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Abstract

The KV-Cache technique has become the stan-
dard for the inference of large language mod-
els (LLMs). This paper enables a novel dy-
namic KV-Cache eviction policy by inject-
ing lightweight Attention-Gates (AGs) into the
model to maximize the utilization efficiency of
KV-Cache. AG accepts the global context as in-
put and yields eviction flags for each token. The
self-attention modules in the model proceed ac-
cording to the flags and cache only a subset of
the KV states for next token prediction. The
Attention-Gates can yield various flags for dif-
ferent heads and layers and be easily tuned on
top of a pre-trained LLM via continual pre-
training or supervised fine-tuning. The com-
putational and memory overhead introduced
by Attention-Gates can be minimal. We con-
duct empirical evaluations across multiple sce-
narios, showing that our method significantly
reduces redundant KV-Cache memory usage
while maintaining competitive performance.

1 Introduction

Large language models (LLMs) (Dubey et al.,
2024; Team et al., 2024; Chiang et al., 2023) have
achieved remarkable success across a wide range
of tasks. A key technique in LLM inference is KV-
Cache, which stores transient attention keys and
values to avoid recomputation. However, as the
size of LLMs continues to increase and the demand
for handling long-context queries grows, the KV-
Cache has emerged as a significant bottleneck. Stor-
ing attention states for numerous tokens can lead to
considerable memory overhead and increased data
movement across the memory hierarchy.

Studies have shown that sparsity is a natural phe-
nomenon in attention mechanisms, with many to-
kens being redundant for inference (Zhang et al.,
2024). This suggests that retaining all tokens in
the KV-Cache is unnecessary. Existing works have
explored this insight to compress KV-Cache using

static strategies or hinging on accumulative atten-
tion scores. For example, streamingLL.M (Xiao
et al., 2024) retains a fixed window of beginning
and recent tokens in the KV-Cache, but it struggles
to flexibly adapt to specific contexts (e.g., in senti-
ment analysis, retaining the token “cute” in “a cute
cat” is crucial, while in object recognition, the to-
ken “cat” would be more important). H20 (Zhang
et al., 2024), on the other hand, employs a token-
adaptive approach, using local accumulative at-
tention scores to determine which tokens to evict.
However, the local perspective can introduce atten-
tion bias (Oren et al., 2024), with a tendency to
over-prioritize either the initial or recent tokens.

To overcome these challenges, we introduce a
learnable neural network module, Attention-Gate
(AG), for adaptive in-context eviction. For each
self-attention within the model, we insert an AG
preceding it, which maps the sequence of token
features into token-wise eviction flags. The flags
indicate whether the token should be excluded from
the subsequent self-attention, and evicted tokens
do not require their KV states to be cached. AGs
can seamlessly embrace pre-trained LLMs, tuned
by minimizing the language modeling loss. Ideally,
AGs automatically learn to discern the most rele-
vant tokens for the current context without manual
intervention. In practice, we implement the AG as
a self-attention layer with much fewer heads than
the original self-attention in the model (e.g., 4 v.s.
32) to minimize the extra overhead.

As illustrated in Figure 1, AG can generate dif-
ferent eviction strategies across different layers and
attention-heads for different tokens, demonstrating
its adaptability to the diverse requirements of each
component in the model. Importantly, AGs enjoy
high training efficiency, e.g., only four NVIDIA
4090 GPUs and a dataset of 5,000 samples are
required when applying AGs to LLaMA2-7B (Tou-
vron et al., 2023) following a continual pre-training
(CPT) recipe. This alleviates concerns about the
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Figure 1: KV-Cache eviction patterns across different layers and attention-heads, visualized for 4 samples from the
PIQA dataset (top row) and 4 samples from the BoolQ dataset (bottom row), using AG fine-tuned Llama2-7B
models. Black areas represent tokens that are neither computed nor stored in the KV-Cache. The variability of
eviction patterns across tasks, prompts, layers, and attention-heads demonstrates the dynamic nature of our method.
A common trend observed is that deeper layers tend to mask more KV-Cache states, with some in deeper layers

being entirely masked.

computational overhead of trainable eviction strate-
gies (Zhang et al., 2024; Chen et al., 2024).

