Under review as a conference paper at ICLR 2025

DIFFERENTIALLY PRIVATE FEDERATED k-MEANS
WITH SERVER-SIDE DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Clustering has long been a cornerstone of data analysis. It is particularly suited
to identifying coherent subgroups or substructures in unlabeled data, as are gen-
erated continuously in large amounts these days. However, in many cases tra-
ditional clustering methods are not applicable, because data are increasingly be-
ing produced and stored in a distributed way, e.g. on edge devices, and privacy
concerns prevent it from being transferred to a central server. To address this
challenge, we present FedDP-KMeans, a new algorithm for k-means clustering
that is fully-federated as well as differentially private. Our approach leverages
(potentially small and out-of-distribution) server-side data to overcome the pri-
mary challenge of differentially private clustering methods: the need for a good
initialization. Combining our initialization with a simple federated DP-Lloyds al-
gorithm we obtain an algorithm that achieves excellent results on synthetic and
real-world benchmark tasks. We also provide a theoretical analysis of our method
that provides bounds on the convergence speed and cluster identification success.

1 INTRODUCTION

Clustering has long been the technique of choice for understanding and identifying groups and
structures in unlabeled data. Effective algorithms to cluster non-private centralized data have been
around for decades (Lloyd\|1982;|Shi & Malik,|2000; Ng et al., 2001). However, the major paradigm
shift in how data are generated nowadays presents new challenges that often prevent the use of
traditional methods. For instance, the proliferation of smart phones and other wearable devices, has
led to large amounts of data being generated in a decentralized manner. Moreover, the nature of
these devices means that the generated data are often highly sensitive to users and should remain
private. While public data of the same kind usually exists, typically there is much less of it, and it
does not follow the same data distribution as the private client data, meaning that it cannot be used
to solve the clustering task directly.

These observations have triggered the development of techniques for learning from decentralized
data, most popularly federated learning (FL) (McMahan et al., [2017). Originally proposed as an
efficient means of training supervised models on data distributed over a large number of mobile
devices (Hard et al.,|2019), FL has become the de facto standard approach to distributed learning in
a wide range of privacy-sensitive applications (Brisimi et al.|[2018; Ramaswamy et al., 2019} Rieke
et al.,[2020; Kairouz et al., [2021)). However, it has been observed that, on its own, FL is not sufficient
to maintain the privacy of client data (Wang et al.l|2019;|Ge1ping et al., 2020; Boenisch et al.l[2023).
The reason is that information about the client data, or even some data items themselves, might
be extractable from the learned model weights. This is most obvious in the case of clustering:
imagine that a cluster emerges that consists of a single data point. Then, this data could be read
off directly from the corresponding cluster center, even if FL was used for training. Therefore, in
privacy-sensitive applications, it is essential to combine FL with other privacy preserving techniques.
The most common among these is differential privacy (DP) (Dworkl, |2006), which we introduce in
Section[2] DP masks information about individual data points with carefully crafted noise. This can,
however, lead to a reduction in the quality of the results, referred to as the privacy-utility trade-off.

Several methods have been proposed for clustering private data that are either federated, but not
DP compatible, or which are DP but not adapted to work in FL settings, see Section [6] In this
paper we close this gap by introducing FedDP-KMeans, a fully federated and differentially private

Under review as a conference paper at ICLR 2025

k-means clustering algorithm. Our main innovation is a new initialization method, FedDP-Init, that
leverages (potentially small and out-of-distribution) public data to find good initial centers. These
serve as input to FedDP-Lloyds, a simple federated and differentially private variant of Lloyds algo-
rithm (Lloyd, [1982). As we expand upon in Section [2] a good initialization is critical to obtaining
a good final clustering. While this is already true for non-private, centralized clustering, it is espe-
cially the case in the differentially private, federated setting, where we are further limited by privacy
and communication constraints in the number of times we can access client data and thereby refine
our initialization.

We report on experiments for synthetic as well as real datasets in two settings: when we wish to
preserve individual data point privacy, as is common for cross-silo federated learning settings (Li
et al., 2020), and client-level privacy, as is typically used in cross-device learning settings (McMa-
han et al., 2017). In both cases, FedDP-KMeans achieves clearly better results than all baseline
techniques. We also provide a theoretical analysis, proving that under standard assumptions for the
analysis of clustering algorithms (Gaussian mixture data with well-separated components), the clus-
ter centers found by FedDP-KMeans converge exponentially fast to the true component means and
the ground truth clusters are identified after only logarithmically many steps.

2 BACKGROUND

k-Means Clustering Given a set of data point, P = (p1,...,p,) and any 2 < k < n, the goal of

k-means clustering is to find cluster centers, vy, . . ., v that minimize the k-means objective,
n
. 2
E ‘min ||p; — v (D
1 Jj=1,...k
i=

The cluster centers induce a partition of the data points: a point p belongs to cluster j, if ||p — v;|| <
lp — v;|| for all j, ', with ties broken arbitrarily (but deterministically). It is well established
that solving the k-means problem optimally is NP-hard in general (Dasguptal [2008). However,
efficient approximate algorithms are available, the most popular being Lloyd’s algorithm (Lloyd),
1982). Given an initial set of centers, it iteratively refines their positions until a local minimum of (EI)
has been found. A characteristic property of Lloyd’s algorithms is that the number of steps required
until convergence and the quality of the resulting solution depend strongly on the initialization: the
most commonly used initialization is the k-means++ algorithm (Arthur & Vassilvitskii, [2007).

Federated Learning Federated learning is a design principle for training a joint model from data
that is stored in a decentralized way on local clients, without those clients ever having to share their
data with anybody else. The computation is coordinated by a central server which typically employs
an iterative protocol: first, the server sends intermediate model parameters to the clients. Then,
the clients compute local updates based on their own data. Finally, the updates are aggregated,
e.g. as their sum across clients, either by a trusted intermediate or using cryptographic protocols,
such as multi-party computation (Bonawitz et al., 2016} [Talwar et al., [2024)). The server receives
the aggregate and uses it to improve the current model, then it starts the next iteration. Although
this framework enables better privacy, by keeping client data stored locally, each iteration incurs
significant communication costs. Consequently, to make FL practical, it is important to design
algorithms that require as few such iterations as possible.

While the primary focus of FL is on decentralized client data, the server itself can also possess data
of its own, though usually far less than the clients in total and not of the same data distribution. Such
a setting is in fact common in practice, where e.g. data from public sources, anatomized data, or data
from some consenting clients is available to the server (Hard et al.|, [2019; [Dimitriadis et al., 2020;
Gao et al., 2022 Scott & Cahill, [2024).

Differential Privacy (DP) DP is a mathematically rigorous framework for computing summary
information about a dataset (for us, its cluster centers) in such a way that the privacy of individual
data items is preserved. Formally, for any €, > 0, a (necessarily randomized) algorithm A : P — S
that takes as input a data collection P € P and outputs some values in a space S, is called (¢, d)
differentially private, if it fulfills that for every S C S

Pr[A(P) € S] < ¢f PrA(P') € 8] + 4, 2)

where P and P’ are two arbitrary neighboring datasets.

Under review as a conference paper at ICLR 2025

We consider two notions of neighboring in this work: for standard data-point-level privacy, two
datasets are neighbors if they are identical except that one of them contains an additional element
compared to the other. In the more restrictive client-level privacy, we think of two datasets as a col-
lection of per-client contributions, and we consider two datasets as neighbors if they are identical,
except that all data points of one of the individual client are missing in one of them. Condition
then ensures that no individual data item (a data point or a client’s data set) can influence the algo-
rithm output very much. As a consequence, from the output of the algorithm it is not possible to
reliably infer if any specific data item occurred in the client data or not.

An important property of DP is its compositionality: if algorithms Ay, ..., A; are DP with corre-
sponding privacy parameters (£1,01), ..., (¢¢,d:), then any combination or concatenation of their
outputs is DP at least with privacy parameters (Zi:l €5, 22:1 0s). In fact, stronger guarantees
hold, which in addition allows trading off between ¢ and J, see (Kairouz et al., 2015). These can-
not, however, be be stated as easily in closed form. Due to compositionality, DP algorithms can be
designed easily by designing individually private steps and composing them.

In this work, we employ two mechanisms for making computational steps differentially private: The
Laplace mechanism (Dwork et al., 2006) achieves (e, 0) privacy by adding Laplace-distributed noise
with scale parameter % to the output of the computation. Here, S is the sensitivity of the step, i.e.
the maximal amount by which its output can change when operating on two neighboring datasets,
measured by the L'-distance. The Gaussian mechanism (Dwork & Roth, [2014) instead adds Gaus-
sian noise of variance o (e, §; S) = mg(l'gﬂ to ensure (&, 5)—privac Here, the sensitivity, S,
is measured with respect to the L2-distance. The above formulas show that stronger privacy guar-
antees, i.e. a smaller privacy budget (e, ¢), require more noise to be added. This, however, might
reduce the accuracy of the output. Additionally, the more processing steps there are that access
private data, the smaller the privacy budget of each step has to be in order to not exceed an overall
target budget. In combination, this causes a counter-intuitive trade-off for DP algorithms that does
not exist in this form for ordinary algorithms: accessing the data more often, e.g. more rounds of
Lloyd’s algorithm, might lead to lower accuracy results, because the larger number of steps has to be
compensated by more noise per step. Consequently, a careful analysis of the privacy-utility trade-off
is crucial for practical DP algorithms. As a general guideline, however, algorithms are preferable
that access the private data as rarely as possible. In the context of k-means clustering this means that
one can only expect good results if one can avoid having to run many iterations of Lloyd’s algorithm.
Consequently, a good initialization will be crucial for achieving high accuracy.

3 METHOD

We assume a setting of m clients, where each client, j, possesses a dataset, PJ e R >4, In addition,
we assume that the server, also possesses some data, (), which can freely be shared with the clients,
but that potentially is small and out-of-distribution (i.e. not following the client data distribution).
The goal is to determine a k-means clustering of the joint clients’ dataset P := U;”:1 Pj in a
federated and differentially private way.

We propose FedDP-KMeans, which solves this task in two stages. the first, FedDP-Init (Algo-
rithm [T, is our main contribution: it constructs a strong initialization to the k-means clustering
problem by exploiting server-side data. The second, FedDP-Lloyds (Algorithm [2), is a simple fed-
erated DP-Lloyds algorithm, which refines the initialization, if necessary.

3.1 FEDDP-INIT

Sketch: FedDP-Init has three steps: Step 1 computes a projection matrix onto the space spanned
by the top k singular vectors of the client data matrix P. Step 2 projects the server data onto that
subspace, and computes a weight for each server point ¢ that reflects how many client points have
q as their nearest neighbor. Step 3 computes initial cluster centers in the original data space by
first clustering the weighted server data in the projected space and then refining these centers by a

"For simplicity of exposition, we assume £ < 1 for all steps involving the Gaussian mechanism, as larger
values require a different noise scaling. Note that the complete algorithm nevertheless can handle larger privacy
budgets, as the overall privacy level is determined from the per-step levels as approximately their sum.

Under review as a conference paper at ICLR 2025

step resembling one step of Lloyd’s algorithm on the clients, but with the similarity computed in
the projected space. To ensure the privacy of the client data all above computations are performed
with sufficient amounts of additive noise, and the server only ever receives noised aggregates of the
computed quantities across all clients. Consequently, FedDP-Init is differentially private and fully
compatible with standard FL and secure aggregation setups, as described in Section

Intuitively, the goal of Step 1 is to project the data onto a lower-dimensional subspace that preserves
the important variance (i.e. distance between the means) but reduces the variance in nuisance direc-
tion (in particular the intra-cluster variance). This construction is common for clustering algorithm
that strive for theoretical guarantees, and was popularized by [Kumar & Kannan| (2010). Our key
novelty lies in Step 2 and 3: here, we exploit the server data, essentially turning it into a proxy
dataset on which the server can operate without any privacy cost. After one more interaction with
the clients, the resulting cluster centers are typically so close to the optimal ones, that only very few
(sometimes none at all) steps of Lloyd’s algorithm will still be required afterwards to refine them.
Our theoretical analysis (Section [4) quantifies this effect: for suitably separated Gaussian Mixture
data, the necessary number of steps to identify the ground truth clusters is at most logarithmic in the
total number of data points.

In the rest of this section, we describe the individual steps in more technical detail. For the sake of
simpler exposition, we describe only the setting of data-point-level differential privacy. However,
only minor changes are needed for client-level privacy, see Section[5] As private budget, we treat
0 as fixed for all steps, and denote the individual budgets of the three steps as €1, €5 and €3. We
provide recommendations how to set these values given an overall privacy budget in Appendix [G.4]

Algorithm details — Step 1: The server aims to compute the top k eigenvectors of the clients’
data outer product matrix P” P. However, in the federated setup, it cannot do so directly because it
does not have access to the matrix P. Instead, the algorithm exploits that the overall outer product
matrix can be decomposed as the sum of the outer products of each client data matrix, i.e. PTP =
Z}n:l (P7)T PJ. Therefore, each client can locally compute their outer product matrix and the server

—

only receives their noisy across-client aggregate, PT P. We ensure the privacy of this computation
by the Gaussian mechanism. The associated sensitivity is the maximum squared norm of any single
data point, which is upper bounded by the square of the dataset radius, A. Consequently, a noise
variance of o2 (1, 8; A?) ensures (g1, §)-privacy, as shown by Dwork et al.| (2014).

