
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFFERENTIALLY PRIVATE FEDERATED k-MEANS
WITH SERVER-SIDE DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Clustering has long been a cornerstone of data analysis. It is particularly suited
to identifying coherent subgroups or substructures in unlabeled data, as are gen-
erated continuously in large amounts these days. However, in many cases tra-
ditional clustering methods are not applicable, because data are increasingly be-
ing produced and stored in a distributed way, e.g. on edge devices, and privacy
concerns prevent it from being transferred to a central server. To address this
challenge, we present FedDP-KMeans, a new algorithm for k-means clustering
that is fully-federated as well as differentially private. Our approach leverages
(potentially small and out-of-distribution) server-side data to overcome the pri-
mary challenge of differentially private clustering methods: the need for a good
initialization. Combining our initialization with a simple federated DP-Lloyds al-
gorithm we obtain an algorithm that achieves excellent results on synthetic and
real-world benchmark tasks. We also provide a theoretical analysis of our method
that provides bounds on the convergence speed and cluster identification success.

1 INTRODUCTION

Clustering has long been the technique of choice for understanding and identifying groups and
structures in unlabeled data. Effective algorithms to cluster non-private centralized data have been
around for decades (Lloyd, 1982; Shi & Malik, 2000; Ng et al., 2001). However, the major paradigm
shift in how data are generated nowadays presents new challenges that often prevent the use of
traditional methods. For instance, the proliferation of smart phones and other wearable devices, has
led to large amounts of data being generated in a decentralized manner. Moreover, the nature of
these devices means that the generated data are often highly sensitive to users and should remain
private. While public data of the same kind usually exists, typically there is much less of it, and it
does not follow the same data distribution as the private client data, meaning that it cannot be used
to solve the clustering task directly.

These observations have triggered the development of techniques for learning from decentralized
data, most popularly federated learning (FL) (McMahan et al., 2017). Originally proposed as an
efficient means of training supervised models on data distributed over a large number of mobile
devices (Hard et al., 2019), FL has become the de facto standard approach to distributed learning in
a wide range of privacy-sensitive applications (Brisimi et al., 2018; Ramaswamy et al., 2019; Rieke
et al., 2020; Kairouz et al., 2021). However, it has been observed that, on its own, FL is not sufficient
to maintain the privacy of client data (Wang et al., 2019; Geiping et al., 2020; Boenisch et al., 2023).
The reason is that information about the client data, or even some data items themselves, might
be extractable from the learned model weights. This is most obvious in the case of clustering:
imagine that a cluster emerges that consists of a single data point. Then, this data could be read
off directly from the corresponding cluster center, even if FL was used for training. Therefore, in
privacy-sensitive applications, it is essential to combine FL with other privacy preserving techniques.
The most common among these is differential privacy (DP) (Dwork, 2006), which we introduce in
Section 2. DP masks information about individual data points with carefully crafted noise. This can,
however, lead to a reduction in the quality of the results, referred to as the privacy-utility trade-off.

Several methods have been proposed for clustering private data that are either federated, but not
DP compatible, or which are DP but not adapted to work in FL settings, see Section 6. In this
paper we close this gap by introducing FedDP-KMeans, a fully federated and differentially private

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

k-means clustering algorithm. Our main innovation is a new initialization method, FedDP-Init, that
leverages (potentially small and out-of-distribution) public data to find good initial centers. These
serve as input to FedDP-Lloyds, a simple federated and differentially private variant of Lloyds algo-
rithm (Lloyd, 1982). As we expand upon in Section 2, a good initialization is critical to obtaining
a good final clustering. While this is already true for non-private, centralized clustering, it is espe-
cially the case in the differentially private, federated setting, where we are further limited by privacy
and communication constraints in the number of times we can access client data and thereby refine
our initialization.

We report on experiments for synthetic as well as real datasets in two settings: when we wish to
preserve individual data point privacy, as is common for cross-silo federated learning settings (Li
et al., 2020), and client-level privacy, as is typically used in cross-device learning settings (McMa-
han et al., 2017). In both cases, FedDP-KMeans achieves clearly better results than all baseline
techniques. We also provide a theoretical analysis, proving that under standard assumptions for the
analysis of clustering algorithms (Gaussian mixture data with well-separated components), the clus-
ter centers found by FedDP-KMeans converge exponentially fast to the true component means and
the ground truth clusters are identified after only logarithmically many steps.

2 BACKGROUND

k-Means Clustering Given a set of data point, P = (p1, . . . , pn) and any 2 ≤ k ≤ n, the goal of
k-means clustering is to find cluster centers, ν1, . . . , νk that minimize the k-means objective,

n∑
i=1

min
j=1,...,k

∥pi − νj∥2. (1)

The cluster centers induce a partition of the data points: a point p belongs to cluster j, if ∥p− νj∥ ≤
∥p − νj′∥ for all j, j′, with ties broken arbitrarily (but deterministically). It is well established
that solving the k-means problem optimally is NP-hard in general (Dasgupta, 2008). However,
efficient approximate algorithms are available, the most popular being Lloyd’s algorithm (Lloyd,
1982). Given an initial set of centers, it iteratively refines their positions until a local minimum of (1)
has been found. A characteristic property of Lloyd’s algorithms is that the number of steps required
until convergence and the quality of the resulting solution depend strongly on the initialization: the
most commonly used initialization is the k-means++ algorithm (Arthur & Vassilvitskii, 2007).

Federated Learning Federated learning is a design principle for training a joint model from data
that is stored in a decentralized way on local clients, without those clients ever having to share their
data with anybody else. The computation is coordinated by a central server which typically employs
an iterative protocol: first, the server sends intermediate model parameters to the clients. Then,
the clients compute local updates based on their own data. Finally, the updates are aggregated,
e.g. as their sum across clients, either by a trusted intermediate or using cryptographic protocols,
such as multi-party computation (Bonawitz et al., 2016; Talwar et al., 2024). The server receives
the aggregate and uses it to improve the current model, then it starts the next iteration. Although
this framework enables better privacy, by keeping client data stored locally, each iteration incurs
significant communication costs. Consequently, to make FL practical, it is important to design
algorithms that require as few such iterations as possible.

While the primary focus of FL is on decentralized client data, the server itself can also possess data
of its own, though usually far less than the clients in total and not of the same data distribution. Such
a setting is in fact common in practice, where e.g. data from public sources, anatomized data, or data
from some consenting clients is available to the server (Hard et al., 2019; Dimitriadis et al., 2020;
Gao et al., 2022; Scott & Cahill, 2024).

Differential Privacy (DP) DP is a mathematically rigorous framework for computing summary
information about a dataset (for us, its cluster centers) in such a way that the privacy of individual
data items is preserved. Formally, for any ε, δ > 0, a (necessarily randomized) algorithmA : P → S
that takes as input a data collection P ∈ P and outputs some values in a space S, is called (ϵ, δ)
differentially private, if it fulfills that for every S ⊂ S

Pr[A(P) ∈ S] ≤ eε Pr[A(P ′) ∈ S] + δ, (2)

where P and P ′ are two arbitrary neighboring datasets.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

We consider two notions of neighboring in this work: for standard data-point-level privacy, two
datasets are neighbors if they are identical except that one of them contains an additional element
compared to the other. In the more restrictive client-level privacy, we think of two datasets as a col-
lection of per-client contributions, and we consider two datasets as neighbors if they are identical,
except that all data points of one of the individual client are missing in one of them. Condition (2)
then ensures that no individual data item (a data point or a client’s data set) can influence the algo-
rithm output very much. As a consequence, from the output of the algorithm it is not possible to
reliably infer if any specific data item occurred in the client data or not.

An important property of DP is its compositionality: if algorithms A1, . . . ,At are DP with corre-
sponding privacy parameters (ε1, δ1), . . . , (εt, δt), then any combination or concatenation of their
outputs is DP at least with privacy parameters (

∑t
s=1 εs,

∑t
s=1 δs). In fact, stronger guarantees

hold, which in addition allows trading off between ε and δ, see (Kairouz et al., 2015). These can-
not, however, be be stated as easily in closed form. Due to compositionality, DP algorithms can be
designed easily by designing individually private steps and composing them.

In this work, we employ two mechanisms for making computational steps differentially private: The
Laplace mechanism (Dwork et al., 2006) achieves (ε, 0) privacy by adding Laplace-distributed noise
with scale parameter S

ε to the output of the computation. Here, S is the sensitivity of the step, i.e.
the maximal amount by which its output can change when operating on two neighboring datasets,
measured by the L1-distance. The Gaussian mechanism (Dwork & Roth, 2014) instead adds Gaus-
sian noise of variance σ2

G(ε, δ;S) =
2 log(1.25/δ)S2

ε2 to ensure (ε, δ)-privacy1 Here, the sensitivity, S,
is measured with respect to the L2-distance. The above formulas show that stronger privacy guar-
antees, i.e. a smaller privacy budget (ε, δ), require more noise to be added. This, however, might
reduce the accuracy of the output. Additionally, the more processing steps there are that access
private data, the smaller the privacy budget of each step has to be in order to not exceed an overall
target budget. In combination, this causes a counter-intuitive trade-off for DP algorithms that does
not exist in this form for ordinary algorithms: accessing the data more often, e.g. more rounds of
Lloyd’s algorithm, might lead to lower accuracy results, because the larger number of steps has to be
compensated by more noise per step. Consequently, a careful analysis of the privacy-utility trade-off
is crucial for practical DP algorithms. As a general guideline, however, algorithms are preferable
that access the private data as rarely as possible. In the context of k-means clustering this means that
one can only expect good results if one can avoid having to run many iterations of Lloyd’s algorithm.
Consequently, a good initialization will be crucial for achieving high accuracy.

3 METHOD

We assume a setting of m clients, where each client, j, possesses a dataset, P j ∈ Rnj×d. In addition,
we assume that the server, also possesses some data, Q, which can freely be shared with the clients,
but that potentially is small and out-of-distribution (i.e. not following the client data distribution).
The goal is to determine a k-means clustering of the joint clients’ dataset P :=

⋃m
j=1 Pj in a

federated and differentially private way.

We propose FedDP-KMeans, which solves this task in two stages. the first, FedDP-Init (Algo-
rithm 1), is our main contribution: it constructs a strong initialization to the k-means clustering
problem by exploiting server-side data. The second, FedDP-Lloyds (Algorithm 2), is a simple fed-
erated DP-Lloyds algorithm, which refines the initialization, if necessary.

3.1 FEDDP-INIT

Sketch: FedDP-Init has three steps: Step 1 computes a projection matrix onto the space spanned
by the top k singular vectors of the client data matrix P . Step 2 projects the server data onto that
subspace, and computes a weight for each server point q that reflects how many client points have
q as their nearest neighbor. Step 3 computes initial cluster centers in the original data space by
first clustering the weighted server data in the projected space and then refining these centers by a

1For simplicity of exposition, we assume ε ≤ 1 for all steps involving the Gaussian mechanism, as larger
values require a different noise scaling. Note that the complete algorithm nevertheless can handle larger privacy
budgets, as the overall privacy level is determined from the per-step levels as approximately their sum.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

step resembling one step of Lloyd’s algorithm on the clients, but with the similarity computed in
the projected space. To ensure the privacy of the client data all above computations are performed
with sufficient amounts of additive noise, and the server only ever receives noised aggregates of the
computed quantities across all clients. Consequently, FedDP-Init is differentially private and fully
compatible with standard FL and secure aggregation setups, as described in Section 2.

Intuitively, the goal of Step 1 is to project the data onto a lower-dimensional subspace that preserves
the important variance (i.e. distance between the means) but reduces the variance in nuisance direc-
tion (in particular the intra-cluster variance). This construction is common for clustering algorithm
that strive for theoretical guarantees, and was popularized by Kumar & Kannan (2010). Our key
novelty lies in Step 2 and 3: here, we exploit the server data, essentially turning it into a proxy
dataset on which the server can operate without any privacy cost. After one more interaction with
the clients, the resulting cluster centers are typically so close to the optimal ones, that only very few
(sometimes none at all) steps of Lloyd’s algorithm will still be required afterwards to refine them.
Our theoretical analysis (Section 4) quantifies this effect: for suitably separated Gaussian Mixture
data, the necessary number of steps to identify the ground truth clusters is at most logarithmic in the
total number of data points.

In the rest of this section, we describe the individual steps in more technical detail. For the sake of
simpler exposition, we describe only the setting of data-point-level differential privacy. However,
only minor changes are needed for client-level privacy, see Section 5. As private budget, we treat
δ as fixed for all steps, and denote the individual budgets of the three steps as ε1, ε2 and ε3. We
provide recommendations how to set these values given an overall privacy budget in Appendix G.4.

Algorithm details – Step 1: The server aims to compute the top k eigenvectors of the clients’
data outer product matrix PTP . However, in the federated setup, it cannot do so directly because it
does not have access to the matrix P . Instead, the algorithm exploits that the overall outer product
matrix can be decomposed as the sum of the outer products of each client data matrix, i.e. PTP =∑m

j=1(P
j)TP j . Therefore, each client can locally compute their outer product matrix and the server

only receives their noisy across-client aggregate, P̂TP . We ensure the privacy of this computation
by the Gaussian mechanism. The associated sensitivity is the maximum squared norm of any single
data point, which is upper bounded by the square of the dataset radius, ∆. Consequently, a noise
variance of σ2

G(ε1, δ; ∆
2) ensures (ε1, δ)-privacy, as shown by Dwork et al. (2014).

The remaining operations the server can perform noise-free: it computes the top k eigenvectors of
P̂TP and forms the matrix Π ∈ Rd×k from them, which allows projecting to the subspace spanned
by these vectors (which we call data subspace). The projection provides a data-adjusted way of
reducing the dimension of data vectors from potentially large d to the typically much smaller k.
This is an important ingredient to our algorithm, because in low dimension typically less noise is
required to ensure privacy. The lower dimension also helps to keep the communication between
server and client small. The dimension k is chosen, because for sufficiently separated clusters, one
can then expect the subspace to align well with the subspace spanned by the cluster centers. In that
case, the projection will preserve inter-cluster variance but reduce intra-cluster variance, thereby
improving the signal-to-noise ratio of the data.

