1), we can now prove the theorem. Indeed, we get that the dynamic regret is upper bounded by

T∑
t=1

ℓt(jt)− ℓt(j
⋆
t ) =

S∑
i=1

ti+1∑
t=ti

ℓt(jt)− ℓt(j
⋆
t )

≤
S∑

i=1

9
√

(Si + 1)Li log(TN/β) + (Si + 1)

(
16 log(NT/β) log(T )

ε
+ 2α+ 1

)

≤ 9

√√√√ S∑
i=1

(Si + 1)

√√√√log(TN/β)

S∑
i=1

Li + 2S

(
16 log(NT/β) log(T )

ε
+ 2α+ 1

)

≤ 9
√
2ST log(TN/β) + 2S

(
16 log(NT/β) log(T )

ε
+ 2α+ 1

)
≤ O

(√
ST log(TN/β) + S

(
log(NT/β) log(T )

ε

))
,

where the last inequality follows since α = 16(2 log T+log(2/β))
ε . It remains to prove inequality (1). We fix i = 1 without loss

of generality. Let t̄1, . . . , t̄S1
∈ [t1, t2] denote the switching times of the sequence of experts {j⋆t } inside the range [t1, t2],

and let j⋆1,1, . . . , j
⋆
1,S1

denote the set of different experts in this range. Using Lemma B.4, we now get

t2∑
t=t1

ℓt(jt)− ℓt(j
⋆
t ) =

S1+1∑
s=1

t̄i+1∑
t=t̄i

ℓt(jt)− ℓt(j
⋆
1,s)

≤
S1+1∑
s=1

t̄i+1∑
t=t̄i

9
√
(t̄i+1 − t̄i) log(TN/β) +

16 log(NT/β) log(T )

ε
+ 2α+ 1

≤ 9
√

S1 + 1
√
(t2 − t1) log(TN/β) + (S1 + 1)

(
16 log(NT/β) log(T )

ε
+ 2α+ 1

)
.

This proves that with probability 1 − β we have that the dynamic regret is upper bounded by
O
(√

ST log(TN/β) + S log(TN/β) log(T )
ε

)
. Picking β = 1/T gives the upper bound on expectation as the dy-

namic regret is always bounded by T .

C. Proof of Theorem 5.2
We first review a folklore result which states that for online learning algorithms which do not depend on the realizations of
its past plays, expected regret under adaptive adversaries is at most the expected regret under oblivious adversaries.
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Theorem C.1 (Exercise 4.1 in Cesa-Bianchi & Lugosi (2006)). Let A : ([0, 1]N )⋆ → ∆([N ]) be any (randomized) online
learning algorithm which maps a sequence of loss vectors to a distribution over experts. That is, for any sequence of loss
functions ℓ1, . . . , ℓT , the prediction of A on round t ∈ [T ] only depends on the loss vectors ℓ1, . . . , ℓt−1. Then,

Radap
A (T,N) ≤ Robl

A (T,N).

As a consequence of Theorem C.1 and the fact that distributions constructed by Algorithm 3 do not depend on the realizations
of it past plays, it is without loss of generality to consider an oblivious dynamic adversary.

To that end, we first prove the following result.

Theorem C.2. Fix a sequence of loss functions ℓ1, . . . , ℓT . Algorithm 3, when run with ε, η > 0 is ε-differentially private
and satisfies

E

[
T∑

t=1

ℓt(Jt)− min
j1:T∈C(T,S)

T∑
t=1

ℓt(jt)

]
≤ O

(
η log2(NT )

ε2
T +

S log(NT )

η
+

S log(NT )

ε

)
.

The following lemma about Laplace vectors will be useful.

Lemma C.3 (Norms of Laplace Vectors (Fact C.1 in (Agarwal & Singh, 2017b))). If Z1, . . . , ZT ∼ (Lap(λ))N , then

P(∃t ∈ [T ] : ||Zt||2∞ ≥ 10λ2 log2(NT )) ≤ 1

T

We are now equipped to prove Theorem C.2. Our proof of utility will closely follow Theorem 1 in Lu & Zhang (2019) but
account for the fact that the loss vectors used to update the algorithm can now contain large negative entries.

Proof. (of utility in Theorem C.2). Let ℓ1, . . . , ℓT be the sequence of losses chosen by the oblivious adversary. Let
Z1, . . . , ZT be the sequence of Laplace random vectors sampled in Line 6 of Algorithm 3. Observe that Zt ∼ (Laplace( 1ε ))

N

for all t ∈ [T ]. Let F be the event that there exists a t ∈ [T ] such that ||Zt||2∞ ≥ 10 log2(NT )
ε2 . Then, by Lemma C.3, we

know that P(F ) ≤ 1
T .