The remaining operations the server can perform noise-free: it computes the top k eigenvectors of

—

PT P and forms the matrix IT € R?** from them, which allows projecting to the subspace spanned
by these vectors (which we call data subspace). The projection provides a data-adjusted way of
reducing the dimension of data vectors from potentially large d to the typically much smaller k.
This is an important ingredient to our algorithm, because in low dimension typically less noise is
required to ensure privacy. The lower dimension also helps to keep the communication between
server and client small. The dimension k is chosen, because for sufficiently separated clusters, one
can then expect the subspace to align well with the subspace spanned by the cluster centers. In that
case, the projection will preserve inter-cluster variance but reduce intra-cluster variance, thereby
improving the signal-to-noise ratio of the data.

Step 2: Next, the server aims to compute per-point weights for its own data such that this can
serve as a proxy for the data of the clients. The server shares with the clients the computed projection
matrix I, and its own projected dataset I1Q). Each client uses II to project its own data to the data
subspace. Then, it computes a weight for each server point g € II(Q as,

w(IIP7) .= {p e IP? | V¢ € T1Q, |lp —dqll < lIp — |1}, 3)

that is, the count of how many of the client’s projected points are closer to ¢ than to any other
q' € TIQ, breaking ties arbitrarily. The weights are sent to the server in aggregated and noised form.
As an unnormalized histogram over the client data, the point weight has L!-sensitivity 1. Therefore,
the Laplace mechanism with noise scale 1/c5 makes this step (e2,0)-DP. The noisy total weights,

wq(ILP) for ¢ € IIQ, provide the server with a (noisy) estimate of how many client data points each
of its data points represents. It then runs k-means clustering on its projected data 11, where each
point ¢ receives weight w,(ILP) in the k-means cost function, to obtain centers &1, ..., & in the
data subspace.

Under review as a conference paper at ICLR 2025

Algorithm 1 FedDP-Init
1: Input: Client data sets P!, ... P™, # of clusters k, privacy parameters 1, €3, €3G, €31, 0

2. Step 1: // Compute projection onto top k singular vectors of P

3: forclientj =1,...,mdo

4: Client j computes outer product (P7)T P

5: end for

6: Server receives noisy aggregate PTP = S (PT)T P 4 Nixa(0, 0% (1, 6; A?))
7: Server forms a projection matrix IT from top k eigenvectors of PT P

8

. Step 2: // Determine importance weights
9: forclientj =1,...,mdo
10: Client j receives I and IIQ from server
11: for every point g € 11Q) do

12: Client j computes weight w,(ILP7) == |{p € IIP? | V¢’ € IQ, |lp —q| < |lp — ¢||}]
13: end for
14: end for

15: Server receives noisy aggregate wy (ITP) = 37" wy (IIP7) + Lap(0,) for each ¢ € T1Q

16: Step 3: // Cluster projected server points and initialize centers

17: Server computes cluster centers &1, .., £ by running k-means clustering of 1) with per-sample
weights w, (I1P)

18: forclientj =1,...,m do

19: Client j receives &1, .., & from server

20: Client j computes S7 = {p € P7 : Vs, ||Hp &l < [TIp — &}

21: Client j computes m]. = > g P and n =[S

22: end for _ '

23: Server receives noisy aggregates m, = >_"" mJ +Nq(0, 0?(e36,0;A)) and 7, = Syt
Lap(0, o)

24: Server computes initial centers v, = m,./n, forr =1,...,k

25: QOutput: Initial cluster centers vy, .., vy

Step 3: In the final step the server constructs centers in the original space. For this, it sends
the projected centers &1, ...,&; to the clients. For each projected cluster center &, each client
j computes the set of all points p € P’ whose closest center in the projected space is &, i.e.
Si = {pe Pl : Vs |Ilp—&| < |[IIp — &|}. For any r, the union of these sets across all
clients would form a cluster in the client data. We want the mean vector of this to constitute the
r-th initialization center. For this, each client j computes the sum of their points in each cluster,

mi =3 pes; P> and the number of points in of each of their clusters, n = |S7|. Aggregated across

all clients one obtains the global sum and count of the points in each cluster my =y =1 mJ and
n, = Z -1 nJ To make this step private, we first split €3 = €3 + €31. For mJ which has L2-

sensitivity A, we apply the Gaussian mechanism with variance o2(e3g, d; A). For n,., which has
the L!-sensitivity is 1, we use the Laplace mechanisms with scale 1/e37. This ensures (35, §) and
(e3r, 0) privacy, respectively, and therefore (at least) (&, §) privacy overall for this step. Finally, the
server uses the noisy estimates of the total sums and counts, 72, and 7., to compute approximate
means v, = ;. /7., and outputs these as initial centers.

3.2 FEDDP-LLOYDS

The second step of FedDP-KMeans is a variant of Lloyd’s algorithm that we adapt to a private
federated setting. The basic observation here is that a step of Lloyd’s algorithm can be expressed
only as summations and counts of data points. Consequently, all quantities that the server requires
can be expressed as aggregates over client statistics which allows us to preserve user privacy with
secure aggregation and differential privacy, as described in Section[2]

Specifically, assume that we are given initial centers /9, . .., /2, and a privacy budget (4, d4), which
we split as €4 = €46 + €41. Forrounds ¢t = 1,...,T, we repeat the following steps. The server

Under review as a conference paper at ICLR 2025

Algorithm 2 FedDP-Lloyds

1: Input: Initial centers 19, ..., v2, P, steps T, privacy parameters e, £z,
2: fort=1,...,T do

3: forclientj=1,...,mdo

4: Client j receives v£~', ... vt~ from Server

5: forr=1,...,kdo

6: Client j computes S/ := {p € P7 : Vs, |p—vi || < |lp— v}
7: Client j computes m]. = >3 g pand n; = |S]|

8: end for

9: end for
10: Server receives m,. = E;nzl mi + Ny (0, TA%02(eq /T, 0)) and 1, = Z;n:l nJ. + Lap(0, %)
11: Server computes next centers v’ = m,./n, forr =1,...,k
12: end for

13: Output: Final cluster centers v , ..,]

sends the latest estimate of the centers to the clients. Each client j computes, for r = 1,...)k,
Si:={pe P :Vs,|p—vit| < |p—vi !}, the set of points whose closest center is v/~
Note that in contrast to the initialization, the distance is measured in the full data space here, not the
data subspace. The remaining steps coincide with the end of Step 3 above. Each client j computes

the summations and counts of their points in each cluster: mJ. = > pesi pand nj = |S7|. These
quantities are aggregated to m,. = > 7" | m] and n, = Y_7" | nJ, and made private by the Gaussian
mechanisms with variance 02(e4¢/T,/T,A) and the Laplacian mechanism with scale T'/e4z,
respectively. The server receives the noisy total sums and counts mm,. and 72,., and it updates its
estimate of the centers as v = m,/n,. Overall, the composition property of DP ensures that
FedDP-Lloyds is at least (g4, 0)-private.

4 THEORETICAL ANALYSIS

We analyze the theoretical properties of FedDP-KMeans in the standard setting of data from a k-

component Gaussian mixture, i.e. the data P is sampled from a distribution D(z) = 25:1 w;G;(z)
with means pi;, covariance matrix 3J; and cluster weight w;. The data is partitioned arbitrarily
among the clients, i.e. each clients data is not necessarily distributed according to D itself. We
denote by G'; the set of samples from the j-th component G;: the goal is to recover the clustering

G, ..., G,. The server data, @ C R<, can be small and not of the same distribution as P.

Our main result is Theorem [2] which states that FedDP-KMeans successfully clusters such data, in
the sense that the cluster centers it computes converge towards the ground truth cluster centers, i.e.
the means of the Gaussian parameters, and the induced clustering becomes the ground truth one. In
doing so, the algorithm respects data-point differential privacy. For this result to hold, a separation
condition is required (Definition|[T]), which ensures that the ground truth cluster centers are separated
far enough from each other to be identifiable. In the following, we first introduce and discuss the
separation condition and then state the theorem. The proof is provided in Appendix [E]and [F

Definition 1 (Separation Condition). For a constant ¢, a Gaussian mixture ((ui, i, wi))i:l L

with n samples is called c-separated if

., [k
Vi 7£ Js ||:U’2 - NJH >c Eo—max IOg(n)V

where 0,4, Is the maximum variance of any Gaussian along any direction. For some large enough
constant c fixed independently of the input, we simply say that the mixture is separate

Note that the dependency in log(n) is unavoidable, because with growing n also the chance grows
that outliers occur from the Gaussian distributions: assigning each data point to its nearest mean
would not be identical to the ground truth clustering anymore.

2This constant ¢ is determined by prior works: our analysis uses results from |Awasthi & Sheffet] (2012),
which did not specify exactly the value of the constant nor tried to optimize it.

Under review as a conference paper at ICLR 2025

To prove the main theorem, two additional assumptions on P are required: (1) the diameter of
2
the dataset is bounded by A := O(m) — so that the noise added to compute a private

€Wmin

SVD preserves enough signal. (2): there is not too many server data, namely |Q| < 8"27‘75“ This
ensures the noise added Step 2 is not overwhelming compared to the signal. Note that conditions (1)
and (2) can always be enforced by two preprocessing steps, which we present as part of the proof
in Appendix [E| In practice, however, they are typically satisfied automatically — as we observe in
Appendix [G.2|- thereby allowing use of the algorithm directly as stated.

Theorem 2. Suppose that the client dataset P is generated from a separated Gaussian mixtures with
3
n>q %‘2/&”’”‘” samples, where (1 is some universal constant, and that () contains a least one

min

sample from each component of the mixture. Then, FedDP-KMeans followed with FedDP-Lloyds is
(e,0)-DP for e = €1 + €2 + €3¢ + €31, + €4 + €41, and there is a constant (a such that, under
assumptions (1) and (2), the centers v1, ..., vy, that are computed after T' steps of FedDP-Lloyds
satisfy with high probability

2
M max TA log(n)> ' @

vl <G 27T
||,ut lH = CQ < |Gz| ENWmin

Furthermore, there is a constant (3 such that, after (3log(n) rounds of communication, the cluster-
ing induced by v, ..., vy, is the ground-truth clustering G1, ..., Gy.
Alog(n)

Note that assumption (1) implies that === is negligible compared to n. That means, the estimated

centers converge exponentially fast towards the ground truth.

5 EXPERIMENTS

We now present our empirical evaluation of FedDP-KMeans, which we implemented using the
pfl-research framework (Grangvist et al) 2024). To verify the broad applicability of our
method we run experiments in both the setting of data-point-level privacy, see Section [5.1} and
client-level privacy, see Section[5.2] The appropriate level of privacy in FL is typically determined
by which data unit corresponds to a human. In cross-silo FL. we typically have a smaller number of
large clients, e.g. hospitals, with each data point corresponding to some individual, so data point-
level privacy is appropriate. In cross-device FL, we typically have a large number of clients, where
each client is a user device such as a smartphone, so client-level privacy is preferable. Our chosen
evaluation datasets reflect these dynamics.

Baselines As natural alternatives to FedDP-KMeans we consider different ways of initializing the
k-means problem and combine these with FedDP-Lloyds. Two baseline methods use the server data
to produce initialization: ServerKMeans++ runs k-means++ (Arthur & Vassilvitskii, 2007)) on the
server data, while ServerLloyds runs a full k-means clustering of the server data. The baselines can
be expected to work well when the server data is large and of the same distribution as the client
data. This, however, is exactly the situation where the server data would suffice anyway, so any
following FL. would be wasteful. In the more realistic setting where the server data is small and/or
out-of-distribution, the baselines might produce biased and therefore suboptimal results. As a third
baseline, we include the SpherePacking initialization of (Su et al.l 2017). This data-independent
technique constructs initial centroids that are suitably spaced out and cover the data space, see Ap-
pendix [G.3|for details. None of the above baselines use client data for initialization. Therefore, they
consume none of their privacy budget for this step, leaving all of it for the subsequent FedDP-Lloyds.

In addition to the above ones, we also report results for two methods that do not actually adhere
to the differentially-private federated paradigm. k-FED (Dennis et al.l [2021)) is the most popular
federated k-means algorithm. As we will discuss in Section [6] it does not exploit server data and
it does not offer privacy guarantees. Optimal we call the method of transferring all client data to
a central location and running non-private k-means clustering with kmeans++ initialization. This
provides neither the guarantees of federated learning nor of differential privacy, but it serves as a
lower bound on the achievable k-means cost for all other methods.

Evaluation Procedure = We compare FedDP-KMeans with the baselines over a range of privacy
budgets. Specifically, if a method has s steps that are each (1,4),...,(es,d) DP then the to-
tal privacy cost of the method is computed as (g1, 0) by strong composition using Google’s

Under review as a conference paper at ICLR 2025

—e— DP-FedKM + FDP-Lloyds —e— ServerlLloyds + FDP-Lloyds ---- k-FED
—e— ServerKMeans++ + FDP-Lloyds SpherePacking + FDP-Lloyds =~ —— Optimal
4.4
561
3 7 4.21
o P Y ° o
(] had hd hd e (8]
2 541 24.0
© ©
g g
~ 524 < 381
Ne, >
50 e © s e >

00 02 04 06 08 10 12 05 1.0 15 2.0
epsilon epsilon

Figure 1: Results with data-point-level privacy (k = 10). Left: synthetic mixture of Gaussians data
with 100 clients. Right: US census dataset. The 51 clients are US states, each client has the data of
individuals with employment type “Federal government employee”.

dp-accounting library | We fix § = 10~° for all steps and for the total privacy costs. We
vary the ¢; of individual steps as well as other hyperparameters of the algorithms, e.g. the number
of steps of FedDP-Lloyds, and we measure the k-means cost of the computed clustering. For each
method we plot the Pareto front of the results in the (k-means cost, €,o,1) space. When plotting we
scale the k-means cost by the dataset size, so the value computed in Equation E] is scaled by 1/n.
This evaluation procedure gives us a good overview of the performance of each method at a range
of different privacy budgets. However, on its own it does not tell us how to set hyperparameters for
FedDP-KMeans, such as the amount of privacy budget to allocate to each step. Knowing how to
set the hyperparameters is important for applying FedDP-KMeans in practice and we address this in

Appendix [G.4]
5.1 DATA-POINT-LEVEL PRIVACY EXPERIMENTS

Privacy Implementation details In our theoretical discussion we assumed that no individual data
point has norm larger than A in order to compute the sensitivity of certain steps. As A is typically
not known in practice, in our experiments we ensure the desired sensitivity by clipping the norm of
each data point to be at most A, before using it in any computation. A is therefore a hyperparameter
of the algorithm, which we set to be the radius of the server dataset.