Step 2: Next, the server aims to compute per-point weights for its own data such that this can
serve as a proxy for the data of the clients. The server shares with the clients the computed projection
matrix Π, and its own projected dataset ΠQ. Each client uses Π to project its own data to the data
subspace. Then, it computes a weight for each server point q ∈ ΠQ as,

wq(ΠP
j) :=

∣∣{p ∈ ΠP j | ∀q′ ∈ ΠQ, ∥p− q∥ ≤ ∥p− q′∥}
∣∣, (3)

that is, the count of how many of the client’s projected points are closer to q than to any other
q′ ∈ ΠQ, breaking ties arbitrarily. The weights are sent to the server in aggregated and noised form.
As an unnormalized histogram over the client data, the point weight has L1-sensitivity 1. Therefore,
the Laplace mechanism with noise scale 1/ε2 makes this step (ε2, 0)-DP. The noisy total weights,
ŵq(ΠP) for q ∈ ΠQ, provide the server with a (noisy) estimate of how many client data points each
of its data points represents. It then runs k-means clustering on its projected data ΠQ, where each
point q receives weight ŵq(ΠP) in the k-means cost function, to obtain centers ξ1, . . . , ξk in the
data subspace.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 FedDP-Init
1: Input: Client data sets P 1, . . . , Pm, # of clusters k, privacy parameters ε1, ε2, ε3G, ε3L, δ

2: Step 1: / / Compute projection onto top k singular vectors of P
3: for client j = 1, . . . ,m do
4: Client j computes outer product (P j)TP j

5: end for
6: Server receives noisy aggregate P̂TP =

∑m
j=1(P

j)TP j +Nd×d(0, σ
2(ε1, δ; ∆

2))

7: Server forms a projection matrix Π from top k eigenvectors of P̂TP

8: Step 2: / / Determine importance weights
9: for client j = 1, . . . ,m do

10: Client j receives Π and ΠQ from server
11: for every point q ∈ ΠQ do
12: Client j computes weight wq(ΠP

j) :=
∣∣{p ∈ ΠP j | ∀q′ ∈ ΠQ, ∥p− q∥ ≤ ∥p− q′∥}

∣∣
13: end for
14: end for
15: Server receives noisy aggregate ŵq(ΠP) =

∑m
j=1 wq(ΠP

j) + Lap(0, 1
ε2
) for each q ∈ ΠQ

16: Step 3: / / Cluster projected server points and initialize centers
17: Server computes cluster centers ξ1, .., ξk by running k-means clustering of ΠQ with per-sample

weights ŵq(ΠP)
18: for client j = 1, . . . ,m do
19: Client j receives ξ1, .., ξk from server
20: Client j computes Sj

r = {p ∈ P j : ∀s, ∥Πp− ξr∥ ≤ ∥Πp− ξs∥}
21: Client j computes mj

r =
∑

p∈Sj
r
p and nr

j = |Sj
r |

22: end for
23: Server receives noisy aggregates m̂r =

∑m
j=1 m

j
r+Nd(0, σ

2(ε3G, δ; ∆)) and n̂r =
∑m

j=1 n
j
r+

Lap(0, 1
ε3L

)

24: Server computes initial centers νr = m̂r/n̂r for r = 1, . . . , k

25: Output: Initial cluster centers ν1, .., νk

Step 3: In the final step the server constructs centers in the original space. For this, it sends
the projected centers ξ1, . . . , ξk to the clients. For each projected cluster center ξr, each client
j computes the set of all points p ∈ P j whose closest center in the projected space is ξr, i.e.
Sj
r := {p ∈ P j : ∀s, ∥Πp − ξr∥ ≤ ∥Πp − ξs∥}. For any r, the union of these sets across all

clients would form a cluster in the client data. We want the mean vector of this to constitute the
r-th initialization center. For this, each client j computes the sum of their points in each cluster,
mj

r =
∑

p∈Sj
r
p, and the number of points in of each of their clusters, nr

j = |Sj
r |. Aggregated across

all clients one obtains the global sum and count of the points in each cluster: mr =
∑m

j=1 m
j
r and

nr =
∑m

j=1 n
j
r. To make this step private, we first split ε3 = ε3G + ε3L. For mj

r, which has L2-
sensitivity ∆, we apply the Gaussian mechanism with variance σ2(ε3G, δ; ∆). For nr, which has
the L1-sensitivity is 1, we use the Laplace mechanisms with scale 1/ε3L. This ensures (ε3G, δ) and
(ε3L, 0) privacy, respectively, and therefore (at least) (ε, δ) privacy overall for this step. Finally, the
server uses the noisy estimates of the total sums and counts, m̂r and n̂r, to compute approximate
means νr = m̂r/n̂r, and outputs these as initial centers.

3.2 FEDDP-LLOYDS

The second step of FedDP-KMeans is a variant of Lloyd’s algorithm that we adapt to a private
federated setting. The basic observation here is that a step of Lloyd’s algorithm can be expressed
only as summations and counts of data points. Consequently, all quantities that the server requires
can be expressed as aggregates over client statistics which allows us to preserve user privacy with
secure aggregation and differential privacy, as described in Section 2.

Specifically, assume that we are given initial centers ν01 , . . . , ν
0
k , and a privacy budget (ε4, δ4), which

we split as ε4 = ε4G + ε4L. For rounds t = 1, . . . , T , we repeat the following steps. The server

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 2 FedDP-Lloyds
1: Input: Initial centers ν01 , . . . , ν

0
k , P , steps T , privacy parameters εG, εL, δ

2: for t = 1, . . . , T do
3: for client j = 1, . . . ,m do
4: Client j receives νt−1

1 , . . . , νt−1
k from Server

5: for r = 1, . . . , k do
6: Client j computes Sj

r := {p ∈ P j : ∀s, ∥p− νt−1
r ∥ ≤ ∥p− νt−1

s ∥}
7: Client j computes mj

r =
∑

p∈Sj
r
p and nr

j = |Sj
r |

8: end for
9: end for

10: Server receives m̂r =
∑m

j=1 m
j
r +Nd(0, T∆

2σ2(εG/T, δ)) and n̂r =
∑m

j=1 n
j
r +Lap(0, T

εL
)

11: Server computes next centers νtr = m̂r/n̂r for r = 1, . . . , k
12: end for
13: Output: Final cluster centers νT1 , .., ν

T
k

sends the latest estimate of the centers to the clients. Each client j computes, for r = 1, . . . , k,
Sj
r := {p ∈ P j : ∀s, ∥p − νt−1

r ∥ ≤ ∥p − νt−1
s ∥}, the set of points whose closest center is νt−1

r .
Note that in contrast to the initialization, the distance is measured in the full data space here, not the
data subspace. The remaining steps coincide with the end of Step 3 above. Each client j computes
the summations and counts of their points in each cluster: mj

r =
∑

p∈Sj
r
p and nr

j = |Sj
r |. These

quantities are aggregated to mr =
∑m

j=1 m
j
r and nr =

∑m
j=1 n

j
r, and made private by the Gaussian

mechanisms with variance σ2(ε4G/T, δ/T,∆) and the Laplacian mechanism with scale T/ε4L,
respectively. The server receives the noisy total sums and counts m̂r and n̂r, and it updates its
estimate of the centers as νtr = m̂r/n̂r. Overall, the composition property of DP ensures that
FedDP-Lloyds is at least (ε4, δ)-private.

4 THEORETICAL ANALYSIS

We analyze the theoretical properties of FedDP-KMeans in the standard setting of data from a k-
component Gaussian mixture, i.e. the data P is sampled from a distributionD(x) =

∑k
j=1 wjGj(x)

with means µj , covariance matrix Σj and cluster weight wj . The data is partitioned arbitrarily
among the clients, i.e. each clients data is not necessarily distributed according to D itself. We
denote by Gj the set of samples from the j-th component Gj : the goal is to recover the clustering
G1, ..., Gk. The server data, Q ⊂ Rd, can be small and not of the same distribution as P .

Our main result is Theorem 2, which states that FedDP-KMeans successfully clusters such data, in
the sense that the cluster centers it computes converge towards the ground truth cluster centers, i.e.
the means of the Gaussian parameters, and the induced clustering becomes the ground truth one. In
doing so, the algorithm respects data-point differential privacy. For this result to hold, a separation
condition is required (Definition 1), which ensures that the ground truth cluster centers are separated
far enough from each other to be identifiable. In the following, we first introduce and discuss the
separation condition and then state the theorem. The proof is provided in Appendix E and F.
Definition 1 (Separation Condition). For a constant c, a Gaussian mixture

(
(µi,Σi, wi)

)
i=1,...,k

with n samples is called c-separated if

∀i ̸= j, ∥µi − µj∥ ≥ c

√
k

wi
σmax log(n),

where σmax is the maximum variance of any Gaussian along any direction. For some large enough
constant c fixed independently of the input, we simply say that the mixture is separated2.

Note that the dependency in log(n) is unavoidable, because with growing n also the chance grows
that outliers occur from the Gaussian distributions: assigning each data point to its nearest mean
would not be identical to the ground truth clustering anymore.

2This constant c is determined by prior works: our analysis uses results from Awasthi & Sheffet (2012),
which did not specify exactly the value of the constant nor tried to optimize it.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

To prove the main theorem, two additional assumptions on P are required: (1) the diameter of
the dataset is bounded by ∆ := O

(k log2(n)
√
dσmax

εwmin

)
– so that the noise added to compute a private

SVD preserves enough signal. (2): there is not too many server data, namely |Q| ≤ εnkσ2
max

∆2 . This
ensures the noise added Step 2 is not overwhelming compared to the signal. Note that conditions (1)
and (2) can always be enforced by two preprocessing steps, which we present as part of the proof
in Appendix E. In practice, however, they are typically satisfied automatically – as we observe in
Appendix G.2 – thereby allowing use of the algorithm directly as stated.
Theorem 2. Suppose that the client dataset P is generated from a separated Gaussian mixtures with
n ≥ ζ1

k log3 n
√
dσmax

ε2w2
min

samples, where ζ1 is some universal constant, and that Q contains a least one
sample from each component of the mixture. Then, FedDP-KMeans followed with FedDP-Lloyds is
(ε, δ)-DP for ε = ε1 + ε2 + ε3G + ε3L + ε4G + ε4L, and there is a constant ζ2 such that, under
assumptions (1) and (2), the centers ν1, ..., νk that are computed after T steps of FedDP-Lloyds
satisfy with high probability

∥µi − νi∥ ≤ ζ2 ·

(
2−T ·

√
nσ2

max

|Gi|
+

T∆ log(n)

εnwmin

)
. (4)

Furthermore, there is a constant ζ3 such that, after ζ3 log(n) rounds of communication, the cluster-
ing induced by ν1, ..., νk is the ground-truth clustering G1, ..., Gk.

Note that assumption (1) implies that ∆ log(n)
εwmin

is negligible compared to n. That means, the estimated
centers converge exponentially fast towards the ground truth.

5 EXPERIMENTS

We now present our empirical evaluation of FedDP-KMeans, which we implemented using the
pfl-research framework (Granqvist et al., 2024). To verify the broad applicability of our
method we run experiments in both the setting of data-point-level privacy, see Section 5.1, and
client-level privacy, see Section 5.2. The appropriate level of privacy in FL is typically determined
by which data unit corresponds to a human. In cross-silo FL we typically have a smaller number of
large clients, e.g. hospitals, with each data point corresponding to some individual, so data point-
level privacy is appropriate. In cross-device FL, we typically have a large number of clients, where
each client is a user device such as a smartphone, so client-level privacy is preferable. Our chosen
evaluation datasets reflect these dynamics.

Baselines As natural alternatives to FedDP-KMeans we consider different ways of initializing the
k-means problem and combine these with FedDP-Lloyds. Two baseline methods use the server data
to produce initialization: ServerKMeans++ runs k-means++ (Arthur & Vassilvitskii, 2007) on the
server data, while ServerLloyds runs a full k-means clustering of the server data. The baselines can
be expected to work well when the server data is large and of the same distribution as the client
data. This, however, is exactly the situation where the server data would suffice anyway, so any
following FL would be wasteful. In the more realistic setting where the server data is small and/or
out-of-distribution, the baselines might produce biased and therefore suboptimal results. As a third
baseline, we include the SpherePacking initialization of (Su et al., 2017). This data-independent
technique constructs initial centroids that are suitably spaced out and cover the data space, see Ap-
pendix G.3 for details. None of the above baselines use client data for initialization. Therefore, they
consume none of their privacy budget for this step, leaving all of it for the subsequent FedDP-Lloyds.

In addition to the above ones, we also report results for two methods that do not actually adhere
to the differentially-private federated paradigm. k-FED (Dennis et al., 2021) is the most popular
federated k-means algorithm. As we will discuss in Section 6 it does not exploit server data and
it does not offer privacy guarantees. Optimal we call the method of transferring all client data to
a central location and running non-private k-means clustering with kmeans++ initialization. This
provides neither the guarantees of federated learning nor of differential privacy, but it serves as a
lower bound on the achievable k-means cost for all other methods.

Evaluation Procedure We compare FedDP-KMeans with the baselines over a range of privacy
budgets. Specifically, if a method has s steps that are each (ε1, δ), . . . , (εs, δ) DP then the to-
tal privacy cost of the method is computed as (εtotal, δ) by strong composition using Google’s

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0 1.2
epsilon

50

52

54

56
k-

m
ea

ns
 c

os
t

0.5 1.0 1.5 2.0
epsilon

3.6

3.8

4.0

4.2

4.4

k-
m

ea
ns

 c
os

t

DP-FedKM + FDP-Lloyds
ServerKMeans++ + FDP-Lloyds

ServerLloyds + FDP-Lloyds
SpherePacking + FDP-Lloyds

k-FED
Optimal

Figure 1: Results with data-point-level privacy (k = 10). Left: synthetic mixture of Gaussians data
with 100 clients. Right: US census dataset. The 51 clients are US states, each client has the data of
individuals with employment type “Federal government employee”.

dp accounting library 3. We fix δ = 10−6 for all steps and for the total privacy costs. We
vary the εi of individual steps as well as other hyperparameters of the algorithms, e.g. the number
of steps of FedDP-Lloyds, and we measure the k-means cost of the computed clustering. For each
method we plot the Pareto front of the results in the (k-means cost, εtotal) space. When plotting we
scale the k-means cost by the dataset size, so the value computed in Equation 1 is scaled by 1/n.
This evaluation procedure gives us a good overview of the performance of each method at a range
of different privacy budgets. However, on its own it does not tell us how to set hyperparameters for
FedDP-KMeans, such as the amount of privacy budget to allocate to each step. Knowing how to
set the hyperparameters is important for applying FedDP-KMeans in practice and we address this in
Appendix G.4.

