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Abstract

The KV-Cache technique has become the stan-001
dard for the inference of large language mod-002
els (LLMs). This paper enables a novel dy-003
namic KV-Cache eviction policy by inject-004
ing lightweight Attention-Gates (AGs) into the005
model to maximize the utilization efficiency of006
KV-Cache. AG accepts the global context as in-007
put and yields eviction flags for each token. The008
self-attention modules in the model proceed ac-009
cording to the flags and cache only a subset of010
the KV states for next token prediction. The011
Attention-Gates can yield various flags for dif-012
ferent heads and layers and be easily tuned on013
top of a pre-trained LLM via continual pre-014
training or supervised fine-tuning. The com-015
putational and memory overhead introduced016
by Attention-Gates can be minimal. We con-017
duct empirical evaluations across multiple sce-018
narios, showing that our method significantly019
reduces redundant KV-Cache memory usage020
while maintaining competitive performance.021

1 Introduction022

Large language models (LLMs) (Dubey et al.,023

2024; Team et al., 2024; Chiang et al., 2023) have024

achieved remarkable success across a wide range025

of tasks. A key technique in LLM inference is KV-026

Cache, which stores transient attention keys and027

values to avoid recomputation. However, as the028

size of LLMs continues to increase and the demand029

for handling long-context queries grows, the KV-030

Cache has emerged as a significant bottleneck. Stor-031

ing attention states for numerous tokens can lead to032

considerable memory overhead and increased data033

movement across the memory hierarchy.034

Studies have shown that sparsity is a natural phe-035

nomenon in attention mechanisms, with many to-036

kens being redundant for inference (Zhang et al.,037

2024). This suggests that retaining all tokens in038

the KV-Cache is unnecessary. Existing works have039

explored this insight to compress KV-Cache using040

static strategies or hinging on accumulative atten- 041

tion scores. For example, streamingLLM (Xiao 042

et al., 2024) retains a fixed window of beginning 043

and recent tokens in the KV-Cache, but it struggles 044

to flexibly adapt to specific contexts (e.g., in senti- 045

ment analysis, retaining the token “cute” in “a cute 046

cat” is crucial, while in object recognition, the to- 047

ken “cat” would be more important). H2O (Zhang 048

et al., 2024), on the other hand, employs a token- 049

adaptive approach, using local accumulative at- 050

tention scores to determine which tokens to evict. 051

However, the local perspective can introduce atten- 052

tion bias (Oren et al., 2024), with a tendency to 053

over-prioritize either the initial or recent tokens. 054

To overcome these challenges, we introduce a 055

learnable neural network module, Attention-Gate 056

(AG), for adaptive in-context eviction. For each 057

self-attention within the model, we insert an AG 058

preceding it, which maps the sequence of token 059

features into token-wise eviction flags. The flags 060

indicate whether the token should be excluded from 061

the subsequent self-attention, and evicted tokens 062

do not require their KV states to be cached. AGs 063

can seamlessly embrace pre-trained LLMs, tuned 064

by minimizing the language modeling loss. Ideally, 065

AGs automatically learn to discern the most rele- 066

vant tokens for the current context without manual 067

intervention. In practice, we implement the AG as 068

a self-attention layer with much fewer heads than 069

the original self-attention in the model (e.g., 4 v.s. 070

32) to minimize the extra overhead. 071

As illustrated in Figure 1, AG can generate dif- 072

ferent eviction strategies across different layers and 073

attention-heads for different tokens, demonstrating 074

its adaptability to the diverse requirements of each 075

component in the model. Importantly, AGs enjoy 076

high training efficiency, e.g., only four NVIDIA 077

4090 GPUs and a dataset of 5,000 samples are 078

required when applying AGs to LLaMA2-7B (Tou- 079

vron et al., 2023) following a continual pre-training 080

(CPT) recipe. This alleviates concerns about the 081
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Figure 1: KV-Cache eviction patterns across different layers and attention-heads, visualized for 4 samples from the
PIQA dataset (top row) and 4 samples from the BoolQ dataset (bottom row), using AG fine-tuned Llama2-7B
models. Black areas represent tokens that are neither computed nor stored in the KV-Cache. The variability of
eviction patterns across tasks, prompts, layers, and attention-heads demonstrates the dynamic nature of our method.
A common trend observed is that deeper layers tend to mask more KV-Cache states, with some in deeper layers
being entirely masked.