Empirically, extensive experiments show that
our method can outperform traditional training-
free eviction strategies, such as streamingLLM and
H20, in accuracy and token eviction rates under
both CPT and supervised fine-tuning (SFT) train-
ing recipes. In particular, when trained by SFT,
our method not only evicts a significant number of
redundant tokens but also maintains or surpasses
the performance of LoRA-finetuned LLMs. For ex-
ample, on the RTE dataset (Bar-Haim et al., 2006),
our approach improves accuracy by 13.9% while
evicting 62.8% of tokens. This demonstrates that
selective token eviction can enhance performance.

2 Related Work

As large language models (LLMs) scale in size and
input sequence length, optimizing their efficiency
has become increasingly important, particularly in
addressing space and time complexity. A signif-
icant bottleneck lies in the attention mechanism,
which demands considerable computational and
memory resources, especially for long sequences.

Traditional KV-Cache Eviction Strategies To
address both memory and computational chal-
lenges, KV-Cache eviction has emerged as an effec-
tive strategy. Existing approaches predominantly
rely on parameter-free heuristics.

Static strategies, such as those used in Sparse
Transformers (Child et al., 2019), employ fixed
pruning patterns, such as Strided and Fixed At-
tention. While effective in some cases, these ap-
proaches are not adaptive to specific contexts, of-
ten sacrificing accuracy. streamingLLM (Xiao
et al., 2024) tackles the Attention Sink phenomenon,
where attention scores concentrate on initial tokens,
by retaining these tokens along with a fixed win-
dow of recent tokens. While this improves perfor-
mance, static approaches generally lack the flexi-
bility needed to adapt to different tokens, attention-
heads, or layers.

Strategies using accumulative attention scores of-
fer more flexibility by dynamically identifying im-
portant tokens. For instance, SpAtten (Wang et al.,
2021) employs Accumulative Attention Scores
(A2S), which sum the softmax outputs for each
token to measure its importance. This approach
allows selective token pruning in subsequent lay-
ers, effectively reducing computational complex-



ity without the need for retraining. H20 (Zhang
et al., 2024) extends this concept to decoder-based
models, using local A2S statistics for adaptive evic-
tion in autoregressive generation. However, H20
suffers from the attention bias issue (Oren et al.,
2024), particularly in long-context inputs. Several
follow-up works have aimed to address this limita-
tion. NACL (Chen et al., 2024) introduces random
eviction to mitigate attention bias, while A2SF (Jo
and Shin, 2024) incorporates a Forgetting Factor.
However, none of these approaches fully resolves
the underlying problem. Despite these limitations,
some studies (Adams et al., 2024) suggest that H20
remains an optimal solution in many scenarios.

More Adaptive Strategies Although strategies
based on accumulative attention scores provide
more flexibility than static methods, they still have
notable limitations. For instance, H20 (Zhang
et al., 2024) applies the same token eviction ra-
tio across all attention heads, restricting the adapt-
ability of the method. FastGen (Ge et al., 2023),
on the other hand, introduces a different approach
by hybridizing KV-Cache compression policies
and applying adaptive strategies to each attention
head. However, it focuses on the decoding stage
and neglects the importance of the prefilling stage.
Learnable eviction strategies, on the other hand,
offer greater flexibility by enabling different layers
and attention heads to adopt heterogeneous evic-
tion policies. However, such strategies have been
relatively underexplored, likely due to concerns
about the computational overhead they may in-
troduce (Zhang et al., 2024; Chen et al., 2024).
Nonetheless, task-specific training is essential for
optimizing performance across different contexts.
For example, a recent approach (Anagnostidis et al.,
2024) introduces a learnable mechanism for drop-
ping uninformative tokens, but it faces difficulties
in batched generation and does not account for
continual pre-training or decoding-only LLMs. De-
spite these challenges, learnable strategies have a
strong potential to improve performance across a
variety of tasks by allowing models to adapt evic-
tion strategies to meet task-specific requirements.

3 Method

This section first briefly reveals multi-head self-
attention and KV-Cache, then describes the
Attention-Gate (AG) mechanism for in-context KV-
Cache eviction. An illustrative overview of AG is
presented in Figure 2.