Fix any sequence of experts j1:T ∈ C(T, S). Observe that

E

[
T∑

t=1

ℓt(Jt)−
T∑

t=1

ℓt(jt)|F

]
≤ T.

Hence, we have that

E

[
T∑

t=1

ℓt(Jt)−
T∑

t=1

ℓt(jt)

]
≤ E

[
T∑

t=1

ℓt(Jt)−
T∑

t=1

ℓt(jt)|F c

]
+ 1.

Using the facts that E [Zt|F c] = 0, the randomness in Zt is independent of that of Algorithm 3, and Jt, being a function of
only the past loss vectors ℓ1, . . . , ℓt−1, is independent of Zt, we have that

E

[
T∑

t=1

ℓt(Jt)−
T∑

t=1

ℓt(jt)
∣∣∣F c

]
= E

[
T∑

t=1

ℓ̃t(Jt)−
T∑

t=1

ℓ̃t(jt)
∣∣∣F c

]
.

It now suffices to upper bound E
[∑T

t=1 ℓ̃t(Jt)−
∑T

t=1 ℓ̃t(jt)|F c
]
. To do so, we follow the proof of Theorem 1 in Lu

& Zhang (2019) and modify it where necessary to account for the fact that ||ℓ̃t||∞ ≤ 4 logNT
ε under the event F c. Let

R ⊂ [T − 1] be the subset of time points such that for every s ∈ R, we have that js+1 ̸= js. Note that |R| ≤ S by definition.
Split [T ] into |R| + 1 disjoint intervals [i1, i2), . . . , [i|R|+1, i|R|+2) with i1 = 1 and i|R|+2 = T + 1 such that for every
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s ∈ [|R|+ 1], we have that jis = jis+1 = · · · = jis+1−1. Fix some s ∈ [|R|+ 1], note that the expected regret in the s’th
interval is

E

[
is+1−1∑
t=is

⟨wt, ℓ̃t⟩ − ℓ̃t(jt)
∣∣∣F c

]
.

Define the one-hot vectors e1, . . . , eT such that

et(j) := 1{j = jt}.

Then, we can write

E

[
is+1−1∑
t=is

⟨wt, ℓ̃t⟩ − ℓ̃t(jt)
∣∣∣F c

]
= E

[
is+1−1∑
t=is

⟨wt − et, ℓ̃t⟩
∣∣∣F c

]
. (2)

Further define ẽt ∈ ∆̃N such that

ẽt(j) := (1− S

T
) et(i) +

S

NT
.

Decompose the right hand side of Equation (2) as

E

[
is+1−1∑
t=is

⟨wt − et, ℓ̃t⟩
∣∣∣F c

]
= E

[
is+1−1∑
t=is

⟨wt − ẽt, ℓ̃t⟩
∣∣∣F c

]
+E

[
is+1−1∑
t=is

⟨ẽt − et, ℓ̃t⟩
∣∣∣F c

]
.

Using Holder’s inequality and the fact that ||ℓ̃t||∞ ≤ 4 logNT
ε , we can bound

⟨ẽt − et, ℓ̃t⟩ ≤ ||ẽt − et||1||ℓ̃t||∞ ≤ 4S logNT

εT
.

Plugging this in, we then have that

E

[
T∑

t=1

ℓ̃t(Jt)−
T∑

t=1

ℓ̃t(jt)
∣∣∣F c

]
≤ E

|R|+1∑
s=1

is+1−1∑
t=is

⟨wt − ẽt, ℓ̃t⟩
∣∣∣F c

+
4S logNT

ε
.

Decompose ⟨wt − ẽt, ℓ̃t⟩ as

⟨wt − ẽt, ℓ̃t⟩ = ⟨wt − wt+1, ℓ̃t⟩+ ⟨wt+1 − ẽt, ℓ̃t⟩.

By the proof of Lemma 3 in Lu & Zhang (2019), we have that

⟨wt − wt+1, ℓ̃t⟩ ≤ η||ℓ̃t||2∞..

Thus, under event F c, we have that

⟨wt − wt+1, ℓ̃t⟩ ≤
10η log2 NT

ε2
.
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Thus, we can write

E

[
T∑

t=1

ℓ̃t(Jt)−
T∑

t=1

ℓ̃t(jt)
∣∣∣F c

]
≤ E

|R|+1∑
s=1

is+1−1∑
t=is

⟨wt+1 − ẽt, ℓ̃t⟩
∣∣∣F c

+
10ηT log2 NT

ε2
+

4S logNT

ε

and it suffices to bound the first term on the right hand side. We can do so by following the same steps as in Page 17-18 of
Lu & Zhang (2019). Namely, under the event F c, define a convex function on the clipped simplex:

f(w) := ⟨w, ηℓ̃t⟩+Dϕ(w||wt).