computational overhead of trainable eviction strate-082

gies (Zhang et al., 2024; Chen et al., 2024).083

Empirically, extensive experiments show that084

our method can outperform traditional training-085

free eviction strategies, such as streamingLLM and086

H2O, in accuracy and token eviction rates under087

both CPT and supervised fine-tuning (SFT) train-088

ing recipes. In particular, when trained by SFT,089

our method not only evicts a significant number of090

redundant tokens but also maintains or surpasses091

the performance of LoRA-finetuned LLMs. For ex-092

ample, on the RTE dataset (Bar-Haim et al., 2006),093

our approach improves accuracy by 13.9% while094

evicting 62.8% of tokens. This demonstrates that095

selective token eviction can enhance performance.096

2 Related Work097

As large language models (LLMs) scale in size and098

input sequence length, optimizing their efficiency099

has become increasingly important, particularly in100

addressing space and time complexity. A signif-101

icant bottleneck lies in the attention mechanism,102

which demands considerable computational and103

memory resources, especially for long sequences.104

Traditional KV-Cache Eviction Strategies To 105

address both memory and computational chal- 106

lenges, KV-Cache eviction has emerged as an effec- 107

tive strategy. Existing approaches predominantly 108

rely on parameter-free heuristics. 109

Static strategies, such as those used in Sparse 110

Transformers (Child et al., 2019), employ fixed 111

pruning patterns, such as Strided and Fixed At- 112

tention. While effective in some cases, these ap- 113

proaches are not adaptive to specific contexts, of- 114

ten sacrificing accuracy. streamingLLM (Xiao 115

et al., 2024) tackles the Attention Sink phenomenon, 116

where attention scores concentrate on initial tokens, 117

by retaining these tokens along with a fixed win- 118

dow of recent tokens. While this improves perfor- 119

mance, static approaches generally lack the flexi- 120

bility needed to adapt to different tokens, attention- 121

heads, or layers. 122

Strategies using accumulative attention scores of- 123

fer more flexibility by dynamically identifying im- 124

portant tokens. For instance, SpAtten (Wang et al., 125

2021) employs Accumulative Attention Scores 126

(A2S), which sum the softmax outputs for each 127

token to measure its importance. This approach 128

allows selective token pruning in subsequent lay- 129

ers, effectively reducing computational complex- 130
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ity without the need for retraining. H2O (Zhang131