Datasets We evaluate on both synthetic and real federated datasets that resemble a cross-silo
federated setting. Our synthetic data comes from a mixture of Gaussians distribution, as assumed
for our theoretical results in Sectiond] The client data is of this mixture distribution while the server
data consists to two thirds of data from the true mixture and to one third of data that is uniformly
distributed, to simulate related but out-of-distribution data. We additionally evaluate on US census
data using the folktables (Ding et al.| |2021) package. The dataset has 51 clients, each corresponding
to a US state. Each data point contains information about an individual in the census. For full details
on the datasets and our preprocessing steps see Appendix

Results In Figure [T] we report the outcomes. The left panel shows the results for the synthetic
Gaussian mixture and the right panel for the US census dataset when the clients hold the data of
federal employees. The other two categories are shown in Figures |3 and 4] of Appendix [Hl On the
synthetic data, FedDP-KMeans outperforms all private baselines by a wide margin. These baselines,
are unable to overcome their poor initialization, with performance plateauing even as the privacy
budget increases. In contrast FedDP-KMeans is able to match the optimal (non-private) performance
at a low privacy budget of around €oy = 0.4. The non-private k-FED also performs optimally in this
setting as is to be expected given that the synthetic data distribution fulfills the conditions assumed
by [Dennis et al.| (2021). On the US census datasets we observe a more interesting picture. Across

3https ://github.com/google/differential-privacy/tree/main/python/dp_accounting

https://github.com/google/differential-privacy/tree/main/python/dp_accounting

Under review as a conference paper at ICLR 2025

—e— DP-FedKM + FDP-Lloyds —e— ServerlLloyds + FDP-Lloyds ---- k-FED
—e— ServerKMeans++ + FDP-Lloyds SpherePacking + FDP-Lloyds =~ —— Optimal
sg 0.84 4
2
8 561 g 082
(] (]
%) %)
c c
@ 54 $ 0.801
£ £
v v
524 0.781
50 = - - = -
1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5
epsilon epsilon

Figure 2: Results with client-level privacy (k = 10). Left: synthetic mixture of Gaussians data with
2000 clients. Right: stackoverflow dataset with 9237 clients, topic tags github and pdf.

all three settings FedDP-KMeans outperforms all baselines, except in the very low privacy budget
regime. The latter is to be expected, because for sufficiently low privacy budget any client-based
initialization will become very noisy, whereas the initialization with only server data (which requires
no privacy budget) stays reasonable. With a high enough privacy budget FedDP-KMeans is able to
recover the optimal non-private clustering. Among the baselines we observe similar performance
between the two methods that initialize using server data, with ServerLloyds performing slightly
better across the board. The data independent SpherePacking initialization performs very poorly,
emphasizing the importance of leveraging related server data to initialize.

We attribute FedDP-KMeans’s good performance predominantly to the excellent quality of its ini-
tialization. As evidence, Tabledin Appendix [G]shows how many steps of Lloyd’s algorithm had to
be performed for Pareto-optimal behavior: this is never more than 2, and often none at all.

5.2 CLIENT-LEVEL PRIVACY EXPERIMENTS

Privacy Implementation details Moving to client-level differential privacy changes the sensitiv-
ities of the steps of our algorithms, which now depend not only on the maximum norm of a client
data point norm, but also on the maximum number of data points a client has. Rather than placing
assumptions or restrictions on this, and deriving corresponding bounds on the sensitivity of each
step, we instead simply enforce sensitivity by clipping client statistics prior to aggregations. This
is a standard technique to enforce a given sensitivity in private FL, where it is typically applied to
clipping client model/gradient updates. For full details on our implementation in the client-level
privacy setting see Appendix[G.5]

Datasets We evaluate on both synthetic and real federated datasets, this time in a cross-device
federated setting. For synthetic data we again use a mixture of Gaussians, but with more clients than
in Section We also use the Stack Overflow dataset provided by Tensorflow Federatetﬂ This
is a large scale text dataset of questions posted by users on stackoverflow.com. We preprocess this
dataset by embedding it with a pre-trainined sentence embedding model. Thus each client dataset
consists of small number of text embedding vectors. The server data consists of embedding vectors
from questions asked about different topics to the client data. See Appendix for full details.

Results In Figure 2] we report the outcomes. The left panel shows results for the synthetic Gaus-
sian mixture dataset with 2000 clients, and the right panel for the stackoverflow dataset, with topics
github and pdf. Further results can be found in Appendix [Ht synthetic data with 1000 and 5000
clients in Figures[5]and[6] and the other stackoverflow topics are shown in Figures[7] [§]and [9]

For the synthetic data we again observe that the baselines that use only server data are unable to
overcome their poor initialization, even with more generous privacy budgets. As the total number of

4https ://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow

https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow

Under review as a conference paper at ICLR 2025

clients grows, from 1000 to 2000 to 5000, FedDP-KMeans exhibits better performance for the same
privacy budget and the budget at which FedDP-KMeans outperforms server initialization becomes
smaller. This is to be expected since the impact of the noise will be lower the more clients we are
able to aggregate over. For stackoverflow we again observe that FedDP-KMeans exhibits the best
performance, except for in a few cases in the low privacy budget regime. k-FED performs quite
poorly across the board, tending to be outperformed by the private baselines.

As in data-point-level privacy, we find the quality of FedDP-Init’s initialization to be excellent: very
few, if any, Lloyd’s steps are required for Pareto-optimality (see Table [5|in Appendix [G).

6 RELATED WORK

In the context of FL, clustering appears primarily for the purpose of grouping clients together. Such
clustered FL techniques jointly find a clustering of the clients while training a separate ML model
on each cluster (Sattler et al.,|2020; |(Ghosh et al.| 2020; Xia et al., 2020). In contrast, in this work we
are interested in the task of clustering the clients’ data points, rather than the clients. In[Dennis et al.
(2021)), the one-shot scheme k-Fed is proposed for this task: first all clients cluster their data locally.
Then, they share their cluster centers with the server, which clusters the set of client centers to obtain
a global clustering of the data. However, due to the absence of aggregation of the quantities that
clients share with the server, the method has no privacy guarantees. |Liu et al.[|(2020) propose using
federated averaging (McMahan et al., 2017) to minimize the k-means objective in combination
with multi-party computation. Similarly, [Mohassel et al.| (2020) describe an efficient multi-party
computation technique for distance computations. This will avoid the server seeing individual client
contributions before aggregation, but the resulting clustering might still expose private information.

For privacy-preserving clustering, many methods have been proposed based on variants of
DPLIloyd’s (Blum et al., 2005), i.e. Lloyd’s algorithm with suitable noise added to intermediate
steps. The methods differ typically in the data representation and initialization. For example, |Su
et al.|(2016) creates and clusters a proxy dataset by binning the data space. This, however, is tractable
only in very low-dimensional settings. |(Chang et al.| (2021) also works with a proxy dataset, which
it constructs in a private way from client data points. Ren et al.| (2017) chooses initial center points
by forming subsets of the original data and clustering those. Zhang et al| (2022)) initializes with
randomly selected data points and then uses multi-party computation to securely aggregate client
contributions. None of the methods are compatible with the FL setting, though.

To our knowledge, only two prior works combined the advantages of DP and FL so far. [Li et al.
(2023) is orthogonal to our work, as it targets vertical FL, in which all clients posses the same data
points, only different subsets of their features. [Diaa et al.| (2024) studies the same problem as we
do, but they propose a custom aggregation scheme that does not fit standard security requirements
of FL. For initialization, it uses SpherePacking, which in our experiments led to rather poor results.

7 CONCLUSION

In this paper we presented FedDP-KMeans, a fully federated and differentially private k-means
clustering algorithm. FedDP-KMeans makes use of out-of-distribution server-side data to obtain
a good initialization to the k-means problem. Combined with a simple federated, differentially
private, variant of Lloyd’s algorithm we obtain an efficient and practical clustering algorithm. We
demonstrate that FedDP-KMeans performs well in practice under both data-point-level and client-
level privacy models. FedDP-KMeans also comes with theoretical guarantees that show exponential
convergence to the true cluster centers in the Gaussian mixture setting.

A remaining shortcoming of our method is the need to choose hyperparameters, which is known
to be difficult when privacy is meant to be ensured. While we provide heuristics for this in
Appendix [G.4] a more principled solution would be preferable. It would also be interesting to
explore if the server-side data could be replaced with a suitably private mechanism based on client
data, and if a variant of FedDP-Init is possible that adjusts to very small privacy budgets.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Dimitris Achlioptas and Frank McSherry. On spectral learning of mixtures of distributions. In
Conference on Computational Learning Theory (COLT), 2005.

David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In Symposium
on Discrete Algorithms (SODA), 2007.

Hassan Ashtiani, Shai Ben-David, Nicholas JA Harvey, Christopher Liaw, Abbas Mehrabian, and
Yaniv Plan. Near-optimal sample complexity bounds for robust learning of Gaussian mixtures via
compression schemes. Journal of the ACM (JACM), 67(6):1-42, 2020.

Pranjal Awasthi and Or Sheffet. Improved spectral-norm bounds for clustering. In International
Workshop on Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX), 2012.

Alex Bie, Gautam Kamath, and Vikrant Singhal. Private estimation with public data. Conference on
Neural Information Processing Systems (NeurIPS), 2022.

Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: the SuLQ
framework. In Symposium on Principles of Database Systems (PODS), 2005.

Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia Shumailov, and
Nicolas Papernot. When the curious abandon honesty: Federated learning is not private. In IEEE
European Symposium on Security and Privacy (EuroS&P), 2023.

K. A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar
Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for federated
learning on user-held data. In NIPS Workshop on Private Multi-Party Machine Learning, 2016.
URL https://arxiv.org/abs/1611.04482.

Theodora S. Brisimi, Ruidi Chen, Theofanie Mela, Alex Olshevsky, Ioannis Ch. Paschalidis, and
Wei Shi. Federated learning of predictive models from federated electronic health records. Inter-
national Journal of Medical Informatics, 112:59-67, 2018.

Alisa Chang and Pritish Kamath. Practical differentially pri-
vate clustering. https://research.google/blog/
practical-differentially—private—clustering/, 2021. Accessed: 2024-
09-23.

Alisa Chang, Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. Locally private k-means in one
round. In International Conference on Machine Learning (ICML), 2021.

Edith Cohen, Haim Kaplan, Yishay Mansour, Uri Stemmer, and Eliad Tsfadia. Differentially-private
clustering of easy instances. In International Conference on Machine Learning (ICML), 2021.

S. Dasgupta. The hardness of k-means clustering. Technical report, University of California, Berke-
ley, 2008.

Don Kurian Dennis, Tian Li, and Virginia Smith. Heterogeneity for the win: One-shot federated
clustering. In International Conference on Machine Learning (ICML), 2021.

Abdulrahman Diaa, Thomas Humphries, and Florian Kerschbaum. FastLloyd: Federated, accurate,
secure, and tunable k-means clustering with differential privacy, 2024. URL https://arxiv.
org/abs/2405.02437.

Ilias Diakonikolas, Daniel M. Kane, Daniel Kongsgaard, Jerry Li, and Kevin Tian. Clustering mix-
ture models in almost-linear time via list-decodable mean estimation. In Symposium on Theory of
Computing (STOC), 2022.

Dimitrios Dimitriadis, Kenichi Kumatani, Robert Gmyr, Yashesh Gaur, and Sefik Emre Eskimez. A
federated approach in training acoustic models. In Interspeech, 2020.

Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring adult: New datasets for fair
machine learning. Conference on Neural Information Processing Systems (NeurIPS), 2021.

11

https://arxiv.org/abs/1611.04482
https://research.google/blog/practical-differentially-private-clustering/
https://research.google/blog/practical-differentially-private-clustering/
https://arxiv.org/abs/2405.02437
https://arxiv.org/abs/2405.02437

Under review as a conference paper at ICLR 2025

Max Dupré la Tour, Monika Henzinger, and David Saulpic. Making old things new: A unified
algorithm for differentially private clustering. In International Conference on Machine Learning
(ICML), 2024.

Cynthia Dwork. Differential privacy. In Automata, Languages and Programming, pp. 1-12, 2006.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations
and Trends in Theoretical Computer Science, 9(3-4):211-407, 2014.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise to sensitiv-
ity in private data analysis. In Theory of Cryptography Conference (TTC), 2006.

Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and Li Zhang. Analyze Gauss: optimal bounds
for privacy-preserving principal component analysis. In Symposium on Theory of Computing
(STOC), 2014.

Yan Gao, Titouan Parcollet, Salah Zaiem, Javier Fernandez-Marqués, Pedro P. B. de Gusmao,
Daniel J. Beutel, and Nicholas D. Lane. End-to-end speech recognition from federated acous-

tic models. In International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2022.