3.1 Preliminary

Multi-Head Attention (MHA) (Vaswani et al.,
2017) is a core component of Transformer, as used
by most LLMs. MHA enables the model to capture
dependencies across different tokens in a sequence.
Specifically, for an input sequence X € R"*¢,
where n represents the sequence length and d de-
notes the dimensionality of the hidden states, the
output of MHA is computed as:

MHA (X) = [Hy(X),Ho(X), ..., Hy(X)| WO,
where {H;}"_| refers to the h attention heads and
H;(X) = Attn (XWiQ, XW, XWZ»V)

= Attn (QZ, K;, ‘/1)

QiK; )
= Softmax t —INF(1 - M;) |V,
(s - mra - o)
= AV . (D

Here, W2, WK e R¥xd WV e R and
WO ¢ RMv*d are learned projection matrices.
INF is a large constant, 1 is a matrix of ones, M;
is the mask applied to head H;, and A; represents
the attention scores for head H;.

KV-Cache is employed during the inference of
auto-regressive transformers, which stores the key
and value information from previous time steps,
allowing efficient reuse and reducing recomputa-
tion. The inference process can be divided into two
stages: prefilling and decoding.

In the prefilling stage, the input sequence X (
[2M, 23, . z™W] € R™ passes through
MHA, and the corresponding key-value pairs
K (sn) and Vi(gn) for head H; are stored in KV-

(2
Cache. These are expressed as:
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where k‘gt) = 2®WWK and UZ@ = 2OWY. After
prefilling, the next token (" *1) is generated.

In the decoding stage, ("t is input to generate
2("*2) for the first step. During this process, only

k§n+1)71}2(n+1) need to be computed for head H;.

These are then concatenated with the cached K i(gn)
and Vi(gn) to form K(<n+1) and Vi(gnﬂ), which

(<
are used to complete the current MHA computation
and update the KV-Cache. The process repeats

token by token until the generation is complete.



KV-Cache plays a critical role in improving the
efficiency of LLM inference. However, the size
of the KV-Cache grows with the input sequence
length, leading to substantial memory overhead.
Efficiently managing KV-Cache while maintaining
model performance has become a key challenge in
scaling LL.Ms to longer contexts.

3.2 Issues of Traditional Eviction Strategies

Various KV-Cache eviction strategies have been
developed to mitigate the above issue, but they still
suffer from limitations.

Lack of Adaptability Static approaches, such
as streamingLLM (Xiao et al., 2024), lack adapt-
ability across tokens, attention-heads, layers, tasks,
and models. H20 (Zhang et al., 2024) addresses
some of these by introducing token-level and head-
level adaptability. However, it still applies a uni-
form eviction ratio across all attention heads, over-
looking the significant variation in attention scores
across different heads, as demonstrated by Fast-
Gen (Ge et al., 2023). Without finer-grained flex-
ibility, it is then possible to retain unnecessary in-
formation, leading to reduced efficiency.

Absence of Global Context KV-Cache eviction
strategies should ideally be context-aware, as the
importance of the same token can vary significantly
depending on the surrounding context. However,
existing strategies relying on accumulative atten-
tion scores, such as H20, NACL, and A2SF (Chen
et al., 2024; Jo and Shin, 2024; Zhang et al., 2024),
are primarily based on local statistics of the context.
While methods like NACL and A2SF attempt to
mitigate this by introducing various adjustments to
reduce the misjudgment of token importance and
the resulting biased retention (Oren et al., 2024),
the root issue remains unsolved.

Inherent Inefficiency Methods like H20 and
FastGen (Ge et al., 2023) are inefficient due to
their sequential, token-by-token eviction at each de-
coding step. And, H20 computes attention scores
before deciding which tokens to evict, wasting com-
putation on soon-to-be discarded tokens.

3.3 Attention-Gate

To address these issues, we develop Attention-Gate
(AG), a lightweight, trainable module positioned
before the MHA layer to generate adaptive, context-
aware eviction flags for the tokens. The flags deter-
mine which tokens in the KV-Cache of each head of
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Figure 2: An overview of Attention-Gate (AG) for KV-
Cache eviction. AG is a lightweight learnable module
placed before each MHA layer. Given the input hidden
states, it determines for each head whether to retain or
discard the key and value tokens in the KV-Cache. In
the attention weights, this corresponds to masking out
columns for the evicted keys, while keeping the diagonal
intact to ensure the query interacts with its own key.

the MHA should join the computation of attention
scores and be retained in the KV-Cache.

AG includes (i) a lightweight multi-head atten-
tion with h-dim outputs, denoted as MHA/, to
enable the awareness of global context of the se-
quence!, and (ii) a gating mechanism G to enable
adaptive eviction flags for the attention heads in the
subsequent MHA layer. Notably, MHA' has much
fewer heads compared to MHA, i.e., h’ < h.