et al., 2024) extends this concept to decoder-based132

models, using local A2S statistics for adaptive evic-133

tion in autoregressive generation. However, H2O134

suffers from the attention bias issue (Oren et al.,135

2024), particularly in long-context inputs. Several136

follow-up works have aimed to address this limita-137

tion. NACL (Chen et al., 2024) introduces random138

eviction to mitigate attention bias, while A2SF (Jo139

and Shin, 2024) incorporates a Forgetting Factor.140

However, none of these approaches fully resolves141

the underlying problem. Despite these limitations,142

some studies (Adams et al., 2024) suggest that H2O143

remains an optimal solution in many scenarios.144

More Adaptive Strategies Although strategies145

based on accumulative attention scores provide146

more flexibility than static methods, they still have147

notable limitations. For instance, H2O (Zhang148

et al., 2024) applies the same token eviction ra-149

tio across all attention heads, restricting the adapt-150

ability of the method. FastGen (Ge et al., 2023),151

on the other hand, introduces a different approach152

by hybridizing KV-Cache compression policies153

and applying adaptive strategies to each attention154

head. However, it focuses on the decoding stage155

and neglects the importance of the prefilling stage.156

Learnable eviction strategies, on the other hand,157

offer greater flexibility by enabling different layers158

and attention heads to adopt heterogeneous evic-159

tion policies. However, such strategies have been160

relatively underexplored, likely due to concerns161

about the computational overhead they may in-162

troduce (Zhang et al., 2024; Chen et al., 2024).163

Nonetheless, task-specific training is essential for164

optimizing performance across different contexts.165

For example, a recent approach (Anagnostidis et al.,166

2024) introduces a learnable mechanism for drop-167

ping uninformative tokens, but it faces difficulties168

in batched generation and does not account for169

continual pre-training or decoding-only LLMs. De-170

spite these challenges, learnable strategies have a171

strong potential to improve performance across a172

variety of tasks by allowing models to adapt evic-173

tion strategies to meet task-specific requirements.174

3 Method175

This section first briefly reveals multi-head self-176

attention and KV-Cache, then describes the177

Attention-Gate (AG) mechanism for in-context KV-178

Cache eviction. An illustrative overview of AG is179

presented in Figure 2.180

3.1 Preliminary 181

Multi-Head Attention (MHA) (Vaswani et al., 182

2017) is a core component of Transformer, as used 183

by most LLMs. MHA enables the model to capture 184

dependencies across different tokens in a sequence. 185

Specifically, for an input sequence X ∈ Rn×d, 186

where n represents the sequence length and d de- 187

notes the dimensionality of the hidden states, the 188

output of MHA is computed as: 189

MHA(X) = [H1(X),H2(X), . . . ,Hh(X)]WO , 190

where {Hi}hi=1 refers to the h attention heads and 191

Hi(X) = Attn
(
XWQ

i , XWK
i , XW V

i

)
192

= Attn (Qi,Ki, Vi) 193

= Softmax
(
QiK

⊤
i√

dk
− INF(1−Mi)

)
Vi 194

= AiVi . (1) 195

Here, WQ
i ,WK

i ∈ Rd×dk , W V
i ∈ Rd×dv , and 196

WO ∈ Rhdv×d are learned projection matrices. 197

INF is a large constant, 1 is a matrix of ones, Mi 198

is the mask applied to head Hi, and Ai represents 199

the attention scores for head Hi. 200

KV-Cache is employed during the inference of 201

auto-regressive transformers, which stores the key 202

and value information from previous time steps, 203

allowing efficient reuse and reducing recomputa- 204

tion. The inference process can be divided into two 205

stages: prefilling and decoding. 206

In the prefilling stage, the input sequence X(≤n) = 207[
x(1), x(2), . . . , x(n)

]
∈ Rn×d passes through 208

MHA, and the corresponding key-value pairs 209

K
(≤n)
i and V

(≤n)
i for head Hi are stored in KV- 210

Cache. These are expressed as: 211

K
(≤n)
i =

[
k
(1)
i , · · · , k(n)i

]
, 212

V
(≤n)
i =

[
v
(1)
i , · · · , v(n)i

]
, 213

where k
(t)
i = x(t)WK

i and v
(t)
i = x(t)W V

i . After 214

prefilling, the next token x(n+1) is generated. 215

In the decoding stage, x(n+1) is input to generate 216

x(n+2) for the first step. During this process, only 217

k
(n+1)
i , v

(n+1)
i need to be computed for head Hi. 218

These are then concatenated with the cached K
(≤n)
i 219

and V
(≤n)
i to form K

(≤n+1)
i and V

(≤n+1)
i , which 220

are used to complete the current MHA computation 221

and update the KV-Cache. The process repeats 222

token by token until the generation is complete. 223
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KV-Cache plays a critical role in improving the224