Jonas Geiping, Hartmut Bauermeister, Hannah Droge, and Michael Moeller. Inverting gradients
— how easy is it to break privacy in federated learning? In Conference on Neural Information
Processing Systems (NeurlPS), 2020.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework for
clustered federated learning. In Conference on Neural Information Processing Systems (NeurIPS),
2020.

Filip Granqvist, Congzheng Song, Aine Cahill, Rogier van Dalen, Martin Pelikan, Yi Sheng Chan,
Xiaojun Feng, Natarajan Krishnaswami, Vojta Jina, and Mona Chitnis. pfl-research: simula-
tion framework for accelerating research in private federated learning, 2024. URL https:
//arxiv.org/abs/2404.06430.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Francoise Beaufays, Sean
Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage. Federated learning for mobile
keyboard prediction, 2019. URL https://arxiv.org/abs/1811.03604,

Samuel B. Hopkins and Jerry Li. Mixture models, robustness, and sum of squares proofs. In Ilias
Diakonikolas, David Kempe, and Monika Henzinger (eds.), Symposium on Theory of Computing
(STOC), 2018.

Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for differential
privacy. In International Conference on Machine Learning (ICML), 2015.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L.
D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
Adria Gascén, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He,
Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi,
Mikhail Khodak, Jakub Konecny, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,
Tancrede Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Ozgijr, Rasmus
Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang Song,
Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramer, Praneeth Vepakomma,
Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances
and open problems in federated learning. Foundations and Trends in Machine Learning, 14, 2021.

Gautam Kamath, Or Sheffet, Vikrant Singhal, and Jonathan R. Ullman. Differentially private al-
gorithms for learning mixtures of separated gaussians. In Conference on Neural Information
Processing Systems (NeurIPS), 2019.

Pravesh K. Kothari, Jacob Steinhardt, and David Steurer. Robust moment estimation and improved
clustering via sum of squares. In Symposium on Theory of Computing (STOC), 2018.

12

https://arxiv.org/abs/2404.06430
https://arxiv.org/abs/2404.06430
https://arxiv.org/abs/1811.03604

Under review as a conference paper at ICLR 2025

Amit Kumar and Ravindran Kannan. Clustering with spectral norm and the k-means algorithm. In
Foundations of Computer Science (FOCS), 2010.

Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. A review of applications in federated learning. Com-
puters & Industrial Engineering, 149:106854, 2020.

Zitao Li, Tianhao Wang, and Ninghui Li. Differentially private vertical federated clustering. Pro-
ceedings of the VLDB Endowment, 16(6):1277-1290, 2023.

Allen Liu and Jerry Li. Clustering mixtures with almost optimal separation in polynomial time. In
Symposium on Theory of Computing (STOC), 2022.

Yang Liu, Zhuo Ma, Zheng Yan, Zhuzhu Wang, Ximeng Liu, and Jianfeng Ma. Privacy-preserving
federated k-means for proactive caching in next generation cellular networks. Information Sci-
ences, 521:14-31, 2020.

Stuart P. Lloyd. Least squares quantization in PCM. [EEE Transactions on Information Theory
(TIT), 28(2):129-136, 1982.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agiiera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In International
Conference on Artificial Intelligence and Statistics (AISTATS), 2017.

Frank McSherry. Differential privacy for measure concen-
tration. https://windowsontheory.org/2014/02/04/
differential-privacy—-for—-measure—concentration/, 2014. Accessed:
2024-09-23.

Payman Mohassel, Mike Rosulek, and Ni Trieu. Practical privacy-preserving k-means clustering.
In Privacy Enhancing Technologies Symposium, 2020.

Ankur Moitra and Gregory Valiant. Settling the polynomial learnability of mixtures of Gaussians.
In Foundations of Computer Science (FOCS), 2010.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
In Conference on Neural Information Processing Systems (NeurIPS), pp. 849-856. MIT Press,
2001.

Karl Pearson. Contributions to the mathematical theory of evolution. Philosophical Transactions of
the Royal Society of London. A, 185, 1894.

Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Frangoise Beaufays. Federated learning
for emoji prediction in a mobile keyboard, 2019. URL https://arxiv.org/abs/1906.
04329.

Oded Regev and Aravindan Vijayaraghavan. On learning mixtures of well-separated Gaussians. In
Foundations of Computer Science (FOCS), 2017.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using siamese BERT-
networks. In Conference on Empirical Methods in Natural Language Processing (EMNLP), 2019.

Jun Ren, Jinbo Xiong, Zhigiang Yao, Rong Ma, and Mingwei Lin. DPLK-means: A novel differ-
ential privacy k-means mechanism. In International Conference on Data Science in Cyberspace
(DSC), 2017.

Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger R. Roth, Shadi Albarqouni, Spyri-
don Bakas, Mathieu N. Galtier, Bennett A. Landman, Klaus Maier-Hein, Sébastien Ourselin,
Micah Sheller, Ronald M. Summers, Andrew Trask, Daguang Xu, Maximilian Baust, and
M. Jorge Cardoso. The future of digital health with federated learning. npj Digital Medicine,
3(1):119, 2020.

Felix Sattler, Klaus-Robert Miiller, and Wojciech Samek. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. /EEE Transactions on Neu-
ral Networks and Learning Systems (TNNLS), 32(8):3710-3722, 2020.

13

https://windowsontheory.org/2014/02/04/differential-privacy-for-measure-concentration/
https://windowsontheory.org/2014/02/04/differential-privacy-for-measure-concentration/
https://arxiv.org/abs/1906.04329
https://arxiv.org/abs/1906.04329

Under review as a conference paper at ICLR 2025

Jonathan Scott and Aine Cahill. Improved modelling of federated datasets using mixtures-of-
Dirichlet-multinomials. In International Conference on Machine Learning (ICML), 2024.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 22(8):888-905, 2000.

David Steurer and Stefan Tiegel. SoS degree reduction with applications to clustering and robust
moment estimation. In Déaniel Marx (ed.), Symposium on Discrete Algorithms (SODA), 2021.

Dong Su, Jianneng Cao, Ninghui Li, Elisa Bertino, and Hongxia Jin. Differentially private k-means
clustering. In ACM Conference on Data and Application Security and Privacy, 2016.

Dong Su, Jianneng Cao, Ninghui Li, Elisa Bertino, Min Lyu, and Hongxia Jin. Differentially private
k-means clustering and a hybrid approach to private optimization. ACM Transactions of Privacy
and Security (TOPS), 20:1-33, 2017.

Kunal Talwar, Shan Wang, Audra McMillan, Vojta Jina, Vitaly Feldman, Pansy Bansal, Bailey
Basile, Aine Cahill, Yi Sheng Chan, Mike Chatzidakis, Junye Chen, Oliver Chick, Mona Chitnis,
Suman Ganta, Yusuf Goren, Filip Granqvist, Kristine Guo, Frederic Jacobs, Omid Javidbakht,
Albert Liu, Richard Low, Dan Mascenik, Steve Myers, David Park, Wonhee Park, Gianni Parsa,
Tommy Pauly, Christian Priebe, Rehan Rishi, Guy Rothblum, Michael Scaria, Linmao Song,
Congzheng Song, Karl Tarbe, Sebastian Vogt, Luke Winstrom, and Shundong Zhou. Samplable
anonymous aggregation for private federated data analysis, 2024. URL https://arxiv.
org/abs/2307.15017.

Eliad Tsfadia, Edith Cohen, Haim Kaplan, Yishay Mansour, and Uri Stemmer. FriendlyCore: Practi-
cal differentially private aggregation. In International Conference on Machine Learning (ICML),
2022.

Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang, and Hairong Qi. Beyond
inferring class representatives: User-level privacy leakage from federated learning. In IEEE Con-
ference on Computer Communications (INFOCOM), 2019.

Chang Xia, Jingyu Hua, Wei Tong, and Sheng Zhong. Distributed k-means clustering guaranteeing
local differential privacy. Computers & Security, 90:101699, 2020.

En Zhang, Huimin Li, Yuchen Huang, Shuangxi Hong, Le Zhao, and Congmin Ji. Practical multi-
party private collaborative k-means clustering. Neurocomputing, 467:256-265, 2022.

14

https://arxiv.org/abs/2307.15017
https://arxiv.org/abs/2307.15017

Under review as a conference paper at ICLR 2025

A EXTENDED RELATED WORK

Clustering Gaussian Mixture The problem of clustering Gaussian mixtures is a fundamental of
statistics, perhaps dating back from the work of [Pearson| (1894).

Estimating the parameters of the mixture, as we are trying to in this paper, has a rich history. Moitra
& Valiant| (2010) showed that, even non-privately, the sample complexity has to be exponential in
k; the standard way to bypass this hardness is to require some separation between the means of
the different components. If this separation is o(+/log k), then any algorithm still requires a non-
polynomial number of samples (Regev & Vijayaraghavan,|[2017). When the separation is just above
this threshold, namely O(log(k)'/?+¢), [Liu & Li (2022) present a polynomial-time algorithm based
on Sum-of-Squares to recover the means of spherical Gaussians.

For clustering general Gaussians, the historical approach is based solely on statistical properties of
the data, and requires a separation 2(\/E) times the maximal variance of each component (Achliop-
tas & McSherry} 2005; |Awasthi & Sheffet, 2012). This separation is necessary for accurate cluster-
ing, namely, if one aims at determining from which component each samples is from (Diakonikolas
et al., [2022). This approach has been implemented privately by Kamath et al.|(2019) (with the ad-
ditional assumption that the input is in a bounded area): this is the one we follow, as the simplicity
of the algorithms allows to have efficient implementation in a Federated Learning environment. Bie
et al.| (2022) studied how public data can improve performances of this private algorithm: they as-
sume access to a small set of samples from the distribution, which improves the sample complexity
and allows them to remove the assumption that the input lies in a bounded area.

We note that both private works of [Kamath et al|(2019) and [Bie et al.| (2022)) have a separation
condition that grows with log n, as ours.

To only recover the means of the Gaussians, and not the full clustering, a separation of £ (for
any o > 0) is enough (Hopkins & Li| 2018}, [Kothari et al., 2018}, [Steurer & Tiegel, 2021). This
is also doable privately (when additionally the input has bounded diameter) using the approach of
Cohen et al.| (2021) and |Tsfadia et al.| (2022). Those works are hard to implement efficiently in
our FL framework for two reasons: first, they rely on Sum-of-Square mechanisms, which does not
appear easy to implement efficiently. Second, they use Single Linkage as a subroutine: this does not
seem possible to implement in FL. Therefore, some new ideas would be necessary to get efficient
algorithm for FL based on this approach.

A different and orthogonal way of approaching the problem of clustering Gaussian mixtures is to
recover a distribution that is e-close to the mixture in total variation distance, in which case the
algorithm of |Ashtiani et al.[(2020) has optimal sample complexity O(kd?/?) — albeit with a running
time w(exp(kd®)).

On Private k-means Clustering The private k-means algorithm of |Dupré la Tour et al.|(2024)),
implemented in our FL setting, would require either 2(k) rounds of communication with the clients
(for simulating their algorithm for central DP algorithm), or a a very large amount of additive noise
kO (for their local DP algorithm, with an unspecified exponent in k). Furthermore, the algo-
rithm requires to compute a net of the underlying Euclidean space, which has size exponential in the
dimension, and does not seem implementable. To the best of our knowledge, the state-of-the-art im-
plementation of k-means clustering is from (Chang & Kamath| (2021)): however, it has no theoretical
guarantee, and is not tailored to FL.

B TECHNICAL PRELIMINARIES

B.1 DIFFERENTIAL PRIVACY DEFINITIONS AND BASICS

As mentioned in introduction, one of the most important properties of Differential Privacy is the
ability to compose mechanisms. There are two ways of doing so. First, parallel composition: if
an (e,d)-DP algorithms is applied on two distinct datasets, then the union of the two output is
also (£, 8)-DP. Formally, the mechanism that takes as input two elements Py, P, € P and outputs

(A(Py), A(P,)) is (¢,0)-DP.

15

Under review as a conference paper at ICLR 2025

The second property is sequential composition: applying an (g, §)-DP algorithm to the output of
another (e, ¢)-DP algorithm is (2¢,26)-DP. Formally: if A : P — S4 is (€4,04)-DP and B :
P xSs— Spis(ep,dp)-DP, then B(A(-),"): P — Spis(ea+¢ep,0a + dp)-DP.

Those are the composition theorem that we use for the theoretical analysis. However, in practice,
better bounds can be computed — although they don’t have closed-form expression. We use a stan-
dard algorithm to estimate more precise upper-bounds on the privacy parameters of our algorithms
(Kairouz et al.| 2015)).

The sensitivity of a function is a key element to know how much noise is needed to add in order
to make the function DP. Informally, the sensitivity measures how much the function can change
between two neighboring datasets. Formally, we have the following definition.

Definition 3 (Sensitivity). Given a norm ¢ : R — R, the (-sensitivity of a function f : X" — R?
is defined as
sup_ ((f(X) = f(X')),
r~X'eXm
where X ~ X' means that X and X' are neighboring datasets.

The two most basic private mechanism are the Laplace and Gaussian mechanism, that make a query
private by adding a simple noise. We use the Laplace mechanism for counting:

Lemma 4 (Laplace Mechanism for Counting.). Let X be a dataset. Then, the mechanism M (X) =
|X| + Lap(1/e) is (&,0)-DP, where Lap(1/¢) is a variable following a Laplace distribution with
variance 1/e.