The update rule in Algorithm 3 can now be written as:

wt+1 = argmin
w∈∆̃N

f(w).

By first order optimality, we have that

⟨wt+1 − ẽt,∇f(wt+1)⟩ ≤ 0.

This gives us that

η⟨wt+1 − ẽt, ℓ̃t⟩ ≤ ⟨ẽt − wt+1,∇ϕ(wt+1)−∇ϕ(wt)⟩.

Thus, we can write

⟨wt+1 − ẽt, ℓ̃t⟩ ≤
1

η
⟨ẽt,∇ϕ(wt+1)−∇(wt)⟩ −

1

η
⟨wt+1,∇ϕ(wt+1)−∇ϕ(wt)⟩

=
1

η
⟨ẽt,∇ϕ(wt+1)−∇ϕ(wt)⟩ −

1

η
Dϕ(wt+1||wt)

≤ 1

η
⟨ẽt,∇ϕ(wt+1)−∇ϕ(wt)⟩.

The first equality is by definition of the Bregman divergence and the last inequality is due to the fact that Bregman divergence
is always non-negative. Summing over the interval, we have that

E

[
is+1−1∑
t=is

⟨wt+1 − ẽt, ℓ̃t⟩
∣∣∣F c

]
≤

is+1−1∑
t=is

1

η
⟨ẽt,∇ϕ(wt+1)−∇ϕ(wt)⟩

=
1

η
⟨ẽis ,∇ϕ(wis+1

)−∇ϕ(wis)⟩

=
1

η

N∑
j=1

ẽis(j) log
wis+1

(j)

wis(j)

≤ 1

η

N∑
j=1

ẽis(j) log
NT

S

≤ logNT

η
.
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Thus, overall, we have that

E

[
T∑

t=1

ℓ̃t(Jt)−
T∑

t=1

ℓ̃t(jt)
∣∣∣F c

]
≤ (|R|+ 1) logNT

η
+

10ηT log2 NT

ε2
+

4S logNT

ε

≤ 2S logNT

η
+

10ηT log2 NT

ε2
+

4S logNT

ε
.

To complete the proof, recall that

E

[
T∑

t=1

ℓt(Jt)−
T∑

t=1

ℓt(jt)

]
≤ E

[
T∑

t=1

ℓ̃t(Jt)−
T∑

t=1

ℓ̃t(jt)
∣∣∣F c

]
+ 1

and hence

E

[
T∑

t=1

ℓt(Jt)−
T∑

t=1

ℓt(jt)

]
≤ 2S logNT

η
+

10ηT log2 NT

ε2
+

4S logNT

ε
+ 1.

The upper bound in Theorem 5.2 follows after picking η = ε
√

S
T log(NT ) .

Proof. (of privacy in Theorem C.2) Let ℓ1, . . . , ℓT and ℓ′1, . . . , ℓ
′
T be two sequences of neighboring loss vectors. Suppose

they differ at time step t′. Observe that the plays of Algorithm 3 are a post-processing of the noisy losses ℓ̃1, . . . , ℓ̃T and
ℓ̃′1, . . . , ℓ̃

′
T . The distribution of the noisy losses between the two neighboring sequences remained unchanged except on

round t′. However, since each loss vector has sensitivity 1, by the Laplace mechanism and Lemma 2.2 , we know that
the output distribution for the noisy loss vector in round t′ is ε-differentially private. Thus, the overall algorithm is also
ε-differentially private.

Theorem 5.2 in the main text follows by composing Theorem C.1 and Theorem C.2.

D. Proof of Theorem 5.1
Before we prove Theorem 5.1, we recap the lower bound from Asi et al. (2023b).

Proposition D.1 (Lower bound on Expected Regret for Adaptive Adversaries (Asi et al., 2023b)). Let T be sufficiently
large and N ≥ 2T . Let ε ≤ 1 and δ ≤ 1

T 3 . If A is (ε, δ)-differentially private, then

Radap
A (T,N) = Ω

(
min

(
T,

1

(ε log T )2

))
.