Specifically, given the hidden states X € R"*¢
yielded by the preceding module, AG outputs a
binary mask for the heads in the subsequent MHA:

AG(X) =G (MHA'(X),7) € {0,1}"", (2)

where 7 is the gating threshold used as:

G(s,7) = {1’

0, otherwise

if Sigmoid(s) > 7
gmoid(s) 3

The KV for ¢-th token of the ¢-th head within
the subsequent MHA layer are then retained if
AG(X) l(t) = 1. Meanwhile, in the attention matrix,
the columns corresponding to evicted tokens are
masked out.> This way, AG selectively determines
which tokens are retained or discarded for each
attention head.

'To distinguish it from the vanilla MHA, all symbols in
MHA’ are marked with a prime (/).

The diagonal elements of the attention matrix, where a
token attends to itself, are always preserved.



3.4 Training of AG

Eviction Loss We introduce the Eviction Loss to
encourage the model to maintain the eviction ratio
close to a target value 3, which is defined as:

Eevict:a"rG_B‘a (4)

where AG denotes the average of all AG(X ) within
the model. In particular, o adjusts the intensity of
KV-Cache eviction, while (3 ensures that eviction
does not become overly aggressive. Besides, vari-
ous layers and heads have enough freedom to adjust
their own eviction frequency. This loss function
works alongside the auto-regressive loss to balance
token eviction and model performance.

Initialization We initialize the AG parameters us-
ing Xavier initialization (Glorot and Bengio, 2010).
Additionally, a small constant v > 0 can optionally
be added inside Sigmoid in Equation (3), ensuring
that the initial retention probabilities are close to
1. This encourages the model to retain most tokens
early in training.

Handling Non-Differentiability Directly apply-
ing the threshold-based gating mechanism from
Section 3.3 would lead to non-differentiable gra-
dients during training. To resolve this, we employ
the Straight-Through Estimator (STE) (Yin et al.,
2019), which allows gradients to flow through dis-
crete decisions by approximating them during the
backward pass. Specifically, during backpropaga-
tion, instead of using the hard 0 or 1 values obtained
from comparing against the threshold, we utilize
the smooth output of the Sigmoid function.

For more details, please refer to Section 4 and
Appendix A.

3.5 Complexity Analysis

AG Module For input X € R"*?, the FLOPs
for AG are:

FLOPs = 2dnY .
A%S O(n"dh')

MHA Module Without AG, original MHA’s
FLOPs are:
FLOPs = O(n?dyh) . 6))
original MHA
After AG processing, t% of the KV-Cache tokens
are discarded, leaving (1 — ¢%) for attention com-
putation:

FLOPs = O((1 — t%)n*dyh) .
MHA after AG

Combined AG & MHA the total FLOPs are:

JFLOPs — O(n*(dih + (1 — t%)dgh)) . (6)
Efficiency The reduction in FLOPs depends on
three factors: (i) Reduction in token count (t%):
Higher values of % result in a larger reduction in
the quadratic term of the original MHA. (ii) Head
configuration (b’ < h): The AG module must have
significantly fewer heads (h’) compared to the orig-
inal MHA (h) to ensure its overhead is small. (iii)
Head dimension ratio (dj, < d): A smaller head
dimension (dﬁg) for AG further reduces its contribu-
tion to total FLOPs. The analysis above is further
supported by our empirical results in Figure 3.

3.6 Discussion

Global v.s. Local AG utilizes MHA’ to inher-
ently incorporate global information of the context.
This is essential, as determining redundancy or rel-
evance often requires a global understanding of the
sequence. Alternatively, a simpler approach is to
employ a linear transformation to generate eviction
flags. This method relies solely on the hidden state
of each token itself without incorporating infor-
mation from other tokens in the sequence. While
the local approach is computationally cheaper, as
shown in Table 3, its performance is not guaranteed.
This limitation highlights the challenges faced by
methods that rely on local statistics of the context,
as discussed in Section 3.2.

Prefilling or Decoding Our current studies
mainly apply AG to the prefilling stage following
NACL (Chen et al., 2024), where the full sequence
is available. By making eviction decisions before
the MHA layers, AG effectively manages the KV-
Cache during this phase. AG can be easily extended
to the decoding phase by maintaining an extra KV-
Cache for MHA', which is still very economical
because MHA' has far fewer heads than MHA.