We use the Gaussian mechanism for more general purposes (e.g., the PCA step). It is defined as
follows:

Lemma 5. Gaussian Mechanism Let f : X — R"™ be a function with ly-sensitivity Ay o. Then,
for o(e,0) = 7V210§(2/6) the Gaussian mechanism M (X) = f(X) + Ny (0,A?«720(€75)2> is

(g,0)-DP, where Ny(0,0?) is a d-dimensional Gaussian random variable, where each dimension is
independent with mean 0 and variance o>,

Combining those two mechanisms gives a private and accurate estimate for the average of a dataset

Lemma 6 (Private averaging). For dataset X in the ball B(0,A), the mechanism M(X) =
2
Daex X820 CI20) is (e, 6)-DP. Additionally, | X| >, then it holds with probability 1 — 3

that [|M(X) = pu(X) > < S 4 ST,

B.2 DIFFERENTIAL PRIVACY FOR GAUSSIAN MIXTURES

First, we review some properties of the private rank-k approximation: this algorithm was analyzed
by Dwork et al.|(2014)), and its properties when applied on Gaussian mixtures by [Kamath et al.
(2019). The guarantee that is verified by the projection onto the noisy eigenvectors is the following:

Definition 7. Fix a matrix X € R"*, and let 11}, be the projection matrix onto the principal rank-k
subspace of XT X. For some B > 0, we say that a matrix 11 is a B-almost k-PCA of X if Il is a
projection such that:

o | XTX — (MIX)T(TIX)|]2 < | XTX — (0 X)T (11, X) |2 + B, and

[XTX - (IX)TIX) | < [XTX — (I:2X)T (I X)||F + kB.

Dwork et al.| (2014) shows how to compute a B-almost k-PCA, with a guarantee on B that depends
on the diameter of the dataset:

Theorem 8 (Theorem 9 of Dwork et al|(2014)). Let X € R"*? such that || X;||» < 1, and fix
o(g,8) = \/2In(2/0)/e. Let E € R4 be a symmetric matrix, where each entry E; ; with j > i
is an independent draw from N'(0, (g, 0)?). Let Iy, be the rank-k approximation of X* X + E.

Then, I is a O(v/d - o (e, 8))-almost k-PCA of X, and is (&, 6)-DP.

16

Under review as a conference paper at ICLR 2025

Kamath et al.| (2019) shows crucial properties of Gaussian mixtures: first, the projection of each
empirical mean with a B-almost k-PCA is close to the empirical mean:

Lemma 9 (Lemma 3.1 in Kamath et al[(2019)). Let X € R™*? be a collection of points from k
clusters centered at 1, ..., ui. Let C be the cluster matrix, namely C; = p; if X; belongs to the
i-th cluster, and G; be the i-th cluster.

Let 1, be a B-almost k-PCA, and denote [i1, ..., fiy, the empirical means of each cluster, and
(1, ..., g the projected empirical means.

. 1 _ B
Then, ||; MIIIS\/@HX Clz + [k

Second — and this helps bounding the above — they provide bounds on the spectral norm of the
clustering matrix X — C":

Lemma 10 (Lemma 3.2 in [Kamath et al[(2019)). Let X € R™*? be a set of n samples from a
mixture of k Gaussians. Let o; be the maximal unidirectional variance of the i-th Gaussian, and
Omax = Max o;. Let C be the cluster matrix, namely C; = p; if X; is sampled from N (s, 34).

Ifn > wi (C1d + C2logy(k/B)), where (1, (o are some universal constants, then with probability
1 — B it holds that

k
A/ NWyin0,
<X = Clla < 44| wio?.

=1

B.3 PROPERTIES OF GAUSSIAN MIXTURES

Lemma 11. Consider a set P of n samples from a Gaussian mixtures {(j1;, X, w;) }icr)- Let G;
be the set of points sampled from the i-th component. If n > %g@), then with probability 0.99 it
holds that Vi, |G;| > nw; /2

Proof. This is a direct application of Chernoff bounds: each sample s is in G; with probability w;.
Therefore, the expected size of G; is nw;, and with probability at least 1 — 2 exp(—nw;/12) it
holds that ||G;| — nw;| < nw;/2: for n > 241og(k)/wmin, the probability is at least 1 — 2/k%. A
union-bound over all 7 concludes. O

B.4 CLUSTERING PRELIMINARIES

Our algorithm first replaces the full dataset P with a weighted version of (), and then computes a k-
means solution on this dataset. The next lemma shows that, if cost(P, @) is small, then the k-means
solution on the weighted (@ is a good solution for P:

Lemma 12. Let P,C; C R% and f : P — C, be ainapping with :== 3" pllp — f)|>* Let
wy, be such that |w, — | f~*(v)|| < |f~1(v)|/2. Let P be the multiset where each v € Cy appears

w,, many times, . Let C be such that cost(P, Cy) < aOPT(P). Then,
cost(P,Cy) < (2+ 12a)T + 12aO0PT(P).

17

Under review as a conference paper at ICLR 2025

Proof. Recall that Ca(p) is the closest point in C to p. We have, using triangle inequality:

cost(P,Co) = Z lp — Ca(p)|?

peP
<> o= Calf)P
peEP
<Y o= O+ 11£) = Co(F@)I)?
peP
<Y 2l = f@)IP + 201/ (p) = Ca(f(0))II?
peP
< +2) | W)y - Co(v)))?
veCq
<M +4) w, v - Co(v)|
veCq

< 2I' + 4a0PT(P).

A similar argument bounds OPT(P): let C* be the optimal solution for P, then, for any point p we
have || f(p) — C*(f(p)II < I/ (p) = C* ()| < [[f(p) — pll + l[p — C*(p)| Therefore,

OPT(P) < > wy|v—Cx)|

veCy
<*Z|f V)|lv = Cx (v)|?
veCi
<3 2|Ci(p) — plI* +2lp — C*(p)|1?
peP

< 3T + 30PT(P).

Combining those two inequalities concludes the lemma. O

C THE NON-PRIVATE, NON-FEDERATED ALGORITHM OF |[AWASTHI &
SHEFFET| (2012)

The algorithm we take inspiration from is the following, from|Awasthi & Sheftet|(2012) and inspired
by Kumar & Kannan|(2010): first, project the dataset onto the top-k eigenvectors of the dataset, and
compute a constant-factor approximation to k-means (e.g., using local search). Then, improve iter-
atively the solution with Lloyd’s steps. The pseudo-code of this algorithm is given in Algorithm [3]
and the main result of |Awasthi & Sheffet (2012)) is the following theorem:

Theorem 13 (Awasthi & Sheffet (2012)). For a separated Gaussian mixture, Algorithm|3|correctly
classifies all point w.h.p.

Their result is more general, as they do not require the input to be randomly generated, and only
requires a strict separation between the clusters. In this paper, we focus specifically on Gaussian
mixtures.

D OUR RESULT

Our main theoretical results is to adapt Algorithm [3]to a private and federated setting. We show the
following theorem:

Theorem 14. Suppose that the client dataset P is generated from a separated Gaussian mixtures

. kdT log® n-4/In(1/8 . . .
withn > (1 gszwg (1/9) samples, where (y is some universal constant, and that () contains a
min

least one sample from component of the mixture.

18

Under review as a conference paper at ICLR 2025

Algorithm 3 Cluster(P)
1: Part 1: find initial Clusters
a) Compute P the projection of P onto the subspace spanned by the top k singular vectors

of P.
b) Run a c-approximation algorithm for the k-means problem on P to obtain centers
Vly ooy Vi

2: Part2: Forr=1,..k set S, < {i: Vs, ||P,— v, < %HE —vs||} and 6, + pu(S,)
3: Part 3: Repeat Lloyd’s steps until convergence:
forr =1,.. .k, set C(v) < {i: Vs, | P — v|| < ||P; — vs]|}, and 6, < p(C(vy))

Then, there is an (e, 0)-DP algorithm that computes centers vy, ..., vy such that, for some universal

constants (o, (3, after T + (3 log %g_@‘ rounds of communications, it holds with high probability
that:

1 kdT10g* noya\/In(T/5)
i — vill < (s max <2T7 Ty :

min

Note that the precision increases with the number of samples: if n is larger than
27 10g (T max / Wmin) kd 10g” N Omax

2,2
€7 Whnin

, then the dominating term is 1/27.
Corollary 15. Suppose that the client dataset P is generated from a separated Gaussian mixtures

E wmm

withn = Q (M) samples, that Q) contains a least one sample from component of the
mixture and at most n data points.

Suppose that n. = Q (M) and that n = (logs(?#)

E wm”l min

Then, there is an (e,6)-DP algorithm with O(log(n)) rounds of communications that computes
centers vy, ..., Vi such that, with high probability, the clustering induced by vy, ..., vy, is the partition

Gy,...,Gg

Proof. Theorem 5.4 of [Kumar & Kannan|(2010) (applied to Gaussian mixtures) bounds the number
of misclassified points in a given cluster in terms of the distance between v; and ;. Define, for any
1, S; as the cluster of v;, and §; = ||u; — v;|. Then, for j # ¢, Kumar & Kannan|(2010) show that,

for some constant C/: ,)
s < et
Tl
H2 > 2 ko2, log(n)®

Wmin

Since ||p; — , we get that the number of points from G; assigned to cluster j

c nwmm(62+52)
ko2 log(n)?

max

is at most

We aim at bounding d; and d; using Theorem l For T' = log (100 "““"‘“) it holds that iT <
fUmax
10¢/ \/ﬁwmin :

100’2 log(n)2 kd? log(n)*

In addition, for this value of 7" and a number of samples n at least n > Tu?

kdT log MO max ln(T/6 < fglnax

ne2wmm — 10¢/ v/Nwpin

, WE

also have

Therefore, the upper bound on §; and J; from Theorem [14] ﬂ after T' + 1og (0max l0g |Q|/Wmin) =
O(log(n)) rounds of communications ensure that there is no point misclassified. This which con-
cludes the statement. O

>We simplified the original statement of |Kumar & Kannan|(2010) to directly adapt it to separated Gaussian
: R 2 < 4noZ,, and A;,;j (defined in the original statement) is our separation
value, c/k /WminOmax log(n).

19

Under review as a conference paper at ICLR 2025

In the case where the assumption of Theorem@]are satisfied, namely, (1) the diameter is bounded and
(2) the server data are well spread, then the algorithm of Theorem|[I4]reduces directly to Algorithm|[T]
followed with T steps of Algorithm [2] with only 7" rounds of communication. Indeed, the first

O (log %g@‘) rounds of the algorithm from Theorem |14/ are dedicated to enforcing condition

(1) and (2): if they are given, there is no need for those steps.

The organization of the proof is as follows. First, we give some standard technical preliminary tools
about differential privacy and Gaussian mixtures. Then, we show how to implement Algorithm 3}
the bulk of the work is in the implementation of its Part 1, computing a good solution for IIP. The
second part to iteratively improve the solution is very similar to the non-private part.

E PART 1: COMPUTING CENTERS CLOSE TO THE MEANS
E.1 REDUCING THE DIAMETER

Lemma 16. There is an e-DP algorithm with one communication round that, given Wy, and Gy,
reduces the diameter of the input to O (M).

EWnin

Proof. We fix a distance D = 4 log NV do . First, the server identifies regions that contains many

server points: if ¢ is such that |Q N B(q, D)| > 300 Toe g7 - then ¢ is marked frozen.

Then, each client assigns its points to their closest server point in), breaking ties arbitrarily. In one
round of communication, the server learns, for each server point g € (@, the noisy number of points
assigned to ¢, namely wq(P) = wq(P) + Lap(1/e). For privacy, the noise added to each count
follows a Laplace distribution with parameter 1/c. Hence, with high probability, the noise is at most

0] (%) on each server data q.

With high probability on the samples, for all i the B(u;, D) contains all the w;n samples from G;.
Therefore, any server point ¢ sampled from G; is either frozen, or the noisy count in B(q, D) ball is

at least nwmyin/2 — |Q N B(u;, D)| - logeﬂ > NWpin /3, using Lemrna

Consider now an arbitrary point p € R%. Since G/ is fully contained in B(y;, D/2), either the ball
B(p, D/2) doesn’t intersect with G;, or B(p, D) contains entirely G;. Furthermore, by triangle
inequality, for any ¢ € G; N @ the ball B(q, D) contains entirely G;: if ¢ is not frozen, it has noisy
count at least nwmyin/3, and therefore true count at least nwpiy /6.

To reduce the diameter, we first remove all points from () that are not frozen and for which the ball
B(q, D) has noisy count less than nwy,;,/3: by the previous discussion, those points are not sampled
from any G; and are part of the noise. In addition, connect any pair of points that are at distance less
than D.

log® nv/dom)

€ Wmin

We claim that each connected component has diameter at most O (

To prove this claim, we fix such a component, and consider the following iterative procedure. Pick
an arbitrary point from the component, and remove all points that are at distance 2. Repeat those
two steps until there are no more points.

Let ¢ be a point selected at some step of this procedure. First, note that B(g, D) is disjoint from any
ball B(q', D), for ¢’ previously selected — as B(q’, 2D) has been removed. Furthermore, either ¢ is
frozen and the ball contains 5——“=t— many points of @, or ¢ is not frozen and B(gq, D) contains at

200 log |Q]
least nwmin /6 points of P. Therefore, there are at most ¢4, 1= i %&WQI iterations. So the

connected component can be covered with t,,,, balls of radius 2D Additionally, since each edge
log |Q| log 1V A0 max)

E€Wmin

has length at most D, the component has diameter at most O(t,q.D) = O (
This concludes the claim.

The other key property of the connected component is that each G; is fully contained in a single
connected component, as all points of G; are at distance at most D of each other.