5.1 DATA-POINT-LEVEL PRIVACY EXPERIMENTS

Privacy Implementation details In our theoretical discussion we assumed that no individual data
point has norm larger than ∆ in order to compute the sensitivity of certain steps. As ∆ is typically
not known in practice, in our experiments we ensure the desired sensitivity by clipping the norm of
each data point to be at most ∆, before using it in any computation. ∆ is therefore a hyperparameter
of the algorithm, which we set to be the radius of the server dataset.

Datasets We evaluate on both synthetic and real federated datasets that resemble a cross-silo
federated setting. Our synthetic data comes from a mixture of Gaussians distribution, as assumed
for our theoretical results in Section 4. The client data is of this mixture distribution while the server
data consists to two thirds of data from the true mixture and to one third of data that is uniformly
distributed, to simulate related but out-of-distribution data. We additionally evaluate on US census
data using the folktables (Ding et al., 2021) package. The dataset has 51 clients, each corresponding
to a US state. Each data point contains information about an individual in the census. For full details
on the datasets and our preprocessing steps see Appendix G.1.

Results In Figure 1 we report the outcomes. The left panel shows the results for the synthetic
Gaussian mixture and the right panel for the US census dataset when the clients hold the data of
federal employees. The other two categories are shown in Figures 3 and 4 of Appendix H. On the
synthetic data, FedDP-KMeans outperforms all private baselines by a wide margin. These baselines,
are unable to overcome their poor initialization, with performance plateauing even as the privacy
budget increases. In contrast FedDP-KMeans is able to match the optimal (non-private) performance
at a low privacy budget of around εtotal = 0.4. The non-private k-FED also performs optimally in this
setting as is to be expected given that the synthetic data distribution fulfills the conditions assumed
by Dennis et al. (2021). On the US census datasets we observe a more interesting picture. Across

3
https://github.com/google/differential-privacy/tree/main/python/dp_accounting

8

https://github.com/google/differential-privacy/tree/main/python/dp_accounting

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1.0 1.5 2.0 2.5 3.0
epsilon

50

52

54

56

58
k-

m
ea

ns
 c

os
t

1.0 1.5 2.0 2.5
epsilon

0.78

0.80

0.82

0.84

k-
m

ea
ns

 c
os

t

DP-FedKM + FDP-Lloyds
ServerKMeans++ + FDP-Lloyds

ServerLloyds + FDP-Lloyds
SpherePacking + FDP-Lloyds

k-FED
Optimal

Figure 2: Results with client-level privacy (k = 10). Left: synthetic mixture of Gaussians data with
2000 clients. Right: stackoverflow dataset with 9237 clients, topic tags github and pdf.

all three settings FedDP-KMeans outperforms all baselines, except in the very low privacy budget
regime. The latter is to be expected, because for sufficiently low privacy budget any client-based
initialization will become very noisy, whereas the initialization with only server data (which requires
no privacy budget) stays reasonable. With a high enough privacy budget FedDP-KMeans is able to
recover the optimal non-private clustering. Among the baselines we observe similar performance
between the two methods that initialize using server data, with ServerLloyds performing slightly
better across the board. The data independent SpherePacking initialization performs very poorly,
emphasizing the importance of leveraging related server data to initialize.

We attribute FedDP-KMeans’s good performance predominantly to the excellent quality of its ini-
tialization. As evidence, Table 4 in Appendix G shows how many steps of Lloyd’s algorithm had to
be performed for Pareto-optimal behavior: this is never more than 2, and often none at all.

5.2 CLIENT-LEVEL PRIVACY EXPERIMENTS

Privacy Implementation details Moving to client-level differential privacy changes the sensitiv-
ities of the steps of our algorithms, which now depend not only on the maximum norm of a client
data point norm, but also on the maximum number of data points a client has. Rather than placing
assumptions or restrictions on this, and deriving corresponding bounds on the sensitivity of each
step, we instead simply enforce sensitivity by clipping client statistics prior to aggregations. This
is a standard technique to enforce a given sensitivity in private FL, where it is typically applied to
clipping client model/gradient updates. For full details on our implementation in the client-level
privacy setting see Appendix G.5

Datasets We evaluate on both synthetic and real federated datasets, this time in a cross-device
federated setting. For synthetic data we again use a mixture of Gaussians, but with more clients than
in Section 5.1. We also use the Stack Overflow dataset provided by Tensorflow Federated4. This
is a large scale text dataset of questions posted by users on stackoverflow.com. We preprocess this
dataset by embedding it with a pre-trainined sentence embedding model. Thus each client dataset
consists of small number of text embedding vectors. The server data consists of embedding vectors
from questions asked about different topics to the client data. See Appendix G.1 for full details.

Results In Figure 2 we report the outcomes. The left panel shows results for the synthetic Gaus-
sian mixture dataset with 2000 clients, and the right panel for the stackoverflow dataset, with topics
github and pdf. Further results can be found in Appendix H: synthetic data with 1000 and 5000
clients in Figures 5 and 6, and the other stackoverflow topics are shown in Figures 7, 8 and 9.

For the synthetic data we again observe that the baselines that use only server data are unable to
overcome their poor initialization, even with more generous privacy budgets. As the total number of

4
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow

9

https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

clients grows, from 1000 to 2000 to 5000, FedDP-KMeans exhibits better performance for the same
privacy budget and the budget at which FedDP-KMeans outperforms server initialization becomes
smaller. This is to be expected since the impact of the noise will be lower the more clients we are
able to aggregate over. For stackoverflow we again observe that FedDP-KMeans exhibits the best
performance, except for in a few cases in the low privacy budget regime. k-FED performs quite
poorly across the board, tending to be outperformed by the private baselines.

As in data-point-level privacy, we find the quality of FedDP-Init’s initialization to be excellent: very
few, if any, Lloyd’s steps are required for Pareto-optimality (see Table 5 in Appendix G).

6 RELATED WORK

In the context of FL, clustering appears primarily for the purpose of grouping clients together. Such
clustered FL techniques jointly find a clustering of the clients while training a separate ML model
on each cluster (Sattler et al., 2020; Ghosh et al., 2020; Xia et al., 2020). In contrast, in this work we
are interested in the task of clustering the clients’ data points, rather than the clients. In Dennis et al.
(2021), the one-shot scheme k-Fed is proposed for this task: first all clients cluster their data locally.
Then, they share their cluster centers with the server, which clusters the set of client centers to obtain
a global clustering of the data. However, due to the absence of aggregation of the quantities that
clients share with the server, the method has no privacy guarantees. Liu et al. (2020) propose using
federated averaging (McMahan et al., 2017) to minimize the k-means objective in combination
with multi-party computation. Similarly, Mohassel et al. (2020) describe an efficient multi-party
computation technique for distance computations. This will avoid the server seeing individual client
contributions before aggregation, but the resulting clustering might still expose private information.

For privacy-preserving clustering, many methods have been proposed based on variants of
DPLloyd’s (Blum et al., 2005), i.e. Lloyd’s algorithm with suitable noise added to intermediate
steps. The methods differ typically in the data representation and initialization. For example, Su
et al. (2016) creates and clusters a proxy dataset by binning the data space. This, however, is tractable
only in very low-dimensional settings. Chang et al. (2021) also works with a proxy dataset, which
it constructs in a private way from client data points. Ren et al. (2017) chooses initial center points
by forming subsets of the original data and clustering those. Zhang et al. (2022) initializes with
randomly selected data points and then uses multi-party computation to securely aggregate client
contributions. None of the methods are compatible with the FL setting, though.

To our knowledge, only two prior works combined the advantages of DP and FL so far. Li et al.
(2023) is orthogonal to our work, as it targets vertical FL, in which all clients posses the same data
points, only different subsets of their features. Diaa et al. (2024) studies the same problem as we
do, but they propose a custom aggregation scheme that does not fit standard security requirements
of FL. For initialization, it uses SpherePacking, which in our experiments led to rather poor results.

7 CONCLUSION

In this paper we presented FedDP-KMeans, a fully federated and differentially private k-means
clustering algorithm. FedDP-KMeans makes use of out-of-distribution server-side data to obtain
a good initialization to the k-means problem. Combined with a simple federated, differentially
private, variant of Lloyd’s algorithm we obtain an efficient and practical clustering algorithm. We
demonstrate that FedDP-KMeans performs well in practice under both data-point-level and client-
level privacy models. FedDP-KMeans also comes with theoretical guarantees that show exponential
convergence to the true cluster centers in the Gaussian mixture setting.

A remaining shortcoming of our method is the need to choose hyperparameters, which is known
to be difficult when privacy is meant to be ensured. While we provide heuristics for this in
Appendix G.4, a more principled solution would be preferable. It would also be interesting to
explore if the server-side data could be replaced with a suitably private mechanism based on client
data, and if a variant of FedDP-Init is possible that adjusts to very small privacy budgets.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Dimitris Achlioptas and Frank McSherry. On spectral learning of mixtures of distributions. In
Conference on Computational Learning Theory (COLT), 2005.

David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In Symposium
on Discrete Algorithms (SODA), 2007.

Hassan Ashtiani, Shai Ben-David, Nicholas JA Harvey, Christopher Liaw, Abbas Mehrabian, and
Yaniv Plan. Near-optimal sample complexity bounds for robust learning of Gaussian mixtures via
compression schemes. Journal of the ACM (JACM), 67(6):1–42, 2020.

Pranjal Awasthi and Or Sheffet. Improved spectral-norm bounds for clustering. In International
Workshop on Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX), 2012.

Alex Bie, Gautam Kamath, and Vikrant Singhal. Private estimation with public data. Conference on
Neural Information Processing Systems (NeurIPS), 2022.

Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: the SuLQ
framework. In Symposium on Principles of Database Systems (PODS), 2005.

Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia Shumailov, and
Nicolas Papernot. When the curious abandon honesty: Federated learning is not private. In IEEE
European Symposium on Security and Privacy (EuroS&P), 2023.

K. A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar
Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for federated
learning on user-held data. In NIPS Workshop on Private Multi-Party Machine Learning, 2016.
URL https://arxiv.org/abs/1611.04482.

Theodora S. Brisimi, Ruidi Chen, Theofanie Mela, Alex Olshevsky, Ioannis Ch. Paschalidis, and
Wei Shi. Federated learning of predictive models from federated electronic health records. Inter-
national Journal of Medical Informatics, 112:59–67, 2018.

Alisa Chang and Pritish Kamath. Practical differentially pri-
vate clustering. https://research.google/blog/
practical-differentially-private-clustering/, 2021. Accessed: 2024-
09-23.

Alisa Chang, Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. Locally private k-means in one
round. In International Conference on Machine Learning (ICML), 2021.

Edith Cohen, Haim Kaplan, Yishay Mansour, Uri Stemmer, and Eliad Tsfadia. Differentially-private
clustering of easy instances. In International Conference on Machine Learning (ICML), 2021.

S. Dasgupta. The hardness of k-means clustering. Technical report, University of California, Berke-
ley, 2008.

Don Kurian Dennis, Tian Li, and Virginia Smith. Heterogeneity for the win: One-shot federated
clustering. In International Conference on Machine Learning (ICML), 2021.

Abdulrahman Diaa, Thomas Humphries, and Florian Kerschbaum. FastLloyd: Federated, accurate,
secure, and tunable k-means clustering with differential privacy, 2024. URL https://arxiv.
org/abs/2405.02437.

Ilias Diakonikolas, Daniel M. Kane, Daniel Kongsgaard, Jerry Li, and Kevin Tian. Clustering mix-
ture models in almost-linear time via list-decodable mean estimation. In Symposium on Theory of
Computing (STOC), 2022.

Dimitrios Dimitriadis, Kenichi Kumatani, Robert Gmyr, Yashesh Gaur, and Sefik Emre Eskimez. A
federated approach in training acoustic models. In Interspeech, 2020.

Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring adult: New datasets for fair
machine learning. Conference on Neural Information Processing Systems (NeurIPS), 2021.

11

https://arxiv.org/abs/1611.04482
https://research.google/blog/practical-differentially-private-clustering/
https://research.google/blog/practical-differentially-private-clustering/
https://arxiv.org/abs/2405.02437
https://arxiv.org/abs/2405.02437

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Max Dupré la Tour, Monika Henzinger, and David Saulpic. Making old things new: A unified
algorithm for differentially private clustering. In International Conference on Machine Learning
(ICML), 2024.

Cynthia Dwork. Differential privacy. In Automata, Languages and Programming, pp. 1–12, 2006.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations
and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise to sensitiv-
ity in private data analysis. In Theory of Cryptography Conference (TTC), 2006.

Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and Li Zhang. Analyze Gauss: optimal bounds
for privacy-preserving principal component analysis. In Symposium on Theory of Computing
(STOC), 2014.

Yan Gao, Titouan Parcollet, Salah Zaiem, Javier Fernández-Marqués, Pedro P. B. de Gusmao,
Daniel J. Beutel, and Nicholas D. Lane. End-to-end speech recognition from federated acous-
tic models. In International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2022.

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients
– how easy is it to break privacy in federated learning? In Conference on Neural Information
Processing Systems (NeurIPS), 2020.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework for
clustered federated learning. In Conference on Neural Information Processing Systems (NeurIPS),
2020.

Filip Granqvist, Congzheng Song, Áine Cahill, Rogier van Dalen, Martin Pelikan, Yi Sheng Chan,
Xiaojun Feng, Natarajan Krishnaswami, Vojta Jina, and Mona Chitnis. pfl-research: simula-
tion framework for accelerating research in private federated learning, 2024. URL https:
//arxiv.org/abs/2404.06430.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beaufays, Sean
Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage. Federated learning for mobile
keyboard prediction, 2019. URL https://arxiv.org/abs/1811.03604.

Samuel B. Hopkins and Jerry Li. Mixture models, robustness, and sum of squares proofs. In Ilias
Diakonikolas, David Kempe, and Monika Henzinger (eds.), Symposium on Theory of Computing
(STOC), 2018.

Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for differential
privacy. In International Conference on Machine Learning (ICML), 2015.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L.
D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He,
Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi,
Mikhail Khodak, Jakub Konecný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,
Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus
Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang Song,
Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma,
Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances
and open problems in federated learning. Foundations and Trends in Machine Learning, 14, 2021.

Gautam Kamath, Or Sheffet, Vikrant Singhal, and Jonathan R. Ullman. Differentially private al-
gorithms for learning mixtures of separated gaussians. In Conference on Neural Information
Processing Systems (NeurIPS), 2019.

Pravesh K. Kothari, Jacob Steinhardt, and David Steurer. Robust moment estimation and improved
clustering via sum of squares. In Symposium on Theory of Computing (STOC), 2018.

12

https://arxiv.org/abs/2404.06430
https://arxiv.org/abs/2404.06430
https://arxiv.org/abs/1811.03604

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Amit Kumar and Ravindran Kannan. Clustering with spectral norm and the k-means algorithm. In
Foundations of Computer Science (FOCS), 2010.

Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. A review of applications in federated learning. Com-
puters & Industrial Engineering, 149:106854, 2020.

Zitao Li, Tianhao Wang, and Ninghui Li. Differentially private vertical federated clustering. Pro-
ceedings of the VLDB Endowment, 16(6):1277–1290, 2023.

Allen Liu and Jerry Li. Clustering mixtures with almost optimal separation in polynomial time. In
Symposium on Theory of Computing (STOC), 2022.

Yang Liu, Zhuo Ma, Zheng Yan, Zhuzhu Wang, Ximeng Liu, and Jianfeng Ma. Privacy-preserving
federated k-means for proactive caching in next generation cellular networks. Information Sci-
ences, 521:14–31, 2020.

Stuart P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory
(TIT), 28(2):129–136, 1982.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In International
Conference on Artificial Intelligence and Statistics (AISTATS), 2017.

Frank McSherry. Differential privacy for measure concen-
tration. https://windowsontheory.org/2014/02/04/
differential-privacy-for-measure-concentration/, 2014. Accessed:
2024-09-23.

Payman Mohassel, Mike Rosulek, and Ni Trieu. Practical privacy-preserving k-means clustering.
In Privacy Enhancing Technologies Symposium, 2020.

Ankur Moitra and Gregory Valiant. Settling the polynomial learnability of mixtures of Gaussians.
In Foundations of Computer Science (FOCS), 2010.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
In Conference on Neural Information Processing Systems (NeurIPS), pp. 849–856. MIT Press,
2001.

Karl Pearson. Contributions to the mathematical theory of evolution. Philosophical Transactions of
the Royal Society of London. A, 185, 1894.

Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Françoise Beaufays. Federated learning
for emoji prediction in a mobile keyboard, 2019. URL https://arxiv.org/abs/1906.
04329.

Oded Regev and Aravindan Vijayaraghavan. On learning mixtures of well-separated Gaussians. In
Foundations of Computer Science (FOCS), 2017.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using siamese BERT-
networks. In Conference on Empirical Methods in Natural Language Processing (EMNLP), 2019.

Jun Ren, Jinbo Xiong, Zhiqiang Yao, Rong Ma, and Mingwei Lin. DPLK-means: A novel differ-
ential privacy k-means mechanism. In International Conference on Data Science in Cyberspace
(DSC), 2017.

Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletarı̀, Holger R. Roth, Shadi Albarqouni, Spyri-
don Bakas, Mathieu N. Galtier, Bennett A. Landman, Klaus Maier-Hein, Sébastien Ourselin,
Micah Sheller, Ronald M. Summers, Andrew Trask, Daguang Xu, Maximilian Baust, and
M. Jorge Cardoso. The future of digital health with federated learning. npj Digital Medicine,
3(1):119, 2020.

Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. IEEE Transactions on Neu-
ral Networks and Learning Systems (TNNLS), 32(8):3710–3722, 2020.

13

https://windowsontheory.org/2014/02/04/differential-privacy-for-measure-concentration/
https://windowsontheory.org/2014/02/04/differential-privacy-for-measure-concentration/
https://arxiv.org/abs/1906.04329
https://arxiv.org/abs/1906.04329

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jonathan Scott and Áine Cahill. Improved modelling of federated datasets using mixtures-of-
Dirichlet-multinomials. In International Conference on Machine Learning (ICML), 2024.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 22(8):888–905, 2000.

David Steurer and Stefan Tiegel. SoS degree reduction with applications to clustering and robust
moment estimation. In Dániel Marx (ed.), Symposium on Discrete Algorithms (SODA), 2021.

Dong Su, Jianneng Cao, Ninghui Li, Elisa Bertino, and Hongxia Jin. Differentially private k-means
clustering. In ACM Conference on Data and Application Security and Privacy, 2016.

Dong Su, Jianneng Cao, Ninghui Li, Elisa Bertino, Min Lyu, and Hongxia Jin. Differentially private
k-means clustering and a hybrid approach to private optimization. ACM Transactions of Privacy
and Security (TOPS), 20:1–33, 2017.

Kunal Talwar, Shan Wang, Audra McMillan, Vojta Jina, Vitaly Feldman, Pansy Bansal, Bailey
Basile, Aine Cahill, Yi Sheng Chan, Mike Chatzidakis, Junye Chen, Oliver Chick, Mona Chitnis,
Suman Ganta, Yusuf Goren, Filip Granqvist, Kristine Guo, Frederic Jacobs, Omid Javidbakht,
Albert Liu, Richard Low, Dan Mascenik, Steve Myers, David Park, Wonhee Park, Gianni Parsa,
Tommy Pauly, Christian Priebe, Rehan Rishi, Guy Rothblum, Michael Scaria, Linmao Song,
Congzheng Song, Karl Tarbe, Sebastian Vogt, Luke Winstrom, and Shundong Zhou. Samplable
anonymous aggregation for private federated data analysis, 2024. URL https://arxiv.
org/abs/2307.15017.

Eliad Tsfadia, Edith Cohen, Haim Kaplan, Yishay Mansour, and Uri Stemmer. FriendlyCore: Practi-
cal differentially private aggregation. In International Conference on Machine Learning (ICML),
2022.

Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang, and Hairong Qi. Beyond
inferring class representatives: User-level privacy leakage from federated learning. In IEEE Con-
ference on Computer Communications (INFOCOM), 2019.

Chang Xia, Jingyu Hua, Wei Tong, and Sheng Zhong. Distributed k-means clustering guaranteeing
local differential privacy. Computers & Security, 90:101699, 2020.

En Zhang, Huimin Li, Yuchen Huang, Shuangxi Hong, Le Zhao, and Congmin Ji. Practical multi-
party private collaborative k-means clustering. Neurocomputing, 467:256–265, 2022.

14

https://arxiv.org/abs/2307.15017
https://arxiv.org/abs/2307.15017

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A EXTENDED RELATED WORK

Clustering Gaussian Mixture The problem of clustering Gaussian mixtures is a fundamental of
statistics, perhaps dating back from the work of Pearson (1894).

Estimating the parameters of the mixture, as we are trying to in this paper, has a rich history. Moitra
& Valiant (2010) showed that, even non-privately, the sample complexity has to be exponential in
k; the standard way to bypass this hardness is to require some separation between the means of
the different components. If this separation is o(

√
log k), then any algorithm still requires a non-

polynomial number of samples (Regev & Vijayaraghavan, 2017). When the separation is just above
this threshold, namely O(log(k)1/2+c), Liu & Li (2022) present a polynomial-time algorithm based
on Sum-of-Squares to recover the means of spherical Gaussians.

For clustering general Gaussians, the historical approach is based solely on statistical properties of
the data, and requires a separation Ω(

√
k) times the maximal variance of each component (Achliop-

tas & McSherry, 2005; Awasthi & Sheffet, 2012). This separation is necessary for accurate cluster-
ing, namely, if one aims at determining from which component each samples is from (Diakonikolas
et al., 2022). This approach has been implemented privately by Kamath et al. (2019) (with the ad-
ditional assumption that the input is in a bounded area): this is the one we follow, as the simplicity
of the algorithms allows to have efficient implementation in a Federated Learning environment. Bie
et al. (2022) studied how public data can improve performances of this private algorithm: they as-
sume access to a small set of samples from the distribution, which improves the sample complexity
and allows them to remove the assumption that the input lies in a bounded area.

We note that both private works of Kamath et al. (2019) and Bie et al. (2022) have a separation
condition that grows with log n, as ours.

To only recover the means of the Gaussians, and not the full clustering, a separation of kα (for
any α > 0) is enough (Hopkins & Li, 2018; Kothari et al., 2018; Steurer & Tiegel, 2021). This
is also doable privately (when additionally the input has bounded diameter) using the approach of
Cohen et al. (2021) and Tsfadia et al. (2022). Those works are hard to implement efficiently in
our FL framework for two reasons: first, they rely on Sum-of-Square mechanisms, which does not
appear easy to implement efficiently. Second, they use Single Linkage as a subroutine: this does not
seem possible to implement in FL. Therefore, some new ideas would be necessary to get efficient
algorithm for FL based on this approach.

A different and orthogonal way of approaching the problem of clustering Gaussian mixtures is to
recover a distribution that is ε-close to the mixture in total variation distance, in which case the
algorithm of Ashtiani et al. (2020) has optimal sample complexity Õ(kd2/ε2) – albeit with a running
time ω(exp(kd2)).

On Private k-means Clustering The private k-means algorithm of Dupré la Tour et al. (2024),
implemented in our FL setting, would require either Ω(k) rounds of communication with the clients
(for simulating their algorithm for central DP algorithm), or a a very large amount of additive noise
kO(1) (for their local DP algorithm, with an unspecified exponent in k). Furthermore, the algo-
rithm requires to compute a net of the underlying Euclidean space, which has size exponential in the
dimension, and does not seem implementable. To the best of our knowledge, the state-of-the-art im-
plementation of k-means clustering is from Chang & Kamath (2021): however, it has no theoretical
guarantee, and is not tailored to FL.

B TECHNICAL PRELIMINARIES

B.1 DIFFERENTIAL PRIVACY DEFINITIONS AND BASICS

As mentioned in introduction, one of the most important properties of Differential Privacy is the
ability to compose mechanisms. There are two ways of doing so. First, parallel composition: if
an (ε, δ)-DP algorithms is applied on two distinct datasets, then the union of the two output is
also (ε, δ)-DP. Formally, the mechanism that takes as input two elements P1, P2 ∈ P and outputs
(A(P1),A(P2)) is (ε, δ)-DP.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The second property is sequential composition: applying an (ε, δ)-DP algorithm to the output of
another (ε, δ)-DP algorithm is (2ε, 2δ)-DP. Formally: if A : P → SA is (εA, δA)-DP and B :
P × SA → SB is (εB , δB)-DP, then B(A(·), ·) : P → SB is (εA + εB , δA + δB)-DP.

Those are the composition theorem that we use for the theoretical analysis. However, in practice,
better bounds can be computed – although they don’t have closed-form expression. We use a stan-
dard algorithm to estimate more precise upper-bounds on the privacy parameters of our algorithms
(Kairouz et al., 2015).

The sensitivity of a function is a key element to know how much noise is needed to add in order
to make the function DP. Informally, the sensitivity measures how much the function can change
between two neighboring datasets. Formally, we have the following definition.
Definition 3 (Sensitivity). Given a norm ℓ : Rd → R, the ℓ-sensitivity of a function f : Xn → Rd

is defined as
sup

x∼X′∈Xn

ℓ(f(X)− f(X ′)),

where X ∼ X ′ means that X and X ′ are neighboring datasets.

The two most basic private mechanism are the Laplace and Gaussian mechanism, that make a query
private by adding a simple noise. We use the Laplace mechanism for counting:
Lemma 4 (Laplace Mechanism for Counting.). Let X be a dataset. Then, the mechanism M(X) =
|X| + Lap(1/ε) is (ε, 0)-DP, where Lap(1/ε) is a variable following a Laplace distribution with
variance 1/ε.

We use the Gaussian mechanism for more general purposes (e.g., the PCA step). It is defined as
follows:
Lemma 5. Gaussian Mechanism Let f : X → Rn be a function with ℓ2-sensitivity ∆f,2. Then,

for σ(ε, δ) =

√
2 log(2/δ)

ε the Gaussian mechanism M(X) = f(X) + Nd

(
0,∆2

f,2σ(ε, δ)
2
)

is

(ε, δ)-DP, whereNd(0, σ
2) is a d-dimensional Gaussian random variable, where each dimension is

independent with mean 0 and variance σ2.

Combining those two mechanisms gives a private and accurate estimate for the average of a dataset
Lemma 6 (Private averaging). For dataset X in the ball B(0,∆), the mechanism M(X) :=∑

x∈X X+Nd(0,∆f,2σ
2(ε/2,δ))

|X|+Lap(2/ε) is (ε, δ)-DP. Additionally, |X| ≥, then it holds with probability 1 − β

that ∥M(X)− µ(X)∥2 ≤ ∆ ln(2/β)
|X|ε +

∆σ(ε/2,δ)
√

ln(2/β)

|X| .

B.2 DIFFERENTIAL PRIVACY FOR GAUSSIAN MIXTURES

First, we review some properties of the private rank-k approximation: this algorithm was analyzed
by Dwork et al. (2014), and its properties when applied on Gaussian mixtures by Kamath et al.
(2019). The guarantee that is verified by the projection onto the noisy eigenvectors is the following:
Definition 7. Fix a matrix X ∈ Rn×d, and let Πk be the projection matrix onto the principal rank-k
subspace of XTX . For some B ≥ 0, we say that a matrix Π is a B-almost k-PCA of X if Π is a
projection such that:

• ∥XTX − (ΠX)T (ΠX)∥2 ≤ ∥XTX − (ΠkX)T (ΠkX)∥2 +B, and

• ∥XTX − (ΠX)T (ΠX)∥F ≤ ∥XTX − (ΠkX)T (ΠkX)∥F + kB.

Dwork et al. (2014) shows how to compute a B-almost k-PCA, with a guarantee on B that depends
on the diameter of the dataset:
Theorem 8 (Theorem 9 of Dwork et al. (2014)). Let X ∈ Rn×d such that ∥Xi∥2 ≤ 1, and fix
σ(ε, δ) =

√
2 ln(2/δ)/ε. Let E ∈ Rd×d be a symmetric matrix, where each entry Ei,j with j ≥ i

is an independent draw from N (0, σ(ε, δ)2). Let Πk be the rank-k approximation of XTX + E.