efficiency of LLM inference. However, the size225

of the KV-Cache grows with the input sequence226

length, leading to substantial memory overhead.227

Efficiently managing KV-Cache while maintaining228

model performance has become a key challenge in229

scaling LLMs to longer contexts.230

3.2 Issues of Traditional Eviction Strategies231

Various KV-Cache eviction strategies have been232

developed to mitigate the above issue, but they still233

suffer from limitations.234

Lack of Adaptability Static approaches, such235

as streamingLLM (Xiao et al., 2024), lack adapt-236

ability across tokens, attention-heads, layers, tasks,237

and models. H2O (Zhang et al., 2024) addresses238

some of these by introducing token-level and head-239

level adaptability. However, it still applies a uni-240

form eviction ratio across all attention heads, over-241

looking the significant variation in attention scores242

across different heads, as demonstrated by Fast-243

Gen (Ge et al., 2023). Without finer-grained flex-244

ibility, it is then possible to retain unnecessary in-245

formation, leading to reduced efficiency.246

Absence of Global Context KV-Cache eviction247

strategies should ideally be context-aware, as the248

importance of the same token can vary significantly249

depending on the surrounding context. However,250

existing strategies relying on accumulative atten-251

tion scores, such as H2O, NACL, and A2SF (Chen252

et al., 2024; Jo and Shin, 2024; Zhang et al., 2024),253

are primarily based on local statistics of the context.254

While methods like NACL and A2SF attempt to255

mitigate this by introducing various adjustments to256

reduce the misjudgment of token importance and257

the resulting biased retention (Oren et al., 2024),258

the root issue remains unsolved.259

Inherent Inefficiency Methods like H2O and260

FastGen (Ge et al., 2023) are inefficient due to261

their sequential, token-by-token eviction at each de-262

coding step. And, H2O computes attention scores263

before deciding which tokens to evict, wasting com-264

putation on soon-to-be discarded tokens.265

3.3 Attention-Gate266

To address these issues, we develop Attention-Gate267

(AG), a lightweight, trainable module positioned268

before the MHA layer to generate adaptive, context-269

aware eviction flags for the tokens. The flags deter-270

mine which tokens in the KV-Cache of each head of271

Causal Mask

Attn Weights of a Head of MHA Attn Weights of a Head of MHA

After

Eviction

Attention-Gate

Eviction Token for Eviction Token for AG Mask

Figure 2: An overview of Attention-Gate (AG) for KV-
Cache eviction. AG is a lightweight learnable module
placed before each MHA layer. Given the input hidden
states, it determines for each head whether to retain or
discard the key and value tokens in the KV-Cache. In
the attention weights, this corresponds to masking out
columns for the evicted keys, while keeping the diagonal
intact to ensure the query interacts with its own key.

the MHA should join the computation of attention 272

scores and be retained in the KV-Cache. 273

AG includes (i) a lightweight multi-head atten- 274

tion with h-dim outputs, denoted as MHA′, to 275

enable the awareness of global context of the se- 276

quence1, and (ii) a gating mechanism G to enable 277

adaptive eviction flags for the attention heads in the 278

subsequent MHA layer. Notably, MHA′ has much 279

fewer heads compared to MHA, i.e., h′ ≪ h. 280

Specifically, given the hidden states X ∈ Rn×d 281

yielded by the preceding module, AG outputs a 282

binary mask for the heads in the subsequent MHA: 283

AG(X) = G
(
MHA′(X), τ

)
∈ {0, 1}n×h , (2) 284

where τ is the gating threshold used as: 285

G(s, τ) =

{
1, if Sigmoid(s) > τ

0, otherwise
. (3) 286

The KV for t-th token of the t-th head within 287

the subsequent MHA layer are then retained if 288

AG(X)
(t)
i = 1. Meanwhile, in the attention matrix, 289

the columns corresponding to evicted tokens are 290

masked out.2 This way, AG selectively determines 291

which tokens are retained or discarded for each 292

attention head. 293

1To distinguish it from the vanilla MHA, all symbols in
MHA′ are marked with a prime (′).