20

Under review as a conference paper at ICLR 2025

Therefore, we can transform the space such that the connected components get closer but do not
interact, so that the diameter reduces while the centers of Gaussians are still far apart. Formally,
let D’ be the maximum diameter of the connected components. Select an arbitrary representative
in () from each connected component, and apply a translation to the connected component such
that its representative has coordinate (100D’ - 4, 0,0, ..., 0). This affine transformation ensures that
(1) within each connected component, all means are still separated and the points are still drawn
from Gaussian with the same covariance matrix and (2) the separation between centers of different
component is at least 50D,

Therefore, the instance constructed still satisfy the separation conditions of Definition [I] and has
diameter at most O(kD') = O (MWM"‘“) O

EWmin

E.2 A RELAXATION OF AWATHI-SHEFFET’S CONDITIONS

The result of |Awasthi & Sheffet| (2012)), applied to Gaussian, requires a slightly weaker separation
between the centers than what we enforce. They consider a dataset P sampled from a Gaussian
mixtures, and with cluster matrix C (namely, C; = p; if P; is sampled from the i-th component).

They define for each cluster A5 := \/ﬁ min(vk||P—C||2), || P—C| r), and require ||1;—p;]| >

c(ALS 4 A;‘S) for some large constant c.
In the Gaussian setting, we have |G;| ~ nw; (Lemmal[l1), |P — C|l2 = O(0max/n) Lemma|[L0]
and |[A — C|lp = O(Vndoms). Thus, in most cases, min (\/EHP—C’HQ, ||P_0||F) =

Vnkomax polylog(d/wmin), except in some degenerate cases — and we keep the minimum only to fit
with the proof of /Awasthi & Sheffet| (2012).

We can define A; = % min (\/E polylog(d/wmin), \/E) : our separation condition Deﬁnition
ensures that ||p1; — p;|| > c(A; + Aj), for some large c. We now show the two key lemmas from
Awasthi & Sheffet|(2012), adapted to our private algorithm.

Fact 17 (Fact 1.1 in |Awasthi & Sheffet| (2012)). Let P € R™*? be a set of n points sampled
from a Gaussian mixtures, and let C be the cluster matrix, namely C; = p; if X; is sampled

Sfrom N (p;,%;). Let 11 be a B-approximate k-PCA for Py, ..., P,. Suppose that B satisfies B <
\/nwil]zlcfm. Then:

[P — Cf < 20min(k[|A = C|3), |14 = Cll5) (= nwiAf).

Proof. First, since both IIP and C have rank k, it holds that ||[IP — C||% < 2k|ILP — C||3. By
triangle inequality, this is at most 2k (||[ILP — P||z + ||P — C||2)*.

Now, we have that ||[ILP — P||3 = ||(IIP — P)(ILP — P)T||5: since I1 is a B-approximate k-PCA,
this is at most || (I P — P)(II;, P — P)T||5 + B, where II}, P is the best rank-k approximation to P.
By definition of Il this is equal to ||P — Iy P||2 + B < ||P — C||3 + B.

Overall, we get using Va+b< Va+ Vb
TP — C||% < 2k (JILP — Pll2 + ||1P = Cl|2)”
<2k (2P - Cll> + \/§)2
< 16k|P — C||3 + 4kB.

Using Lemma and the assumption that 4k B < | /NWyin0max concludes the first part of the lemma.

For the other term, we have ||IIP — C||r < ||IIP — P||r + ||P — C||r. The fact that IT is a B-
approximate k-PCA ensures that ||[ILP — P||% < ||[P — C||% + kB; and the fact that | P — C||%. >

|\P—C|3> %6”"2‘“ > B concludes (where the second inequality is from Lemma . O
Fact 18. [Analogous to Fact 1.2 in Awasthi & Sheffet| (2012)] Let P € R™*? be a Gaussian mix-

tures, and 11 be a B-approximate k-PCA for P\, ..., P,,. Suppose that B satisfies B? < nwn02,,.
Let S = {v1,...,u;} be centers such that cost(ILP, S) < nko2,, - log®n.

max

21

Under review as a conference paper at ICLR 2025

Then, for each p;, there exists j such that ||p; — v;|| < 6A;, so that we can match each p; to a
unique v;.

Proof. The proof closely follows the one in |Awasthi & Sheffet (2012). Assume by contradiction
that there is a ¢ such that Vj, ||, — vj|| > 6A;. For any point p € P, let v, be its closest center.
Then, the contribution of the points in G; to the cost is at least
(€
Y i = vy +TIp = puil* > (647 - > Ip — wil* > 18]G, |AF — |TIP - C| 7,
PEG; PEG;

where the first inequality follows from (a — b)2 > % — b2 Using first that |G;|A2 =

100nko?, log?(n), then Fact {17 combined with Lemma (10| yields that Yopea, IMp — 12
1800nko2,, log®(n) — 16nka?

>
= ax Zax This contradicts the assumption on the clustering cost. O

Assuming there is a matching as in Fact the proof of |Awasthi & Sheffet| (2012) directly goes
through (when the Lloyd steps in Parts 2 and 3 of the algorithm are implemented non-privately), and
we can conclude in that case that the clustering computed by Algorithm [I]is correct. Therefore, we
first show that our algorithm computes a set of centers satisfying the conditions of Fact[I8} and will
show afterwards that the remaining of the proof works even with the addition of private noise.

E.3 COMPUTING A GOOD k-MEANS SOLUTION FOR IIP

The goal of this section is to show the following lemma:

4log |Q|
EWnmin

Lemma 19. There is an e-DP algorithm with 10 log
putes a k-means solution S with

1
cost(IIP,S) = O (n -log? <Ew :) ko2, logn) .

rounds of communications that com-

The proof of this lemma is divided into several parts: first, we show that the means of the projected
Gaussians IIpq, ..., ITu, would be a satisfactory clustering. As points in () are drawn independently
from TII, there are points T1() close to each center I1;: our second step is therefore an algorithm that
finds those points, in few communications rounds.

Lemma 20. Let II be the private projection computed by the algorithm. With high probability,
clustering the projected set IIG; to the projected mean y; has cost |G;|logn - ko?

max-

Proof. We focus on a single Gaussian G;, and denote for simplicity u := p; its center and S =113
the covariance matrix of IIG;. Standard arguments (see Proof of Corollary 5.15 in [Kamath et al.
(2019), or the blog post from McSherry| (2014)) show that, with high probability, for all point it

holds that ||TI(p —) ||3 < v/klog(n)omax.

For a sketch of that argument, notice that if the projection II was fixed independently of the samples,
this inequality is direct from the concentration of Gaussians around their means, as the projection of
G; via Il is still a Gaussian, with maximal unidirectional variance at most oy,.x. This does not stay
true when II depends on the sample; however, since II is computed via a private mechanism, the
dependency between II and any fixed sample is limited, and we can show the concentration.

Combined with the fact that there are |G;| samples from G;, this concludes. O

Lemma|19|in particular ensures that clustering ITP to the full set TIQ yields a cost nko2,, - log” n.

Therefore, if we could compute for each ¢ € @ the size w,(IIP) of Ilg’s cluster in ILP, namely,
the number of points in ITP closer to Ilg than to any other point in IIQ (breaking ties arbitrarily),
then Lemma would ensure that computing an O(1)-approximation to k-means on this weighted

set yields a solution to k-means on ITP with cost O (nko?2,, - log” n).

However, the privacy constraint forbids to compute w, (IIP) exactly, and the server only receives a

-

noisy version w,(ILP) — with a noise following a Laplace noise with parameter 1/¢. Hence, for all
points ¢ € Q, the noise added is at most 1°2™ with high probability.

€

22

Under review as a conference paper at ICLR 2025

E.4 IF ASSUMPTION (2) IS SATISFIED: THE NOISE IS NEGLIGIBLE

Assumption (2) can be used to bound the total amount of noise added to the server data: we can
show that the total contribution of the noise is small compared to the actual k-means cost, in which
case solving k-means on the noisy data set yields a valid solution. We show the next lemma:

Lemma 21. For any set of k centers S, it holds that

—

‘Zq wq(ILP) cost(p, S) — >, wy(ILP) cost(p, 5)’ < M
Proof.

Z wq(ILP) cost(q, S) — Z wq/(l_ED) cost(q, S)

q q

Z Lap(1/¢) cost(q, S)

q

s - . log |Q|
With high probability, each of the |Q| Laplace law is smaller than gT

‘Z . Lap(1/¢) cost(q, S)‘ < M Therefore, the gap between the solution evaluated with
t \Q\logE\Q\Az O

. In this case, we get

true weight w,(IIP) and noisy weight wq/(H\P) is at mos

2
Using | Q| < n, the assumption |Q] < % therefore ensures that the upper bound of the previous

lemma is at most nk log(n)o2,,.

Hence, if S is a solution that has cost O(1) times optimal on the noisy projected server data, it
has cost O(nko2,, log(n)) on the projected server data. Combining this result with Lemma

concludes: cost(IIP, S) = O (nko?2,, log(n)).

E.5 ENFORCING ASSUMPTION (2)

In order to get rid of Assumption (2), we view the problem slightly differently: we will not try to
reduce the number of points in () to the precise upper-bound, but will nonetheless manage to control
the noise and show Lemma[19

Indeed, if all points of) get assigned more than 2logn/e many input points, then the estimates
of w, are correct up to a factor 2, and Lemma shows that a k-means solution S for the dataset

consisting of TIQ) with the noisy weights satisfies cost(IIP, S) = O (nko?nax -log? n) However, it
may be that some points of) get assigned less than 2 log n/e points, in which case the noise would

dominate the signal and Lemma [I2] becomes inapplicable. Our first goal is therefore to preprocess
the set of hings () to get () such that :

1. for each cluster, HQ still contains one good center, and

2. Vq € Q, Wy > 2logn/e (where the weight @ is computed by assigning each data point to
its closest center of Q)
The first item ensures that cost(I1P, HQ) =0 (nk:agm -log® n); the second one that the size of
each cluster is well approximated, even after adding noise.

Our intuition is the following. Removing all points ¢ € () with estimated weight less than 2logn/e
is too brutal: indeed, it may be that one cluster is so over-represented in () that all its points get
assigned less than 2logn/e points from P. However, in that case, there are many points in the
cluster and in IIQ: we can therefore remove each point with probability 1/2 and preserve (roughly)
the property that there is a good center in II(). Repeating this intuition, we obtain the algorithm
described in Algorithm 4]

We sketch briefly the properties of algorithm [} before diving into details of the proof. First, the
algorithm is e-DP, as each of the T steps is € /T-DP.

Then, points in F' are frozen: even after adding noise, their weight is well approximated. We will
show by induction on the time ¢ that, for any cluster ¢ that does not contain any frozen point at
time ¢, then Q; N B(u;, 2t - v/k1og nom,,) contains many points: more precisely, |Q; N B(u;, 2t -

23

Under review as a conference paper at ICLR 2025

Algorithm 4 SimplifyServerData

1: Input: Server data @, client datasets P',..., P™, a projection matrix II computed from
P! ..., P™, and privacy parameter &

2: Let F < 0,Qp + Q, T = 10log (‘“%@')

3: fort =0toT do

4: LetC=FU Qt

5: foreach g € C, the server receives a noisy estimate u?((]t) of wrrg (I1Q;), with noise Lap(T'/¢).
6: Server computes L := {q € C': wé“ < 2logn/e}.

7. F+ FU(Q:\L).

8: Server computes Q;1, a subset of L where each point is sampled with probability 1/2.

9: end for

10: Return: F

VEklognomsx)| > €|G;|/2. Since at each time step only half of the points in L are preserved in
Q41 (line 7 of the algorithm), it implies that, at the beginning, |Q N B(u;, 2t - v/klognoma)| =
2'e/T|G;|. Therefore, for t = log(1/(cwmin)), we have for each cluster that either it contains a
frozen point, or |Q N B(p;, 2t - v/klog nomax)| > % > n: as the second option is not possible, all
clusters contains a frozen point, which is a good center for that cluster.

Our next goal is to formalize the argument above, and show:
Lemma 22. Let F' be the output of Algorithm{| Then, for each cluster i, there is a point v; € F

such that |T(u; — v;)|| < log (%@l) - VE1og nomax.

Furthermore, for each q € I, define wy as the number of points closest to q than any other point in
F : it holds that w, > 2logn/e.

For simplicity, we define A¢ := /klognon,. To prove this lemma, we show inductively that
after ¢ iterations of the loop in the algorithm, then either B(IIy;, 2tA¢) contains a frozen point, or
| B(ITp;, (t + 1)Ac) NIIQ:| > €|G;|/2. Since the number of points in IIQ; is divided by roughly
2 at every time step, the latter condition implies that there was initially at least ~ 2'¢|G;| points in
B(IIp;, (t+1)A¢) NTIQ. For t ~ log(1/(cwmin), this is bigger than n and we get a contradiction:
the ball contains therefore a frozen point.

Our first observation to show this claim is that many points of P are close to p;:
Fact 23. With high probability on the samples, it holds that |B(H/L7;, VEk1og nom.,) N HPi| > |G,

Proof. As in the proof of Lemma the fact that II is computed privately ensures that,
with high probability, all points p € G; satisfy |[|[II(p — w;)|| < +Eklognomas. Thus,
| B, V/E10g nomax) NIIP;| > |Gl O

For the initial time step ¢ = 0 we actually provide a weaker statement to initialize the induction, and
show that there is at least one point in B(TIu;, v/k1og nomax) N T1Q:. This will be enough for the
induction step.