Then, Πk is a O(
√
d · σ(ε, δ))-almost k-PCA of X , and is (ε, δ)-DP.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Kamath et al. (2019) shows crucial properties of Gaussian mixtures: first, the projection of each
empirical mean with a B-almost k-PCA is close to the empirical mean:

Lemma 9 (Lemma 3.1 in Kamath et al. (2019)). Let X ∈ Rn×d be a collection of points from k
clusters centered at µ1, ..., µk. Let C be the cluster matrix, namely Cj = µi if Xj belongs to the
i-th cluster, and Gi be the i-th cluster.

Let Πk be a B-almost k-PCA, and denote µ̄1, ..., µ̄k the empirical means of each cluster, and
µ̃1, ..., µ̃k the projected empirical means.

Then, ∥µ̄i − µ̃i∥ ≤ 1√
|Gi|
∥X − C∥2 +

√
B

|Gi| .

Second – and this helps bounding the above – they provide bounds on the spectral norm of the
clustering matrix X − C:

Lemma 10 (Lemma 3.2 in Kamath et al. (2019)). Let X ∈ Rn×d be a set of n samples from a
mixture of k Gaussians. Let σi be the maximal unidirectional variance of the i-th Gaussian, and
σmax = maxσi. Let C be the cluster matrix, namely Cj = µi if Xj is sampled from N (µi,Σi).

If n ≥ 1
wmin

(ζ1d+ ζ2 log2(k/β)), where ζ1, ζ2 are some universal constants, then with probability
1− β it holds that

√
nwminσmax

4
≤ ∥X − C∥2 ≤ 4

√√√√n

k∑
i=1

wiσ2
i .

B.3 PROPERTIES OF GAUSSIAN MIXTURES

Lemma 11. Consider a set P of n samples from a Gaussian mixtures {(µi,Σi, wi)}i∈[k]. Let Gi

be the set of points sampled from the i-th component. If n ≥ 24 log(k)
wmin

, then with probability 0.99 it
holds that ∀i, |Gi| ≥ nwi/2

Proof. This is a direct application of Chernoff bounds: each sample s is in Gi with probability wi.
Therefore, the expected size of Gi is nwi, and with probability at least 1 − 2 exp(−nwi/12) it
holds that

∣∣|Gi| − nwi

∣∣ ≤ nwi/2: for n ≥ 24 log(k)/wmin, the probability is at least 1 − 2/k2. A
union-bound over all i concludes.

B.4 CLUSTERING PRELIMINARIES

Our algorithm first replaces the full dataset P with a weighted version of Q, and then computes a k-
means solution on this dataset. The next lemma shows that, if cost(P,Q) is small, then the k-means
solution on the weighted Q is a good solution for P :

Lemma 12. Let P,C1 ⊂ Rd, and f : P → C1 be a mapping with Γ :=
∑

p∈P ∥p − f(p)∥2. Let
wν be such that |wν − |f−1(ν)|| ≤ |f−1(ν)|/2. Let P̃ be the multiset where each ν ∈ C1 appears
wν many times, . Let C2 be such that cost(P̃ , C2) ≤ αOPT(P̃). Then,

cost(P,C2) ≤ (2 + 12α)Γ + 12αOPT(P).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof. Recall that C2(p) is the closest point in C2 to p. We have, using triangle inequality:

cost(P,C2) =
∑
p∈P

∥p− C2(p)∥2

≤
∑
p∈P

∥p− C2(f(p))∥2

≤
∑
p∈P

(∥p− f(p)∥+ ∥f(p)− C2(f(p))∥)2

≤
∑
p∈P

2∥p− f(p)∥2 + 2∥f(p)− C2(f(p))∥2

≤ 2Γ + 2
∑
ν∈C1

|f−1(ν)|∥ν − C2(ν)∥2

≤ 2Γ + 4
∑
ν∈C1

wν∥ν − C2(ν)∥2

≤ 2Γ + 4αOPT(P̃).

A similar argument bounds OPT(P̃): let C∗ be the optimal solution for P , then, for any point p we
have ∥f(p)− C∗(f(p))∥ ≤ ∥f(p)− C∗(p)∥ ≤ ∥f(p)− p∥+ ∥p− C∗(p)∥. Therefore,

OPT(P̃) ≤
∑
ν∈C1

wν∥ν − C ∗ (ν)∥2

≤ 3

2

∑
ν∈C1

|f−1(ν)|∥ν − C ∗ (ν)∥2

≤ 3
∑
p∈P

2∥C1(p)− p∥2 + 2∥p− C∗(p)∥2

≤ 3Γ + 3OPT(P).

Combining those two inequalities concludes the lemma.

C THE NON-PRIVATE, NON-FEDERATED ALGORITHM OF AWASTHI &
SHEFFET (2012)

The algorithm we take inspiration from is the following, from Awasthi & Sheffet (2012) and inspired
by Kumar & Kannan (2010): first, project the dataset onto the top-k eigenvectors of the dataset, and
compute a constant-factor approximation to k-means (e.g., using local search). Then, improve iter-
atively the solution with Lloyd’s steps. The pseudo-code of this algorithm is given in Algorithm 3,
and the main result of Awasthi & Sheffet (2012) is the following theorem:
Theorem 13 (Awasthi & Sheffet (2012)). For a separated Gaussian mixture, Algorithm 3 correctly
classifies all point w.h.p.

Their result is more general, as they do not require the input to be randomly generated, and only
requires a strict separation between the clusters. In this paper, we focus specifically on Gaussian
mixtures.

D OUR RESULT

Our main theoretical results is to adapt Algorithm 3 to a private and federated setting. We show the
following theorem:
Theorem 14. Suppose that the client dataset P is generated from a separated Gaussian mixtures

with n ≥ ζ1
kdT log2 n·

√
ln(1/δ)

ε2w2
min

samples, where ζ1 is some universal constant, and that Q contains a
least one sample from component of the mixture.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 3 Cluster(P)
1: Part 1: find initial Clusters

a) Compute P̂ the projection of P onto the subspace spanned by the top k singular vectors
of P .

b) Run a c-approximation algorithm for the k-means problem on P̂ to obtain centers
ν1, ..., νk.

2: Part 2: For r = 1, ...k, set Sr ← {i : ∀s, ∥P̂i − νr∥ ≤ 1
3∥P̂i − νs∥} and θr ← µ(Sr)

3: Part 3: Repeat Lloyd’s steps until convergence:
for r = 1, ...k, set C(νr)← {i : ∀s, ∥Pi − νr∥ < ∥Pi − νs∥} , and θr ← µ(C(νr))

Then, there is an (ε, δ)-DP algorithm that computes centers ν1, ..., νk such that, for some universal
constants ζ2, ζ3, after T +ζ2 log

σmax log |Q|
εwmin

rounds of communications, it holds with high probability
that:

∥µi − νi∥ ≤ ζ3 max

(
1

2T
,
kdT log2 nσmax

√
ln(T/δ)

nε2w2
min

)
.

Note that the precision increases with the number of samples: if n is larger than
2T log(σmax/wmin)kd log2 nσmax

ε2w2
min

, then the dominating term is 1/2T .

Corollary 15. Suppose that the client dataset P is generated from a separated Gaussian mixtures
with n = Ω

(
k log2 n

√
dσmax

ε2w2
min

)
samples, that Q contains a least one sample from component of the

mixture and at most n data points.

Suppose that n = Ω
(

k log3 n
√
dσmax

ε2w2
min

)
, and that n = Ω

(
log(n)6·kd2

ε4w2
min

)
.

Then, there is an (ε, δ)-DP algorithm with O(log(n)) rounds of communications that computes
centers ν1, ..., νk such that, with high probability, the clustering induced by ν1, ..., νk is the partition
G1, ..., Gk.

Proof. Theorem 5.4 of Kumar & Kannan (2010) (applied to Gaussian mixtures) bounds the number
of misclassified points in a given cluster in terms of the distance between νi and µi. Define, for any
i, Si as the cluster of νi, and δi = ∥µi − νi∥. Then, for j ̸= i, Kumar & Kannan (2010) show that,
for some constant c′:

|Gi ∩ Sj | ≤
c′nwmin(δ

2
i + δ2j)

∥µi − µj∥2
5

Since ∥µi − µj∥2 ≥ c2
kσ2

max log(n)
2

wmin
, we get that the number of points from Gi assigned to cluster j

is at most
c′nw2

min(δ
2
i+δ2j)

kσ2
max log(n)

2 .

We aim at bounding δi and δj using Theorem 14. For T = log
(

10c′nwmin
kσmax

)
, it holds that 1

2T
≤

√
kσmax

10c′
√
nwmin

.

In addition, for this value of T and a number of samples n at least n ≥ 100c′2 log(n)2·kd2 log(n)4

ε4w2
min

, we

also have kdT log2 nσmax

√
ln(T/δ)

nε2w2
min

≤
√
kσmax

10c′
√
nwmin

.

Therefore, the upper bound on δi and δj from Theorem 14 after T + log (σmax log |Q|/wmin) =
O(log(n)) rounds of communications ensure that there is no point misclassified. This which con-
cludes the statement.

5We simplified the original statement of Kumar & Kannan (2010) to directly adapt it to separated Gaussian
mixtures: in this case, ∥P − C∥22 ≤ 4nσ2

max, and ∆i,j (defined in the original statement) is our separation
value, c

√
k/wminσmax log(n).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

In the case where the assumption of Theorem 2 are satisfied, namely, (1) the diameter is bounded and
(2) the server data are well spread, then the algorithm of Theorem 14 reduces directly to Algorithm 1
followed with T steps of Algorithm 2, with only T rounds of communication. Indeed, the first
O
(
log σmax log |Q|

εwmin

)
rounds of the algorithm from Theorem 14 are dedicated to enforcing condition

(1) and (2): if they are given, there is no need for those steps.

The organization of the proof is as follows. First, we give some standard technical preliminary tools
about differential privacy and Gaussian mixtures. Then, we show how to implement Algorithm 3:
the bulk of the work is in the implementation of its Part 1, computing a good solution for ΠP . The
second part to iteratively improve the solution is very similar to the non-private part.

E PART 1: COMPUTING CENTERS CLOSE TO THE MEANS

E.1 REDUCING THE DIAMETER

Lemma 16. There is an ε-DP algorithm with one communication round that, given wmin and σmax,
reduces the diameter of the input to O

(
log |Q| logn

√
dσmax

εwmin

)
.

Proof. We fix a distance D = 4 log n
√
dσmax. First, the server identifies regions that contains many

server points: if q is such that |Q ∩B(q,D)| ≥ εnwmin
200 log |Q| , then q is marked frozen.

Then, each client assigns its points to their closest server point in Q, breaking ties arbitrarily. In one
round of communication, the server learns, for each server point q ∈ Q, the noisy number of points
assigned to q, namely ŵq(P) = wq(P) + Lap(1/ε). For privacy, the noise added to each count
follows a Laplace distribution with parameter 1/ε. Hence, with high probability, the noise is at most
O
(

log |Q|
ε

)
on each server data q.

With high probability on the samples, for all i the B(µi, D) contains all the win samples from Gi.
Therefore, any server point q sampled from Gi is either frozen, or the noisy count in B(q,D) ball is
at least nwmin/2− |Q ∩B(µi, D)| · log |Q|

ε ≥ nwmin/3, using Lemma 11.

Consider now an arbitrary point p ∈ Rd. Since Gi is fully contained in B(µi, D/2), either the ball
B(p,D/2) doesn’t intersect with Gi, or B(p,D) contains entirely Gi. Furthermore, by triangle
inequality, for any q ∈ Gi ∩Q the ball B(q,D) contains entirely Gi: if q is not frozen, it has noisy
count at least nwmin/3, and therefore true count at least nwmin/6.

To reduce the diameter, we first remove all points from Q that are not frozen and for which the ball
B(q,D) has noisy count less than nwmin/3: by the previous discussion, those points are not sampled
from any Gi and are part of the noise. In addition, connect any pair of points that are at distance less
than D.

We claim that each connected component has diameter at most O
(

log2 n
√
dσmax

εwmin

)
.

To prove this claim, we fix such a component, and consider the following iterative procedure. Pick
an arbitrary point from the component, and remove all points that are at distance 2D. Repeat those
two steps until there are no more points.

Let q be a point selected at some step of this procedure. First, note that B(q,D) is disjoint from any
ball B(q′, D), for q′ previously selected – as B(q′, 2D) has been removed. Furthermore, either q is
frozen and the ball contains εnwmin

200 log |Q| many points of Q, or q is not frozen and B(q,D) contains at

least nwmin/6 points of P . Therefore, there are at most tmax := 6
wmin

+ 200 log |Q|
εwmin

iterations. So the
connected component can be covered with tmax balls of radius 2D. Additionally, since each edge
has length at most D, the component has diameter at most O(tmaxD) = O

(
log |Q| logn

√
dσmax

εwmin

)
.

This concludes the claim.

The other key property of the connected component is that each Gi is fully contained in a single
connected component, as all points of Gi are at distance at most D of each other.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Therefore, we can transform the space such that the connected components get closer but do not
interact, so that the diameter reduces while the centers of Gaussians are still far apart. Formally,
let D′ be the maximum diameter of the connected components. Select an arbitrary representative
in Q from each connected component, and apply a translation to the connected component such
that its representative has coordinate (100D′ · i, 0, 0, ..., 0). This affine transformation ensures that
(1) within each connected component, all means are still separated and the points are still drawn
from Gaussian with the same covariance matrix and (2) the separation between centers of different
component is at least 50D′.

Therefore, the instance constructed still satisfy the separation conditions of Definition 1, and has
diameter at most O(kD′) = O

(
k logn log |Q|

√
dσmax

εwmin

)
E.2 A RELAXATION OF AWATHI-SHEFFET’S CONDITIONS

The result of Awasthi & Sheffet (2012), applied to Gaussian, requires a slightly weaker separation
between the centers than what we enforce. They consider a dataset P sampled from a Gaussian
mixtures, and with cluster matrix C (namely, Ci = µi if Pi is sampled from the i-th component).
They define for each cluster ∆AS

i := 1√
|Gi|

min(
√
k∥P−C∥2), ∥P−C∥F), and require ∥µi−µj∥ ≥

c(∆AS
i +∆AS

j) for some large constant c.