2The diagonal elements of the attention matrix, where a
token attends to itself, are always preserved.
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3.4 Training of AG294

Eviction Loss We introduce the Eviction Loss to295

encourage the model to maintain the eviction ratio296

close to a target value β, which is defined as:297

ℓevict = α ·
∣∣AG − β

∣∣ , (4)298

where AG denotes the average of all AG(X) within299

the model. In particular, α adjusts the intensity of300

KV-Cache eviction, while β ensures that eviction301

does not become overly aggressive. Besides, vari-302

ous layers and heads have enough freedom to adjust303

their own eviction frequency. This loss function304

works alongside the auto-regressive loss to balance305

token eviction and model performance.306

Initialization We initialize the AG parameters us-307

ing Xavier initialization (Glorot and Bengio, 2010).308

Additionally, a small constant γ ≥ 0 can optionally309

be added inside Sigmoid in Equation (3), ensuring310

that the initial retention probabilities are close to311

1. This encourages the model to retain most tokens312

early in training.313

Handling Non-Differentiability Directly apply-314

ing the threshold-based gating mechanism from315

Section 3.3 would lead to non-differentiable gra-316

dients during training. To resolve this, we employ317

the Straight-Through Estimator (STE) (Yin et al.,318

2019), which allows gradients to flow through dis-319

crete decisions by approximating them during the320

backward pass. Specifically, during backpropaga-321

tion, instead of using the hard 0 or 1 values obtained322

from comparing against the threshold, we utilize323

the smooth output of the Sigmoid function.324

For more details, please refer to Section 4 and325

Appendix A.326

3.5 Complexity Analysis327

AG Module For input X ∈ Rn×d, the FLOPs328

for AG are:329

FLOPs
AG

= O(n2d′kh
′) .330

MHA Module Without AG, original MHA’s331

FLOPs are:332

FLOPs
original MHA

= O(n2dkh) . (5)333

After AG processing, t% of the KV-Cache tokens334

are discarded, leaving (1− t%) for attention com-335

putation:336

FLOPs
MHA after AG

= O
(
(1− t%)n2dkh

)
.337

Combined AG & MHA the total FLOPs are: 338

FLOPs
AG & MHA

= O
(
n2

(
d′kh

′ + (1− t%)dkh
))

. (6) 339

Efficiency The reduction in FLOPs depends on 340

three factors: (i) Reduction in token count (t%): 341

Higher values of t% result in a larger reduction in 342

the quadratic term of the original MHA. (ii) Head 343

configuration (h′ < h): The AG module must have 344

significantly fewer heads (h′) compared to the orig- 345

inal MHA (h) to ensure its overhead is small. (iii) 346

Head dimension ratio (d′k < dk): A smaller head 347

dimension (d′k) for AG further reduces its contribu- 348

tion to total FLOPs. The analysis above is further 349

supported by our empirical results in Figure 3. 350

3.6 Discussion 351

Global v.s. Local AG utilizes MHA′ to inher- 352

ently incorporate global information of the context. 353

This is essential, as determining redundancy or rel- 354

evance often requires a global understanding of the 355

sequence. Alternatively, a simpler approach is to 356

employ a linear transformation to generate eviction 357

flags. This method relies solely on the hidden state 358

of each token itself without incorporating infor- 359

mation from other tokens in the sequence. While 360

the local approach is computationally cheaper, as 361

shown in Table 3, its performance is not guaranteed. 362

This limitation highlights the challenges faced by 363

methods that rely on local statistics of the context, 364

as discussed in Section 3.2. 365

Prefilling or Decoding Our current studies 366

mainly apply AG to the prefilling stage following 367

NACL (Chen et al., 2024), where the full sequence 368

is available. By making eviction decisions before 369

the MHA layers, AG effectively manages the KV- 370

Cache during this phase. AG can be easily extended 371

to the decoding phase by maintaining an extra KV- 372

Cache for MHA′, which is still very economical 373

because MHA′ has far fewer heads than MHA. 374

4 Experiments 375

This section consists of three parts. First, we evalu- 376

ate the performance of AG in two scenarios: contin- 377

ual pre-training (CPT) and supervised fine-tuning 378

(SFT) (Section 4.1 & 4.2). Second, we provide a vi- 379

sualization of selected examples to demonstrate the 380

core characteristics of AG (Section 4.3). Finally, 381

we conduct ablation studies to provide further in- 382

sights into the effectiveness of AG (Section 4.4). 383

Additional results are provided in Appendix A.1. 384
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Metric PIQA ARC-C ARC-E RTE COPA BoolQ HellaSwag MMLU Avg. Metric LongBench