Fact 24 (Initialization of the induction). With high probability, 3¢ € Q,|II(u; — ¢)| <
Vklog nomgy-

Proof. This directly stems from the fact that there is some point ¢ € @ that is sampled according to
Gi, and that II is independent of that point. Therefore, Ilg follows the Gaussian law I1G;, which is
in a k dimensional space and has maximal unidirectional variance op,,x. Concentration of Gaussian
random variables conclude. L]

To show our induction, the key lemma is the following:
Lemma 25. After t iteration of the loop, either B (H/I,Z', (t+ 1)vklog nomax) contains a frozen

point, or ‘HQt N B(Mu;, 2(t + 1)/Elog namax)’ > ﬁ%.

24

Under review as a conference paper at ICLR 2025

Proof. Let A := Vk1og nomax.

First, it holds with high probability that all the noise added Line 5 satisfy ‘wét) — wnq(HQt)‘ <
Tlog(T|Q|)/e. This directly stems from concentration of Laplace random variables, and the fact
that there are 7T'|()| many of them.

We prove the claim by induction. Fix a ¢ > 0. The induction statement at time ¢ ensures that either
there is a point frozen in B(IIu;, (t + 1)A¢), in which case we are done, or there is at least one
point in IIQ; N B(IIy;, (t + 1)A¢) (note that this statement holds for ¢ = 0 by Fact[24).

By triangle inequality, this means that all points of IIG; N B(Iu,;, Ac) are assigned at time
t + 1 to a point in B(Ipy,, (t + 2)A¢) (in line 4 of Algorithm @). Therefore, by Fact
2 g TgenQuNB (s (t+2) Ac) Wa = |Gl
#ﬁ% many points from B (ITy;, (t + 2)A¢), and we
are done, as one of them must have wry(IIQ+1) > 2T log(|Q|T)/e and will be frozen — as in

Then, either II(); contains less than

this case qb((zt) > Tlog(|Q|T)/e. Or, there are more than #%QI) points, and they all have
witt < 2T'1og(T|Q|) /e = Chernoff bounds ensure that, with high probability, at least ﬁ%
will be sampled in the set (Q¢+1, which concludes the lemma. O

Lemma [27]is a mere corollary of those results:

Proof of Lemma @ Again, we define A¢ := /klognopna. At the end of Lemma all points in
F are frozen: let f : P — F such that f(p) = argmin ¢ |TI(p — ¢)||, breaking ties arbitrarily.
Since all points are frozen, it holds that for all ¢, | f = (q)| > 2logn/e: therefore, their noisy weight

W, satisfy [0, — [f71(q)| < M_

Furthermore, for 7" large enough it holds that 7" > log (%m): this holds e.g. for T' =
10 IOg (410g(|Q|)) i

€Wmin

Lemmal[25|ensures that either B(I1u;, (T+1)Ac) contains a frozen point, or [IIQr N B (Mpy;, 2(T+

G,
DAC) > o .

Suppose by contradiction that we are in the latter case. Since, at each time step, every point in () is
preserved with probability 1/2, it holds with high probability that [TIQ N B(TIu;, 2(T 4+ 1)A¢)| >
€2” . |G;|. Indeed, all points of that ball are still present in Q7 with probability 1/7*: Cher-

noff bounds ensure that there must be initially at least 27 - £l points in that ball in

4T 1og(T1QI)
order to preserve ﬁc&ll% of them after the sampling. With our choice of 7', this means

ITIQ N B(ITu;, 2(t + 1)A¢)| > |Q|, which is impossible.

Therefore, it must be that B(ITu,;, (T + 1)A¢) contains a frozen point, which concludes the proof.
O

Proof of Lemma[I9] We now have all the ingredients necessary to the proof of Lemma The
algorithm is a mere combination of the previous results:
* Use Algorithm]to compute a set F.

* Server sends F to the clients, who define f : P — F such that f(p) = argmin ¢ p |TI(p—
q)||, breaking ties arbitrarily.

* Client i sends wry, (ILP?) := ’{p eP: f(p) = Q}’

* Server receives 1y, a noisy version of wg 1= Y-, w}.

* Server computes an O(1)-approximation S to k-means on the dataset ILF' with weights .

25

Under review as a conference paper at ICLR 2025

To show that S has the desired clustering cost, we aim at applying Lemma [I2] For this, we first
bound Y~ [[TI(p — f(p))|?. For each cluster i, let ; be the point from F" as defined in Lemma
We have, using the definition of f and triangle inequality:

DI —f@EDIP <Y > M —w)l> <2 > I — p) | + 1w —)|

i peG; i peG;

O(p; —vi)||? =0 (n -log? (ﬁ) ko2 log n)

Ths, 32, (10 — ()2 = O (- log? (5L) - ko log).

From Lemma 20, we know that 3, >~ . [TI(p — u)||> = O(nlogn - koy,,). The guarantee of
peEG;

v; in Lemma [22{ensures » . >

-1
Since all points in F have an estimated that satisfies |@, — |f~'(q)|| < M, we

can apply Lemma the solution computed by the above algorithm on the dataset IIF'
with weights 1, has cost at most O (n~log2(L)~l<:crr2nax logn) + O(OPT(IIP)) =

E€Wmin
0] (n -log? (Eu}min) ka2, log n)

This concludes the proof of Lemma

F PART 2: IMPROVING ITERATIVELY THE SOLUTION

Our global algorithm is described in Algorithm 3} first, we use Lemma|[I6|to reduce the diameter of
the input; then, we compute a good initial solution using Lemma([T9] Then, we implement privately
Part 2 and Part 3 of Algorithm [3] using private mean estimation.

Algorithm 5 Cluster

1: Input: Server data @, client datasets P!, ..., P, and privacy parameters ¢, §
2: Process the input to reduce the diameter to A using Lemma with privacy parameter /4.

3: In one round of communication, compute a O(v/dA - (g/4, §))-almost k-PCA using Theo-

rem[8
4: Part 1: find initial centers up), e u,il) using Lemma with privacy parameter /4
5: Part 2:
a) Server sends 1/51), - V’gl) to clients, and client ¢ computes S¢ := {P; € P°: Vs, || P; —
vl < YIB = v}
b) Server receives, for all cluster r, I/7E2) =

1 272 A log(2T/5)
> ctient S5+ Lap(T/¢) (Zdien‘c ZPéesﬁ P+ Na (0’ =))
6: Part 3: Repeat Lloyd’s steps for T" steps, with privacy parameter (¢/7',/T):

a) Server sends z/it), o 1/](:) to clients, and client ¢ computes S¢ := {P; € P°: Vs, || P; —
vell < 1B = s}
b) Server receives, for all cluster T, V£t+1) =

1 272 A log(2T/6
ssreramre (Soiome Spesy Pt N (0, o011))

Given the mapping of Fact the main result of |Awasthi & Sheffet| (2012)) is that step 2 of the
algorithm computes centers that are very close to the u; ﬁ

Theorem 26 (Theorem 4.1 in|Awasthi & Sheftet|(2012)). Suppose that the solution vy, ..., vy is as in
Fact[I8] namely, for each yu;, it holds that ||j1;— vs]| < 6A;. Denote S; = {j : Vr # i, |IIP; — ;|| <

SNote that the original theorem of [Awasthi & Sheffet| (2012) is stated slightly differently: however, their
proof only requires Fact[I7] and the matching provided by Fact [I8] and we modified the statement to fit our
purposes.

26

Under review as a conference paper at ICLR 2025

$|[TLP; — v, ||}. Then, for every i € [k it holds that

1u(S:) — il = 0 (jm P - 02> 7

where c is the separation constant from Definition E]

Finally, the next result from Kumar & Kannan|(2010) shows that the Lloyd’s steps converge towards
the true means:

Theorem 27 (theorem 5.5 in Kumar & Kannan|(2010)). If; for all i and a parameter v < ck /50,

P = C|2
i — vil] £ ———,
VIGil

then
P—C]

o ol
s = w(Cwi)|l < WA

where C(v;) is the set of points closer to v; than to any other v;.

This allows us to conclude the accuracy proof of Theorem|[T4]

Proof of Theorem[I4} The algorithm is (&, §)-DP: each of the 4 steps step — reducing the diameter,
computing a PCA, finding a good initial solution and running 7" Lloyd’s steps — is (¢/4,/4)-DP,
and private composition concludes.

410g|Q|

The first three steps requlre a total of 2 + 10log — many rounds of communication, the last

one requires 7" + log w—" rounds. This simplifies to T + (2 log %g_@‘, for some constant (s.

The first step reduces the diameter to A = O (m) ; therefore, Lemmacombined with

E€Wmin
Fact|18|ensures that 1/(1), . V,il) satisfies the condition of Theorem In addition, Lemma 4.2 of
Awasthi & Sheffet (2012) ensures that the size of each cluster |S,| is at least % at every time step.

Na(A202(,6"))

Therefore, the private noise ——-7——* is bounded with high probability by n :=
1Sz
2 2
O (AL — 0 (’“dT og_niom /In(l/ ‘”), which for and n = © (’“dT og 1 y/nl/ ‘”)

is smaller than A; = 3‘% min (\f polylog(d/wmin),)

Hence, the conditions of Theorem 26]and Theorem [27) are still satisfied after adding noise, and the
latter implies that the noisy Lloyd steps converge exponentially fast towards B (p;, 7).
1P=Cl>

=0 (12> .
max
CQT«Hog
VIGil

From Lemma|l10|ensures | P — C|| < O(y/nomax). Since |G;| > nwmin/2, the first term is at most
O (5r)-

Therefore,

m1x
VTJrlOg Wmin
(]

More precisely, it holds with probability 1 — 1/k? that

+ 7.

T+log w"‘ax
M’i _ Vi min

1 kdTlog? nomax In(T/0)
=0 (max <2T, el .

m

27

Under review as a conference paper at ICLR 2025

G EXPERIMENT DETAILS
G.1 DATASET DETAILS

Mixture of Gaussians Datasets We generate a mixture of Gaussians in the following way. We set
the data dimension to d = 100 and we generate k¥ = 10 mixtures by uniformly randomly sampling k
means {/i1, . ..y } from [0, 1]%. Each mixture has diagonal covariance matrix ; = 0.51, and equal
mixture weights w; = 1/k. The server data is generated by combining samples from the true mixture
distribution together with additional data sampled uniformly randomly from [0, 1]% representing
related but out-of-distribution data. We sample 20 points from each mixture component, for a total
of 20 x k = 200 in distribution points and sample an additional 100 uniform points. For Section[5.]
we simulate a cross-silo setting with 100 clients, with each client having 1000 datapoints sampled
i.i.d from the Gaussian mixture. For Section[5.2 we simulate a cross-device setting with 1000, 2000
and 5000 clients, each client having 50 points i.i.d sampled from the Gaussian mixture distribution.
The server data is identical in both cases.

US Census Datasets We create individual datapoints coming from the ACSIncome task in folkta-
bles. Thus each datapoint consists of d = 819 binary features describing an individual in the census,
including details such as employment type, sex, race etc. In order to create a realistic server dataset
(of related but not not in-distribution data) we filter the client datasets to contain only individuals of a
given employment type. The server then receives a small amount (20) of datapoints with the chosen
employment type, and a larger amount (1000) of datapoints sampled i.i.d from the set of individuals
with a different employment type. We do this for 3 different employment types, namely “Employee
of a private not-for-profit, tax-exempt, or charitable organization”, “Federal government employee”
and “Self-employed in own not incorporated business, professional practice, or farm”. These give
us three different federated datasets, each with 51 clients, with total dataset sizes of 127491, 44720
and 98475 points respectively.

Stack Overflow Datasets Each client in the dataset is a stackoverflow user, with the data of
each user being the questions they posted. Each question also has a number of tags associated
with it, describing the broad topic area under which the question falls. We first preprocess the user
questions by embedding them using a pre-trained sentence embedding model (Reimers & Gurevych)
2019). Thus a user datapoint is now a d = 384 text embedding. Now we again wish to create
a scenario where the server can receive related but out of distribution data. We follow a similar
approach to the creation of the US census datasets. We select two tag topics and filter our clients to
consist of only those users that have at least one question that was tagged with one of the selected
topics. For those clients we retain only the questions tagged with one of the chosen topics. The
server then receives 1000 randomly sampled questions with topic tags that do not overlap with
the selected client tags as well as 20 questions with the selected tags, 10 of each one. For our
experiments we use the following topic tag pairs to create clients [(machine-learning, math), (github,
pdf), (facebook, hibernate), (plotting, cookies)]. These result in federated clustering problems with
[10394, 9237, 23266, 2720] clients respectively.

G.2 VERIFYING OUR ASSUMPTIONS

On each of the datasets used in our data-point-level experiments we compute the radius of the dataset
A, shown in Table[T]

Dataset A

Gaussian Mixture (100 clients) 10.57
US Census (Not-for-profit Employees) | 2.65
US Census (Federal Employees) 2.65
US Census (Self-Employed) 2.65

Table 1: Radius of each dataset.

Assumption (1) requires A = O(For the Gaussian mixture, £k = 10,d =

100, wiin = 1/10,n = 10% and omax = 0.5: thus A clearly satisfies the condition.

klog? (n)am“\/g)

E€Wnmin

28

Under review as a conference paper at ICLR 2025

For the US Census datasets, kK = 10,d = 819, n € {127491,44720,98475}. As we cannot estimate
Omax and wn(since the dataset is not Gaussian), we use an upper-bound wpi, = 1, and replace omax

with a proxy based on the optimal k-means cost, 1/OPT/n: this is a priori a large upper-bound on
the value of oy, but it still gives an indication on the geometry of each cluster. As can be seen in

Figure |1} Figure 3| the average optimal cost is about 3.5 : thus, 1/OPT/n =~ 1.87, and we estimate

k 1°g26(31“;‘““‘/3 ~ 10'1°g2(1050).§'005' V819~ 123000. This indicates that Condition (1) is satisfied as
well for this dataset.