4 Experiments

This section consists of three parts. First, we evalu-
ate the performance of AG in two scenarios: contin-
ual pre-training (CPT) and supervised fine-tuning
(SFT) (Section 4.1 & 4.2). Second, we provide a vi-
sualization of selected examples to demonstrate the
core characteristics of AG (Section 4.3). Finally,
we conduct ablation studies to provide further in-
sights into the effectiveness of AG (Section 4.4).
Additional results are provided in Appendix A.1.



Metric

PIQA ARC-C ARC-E RTE COPA BoolQ HellaSwag MMLU Avg.

Metric LongBench

Llama2-7B-cpt Acc. 72.69 32.88 50.62 50.54 57.00
streamingLLM  Acc. 7242 31.53 49.74 50.90 54.00
H20 Acc. 7220 30.85 4938 51.99 55.00
. Acc. 7633 3220 4832 50.18 59.00
urs %Evict. 43.12 46.54 45.15 48.60 55.37

64.77  42.19 26.64 49.67  Score 23.42
61.31 37.75 26.66 48.04  Score 4.61
6242 4145 2645 48.72  Score 4.85
60.46  64.23 28.54 52.41  Score 13.71
50.16  61.10 70.36 52.55 %Evict.  68.55

Table 1: Performance comparison of Llama2-7B and various KV-Cache eviction strategies after continual pre-
training. For baselines, (W, Wy, W,,, W,,) are made trainable, while in our method, the AG module is also trainable.
Higher values indicate better performance for all metrics. Acc. refers to accuracy. %Evict. refers to the mean
KV-Cache eviction ratio, representing the percentage of tokens evicted from KV-Cache. The eviction ratio is fixed
at 50% for the baseline methods. In contrast, our method achieves better performance (average accuracy and score)

while maintaining a higher average %Evict..

4.1 Continual Pre-training

Models & Datasets We use Llama2-7B (Tou-
vron et al., 2023) as our primary base model. Ad-
ditionally, we validate the feasibility of our ap-
proach on Mistral-7B (Jiang et al., 2023), with
results provided in Table 5. We select a subset
of the RedPajama dataset (Computer, 2023), com-
prising approximately 5,000 samples 3, to serve as
the training set. To assess the effectiveness of our
method, we evaluate it on widely recognized bench-
marks: PIQA (Bisk et al., 2020), ARC-C (Clark
et al., 2018), ARC-E (Clark et al., 2018), RTE (Bar-
Haim et al., 2006), COPA (Roemmele et al., 2011),
BoolQ (Clark et al., 2019), HellaSwag (Zellers
et al., 2019), MMLU (Hendrycks et al., 2021), and
LongBench (Bai et al., 2023). All evaluations are
conducted in a zero-shot setting, with performance
assessed using OpenCompass (Contributors, 2023).

Training Details & Baselines During CPT,
Wy, Wy, W,,,W,) are made trainable using
LoRA (Hu et al., 2021). In our method, AG is also
trainable.* For the Llama2-7B model, 7 = 0.5,
v = 2, a = 5 and § = 0.4. The model
was trained for a single epoch. We compare to
streamingl.LLM (Xiao et al., 2024), a representative
of static strategies, and H20 (Zhang et al., 2024),
which represents methods based on accumulative
attention scores.” For baseline methods, the evic-
tion ratio is fixed at 50%.

3Specifically, we sampled 4,997 samples proportionally
from each subset of the RedPajama dataset.

“We tested a version where only AG is trainable, with other
parameters frozen. Results are shown in Table 4.

5 Adams et al. (2024) suggest that H20 is an optimal so-
lution in many scenarios. Due to its strong performance and
the difficulty of reproducing other training-free methods, no
additional training-free baselines were included.

Metric PIQA ARC-C RTE COPA BoolQ OBQA Avg.

Fine-tuned
Llama2-7B

Ours  Acc. 82.15 59.66 64.26 93.00 86.82 78.80 77.45
(a =1) %Evict. 66.16 48.31 65.47 4540 67.46 67.17 60.00

Ours Acc. 81.50 57.63 74.01 95.00 87.00 79.20 79.06
(o = 0.5) %Evict. 64.96 36.45 62.80 34.77 67.31 66.65 55.49

Acc. 8292 60.34 64.98 92.00 88.10 78.80 77.86

Table 2: Performance of Llama2-7B with LoRA fine-
tuning and our method on six downstream tasks. Our
method makes the AG modules learnable. Two settings
for a (0.5 and 1) are tested. Our method maintains
comparable or better accuracy while achieving a higher
eviction ratio, demonstrating its fask-specific adaptabil-
ity in managing token eviction.