In the Gaussian setting, we have |Gi| ≈ nwi (Lemma 11), ∥P − C∥2 = O(σmax
√
n) Lemma 10

and ∥A − C∥F = Θ(
√
ndσmax). Thus, in most cases, min

(√
k∥P − C∥2, ∥P − C∥F

)
=

√
nkσmax polylog(d/wmin), except in some degenerate cases – and we keep the minimum only to fit

with the proof of Awasthi & Sheffet (2012).

We can define ∆i =
σmax

√
n√

|Gi|
min

(√
k polylog(d/wmin),

√
d
)

: our separation condition Definition 1

ensures that ∥µi − µj∥ ≥ c(∆i + ∆j), for some large c. We now show the two key lemmas from
Awasthi & Sheffet (2012), adapted to our private algorithm.
Fact 17 (Fact 1.1 in Awasthi & Sheffet (2012)). Let P ∈ Rn×d be a set of n points sampled
from a Gaussian mixtures, and let C be the cluster matrix, namely Cj = µi if Xj is sampled
from N (µi,Σi). Let Π be a B-approximate k-PCA for P1, ..., Pn. Suppose that B satisfies B ≤√

nwminσmax

4k . Then:

∥ΠP − C∥2F ≤ 20min(k∥A− C∥22), ∥A− C∥2F)(= nwi∆
2
i).

Proof. First, since both ΠP and C have rank k, it holds that ∥ΠP − C∥2F ≤ 2k∥ΠP − C∥22. By
triangle inequality, this is at most 2k (∥ΠP − P∥2 + ∥P − C∥2)2.

Now, we have that ∥ΠP − P∥22 = ∥(ΠP − P)(ΠP − P)T ∥2: since Π is a B-approximate k-PCA,
this is at most ∥(ΠkP −P)(ΠkP −P)T ∥2 +B, where ΠkP is the best rank-k approximation to P .
By definition of Πk, this is equal to ∥P −ΠkP∥22 +B ≤ ∥P − C∥22 +B.

Overall, we get using
√
a+ b ≤

√
a+
√
b:

∥ΠP − C∥2F ≤ 2k (∥ΠP − P∥2 + ∥P − C∥2)2

≤ 2k
(
2∥P − C∥2 +

√
B
)2

≤ 16k∥P − C∥22 + 4kB.

Using Lemma 10 and the assumption that 4kB ≤ √nwminσmax concludes the first part of the lemma.

For the other term, we have ∥ΠP − C∥F ≤ ∥ΠP − P∥F + ∥P − C∥F . The fact that Π is a B-
approximate k-PCA ensures that ∥ΠP − P∥2F ≤ ∥P − C∥2F + kB; and the fact that ∥P − C∥2F ≥
∥P − C∥22 ≥

nwminσ
2
max

16 ≥ B concludes (where the second inequality is from Lemma 10).

Fact 18. [Analogous to Fact 1.2 in Awasthi & Sheffet (2012)] Let P ∈ Rn×d be a Gaussian mix-
tures, and Π be a B-approximate k-PCA for P1, ..., Pn. Suppose that B satisfies B2 ≤ nwminσ

2
max.

Let S = {ν1, ..., νk} be centers such that cost(ΠP, S) ≤ nkσ2
max · log

2 n.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Then, for each µi, there exists j such that ∥µi − νj∥ ≤ 6∆i, so that we can match each µi to a
unique νj .

Proof. The proof closely follows the one in Awasthi & Sheffet (2012). Assume by contradiction
that there is a i such that ∀j, ∥µi − νj∥ > 6∆i. For any point p ∈ P , let νp be its closest center.
Then, the contribution of the points in Gi to the cost is at least∑

p∈Gi

∥µi − νp +Πp− µi∥2 >
|Gi|
2

(6∆i)
2 −

∑
p∈Gi

∥Πp− µi∥2 ≥ 18|Gi|∆2
i − ∥ΠP − C∥2F ,

where the first inequality follows from (a − b)2 ≥ a2

2 − b2. Using first that |Gi|∆2
i =

100nkσ2
max log

2(n), then Fact 17 combined with Lemma 10 yields that
∑

p∈Gi
∥Πp − νp∥2 >

1800nkσ2
max log

2(n)− 16nkσ2
max This contradicts the assumption on the clustering cost.

Assuming there is a matching as in Fact 18, the proof of Awasthi & Sheffet (2012) directly goes
through (when the Lloyd steps in Parts 2 and 3 of the algorithm are implemented non-privately), and
we can conclude in that case that the clustering computed by Algorithm 1 is correct. Therefore, we
first show that our algorithm computes a set of centers satisfying the conditions of Fact 18; and will
show afterwards that the remaining of the proof works even with the addition of private noise.

E.3 COMPUTING A GOOD k-MEANS SOLUTION FOR ΠP

The goal of this section is to show the following lemma:

Lemma 19. There is an ε-DP algorithm with 10 log 4 log |Q|
εwmin

rounds of communications that com-
putes a k-means solution S with

cost(ΠP, S) = O

(
n · log2

(
1

εwmin

)
· kσ2

max log n

)
.

The proof of this lemma is divided into several parts: first, we show that the means of the projected
Gaussians Πµ1, ...,Πµk would be a satisfactory clustering. As points in Q are drawn independently
from Π, there are points ΠQ close to each center Πµi: our second step is therefore an algorithm that
finds those points, in few communications rounds.
Lemma 20. Let Π be the private projection computed by the algorithm. With high probability,
clustering the projected set ΠGi to the projected mean Πµi has cost |Gi| log n · kσ2

max.

Proof. We focus on a single Gaussian Gi, and denote for simplicity µ := µi its center and Σ̂ := ΠΣi

the covariance matrix of ΠGi. Standard arguments (see Proof of Corollary 5.15 in Kamath et al.
(2019), or the blog post from McSherry (2014)) show that, with high probability, for all point it
holds that ∥Π(p− µ)∥22 ≤

√
k log(n)σmax.

For a sketch of that argument, notice that if the projection Π was fixed independently of the samples,
this inequality is direct from the concentration of Gaussians around their means, as the projection of
Gi via Π is still a Gaussian, with maximal unidirectional variance at most σmax. This does not stay
true when Π depends on the sample; however, since Π is computed via a private mechanism, the
dependency between Π and any fixed sample is limited, and we can show the concentration.

Combined with the fact that there are |Gi| samples from Gi, this concludes.

Lemma 19 in particular ensures that clustering ΠP to the full set ΠQ yields a cost nkσ2
max · log

2 n.
Therefore, if we could compute for each q ∈ Q the size wq(ΠP) of Πq’s cluster in ΠP , namely,
the number of points in ΠP closer to Πq than to any other point in ΠQ (breaking ties arbitrarily),
then Lemma 12 would ensure that computing an O(1)-approximation to k-means on this weighted
set yields a solution to k-means on ΠP with cost O

(
nkσ2

max · log
2 n
)
.

However, the privacy constraint forbids to compute wq(ΠP) exactly, and the server only receives a
noisy version ŵq(ΠP) – with a noise following a Laplace noise with parameter 1/ε. Hence, for all
points q ∈ Q, the noise added is at most logn

ε with high probability.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

E.4 IF ASSUMPTION (2) IS SATISFIED: THE NOISE IS NEGLIGIBLE

Assumption (2) can be used to bound the total amount of noise added to the server data: we can
show that the total contribution of the noise is small compared to the actual k-means cost, in which
case solving k-means on the noisy data set yields a valid solution. We show the next lemma:
Lemma 21. For any set of k centers S, it holds that∣∣∣∑q wq(ΠP) cost(p, S)−

∑
q ŵq(ΠP) cost(p, S)

∣∣∣ ≤ |Q| log |Q|∆2

ε

Proof. ∣∣∣∣∣∑
q

wq(ΠP) cost(q, S)−
∑
q

ŵq(ΠP) cost(q, S)

∣∣∣∣∣ =
∣∣∣∣∣∑

q

Lap(1/ε) cost(q, S)

∣∣∣∣∣
With high probability, each of the |Q| Laplace law is smaller than log |Q|

ε . In this case, we get∣∣∣∑q Lap(1/ε) cost(q, S)
∣∣∣ ≤ |Q| log |Q|∆2

ε Therefore, the gap between the solution evaluated with

true weight wq(ΠP) and noisy weight ŵq(ΠP) is at most |Q| log |Q|∆2

ε

Using |Q| ≤ n, the assumption |Q| ≤ εnkσ2
max

∆2 therefore ensures that the upper bound of the previous
lemma is at most nk log(n)σ2

max.

Hence, if S is a solution that has cost O(1) times optimal on the noisy projected server data, it
has cost O(nkσ2

max log(n)) on the projected server data. Combining this result with Lemma 12
concludes: cost(ΠP, S) = O

(
nkσ2

max log(n)
)
.

E.5 ENFORCING ASSUMPTION (2)

In order to get rid of Assumption (2), we view the problem slightly differently: we will not try to
reduce the number of points in Q to the precise upper-bound, but will nonetheless manage to control
the noise and show Lemma 19.

Indeed, if all points of Q get assigned more than 2 log n/ε many input points, then the estimates
of wq are correct up to a factor 2, and Lemma 12 shows that a k-means solution S for the dataset
consisting of ΠQ with the noisy weights satisfies cost(ΠP, S) = O

(
nkσ2

max · log
2 n
)
. However, it

may be that some points of Q get assigned less than 2 log n/ε points, in which case the noise would
dominate the signal and Lemma 12 becomes inapplicable. Our first goal is therefore to preprocess
the set of hings Q to get Q̂ such that :

1. for each cluster, ΠQ̂ still contains one good center, and

2. ∀q ∈ Q̂, ŵq ≥ 2 log n/ε (where the weight ŵ is computed by assigning each data point to
its closest center of Q̂)

The first item ensures that cost(ΠP,ΠQ̂) = O
(
nkσ2

max · log
2 n
)
; the second one that the size of

each cluster is well approximated, even after adding noise.

Our intuition is the following. Removing all points q ∈ Q with estimated weight less than 2 log n/ε
is too brutal: indeed, it may be that one cluster is so over-represented in Q that all its points get
assigned less than 2 log n/ε points from P . However, in that case, there are many points in the
cluster and in ΠQ: we can therefore remove each point with probability 1/2 and preserve (roughly)
the property that there is a good center in ΠQ. Repeating this intuition, we obtain the algorithm
described in Algorithm 4.

We sketch briefly the properties of algorithm 4, before diving into details of the proof. First, the
algorithm is ε-DP, as each of the T steps is ε/T -DP.

Then, points in F are frozen: even after adding noise, their weight is well approximated. We will
show by induction on the time t that, for any cluster i that does not contain any frozen point at
time t, then Qt ∩ B(µi, 2t ·

√
k log nσmax) contains many points: more precisely, |Qt ∩ B(µi, 2t ·

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Algorithm 4 SimplifyServerData
1: Input: Server data Q, client datasets P 1, ..., Pm, a projection matrix Π computed from

P 1, ..., Pm, and privacy parameter ε
2: Let F ← ∅, Q0 ← Q, T = 10 log

(
4 log |Q|
εwmin

)
3: for t = 0 to T do
4: Let C = F ∪Qt

5: for each q ∈ C, the server receives a noisy estimate ŵ(t)
q of wΠq(ΠQt), with noise Lap(T/ε).

6: Server computes L := {q ∈ C : ŵ
(t)
q ≤ 2 log n/ε}.

7: F ← F ∪ (Qt \ L).
8: Server computes Qt+1, a subset of L where each point is sampled with probability 1/2.
9: end for

10: Return: F

√
k log nσmax)| ≥ ε|Gi|/2. Since at each time step only half of the points in L are preserved in

Qt+1 (line 7 of the algorithm), it implies that, at the beginning, |Q ∩ B(µi, 2t ·
√
k log nσmax)| ≳

2tε/T |Gi|. Therefore, for t = log(1/(εwmin)), we have for each cluster that either it contains a
frozen point, or |Q∩B(µi, 2t ·

√
k log nσmax)| ≥ |Gi|

wmin
> n: as the second option is not possible, all

clusters contains a frozen point, which is a good center for that cluster.

Our next goal is to formalize the argument above, and show:
Lemma 22. Let F be the output of Algorithm 4. Then, for each cluster i, there is a point νi ∈ F

such that ∥Π(µi − νi)∥ ≤ log
(

4 log |Q|
εwmin

)
·
√
k log nσmax.

Furthermore, for each q ∈ F , define wq as the number of points closest to q than any other point in
F : it holds that wq ≥ 2 log n/ε.

For simplicity, we define ∆C :=
√
k log nσmax. To prove this lemma, we show inductively that

after t iterations of the loop in the algorithm, then either B(Πµi, 2t∆C) contains a frozen point, or
|B(Πµi, (t + 1)∆C) ∩ ΠQt| ≥ ε|Gi|/2. Since the number of points in ΠQt is divided by roughly
2 at every time step, the latter condition implies that there was initially at least ≈ 2tε|Gi| points in
B(Πµi, (t+ 1)∆C)∩ΠQ. For t ≈ log(1/(εwmin), this is bigger than n and we get a contradiction:
the ball contains therefore a frozen point.

Our first observation to show this claim is that many points of P are close to µi:
Fact 23. With high probability on the samples, it holds that

∣∣B(Πµi,
√
k log nσmax) ∩ΠPi

∣∣ ≥ |Gi|

Proof. As in the proof of Lemma 20, the fact that Π is computed privately ensures that,
with high probability, all points p ∈ Gi satisfy ∥Π(p − µi)∥ ≤

√
k log nσmax. Thus,∣∣B(Πµi,

√
k log nσmax) ∩ΠPi

∣∣ ≥ |Gi|.

For the initial time step t = 0 we actually provide a weaker statement to initialize the induction, and
show that there is at least one point in B(Πµi,

√
k log nσmax) ∩ ΠQt. This will be enough for the

induction step.
Fact 24 (Initialization of the induction). With high probability, ∃q ∈ Q, ∥Π(µi − q)∥ ≤√
k log nσmax.