As mentioned in the preliminaries, an adaptive adversary for A for time horizon T is simply a sequence of functions
f1, f2, . . . , fT such that at time point t ∈ [T ], the function ft : [N ]× [N ]t−1 → [0, 1] maps the past plays of the learning
algorithm J1, . . . , Jt−1 to a loss vector ft(·, J1:t−1) ∈ [0, 1]N . Likewise, an online learning algorithm A for time horizon T
is a function A : ([0, 1]N × [N ])⋆ → ∆N , which at time point t ∈ [T ], takes in the past loss vectors ℓ1, . . . , ℓt−1, its own
past plays J1, . . . , Jt−1, and outputs a distribution in ∆N . We will use these representations of an adaptive adversary and
algorithm to prove a lower bound on expected dynamic regret for adaptive adversaries.

Proof. (of Theorem 5.1) Fix S ≥ 0 and suppose without loss of generality that S + 1 divides T . Let T ′ = T
S+1 . Let ε ≤ 1

and δ ≤ ( 1
T ′ )

3. Let A be any (ε, δ)-differentially private online learning algorithm. Then, by Proposition D.1, there exists a
sequence of functions f1

1 , f2, . . . , fT ′ such that
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EA

 T ′∑
t=1

ft(Jt, J1:t−1)− min
j⋆1∈[N ]

T ′∑
t=1

ft(j
⋆
1 , J1:t−1)

 ≥ Ω

(
min

(
T ′,

1

(ε log T ′)2

))
,

where Jt is the random variables denoting the prediction of A on round t ∈ [T ′]. However, now observe that we can
use Proposition D.1 again starting on round t = T ′ + 1 with respect to the new internal state of A on round t = T ′ + 1
after fixing J1, . . . , JT ′ . That is, by fixing J1, . . . , JT ′ , the algorithm A induces a new online learning algorithm Ã :
([0, 1]N × [N ])⋆ → ∆N such that on input (ℓ1, i1), . . . , (ℓn, in) ∈ ([0, 1]N × [N ])⋆ we have that

Ã((ℓ1, i1), . . . , (ℓn, in)) := A((f1
1 (·), J1), (f1

2 (·, J1), J2), . . . , (f1
T ′(·, J1:T ′−1), JT ′), (ℓ1, i1), . . . , (ℓn, in)).

By post-processing, we have that Ã is also (ε, δ)-differentially private. Note that Ã is random as it is a function of
J1, . . . , JT ′ . Nevertheless, Proposition D.1 guarantees the existence of a sequence of functions f̃1, f̃2, . . . , f̃T ′ for Ã such
that

EÃ

 2T ′∑
t=T ′+1

f̃t−T ′(Jt, JT ′+1:t−1)− min
j⋆2∈[N ]

2T ′∑
t=T ′+1

f̃t−T ′(j⋆2 , JT ′+1:t−1)

 ≥ Ω

(
min

(
T ′,

1

(ε log T ′)2

))
,

where now JT ′+1, . . . , J2T ′ are the random variables denoting the prediction of Ã. Recall that f̃1, f̃2, . . . , f̃T ′ is a function of
the realized values of J1, . . . , JT ′ and hence are fixed once one specifies J1, . . . , JT ′ . Thus, we can define fT ′+1, . . . , f2T ′

such that for every t ∈ [T ′ + 1 : 2T ′] and any j1:t−1 ∈ [N ]t−1, we have that ft(·, j1:t−1) := f̃t−T ′(·, jT ′+1:t−1), where
f̃1, f̃2, . . . , f̃T ′ is the aforementioned strategy of the adversary when one fixes J1 = j1, . . . , JT ′ = jT ′ . Now, observe that
fT ′+1, . . . , f2T ′ are not random and can be computed by the adversary before the game begins. Moreover, by construction,
we have that

EA

 2∑
s=1

sT ′∑
t=(s−1)T ′+1

ft(Jt, J1:t−1)− min
j⋆
1:2T ′∈C(2T ′,1)

2∑
s=1

sT ′∑
t=(s−1)T ′+1

ft(j
⋆
t , J1:t−1)

 ≥ Ω

(
2min

(
T ′,

1

(ε log T ′)2

))
.

Repeating this same argument S times gives a sequence of functions f1, f2, . . . , fT , defining the strategy of the adaptive
adversary, such that

EA

S+1∑
s=1

sT ′∑
t=(s−1)T ′+1

ft(Jt, J1:t−1)− min
j⋆1:T∈C(T,S)

S+1∑
s=1

sT ′∑
t=(s−1)T ′+1

ft(j
⋆
t , J1:t−1)

 ≥ Ω

(
(S + 1)min

(
T ′,

1

(ε log T ′)2

))

= Ω

(
min

(
T,

S

(ε log T
S+1 )

2

))
.

This completes the proof.
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