Results As shown in Table 1, our method can
better balance performance and KV-Cache eviction.
It consistently outperforms the baseline strategies
in performance across most tasks while achieving
a higher mean eviction ratio. Moreover, our added
computational overhead is minimal. The CPT was
conducted on only 5,000 samples and trained for
just one epoch. This efficiency can be attributed to
the fact that our method does not need to learn new
knowledge from scratch but rather focuses on learn-
ing effective token retention strategies, leveraging
the existing capabilities of the pre-trained model.

4.2 Supervised Fine-tuning

Model & Tasks We also use Llama2-7B (Tou-
vron et al., 2023), and evaluate on six widely rec-
ognized downstream tasks: PIQA, ARC-C, RTE,
COPA, BoolQ, and OpenBookQA (Mihaylov et al.,
2018). For each task, we fine-tune model using the
respective training set and evaluate its performance
on the corresponding test set.

Implementation Details The selection of train-
able parameters follows Section 4.1. The hyper-
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Figure 3: Comparison of peak memory usage and pre-
filling time between the LLaMA2-7B model (without
AG) and the proposed implementation (with AG and
~50% eviction) across varying prompt lengths.

parameters are 7 = 0.3, v = 0, « = 1 or 0.5,
and S = 0.28. Training is performed using the
AdamW optimizer (Loshchilov and Hutter, 2017)
with a learning rate of Se-5 for 2 epochs per dataset.

Results As shown in Table 2, our method
achieves a strong balance between accuracy and
KV-Cache eviction. With o« = 1, it maintains
competitive accuracy compared to the fine-tuned
Llama2-7B baseline while achieving a high mean
eviction ratio of 60.00%. With o = 0.5, the evic-
tion ratio decreases to 55.49%, but the average
accuracy improves. In tasks like RTE and COPA,
it even surpasses the baseline. This suggests that
effective token eviction helps the model focus on
relevant information. Additionally, performance
varies across tasks under the same settings. For
instance, ARC-C is more challenging to evict com-
pared to OpenBookQA, leading to a larger accuracy
drop post-eviction. This highlights the importance
of task-specific KV-Cache eviction policies.

Inference Efficiency We evaluated the inference
efficiency of the LLaMA2-7B model with and with-
out the AG module, as shown in Figure 3. Our
method achieves significant memory savings, espe-
cially as prompt lengths increase. Although we
have not implemented specialized sparse MHA
kernels and the current prefilling implementation
(marked with * in the legend) uses a suboptimal
for-loop over attention heads, AG still maintains
stable prefilling time and even shows a decreasing
trend as prompt length grows. These empirical
results align well with the analysis presented in
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Figure 4: Attention patterns in Llama2-7B after fine-
tuning on BoolQ. (i) MHA heads across layers before
eviction; (ii) AG attention scores across layers.

Section 3.5. We believe there is room for further ac-
celeration through kernel fusion techniques, which
we leave for future work.

4.3 Attention Pattern

We visualize the attention patterns of both MHA
and AG mechanisms in Llama2-7B after fine-
tuning on the BoolQ dataset using a selected sam-
ple (Figure 4). The complete visualization is avail-
able in Appendix A.3. From the figure, we derive
insights in two key areas:

(i) MHA Attention Patterns Before Eviction
Multiple MHA heads across layers exhibit diverse
attention behaviors—such as vertical, horizontal,
and diagonal patterns—particularly in the first two
layers where heterogeneity is most pronounced. As
layers deepen, attention patterns become progres-
sively sparser, shifting from dense activations in
early layers to more focused patterns in later ones.
Notably, bright yellow vertical lines in deeper lay-
ers consistently highlight critical tokens essential
for inference. These correspond to the Heavy Hit-
ters identified in H20 (Zhang et al., 2024), empha-
sizing tokens that significantly contribute to atten-
tion scores. Our method preserves these critical
tokens in deeper layers, maintaining their impor-
tance throughout the network.



Metric PIQA ARC-C RTE COPA BoolQ OBQA Avg.