Proof. This directly stems from the fact that there is some point q ∈ Q that is sampled according to
Gi, and that Π is independent of that point. Therefore, Πq follows the Gaussian law ΠGi, which is
in a k dimensional space and has maximal unidirectional variance σmax. Concentration of Gaussian
random variables conclude.

To show our induction, the key lemma is the following:
Lemma 25. After t iteration of the loop, either B

(
Πµi, (t+ 1)

√
k log nσmax

)
contains a frozen

point, or
∣∣ΠQt ∩B(Πµi, 2(t+ 1)

√
k log nσmax)

∣∣ ≥ ε|Gi|
4T log(T |Q|) .

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Proof. Let ∆C :=
√
k log nσmax.

First, it holds with high probability that all the noise added Line 5 satisfy
∣∣∣ŵ(t)

q − wΠq(ΠQt)
∣∣∣ ≤

T log(T |Q|)/ε. This directly stems from concentration of Laplace random variables, and the fact
that there are T |Q| many of them.

We prove the claim by induction. Fix a t ≥ 0. The induction statement at time t ensures that either
there is a point frozen in B(Πµi, (t + 1)∆C), in which case we are done, or there is at least one
point in ΠQt ∩B(Πµi, (t+ 1)∆C) (note that this statement holds for t = 0 by Fact 24).

By triangle inequality, this means that all points of ΠGi ∩ B(Πµi,∆C) are assigned at time
t + 1 to a point in B(Πµi, (t + 2)∆C) (in line 4 of Algorithm 4). Therefore, by Fact 23,∑

q:Πq∈ΠQt∩B(Πµi,(t+2)∆C) w
t
q ≥ |Gi|.

Then, either ΠQt contains less than ε|Gi|
2T log(T |Q|) many points from B (Πµi, (t+ 2)∆C), and we

are done, as one of them must have wΠq(ΠQt+1) ≥ 2T log(|Q|T)/ε and will be frozen – as in
this case ŵ

(t)
q ≥ T log(|Q|T)/ε. Or, there are more than ε|Gi|

2T log(T |Q|) points, and they all have

wt+1
q ≤ 2T log(T |Q|)/ε : Chernoff bounds ensure that, with high probability, at least ε|Gi|

4T log(T |Q|)
will be sampled in the set Qt+1, which concludes the lemma.

Lemma 22 is a mere corollary of those results:

Proof of Lemma 22. Again, we define ∆C :=
√
k log nσmax. At the end of Lemma 22, all points in

F are frozen: let f : P → F such that f(p) = argminq∈F ∥Π(p − q)∥, breaking ties arbitrarily.
Since all points are frozen, it holds that for all q, |f−1(q)| ≥ 2 log n/ε: therefore, their noisy weight
ŵq satisfy |ŵq − |f−1(q)| ≤ |f−1(q)|

2 .

Furthermore, for T large enough it holds that T ≥ log
(

4T log(T |Q|)
εwmin

)
: this holds e.g. for T =

10 log
(

4 log(|Q|)
εwmin

)
.

Lemma 25 ensures that either B(Πµi, (T+1)∆C) contains a frozen point, or |ΠQT ∩B(Πµi, 2(T+

1)∆C)| ≥ ε|Gi|
4T log(T |Q|) .

Suppose by contradiction that we are in the latter case. Since, at each time step, every point in Q is
preserved with probability 1/2, it holds with high probability that |ΠQ ∩B(Πµi, 2(T + 1)∆C)| ≥
ε2T · |Gi|. Indeed, all points of that ball are still present in QT with probability 1/T t: Cher-
noff bounds ensure that there must be initially at least 2T · ε|Gi|

4T log(T |Q|) points in that ball in

order to preserve ε|Gi|
4T log(T |Q|) of them after the sampling. With our choice of T , this means

|ΠQ ∩B(Πµi, 2(t+ 1)∆C)| > |Q|, which is impossible.

Therefore, it must be that B(Πµi, (T + 1)∆C) contains a frozen point, which concludes the proof.

Proof of Lemma 19 We now have all the ingredients necessary to the proof of Lemma 19. The
algorithm is a mere combination of the previous results:

• Use Algorithm 4 to compute a set F .

• Server sends F to the clients, who define f : P → F such that f(p) = argminq∈F ∥Π(p−
q)∥, breaking ties arbitrarily.

• Client i sends wΠq(ΠP
i) :=

∣∣{p ∈ P i : f(p) = q}
∣∣.

• Server receives ŵq , a noisy version of wq :=
∑

i w
i
q .

• Server computes an O(1)-approximation S to k-means on the dataset ΠF with weights ŵq .

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

To show that S has the desired clustering cost, we aim at applying Lemma 12. For this, we first
bound

∑
p ∥Π(p − f(p))∥2. For each cluster i, let νi be the point from F as defined in Lemma 22.

We have, using the definition of f and triangle inequality:

∑
p

∥Π(p− f(p))∥2 ≤
∑
i

∑
p∈Gi

∥Π(p− νi)∥2 ≤ 2
∑
i

∑
p∈Gi

∥Π(p− µi)∥2 + ∥Π(µi − νi)∥2.

From Lemma 20, we know that
∑

i

∑
p∈Gi

∥Π(p − µi)∥2 = O(n log n · kσ2
max). The guarantee of

νi in Lemma 22 ensures
∑

i

∑
p∈Gi

∥Π(µi − νi)∥2 = O
(
n · log2

(
1

εwmin

)
· kσ2

max log n
)

.

Thus,
∑

p ∥Π(p− f(p))∥2 = O
(
n · log2

(
1

εwmin

)
· kσ2

max log n
)

.

Since all points in F have an estimated that satisfies
∣∣ŵq − |f−1(q)|

∣∣ ≤ |f−1(q)|
2 , we

can apply Lemma 12: the solution computed by the above algorithm on the dataset ΠF

with weights ŵq has cost at most O
(
n · log2

(
1

εwmin

)
· kσ2

max log n
)

+ O(OPT(ΠP)) =

O
(
n · log2

(
1

εwmin

)
· kσ2

max log n
)

.

This concludes the proof of Lemma 19.

F PART 2: IMPROVING ITERATIVELY THE SOLUTION

Our global algorithm is described in Algorithm 5: first, we use Lemma 16 to reduce the diameter of
the input; then, we compute a good initial solution using Lemma 19. Then, we implement privately
Part 2 and Part 3 of Algorithm 3, using private mean estimation.

Algorithm 5 Cluster
1: Input: Server data Q, client datasets P 1, ..., Pm, and privacy parameters ε, δ
2: Process the input to reduce the diameter to ∆ using Lemma 16, with privacy parameter ε/4.
3: In one round of communication, compute a O(

√
d∆ · σ(ε/4, δ))-almost k-PCA using Theo-

rem 8.
4: Part 1: find initial centers ν(1)1 , ..., ν

(1)
k using Lemma 19, with privacy parameter ε/4

5: Part 2:
a) Server sends ν(1)1 , .., ν

(1)
k to clients, and client c computes Sc

r := {Pi ∈ P c : ∀s, ∥P̂i−
νr∥ ≤ 1

3∥P̂i − νs∥}.
b) Server receives, for all cluster r, ν

(2)
r :=

1∑
client c |Sc

r |+Lap(T/ε)

(∑
client c

∑
Pi∈Sc

r
Pi +Nd

(
0, 2T 2∆ log(2T/δ)

ε2

))
6: Part 3: Repeat Lloyd’s steps for T steps, with privacy parameter (ε/T, δ/T):

a) Server sends ν(t)1 , .., ν
(t)
k to clients, and client c computes Sc

r := {Pi ∈ P c : ∀s, ∥P̂i −
νr∥ ≤ ∥P̂i − νs∥}.

b) Server receives, for all cluster r, ν
(t+1)
r :=

1∑
client c |Sc

r |+Lap(T/ε)

(∑
client c

∑
Pi∈Sc

r
Pi +Nd

(
0, 2T 2∆ log(2T/δ)

ε2

))
Given the mapping of Fact 18, the main result of Awasthi & Sheffet (2012) is that step 2 of the
algorithm computes centers that are very close to the µi:6

Theorem 26 (Theorem 4.1 in Awasthi & Sheffet (2012)). Suppose that the solution ν1, ..., νk is as in
Fact 18, namely, for each µi, it holds that ∥µi−νi∥ ≤ 6∆i. Denote Si = {j : ∀r ̸= i, ∥ΠPj−νi∥ ≤

6Note that the original theorem of Awasthi & Sheffet (2012) is stated slightly differently: however, their
proof only requires Fact 17 and the matching provided by Fact 18, and we modified the statement to fit our
purposes.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

1
3∥ΠPj − νr∥}. Then, for every i ∈ [k] it holds that

∥µ(Si)− µi∥ = O

(
1

c
√
|Gi|

· ∥P − C∥2

)
,

where c is the separation constant from Definition 1.

Finally, the next result from Kumar & Kannan (2010) shows that the Lloyd’s steps converge towards
the true means:

Theorem 27 (theorem 5.5 in Kumar & Kannan (2010)). If, for all i and a parameter γ ≤ ck/50,

∥µi − νi∥ ≤
γ∥P − C∥2√

|Gi|
,

then

∥µi − µ(C(νi))∥ ≤
γ∥P − C∥
2
√
|Gi|

,

where C(νi) is the set of points closer to νi than to any other νj .

This allows us to conclude the accuracy proof of Theorem 14

Proof of Theorem 14. The algorithm is (ε, δ)-DP: each of the 4 steps step – reducing the diameter,
computing a PCA, finding a good initial solution and running T Lloyd’s steps – is (ε/4, δ/4)-DP,
and private composition concludes.

The first three steps require a total of 2 + 10 log 4 log |Q|
εwmin

many rounds of communication, the last

one requires T + log
σ2

max
wmin

rounds. This simplifies to T + ζ2 log
σmax log |Q|

εwmin
, for some constant ζ2.

The first step reduces the diameter to ∆ = O
(

k log2 n
√
dσmax

εwmin

)
; therefore, Lemma 19 combined with

Fact 18 ensures that ν(1)1 , ..., ν
(1)
k satisfies the condition of Theorem 26. In addition, Lemma 4.2 of

Awasthi & Sheffet (2012) ensures that the size of each cluster |Sr| is at least |Gi|
2 at every time step.

Therefore, the private noise
Nd(∆2σ2(ε′,δ′))

|Sc
r |

is bounded with high probability by η :=

O
(

∆
√
dσ(ε/T,δ/T)

|Sc
r |

)
= O

(
kdT log2 nσmax·

√
ln(1/δ)

nε2w2
min

)
, which for and n = Ω

(
kdT log2 n·

√
ln(1/δ)

ε2w2
min

)
is smaller than ∆i =

σmax√
wi

min
(√

k polylog(d/wmin), d
)

.

Hence, the conditions of Theorem 26 and Theorem 27 are still satisfied after adding noise, and the
latter implies that the noisy Lloyd steps converge exponentially fast towards B(µi, η).

More precisely, it holds with probability 1 − 1/k2 that

∥∥∥∥∥µi − ν
T+log

σ2
max

wmin
i

∥∥∥∥∥ = O

(
1

c2
T+log

σ2
max

wmin

)
·

∥P−C∥2√
|Gi|

+ η.

From Lemma 10 ensures ∥P − C∥ ≤ O(
√
nσmax). Since |Gi| ≥ nwmin/2, the first term is at most

O
(

1
2T

)
.

Therefore, ∥∥∥∥∥µi − ν
T+log

σ2
max

wmin
i

∥∥∥∥∥ = O

(
max

(
1

2T
,
kdT log2 nσmax

√
ln(T/δ)

nε2w2
min

))
.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

G EXPERIMENT DETAILS

G.1 DATASET DETAILS

Mixture of Gaussians Datasets We generate a mixture of Gaussians in the following way. We set
the data dimension to d = 100 and we generate k = 10 mixtures by uniformly randomly sampling k
means {µ1, . . . µk} from [0, 1]d. Each mixture has diagonal covariance matrix Σi = 0.5Id and equal
mixture weights wi = 1/k. The server data is generated by combining samples from the true mixture
distribution together with additional data sampled uniformly randomly from [0, 1]d representing
related but out-of-distribution data. We sample 20 points from each mixture component, for a total
of 20× k = 200 in distribution points and sample an additional 100 uniform points. For Section 5.1
we simulate a cross-silo setting with 100 clients, with each client having 1000 datapoints sampled
i.i.d from the Gaussian mixture. For Section 5.2 we simulate a cross-device setting with 1000, 2000
and 5000 clients, each client having 50 points i.i.d sampled from the Gaussian mixture distribution.
The server data is identical in both cases.

US Census Datasets We create individual datapoints coming from the ACSIncome task in folkta-
bles. Thus each datapoint consists of d = 819 binary features describing an individual in the census,
including details such as employment type, sex, race etc. In order to create a realistic server dataset
(of related but not not in-distribution data) we filter the client datasets to contain only individuals of a
given employment type. The server then receives a small amount (20) of datapoints with the chosen
employment type, and a larger amount (1000) of datapoints sampled i.i.d from the set of individuals
with a different employment type. We do this for 3 different employment types, namely “Employee
of a private not-for-profit, tax-exempt, or charitable organization”, “Federal government employee”
and “Self-employed in own not incorporated business, professional practice, or farm”. These give
us three different federated datasets, each with 51 clients, with total dataset sizes of 127491, 44720
and 98475 points respectively.

Stack Overflow Datasets Each client in the dataset is a stackoverflow user, with the data of
each user being the questions they posted. Each question also has a number of tags associated
with it, describing the broad topic area under which the question falls. We first preprocess the user
questions by embedding them using a pre-trained sentence embedding model (Reimers & Gurevych,
2019). Thus a user datapoint is now a d = 384 text embedding. Now we again wish to create
a scenario where the server can receive related but out of distribution data. We follow a similar
approach to the creation of the US census datasets. We select two tag topics and filter our clients to
consist of only those users that have at least one question that was tagged with one of the selected
topics. For those clients we retain only the questions tagged with one of the chosen topics. The
server then receives 1000 randomly sampled questions with topic tags that do not overlap with
the selected client tags as well as 20 questions with the selected tags, 10 of each one. For our
experiments we use the following topic tag pairs to create clients [(machine-learning, math), (github,
pdf), (facebook, hibernate), (plotting, cookies)]. These result in federated clustering problems with
[10394, 9237, 23266, 2720] clients respectively.