Llama2-7B-cpt Acc. 72.69 32.88 50.62 50.54 57.00 64.77 42.19 26.64 49.67 Score 23.42
streamingLLM Acc. 72.42 31.53 49.74 50.90 54.00 61.31 37.75 26.66 48.04 Score 4.61

H2O Acc. 72.20 30.85 49.38 51.99 55.00 62.42 41.45 26.45 48.72 Score 4.85
Acc. 76.33 32.20 48.32 50.18 59.00 60.46 64.23 28.54 52.41 Score 13.71Ours %Evict. 43.12 46.54 45.15 48.60 55.37 50.16 61.10 70.36 52.55 %Evict. 68.55

Table 1: Performance comparison of Llama2-7B and various KV-Cache eviction strategies after continual pre-
training. For baselines, (Wq,Wk,Wv,Wo) are made trainable, while in our method, the AG module is also trainable.
Higher values indicate better performance for all metrics. Acc. refers to accuracy. %Evict. refers to the mean
KV-Cache eviction ratio, representing the percentage of tokens evicted from KV-Cache. The eviction ratio is fixed
at 50% for the baseline methods. In contrast, our method achieves better performance (average accuracy and score)
while maintaining a higher average %Evict..

4.1 Continual Pre-training385

Models & Datasets We use Llama2-7B (Tou-386

vron et al., 2023) as our primary base model. Ad-387

ditionally, we validate the feasibility of our ap-388

proach on Mistral-7B (Jiang et al., 2023), with389

results provided in Table 5. We select a subset390

of the RedPajama dataset (Computer, 2023), com-391

prising approximately 5,000 samples 3, to serve as392

the training set. To assess the effectiveness of our393

method, we evaluate it on widely recognized bench-394

marks: PIQA (Bisk et al., 2020), ARC-C (Clark395

et al., 2018), ARC-E (Clark et al., 2018), RTE (Bar-396

Haim et al., 2006), COPA (Roemmele et al., 2011),397

BoolQ (Clark et al., 2019), HellaSwag (Zellers398

et al., 2019), MMLU (Hendrycks et al., 2021), and399

LongBench (Bai et al., 2023). All evaluations are400

conducted in a zero-shot setting, with performance401

assessed using OpenCompass (Contributors, 2023).402

Training Details & Baselines During CPT,403

(Wq,Wk,Wv,Wo) are made trainable using404

LoRA (Hu et al., 2021). In our method, AG is also405

trainable.4 For the Llama2-7B model, τ = 0.5,406

γ = 2, α = 5, and β = 0.4. The model407

was trained for a single epoch. We compare to408

streamingLLM (Xiao et al., 2024), a representative409

of static strategies, and H2O (Zhang et al., 2024),410

which represents methods based on accumulative411

attention scores.5 For baseline methods, the evic-412

tion ratio is fixed at 50%.413

3Specifically, we sampled 4,997 samples proportionally
from each subset of the RedPajama dataset.

4We tested a version where only AG is trainable, with other
parameters frozen. Results are shown in Table 4.

5Adams et al. (2024) suggest that H2O is an optimal so-
lution in many scenarios. Due to its strong performance and
the difficulty of reproducing other training-free methods, no
additional training-free baselines were included.

Metric PIQA ARC-C RTE COPA BoolQ OBQA Avg.