Acc.  82.15 59.66 6426 93.00 86.82 78.80 77.45
%Evict. 66.16 4831 6547 4540 67.46 67.17 60.00

Acc. 81.88 57.63 6570 91.00 87.52 77.40 76.86
%Evict. 63.92 3638 62.73 2438 6522 63.57 5270
Acc. 8215 5390 6245 89.00 8731 7740 7537
%Evict. 58.97 3147 59.77 2032 63.02 59.17 48.79

Acc. 8145 5336 58.84 88.00 86.73 78.40 74.46
%Evict. 61.75 33.55 61.34 19.24 6459 59.59 50.01
Acc. 83.03 5390 5993 89.00 87.16 7640 74.90
%Evict. 58.68 24.23 3223 1228 59.40 55.54 40.39

Acc. 81.66 5525 66.06 88.00 86.85 78.00 7597
%Evict. 49.52 3692 4685 28.74 56.02 60.32 46.40
Acc. 82775 5593 79.06 82.00 86.33 7840 77.41
%Evict. 5331 4438 51.20 4795 6198 61.73 5343

Acc. 8254 5458 5740 81.00 87.71 7480 73.01
%Evict. 1.06 046 081 026 1.38 1.16  0.86

Acc. 83.08 50.85 6534 82.00 8731 7320 73.63
%Evict. 65.15 4096 6429 2137 6749 63.69 53.83
Acc. 81.61 5356 6029 82.00 8737 7420 73.17
%Evict. 65.66 4448 65.14 2428 68.18 63.44 5520

1)

@-1)

2-2)

(3-1)

(3-2)

@1

@-2)

(&)

(6-1)

(6-2)

Table 3: Ablation study on AG configurations, reporting
accuracy (Acc.) and KV-Cache eviction ratio (%Evict.)
under various settings.

(ii) MHA’ Attention Patterns The attention
scores produced by MHA' exhibit a clear transition
from high-resolution focus in early layers to lower-
resolution, distilled representations of in-context
information in deeper layers. This suggests that
deeper layers of MHA' rely less on detailed global
context, as earlier layers have already sufficiently
refined the relevant information. This behavior
indicates potential for improving efficiency by re-
ducing the number of attention heads or feature
dimensions in the deeper layers of MHA'.

4.4 Ablation

We investigate the effects of different configura-
tions of the AG mechanism, including the number
of heads, head dimensions, and eviction strategies.
Detailed results are summarized in Table 3.

Number of Heads Reducing the number of AG
heads from 4 (setting (1)) to 2 or 1 (settings (2-1)
and (2-2)) leads to decreases in both accuracy and
eviction ratio. This indicates that the capacity of
AG is closely tied to the number of heads.

Head Dimensions Similarly, decreasing the di-
mensionality of AG heads (settings (3-1) and (3-2))
results in lower eviction capabilities and accuracy,
highlighting the importance of maintaining suffi-
cient head dimensionality.

Layer-wise Guided Eviction Strategies Set-
tings (4-1) and (4-2) investigate using the previ-
ous layer’s hidden states and AG module to guide

eviction decisions in the current layer, introducing
inter-layer dependency to enable parallelism. In
(4-1), eviction starts from the second layer onward:
the first layer does not evict, while each subsequent
layer uses the eviction information from the imme-
diately preceding layer (e.g., the first layer predicts
eviction for the second layer, the second for the
third, and so forth). In (4-2), eviction begins from
the third layer, with the second layer guiding the
third, the third guiding the fourth, etc. This design
stems from the observation that the first two layers
retain most KV pairs after standard AG training,
as shown in Figure 1, where these early layers ex-
hibit minimal masking. By skipping eviction in
these initial layers, computational resources are
saved without significantly impacting performance.
Although these guided strategies introduce paral-
lelism and reduce computation in early layers, they
result in a slight decrease in accuracy and eviction
ratio compared to setting (1), indicating a trade-off
between efficiency and effectiveness.

Replacement of MHA’ with Linear Layer Set-
ting (5) replaces the MHA' in AG with a simple
linear layer to determine eviction. The sharp drop
in eviction effectiveness and accuracy compared to
(1) underscores the necessity of using attention-like
mechanisms to capture global in-context informa-
tion for successful eviction.

Recent Token Retention Settings (6-1) and (6-
2) vary the number of recent tokens retained at
5 and 10, respectively. The results suggest that
increasing the number of recent tokens does not
necessarily improve performance within the AG
framework. Future work could explore more so-
phisticated approaches for managing recent tokens,
such as learnable weighted strategies.