G.2 VERIFYING OUR ASSUMPTIONS

On each of the datasets used in our data-point-level experiments we compute the radius of the dataset
∆, shown in Table 1.

Dataset ∆
Gaussian Mixture (100 clients) 10.57
US Census (Not-for-profit Employees) 2.65
US Census (Federal Employees) 2.65
US Census (Self-Employed) 2.65

Table 1: Radius of each dataset.

Assumption (1) requires ∆ = O
(

k log2(n)σmax
√
d

εwmin

)
. For the Gaussian mixture, k = 10, d =

100, wmin = 1/10, n = 106 and σmax = 0.5: thus ∆ clearly satisfies the condition.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

For the US Census datasets, k = 10, d = 819, n ∈ {127491, 44720, 98475}. As we cannot estimate
σmax and wmin(since the dataset is not Gaussian), we use an upper-bound wmin = 1, and replace σmax

with a proxy based on the optimal k-means cost,
√

OPT/n: this is a priori a large upper-bound on
the value of σmax, but it still gives an indication on the geometry of each cluster. As can be seen in
Figure 1, Figure 3, the average optimal cost is about 3.5 : thus,

√
OPT/n ≈ 1.87, and we estimate

k log2(n)σmax
√
d

εwmin
≈ 10·log2(105)·0.005·

√
819

0.5 ≈ 123000. This indicates that Condition (1) is satisfied as
well for this dataset.

Assumption 2 requires that the size of the server data is not too large: |Q| ≤ εnk log(n)σ2
max

∆2 . In the
Gaussian case, we have |Q| = 300, and the right-hand-side is about 29000.

In the US Census Dataset, we again upper-bound σ2
max = OPT

n . In that case, the right-hand-side is
about 620000, while there are 1020 server point. Although our estimate of σmax is only an upper-
bound, this indicates that assumption (2) is also satisfied.

G.3 BASELINE IMPLEMENTATION DETAILS

SpherePacking We implement the data independent initialization described in Su et al. (2017) as
follows. We estimate the data radius ∆ using the server dataset. We set a = ∆

√
d, for i = 1, . . . , k,

we randomly sample a center νi in [−∆,∆]d. If νi is at least distance a from the corners of the
hypercube [−∆,∆]d and at least distance 2a away from all previously sampled centers ν1, . . . , νi−1,
then we keep it. If not we resample νi. We allow 1000 attempts to sample νi, if we succeed with
sampling all k centers then we call the given a feasible. If not then a is infeasible. We find the
largest feasible a by binary search and use the corresponding centers as the initialization.

G.4 SETTING HYPERPARAMETERS OF FEDDP-KMEANS

In this section we analyze the hyperparameter settings of FedDP-KMeans that produced the Pareto
optimal results shown in the figures in Sections 5.1 and 5.2. These analyses give us some insights
on the optimal ways to set the hyperparameters when using FedDP-KMeans in practice.

Distributing the privacy budget The most important parameters to set are the values of epsilon
in Parts 1-3 of Algorithm 1. Here we discuss how to set these.

Let ε1, ε2, ε3G and ε3L denote the epsilon we allow for part 1, part 2, the Gaussian query in part 3 and
the Laplace query in part 3 respectively. We let εinit = ε1 + ε2 + ε3G + ε3L. By strong composition
the initialization will have a lower overall budget than εinit, however, it serves as a useful proxy to
the overall budget as we can think of what proportion of εinit we are assigning to each step.

Shown in Tables 2 and 3 are the values from our experiments. Specifically, for each dataset we take
the mean across the Pareto optimal results that we plotted of the ε values used for each step. We then
express this as a fraction of εinit. Loosely speaking, we interpret these values as answering “What
fraction of our overall privacy budget should we assign to each step?”

The results paint a consistent picture when comparing values with the same unit-level of privacy with
slight differences between the two levels. For datapoint level privacy, clearly the most important
step in terms of assigning budget is to the Gaussian mechanism in Step 3 with the other steps being
roughly even in term of importance. Therefore, as a rule of thumb we would recommend assigning
budget using the following approximate proportions [0.2, 0.2, 0.45, 0.15]. For user level privacy
we observe the same level of importance being placed on the Gaussian mechanism in Step 3 but
additionally on the Gaussian mechanism in Step 1. Based on these results we would assign budget
following approximate proportions [0.35, 0.1, 0.45, 0.1]. Clearly these are recommendations based
only on the datasets we have experimented with and the optimal settings will vary from dataset to
dataset, most notably based on the number of clients and the number of datapoints per client.

Number of steps of FedDP-Lloyds The other important parameter to set in FedDP-KMeans is
the number of steps of FedDP-Lloyds to run following the initialization obtained by FedDP-Init. As
discussed already, this comes with the inherent trade-off of number of iterations vs accuracy of each
iteration. For a fixed overall budget, if we run many iterations, then each iteration will have a lower
privacy budget and will therefore be noisier. Not only that, but in fact the question of whether we
even want to run any iterations has the same trade-off. If we run no iterations of FedDP-Lloyds, then

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Dataset ϵ1/ϵinit ϵ2/ϵinit ϵ3G/ϵinit ϵ3L/ϵinit
Gaussian Mixture (100 clients) 0.18 0.23 0.43 0.17
US Census (Not-for-profit Employees) 0.24 0.17 0.41 0.18
US Census (Federal Employees) 0.15 0.16 0.52 0.17
US Census (Self-Employed) 0.20 0.23 0.47 0.10

Table 2: Amount of privacy budget, as a fraction of εinit, that is assigned to each step of FedDP-Init.
Results shown are the mean of the Pareto optimal results plotted for each of the data-point-level
experiments in Figures 1, 3 and 4.

Dataset ε1/εinit ε2/εinit ε3G/εinit ε3L/εinit
Gaussian Mixture (1000 clients) 0.38 0.09 0.42 0.10
Gaussian Mixture (2000 clients) 0.43 0.10 0.36 0.11
Gaussian Mixture (5000 clients) 0.43 0.09 0.37 0.11
Stack Overflow (facebook, hibernate) 0.29 0.15 0.42 0.15
Stack Overflow (github, pdf) 0.37 0.12 0.40 0.10
Stack Overflow (machine-learning, math) 0.29 0.14 0.45 0.13
Stack Overflow (plotting, cookies) 0.33 0.11 0.47 0.09

Table 3: Amount of privacy budget, as a fraction of εinit, that is assigned to each step of FedDP-
Init. Results shown are the mean of the Pareto optimal results plotted for each of the client-level
experiments in Figures 2, 5, 6, 7 and 8.

we use none of our privacy budget here, and we have more available for FedDP-Init. To investigate
this we do the following: for each dataset we compute, for each number of steps T of FedDP-Lloyds,
the fraction of the Pareto optimal runs that used T steps.

Dataset 0 steps 1 step 2 steps
Gaussian Mixture (100 clients) 0.61 0.39 0
US Census (Not-for-profit Employees) 0.8 0.1 0.1
US Census (Federal Employees) 0.91 0.09 0
US Census (Self-Employed) 0.92 0.08 0

Table 4: Fraction of the Pareto optimal results that used a given number of steps of FedDP-Lloyds
for the data-point-level experiments.

Dataset 0 steps 1 step 2 steps
Gaussian Mixture (1000 clients) 0.86 0.11 0.04
Gaussian Mixture (2000 clients) 0.8 0.17 0.03
Gaussian Mixture (5000 clients) 0.81 0.1 0.1
Stack Overflow (facebook, hibernate) 1.0 0 0
Stack Overflow (github, pdf) 1.0 0 0
Stack Overflow (machine-learning, math) 0.94 0.06 0
Stack Overflow (plotting, cookies) 0.96 0.04 0

Table 5: Fraction of the Pareto optimal results that used a given number of steps of FedDP-Lloyds
for the client-level experiments.

The results, shown in Tables 4 and 5, are interesting. In all but one dataset more than 80% of
the optimal runs used no steps of FedDP-Lloyds, with many of the datasets being over 90%. The
preference was to instead use all the budget for the initialization. The reason for this is again the
inherent trade-off between number of steps and accuracy of each step, with it clearly here being
the case that fewer more accurate steps were better. One point to note here is that FedDP-Init
essentially already has a step of Lloyds built into it, Step 3 is nearly identical to a Lloyds step but
with points assigned by distance in the projected space. Running this step once and to a higher

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

degree of accuracy tended to outperform using more steps. This in fact highlights the point made in
our motivation, about the importance of finding an initialization that is already very good, and does
not require many follow up steps of Lloyds.

G.5 ADAPTING FEDDP-KMEANS TO CLIENT-LEVEL PRIVACY

As discussed in Section 5.2, moving to client-level DP changes the sensitivities of the algorithm
steps that use client data. To calibrate the noise correctly we enforce the sensitivity of each step by
clipping the quantities sent by each client to the server, prior to them being aggregated.

Concretely, suppose vj is a vector quantity owned by client j, and the server wishes to compute the
aggregate v =

∑
j vj . Then prior to aggregation the client vector is clipped to have maximum norm

B so that

v̂j =

{
B

∥vj∥vj , if ∥vj∥ > B

vj , otherwise.

The aggregate is then computed as v̂ =
∑

j v̂j . This query now has sensitivity B, and noise can be
added accordingly. Each step of our algorithms can be expressed as such an aggregation over client
statistics, the value of B for each step becomes a hyperparameter of the algorithm.

We make one additional modification to Step 3 of FedDP-Init to make it better suited to the client-
level DP setting. In Algorithm 1 during Step 3 the clients compute the sum mj

r and count nj
r of the

vectors in each cluster Sj
r . Rather than send these to the server to be aggregated the client instead

computes their cluster means locally as

uj
r =

{
mj

r

nj
r
, if nj

r > 0

0, otherwise,

as well as a histogram counting how many non-empty clusters the client has:

cjr =

{
1, if nj

r > 0

0, otherwise.

The server then receives the noised aggregates ûr and ĉr and computes the initial cluster centers as
νr = ûr/ĉr. In other words we use a mean of the means estimate of the true cluster mean.

H ADDITIONAL FIGURES

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

0.5 1.0 1.5 2.0
epsilon

3.4

3.5

3.6

3.7

3.8

3.9

4.0

4.1

k-
m

ea
ns

 c
os

t

DP-FedKM + FDP-Lloyds
ServerKMeans++ + FDP-Lloyds

ServerLloyds + FDP-Lloyds
SpherePacking + FDP-Lloyds

k-FED
Optimal

Figure 3: Results with data-point-level privacy on US census data. The 51 clients are US states,
each client has the data of individuals with employment type “Employee of a private not-for-profit,
tax-exempt, or charitable organization”.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
epsilon

3.4

3.6

3.8

4.0

4.2

4.4

k-
m

ea
ns

 c
os

t

DP-FedKM + FDP-Lloyds
ServerKMeans++ + FDP-Lloyds

ServerLloyds + FDP-Lloyds
SpherePacking + FDP-Lloyds

k-FED
Optimal

Figure 4: Results with data-point-level privacy on US census data. The 51 clients are US states, each
client has the data of individuals with employment type “Self-employed in own not incorporated
business, professional practice, or farm”.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

0.5 1.0 1.5 2.0 2.5 3.0 3.5
epsilon

50

52

54

56

58

60

62
k-

m
ea

ns
 c

os
t

DP-FedKM + FDP-Lloyds
ServerKMeans++ + FDP-Lloyds

ServerLloyds + FDP-Lloyds
SpherePacking + FDP-Lloyds

k-FED
Optimal

Figure 5: Results with client-level privacy on Synthetic mixture of Gaussians data with 1000 clients
in total.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
epsilon

50

51

52

53

54

55

56

57

k-
m

ea
ns

 c
os

t

DP-FedKM + FDP-Lloyds
ServerKMeans++ + FDP-Lloyds

ServerLloyds + FDP-Lloyds
SpherePacking + FDP-Lloyds

k-FED
Optimal

Figure 6: Results with client-level privacy on Synthetic mixture of Gaussians data with 5000 clients
in total.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
epsilon

0.76

0.78

0.80

0.82

0.84

k-
m

ea
ns

 c
os

t
DP-FedKM + FDP-Lloyds
ServerKMeans++ + FDP-Lloyds

ServerLloyds + FDP-Lloyds
SpherePacking + FDP-Lloyds

k-FED
Optimal

Figure 7: Results with client-level privacy on the stackoverflow dataset with 23266 clients with topic
tags facebook and hibernate.

0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
epsilon

0.76

0.78

0.80

0.82

0.84

0.86

0.88

k-
m

ea
ns

 c
os

t

DP-FedKM + FDP-Lloyds
ServerKMeans++ + FDP-Lloyds

ServerLloyds + FDP-Lloyds
SpherePacking + FDP-Lloyds

k-FED
Optimal

Figure 8: Results with client-level privacy on the stackoverflow dataset with 2720 clients with topic
tags plotting and cookies.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

0.5 1.0 1.5 2.0 2.5
epsilon

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

k-
m

ea
ns

 c
os

t

DP-FedKM + FDP-Lloyds
ServerKMeans++ + FDP-Lloyds

ServerLloyds + FDP-Lloyds
SpherePacking + FDP-Lloyds

k-FED
Optimal

Figure 9: Results with client-level privacy on the stackoverflow dataset with 10394 clients with topic
tags machine-learning and math.

35

	Introduction
	Background
	Method
	FedDP-Init
	FedDP-Lloyds

	Theoretical analysis
	Experiments
	Data-point-level Privacy Experiments
	Client-level Privacy Experiments

	Related Work
	Conclusion
	Extended Related work
	Technical preliminaries
	Differential Privacy Definitions and Basics
	Differential Privacy for Gaussian Mixtures
	Properties of Gaussian Mixtures
	Clustering preliminaries

	The non-private, non-federated algorithm of AwasthiS12
	Our result
	Part 1: Computing centers close to the means
	Reducing the diameter
	A relaxation of Awathi-Sheffet's conditions
	Computing a good k-means solution for P
	If assumption (2) is satisfied: the noise is negligible
	Enforcing Assumption (2)

	Part 2: Improving iteratively the solution
	Experiment Details
	Dataset Details
	Verifying our Assumptions
	Baseline Implementation Details
	Setting hyperparameters of FedDP-KMeans
	Adapting FedDP-KMeans to client-level privacy

	Additional Figures