2
Assumption 2 requires that the size of the server data is not too large: |Q| < %. In the

Gaussian case, we have |@)| = 300, and the right-hand-side is about 29000.

In the US Census Dataset, we again upper-bound o2, = %. In that case, the right-hand-side is
about 620000, while there are 1020 server point. Although our estimate of o, is only an upper-

bound, this indicates that assumption (2) is also satisfied.

G.3 BASELINE IMPLEMENTATION DETAILS

SpherePacking We implement the data independent initialization described in|Su et al.|(2017) as
follows. We estimate the data radius A using the server dataset. We set a = AVd, fori=1,...k,
we randomly sample a center v; in [~A, A]¢. If v; is at least distance a from the corners of the
hypercube [~A, A]? and at least distance 2a away from all previously sampled centers vy, . . ., v;_1,
then we keep it. If not we resample v;. We allow 1000 attempts to sample v;, if we succeed with
sampling all k centers then we call the given a feasible. If not then a is infeasible. We find the
largest feasible a by binary search and use the corresponding centers as the initialization.

G.4 SETTING HYPERPARAMETERS OF FEDDP-KMEANS

In this section we analyze the hyperparameter settings of FedDP-KMeans that produced the Pareto
optimal results shown in the figures in Sections[5.I]and [5.2] These analyses give us some insights
on the optimal ways to set the hyperparameters when using FedDP-KMeans in practice.

Distributing the privacy budget The most important parameters to set are the values of epsilon
in Parts 1-3 of Algorithm[I] Here we discuss how to set these.

Leteq, €9, €36 and €31, denote the epsilon we allow for part 1, part 2, the Gaussian query in part 3 and
the Laplace query in part 3 respectively. We let €inir = €1 + €2 + €36 + €3L. By strong composition
the initialization will have a lower overall budget than &;,;;, however, it serves as a useful proxy to
the overall budget as we can think of what proportion of €j,;; we are assigning to each step.

Shown in Tables[2]and 3 are the values from our experiments. Specifically, for each dataset we take
the mean across the Pareto optimal results that we plotted of the € values used for each step. We then
express this as a fraction of €;,;. Loosely speaking, we interpret these values as answering “What
fraction of our overall privacy budget should we assign to each step?”

The results paint a consistent picture when comparing values with the same unit-level of privacy with
slight differences between the two levels. For datapoint level privacy, clearly the most important
step in terms of assigning budget is to the Gaussian mechanism in Step 3 with the other steps being
roughly even in term of importance. Therefore, as a rule of thumb we would recommend assigning
budget using the following approximate proportions [0.2,0.2,0.45,0.15]. For user level privacy
we observe the same level of importance being placed on the Gaussian mechanism in Step 3 but
additionally on the Gaussian mechanism in Step 1. Based on these results we would assign budget
following approximate proportions [0.35,0.1,0.45,0.1]. Clearly these are recommendations based
only on the datasets we have experimented with and the optimal settings will vary from dataset to
dataset, most notably based on the number of clients and the number of datapoints per client.

Number of steps of FedDP-Lloyds The other important parameter to set in FedDP-KMeans is
the number of steps of FedDP-Lloyds to run following the initialization obtained by FedDP-Init. As
discussed already, this comes with the inherent trade-off of number of iterations vs accuracy of each
iteration. For a fixed overall budget, if we run many iterations, then each iteration will have a lower
privacy budget and will therefore be noisier. Not only that, but in fact the question of whether we
even want to run any iterations has the same trade-off. If we run no iterations of FedDP-Lloyds, then

29

Under review as a conference paper at ICLR 2025

Dataset €1/€nit | €2/€nic | €36/ €nie | €3L/Einit
Gaussian Mixture (100 clients) 0.18 0.23 0.43 0.17
US Census (Not-for-profit Employees) | 0.24 0.17 0.41 0.18
US Census (Federal Employees) 0.15 0.16 0.52 0.17
US Census (Self-Employed) 0.20 0.23 0.47 0.10

Table 2: Amount of privacy budget, as a fraction of ey, that is assigned to each step of FedDP-Init.
Results shown are the mean of the Pareto optimal results plotted for each of the data-point-level
experiments in Figures and 4]

Dataset €1/€init | €2/€init | €36/€init | €3L/Enit
Gaussian Mixture (1000 clients) 0.38 0.09 0.42 0.10
Gaussian Mixture (2000 clients) 0.43 0.10 0.36 0.11
Gaussian Mixture (5000 clients) 0.43 0.09 0.37 0.11
Stack Overflow (facebook, hibernate) 0.29 0.15 0.42 0.15
Stack Overflow (github, pdf) 0.37 0.12 0.40 0.10
Stack Overflow (machine-learning, math) 0.29 0.14 0.45 0.13
Stack Overflow (plotting, cookies) 0.33 0.11 0.47 0.09

Table 3: Amount of privacy budget, as a fraction of eiy;, that is assigned to each step of FedDP-
Init. Results shown are the mean of the Pareto optimal results plotted for each of the client-level

experiments in Figures 2] [5] [6] [7] and

we use none of our privacy budget here, and we have more available for FedDP-Init. To investigate
this we do the following: for each dataset we compute, for each number of steps 7" of FedDP-Lloyds,
the fraction of the Pareto optimal runs that used T steps.

Dataset 0 steps | 1step | 2 steps
Gaussian Mixture (100 clients) 0.61 0.39 0
US Census (Not-for-profit Employees) 0.8 0.1 0.1
US Census (Federal Employees) 0.91 0.09 0
US Census (Self-Employed) 0.92 0.08 0

Table 4: Fraction of the Pareto optimal results that used a given number of steps of FedDP-Lloyds
for the data-point-level experiments.

Dataset 0 steps | 1step | 2 steps
Gaussian Mixture (1000 clients) 0.86 0.11 0.04
Gaussian Mixture (2000 clients) 0.8 0.17 0.03
Gaussian Mixture (5000 clients) 0.81 0.1 0.1
Stack Overflow (facebook, hibernate) 1.0 0 0
Stack Overflow (github, pdf) 1.0 0 0
Stack Overflow (machine-learning, math) 0.94 0.06 0
Stack Overflow (plotting, cookies) 0.96 0.04 0

Table 5: Fraction of the Pareto optimal results that used a given number of steps of FedDP-Lloyds
for the client-level experiments.

The results, shown in Tables [d] and 5] are interesting. In all but one dataset more than 80% of
the optimal runs used no steps of FedDP-Lloyds, with many of the datasets being over 90%. The
preference was to instead use all the budget for the initialization. The reason for this is again the
inherent trade-off between number of steps and accuracy of each step, with it clearly here being
the case that fewer more accurate steps were better. One point to note here is that FedDP-Init
essentially already has a step of Lloyds built into it, Step 3 is nearly identical to a Lloyds step but
with points assigned by distance in the projected space. Running this step once and to a higher

30

Under review as a conference paper at ICLR 2025

degree of accuracy tended to outperform using more steps. This in fact highlights the point made in
our motivation, about the importance of finding an initialization that is already very good, and does
not require many follow up steps of Lloyds.

G.5 ADAPTING FEDDP-KMEANS TO CLIENT-LEVEL PRIVACY

As discussed in Section [5.2] moving to client-level DP changes the sensitivities of the algorithm
steps that use client data. To calibrate the noise correctly we enforce the sensitivity of each step by
clipping the quantities sent by each client to the server, prior to them being aggregated.

Concretely, suppose v; is a vector quantity owned by client j, and the server wishes to compute the
aggregate v = » ; ;- Then prior to aggregation the client vector is clipped to have maximum norm

B so that
. {ﬁ, if [lvj | > B

’Uj .
Uy, otherwise.

The aggregate is then computed as & = | ; 5. This query now has sensitivity B, and noise can be

added accordingly. Each step of our algorithms can be expressed as such an aggregation over client
statistics, the value of B for each step becomes a hyperparameter of the algorithm.

We make one additional modification to Step 3 of FedDP-Init to make it better suited to the client-
level DP setting. In Algorithmduring Step 3 the clients compute the sum m? and count n/. of the
vectors in each cluster S7. Rather than send these to the server to be aggregated the client instead
computes their cluster means locally as

mi .
j = ifnd >0
uT = nr

0, otherwise,
as well as a histogram counting how many non-empty clusters the client has:

(1, ifni >0
"7 10, otherwise.

The server then receives the noised aggregates ., and ¢, and computes the initial cluster centers as
vy = 1, /¢,. In other words we use a mean of the means estimate of the true cluster mean.

H ADDITIONAL FIGURES

31

Under review as a conference paper at ICLR 2025

—o— DP-FedKM + FDP-Lloyds —e— ServerLloyds + FDP-Lloyds ---- k-FED

—e— ServerKMeans++ + FDP-Lloyds SpherePacking + FDP-Lloyds —— Optimal

4.11

k-means cost
w o w
~ oo
) A

w
o
’

w
e
)

w
>
L

epsilon

Figure 3: Results with data-point-level privacy on US census data. The 51 clients are US states,

each client has the data of individuals with employment type “Employee of a private not-for-profit,
tax-exempt, or charitable organization”.

—e— DP-FedKM + FDP-Lloyds —e— ServerlLloyds + FDP-Lloyds ---- k-FED

—e— ServerKMeans++ + FDP-Lloyds SpherePacking + FDP-Lloyds —— Optimal

4.44

4.2 1

4.01

3.8

k-means cost

3.6 1

3.4

025 050 075 100 125 150 175 2.00 2.25
epsilon

Figure 4: Results with data-point-level privacy on US census data. The 51 clients are US states, each

client has the data of individuals with employment type “Self-employed in own not incorporated
business, professional practice, or farm”.

32

Under review as a conference paper at ICLR 2025

—o— DP-FedKM + FDP-Lloyds —e— ServerLloyds + FDP-Lloyds ---- k-FED
—e— ServerKMeans++ + FDP-Lloyds SpherePacking + FDP-Lloyds —— Optimal
62

60 -

k-means cost
(9] w
o [e0]
1 A

ul
S
|

|

521
50
0.5 1.0 15 2.0 25 3.0 35
epsilon

Figure 5: Results with client-level privacy on Synthetic mixture of Gaussians data with 1000 clients

in total.

—e— DP-FedKM + FDP-Lloyds —e— ServerlLloyds + FDP-Lloyds ---- k-FED

—e— ServerKMeans++ + FDP-Lloyds SpherePacking + FDP-Lloyds

—— Optimal

571

k-means cost

w1
N
L

511

50

0.6

0.8 1.0 12 1.4 16 18 2.0 2.2
epsilon

Figure 6: Results with client-level privacy on Synthetic mixture of Gaussians data with 5000 clients

in total.

33

Under review as a conference paper at ICLR 2025

—e— DP-FedKM + FDP-Lloyds —e— Serverlloyds + FDP-Lloyds ---- k-FED
—e— ServerKMeans++ + FDP-Lloyds SpherePacking + FDP-Lloyds —— Optimal
0.841
4 0.82 1
o
1)
w0
c
% 0.80 |
go
v
0.781 \ _
- * . = T ———e33
0.76 1
0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
epsilon

Figure 7: Results with client-level privacy on the stackoverflow dataset with 23266 clients with topic
tags facebook and hibernate.

—e— DP-FedKM + FDP-Lloyds —e— Serverlloyds + FDP-Lloyds ---- k-FED
—e— ServerKMeans++ + FDP-Lloyds SpherePacking + FDP-Lloyds —— Optimal
0.88 1

0.86 1

k-means cost

< o o o

~ © 0 o

© =) N I
A !) |

0.76 1

075 100 125 150 175 200 225 250 2.75
epsilon

Figure 8: Results with client-level privacy on the stackoverflow dataset with 2720 clients with topic
tags plotting and cookies.

34

Under review as a conference paper at ICLR 2025

—e— DP-FedKM + FDP-Lloyds —e— Serverlloyds + FDP-Lloyds ---- k-FED
—e— ServerKMeans++ + FDP-Lloyds SpherePacking + FDP-Lloyds —— Optimal
0.89

0.88 1

k-means cost

o o o o

=3 © I3 ©

IS v) N
) A 1)

0.831

0.82

05 1.0 15 2.0 25
epsilon

Figure 9: Results with client-level privacy on the stackoverflow dataset with 10394 clients with topic
tags machine-learning and math.

35

	Introduction
	Background
	Method
	FedDP-Init
	FedDP-Lloyds

	Theoretical analysis
	Experiments
	Data-point-level Privacy Experiments
	Client-level Privacy Experiments

	Related Work
	Conclusion
	Extended Related work
	Technical preliminaries
	Differential Privacy Definitions and Basics
	Differential Privacy for Gaussian Mixtures
	Properties of Gaussian Mixtures
	Clustering preliminaries

	The non-private, non-federated algorithm of AwasthiS12
	Our result
	Part 1: Computing centers close to the means
	Reducing the diameter
	A relaxation of Awathi-Sheffet's conditions
	Computing a good k-means solution for P
	If assumption (2) is satisfied: the noise is negligible
	Enforcing Assumption (2)

	Part 2: Improving iteratively the solution
	Experiment Details
	Dataset Details
	Verifying our Assumptions
	Baseline Implementation Details
	Setting hyperparameters of FedDP-KMeans
	Adapting FedDP-KMeans to client-level privacy

	Additional Figures