5 Conclusion

In conclusion, the proposed Attention-Gate mecha-
nism offers a flexible and adaptive solution to KV-
Cache eviction in large language models. By dy-
namically identifying and discarding less important
tokens in a data-driven manner, Attention-Gate ad-
dresses the limitations of static and attention-score-
based strategies, providing efficient context-aware
eviction. This mechanism integrates seamlessly
with pre-trained models and can be easily tuned,
making it a practical and effective method for en-
hancing both performance and memory efficiency
in various tasks.



Limitations

This work primarily focuses on the prefilling stage.
Due to limited computational resources, experi-
ments were not conducted on larger-scale models.
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A Additional Experiments

A.1 Additional Results for Continual
Pre-training

In this section, we perform continual pre-training
on Llama2-7B using the same training data and hy-
perparameter settings described in Section 4.1. The
baselines are training-free, while in our method,
only the AG module is trainable. The results are
shown in Table 4.

A.2 Results of Continual Pre-training on
Mistral

We conducted continual pre-training on Mistral-
7B (Jiang et al., 2023) using 5,000 samples from
RedPajama (Computer, 2023), and the results are
shown in Table 5. Compared to the performance
of Llama2-7B presented in Table 4, Mistral’s per-
formance slightly declined. We hypothesize that
this may be due to the distribution of RedPajama’s
data being less suited to Mistral. Additionally, this
raises the question of whether KV-Cache eviction is
model-dependent, and whether its effectiveness is
related to the model’s expressive power. Although
the parameter counts of Mistral-7B and Llama2-7B
are similar, Mistral-7B significantly outperforms
Llama2-7B. This could suggest that Mistral is uti-
lizing more tokens or scoring them with finer gran-
ularity, which results in fewer redundant tokens and
thus makes eviction less effective. Furthermore,
it is possible that Mistral’s use of grouped-query
attention (GQA), which inherently involves com-
pression, may make it more challenging to increase
the eviction ratio effectively in this context.

A3

Figure 5 provides a comprehensive view of the
layers and attention heads from Figure 4.

More Visualization


https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2309.17453

Metric  PIQA ARC-C ARC-E  RTE COPA BoolQ HellaSwag  Avg.

Llama2-7B Acc. 76.33 37.29 51.32 5199 62.00 69.94 68.16 59.58
Local Acc. 69.97  31.86 48.68 5199 60.00 57.86 37.08 51.06
streamingLLM Acc. 72.69 3322 51.15  50.18 63.00 62.05 40.85 53.31
H20 Acc. 759 33.22 52.03 5271 47.00 6737 66.32 56.36
Ours Acc. 76.17  33.90 49.03 5235 63.00 67.52 66.33 58.33

%Evict. 5429  51.03 51.05 46.70 40.02  57.75 52.16 51.87

Table 4: Performance comparison of Llama2-7B and various KV-Cache eviction strategies across seven tasks. Our
approach trains only the AG module during continual pre-training, keeping other components frozen. The table
reports accuracy (Acc.) for Llama2-7B and all eviction methods, with Llama2-7B serving as the upper bound for
accuracy. Metric %Evict. refers to the mean KV-Cache eviction ratio, representing the percentage of tokens evicted
from the KV-Cache. The eviction ratio is fixed at 50% for the baseline methods, including a local strategy (retaining
only recent tokens), streamingl.LLM, and H2O. In contrast, our method achieves higher average accuracy while
maintaining a higher average %Evict..

Metric  PIQA ARC-C ARC-E  RTE COPA BoolQ HellaSwag Avg.
Mistral-7B Acc. 80.09 4237 63.14  48.01 76 64.22 73.02 63.84

Acc. 7590 3424 552 48.01 65 62.2 67.91 58.35
Eviction 37.14  39.48 37.80 4093 4527  44.68 50.92 42.32

Ours

Table 5: Performance comparison between Mistral-7B and Ours across various tasks.

11



Head Index: 0 — 31

Figure 5: The complete version of Figure 4. Two key observations emerge in (i): 1. the first two layers are denser

Layer Index: 0 — 31

compared to the subsequent layers, and 2. bright-yellow vertical lines, representing critical tokens for inference,

consistently appear across heads in deeper layers.
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