Fine-tuned Acc. 82.92 60.34 64.98 92.00 88.10 78.80 77.86
Llama2-7B

Ours Acc. 82.15 59.66 64.26 93.00 86.82 78.80 77.45
(α = 1) %Evict. 66.16 48.31 65.47 45.40 67.46 67.17 60.00

Ours Acc. 81.50 57.63 74.01 95.00 87.00 79.20 79.06
(α = 0.5) %Evict. 64.96 36.45 62.80 34.77 67.31 66.65 55.49

Table 2: Performance of Llama2-7B with LoRA fine-
tuning and our method on six downstream tasks. Our
method makes the AG modules learnable. Two settings
for α (0.5 and 1) are tested. Our method maintains
comparable or better accuracy while achieving a higher
eviction ratio, demonstrating its task-specific adaptabil-
ity in managing token eviction.

Results As shown in Table 1, our method can 414

better balance performance and KV-Cache eviction. 415

It consistently outperforms the baseline strategies 416

in performance across most tasks while achieving 417

a higher mean eviction ratio. Moreover, our added 418

computational overhead is minimal. The CPT was 419

conducted on only 5,000 samples and trained for 420

just one epoch. This efficiency can be attributed to 421

the fact that our method does not need to learn new 422

knowledge from scratch but rather focuses on learn- 423

ing effective token retention strategies, leveraging 424

the existing capabilities of the pre-trained model. 425

4.2 Supervised Fine-tuning 426

Model & Tasks We also use Llama2-7B (Tou- 427

vron et al., 2023), and evaluate on six widely rec- 428

ognized downstream tasks: PIQA, ARC-C, RTE, 429

COPA, BoolQ, and OpenBookQA (Mihaylov et al., 430

2018). For each task, we fine-tune model using the 431

respective training set and evaluate its performance 432

on the corresponding test set. 433

Implementation Details The selection of train- 434

able parameters follows Section 4.1. The hyper- 435
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Figure 3: Comparison of peak memory usage and pre-
filling time between the LLaMA2-7B model (without
AG) and the proposed implementation (with AG and
∼50% eviction) across varying prompt lengths.

parameters are τ = 0.3, γ = 0, α = 1 or 0.5,436

and β = 0.28. Training is performed using the437

AdamW optimizer (Loshchilov and Hutter, 2017)438

with a learning rate of 5e-5 for 2 epochs per dataset.439

Results As shown in Table 2, our method440

achieves a strong balance between accuracy and441

KV-Cache eviction. With α = 1, it maintains442

competitive accuracy compared to the fine-tuned443

Llama2-7B baseline while achieving a high mean444

eviction ratio of 60.00%. With α = 0.5, the evic-445

tion ratio decreases to 55.49%, but the average446

accuracy improves. In tasks like RTE and COPA,447

it even surpasses the baseline. This suggests that448

effective token eviction helps the model focus on449

relevant information. Additionally, performance450

varies across tasks under the same settings. For451

instance, ARC-C is more challenging to evict com-452

pared to OpenBookQA, leading to a larger accuracy453

drop post-eviction. This highlights the importance454

of task-specific KV-Cache eviction policies.455

Inference Efficiency We evaluated the inference456

efficiency of the LLaMA2-7B model with and with-457

out the AG module, as shown in Figure 3. Our458

method achieves significant memory savings, espe-459

cially as prompt lengths increase. Although we460

have not implemented specialized sparse MHA461

kernels and the current prefilling implementation462

(marked with * in the legend) uses a suboptimal463

for-loop over attention heads, AG still maintains464

stable prefilling time and even shows a decreasing465

trend as prompt length grows. These empirical466

results align well with the analysis presented in467
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H
ea

d 
0

H
ea

d 
7

H
ea

d 
15

H
ea

d 
31

Layer 0 Layer 1 Layer 6 Layer 7 Layer 30 Layer 31

(i)

H
ea

d 
0

H
ea

d 
2

Layer 0 Layer 1 Layer 6 Layer 7 Layer 30 Layer 31

(ii)

Figure 4: Attention patterns in Llama2-7B after fine-
tuning on BoolQ. (i) MHA heads across layers before
eviction; (ii) AG attention scores across layers.

Section 3.5. We believe there is room for further ac- 468

celeration through kernel fusion techniques, which 469

we leave for future work. 470

4.3 Attention Pattern 471

We visualize the attention patterns of both MHA 472

and AG mechanisms in Llama2-7B after fine- 473

tuning on the BoolQ dataset using a selected sam- 474

ple (Figure 4). The complete visualization is avail- 475

able in Appendix A.3. From the figure, we derive 476

insights in two key areas: 477

(i) MHA Attention Patterns Before Eviction 478

Multiple MHA heads across layers exhibit diverse 479

attention behaviors—such as vertical, horizontal, 480

and diagonal patterns—particularly in the first two 481

layers where heterogeneity is most pronounced. As 482

layers deepen, attention patterns become progres- 483

sively sparser, shifting from dense activations in 484

early layers to more focused patterns in later ones. 485

Notably, bright yellow vertical lines in deeper lay- 486

ers consistently highlight critical tokens essential 487

for inference. These correspond to the Heavy Hit- 488

ters identified in H2O (Zhang et al., 2024), empha- 489

sizing tokens that significantly contribute to atten- 490

tion scores. Our method preserves these critical 491

tokens in deeper layers, maintaining their impor- 492

tance throughout the network. 493
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Metric PIQA ARC-C RTE COPA BoolQ OBQA Avg.

Acc. 82.15 59.66 64.26 93.00 86.82 78.80 77.45
(1)

%Evict. 66.16 48.31 65.47 45.40 67.46 67.17 60.00

(2-1)
Acc. 81.88 57.63 65.70 91.00 87.52 77.40 76.86

%Evict. 63.92 36.38 62.73 24.38 65.22 63.57 52.70

(2-2)
Acc. 82.15 53.90 62.45 89.00 87.31 77.40 75.37

%Evict. 58.97 31.47 59.77 20.32 63.02 59.17 48.79

Acc. 81.45 53.36 58.84 88.00 86.73 78.40 74.46
(3-1)

%Evict. 61.75 33.55 61.34 19.24 64.59 59.59 50.01
Acc. 83.03 53.90 59.93 89.00 87.16 76.40 74.90

(3-2)
%Evict. 58.68 24.23 32.23 12.28 59.40 55.54 40.39

(4-1)
Acc. 81.66 55.25 66.06 88.00 86.85 78.00 75.97

%Evict. 49.52 36.92 46.85 28.74 56.02 60.32 46.40

(4-2)
Acc. 82.75 55.93 79.06 82.00 86.33 78.40 77.41

%Evict. 53.31 44.38 51.20 47.95 61.98 61.73 53.43

Acc. 82.54 54.58 57.40 81.00 87.71 74.80 73.01
(5)

%Evict. 1.06 0.46 0.81 0.26 1.38 1.16 0.86

(6-1)
Acc. 83.08 50.85 65.34 82.00 87.31 73.20 73.63

%Evict. 65.15 40.96 64.29 21.37 67.49 63.69 53.83

(6-2)
Acc. 81.61 53.56 60.29 82.00 87.37 74.20 73.17

%Evict. 65.66 44.48 65.14 24.28 68.18 63.44 55.20

Table 3: Ablation study on AG configurations, reporting
accuracy (Acc.) and KV-Cache eviction ratio (%Evict.)
under various settings.

(ii) MHA′ Attention Patterns The attention494

scores produced by MHA′ exhibit a clear transition495

from high-resolution focus in early layers to lower-496

resolution, distilled representations of in-context497

information in deeper layers. This suggests that498

deeper layers of MHA′ rely less on detailed global499

context, as earlier layers have already sufficiently500

refined the relevant information. This behavior501

indicates potential for improving efficiency by re-502

ducing the number of attention heads or feature503

dimensions in the deeper layers of MHA′.504

4.4 Ablation505

We investigate the effects of different configura-506

tions of the AG mechanism, including the number507

of heads, head dimensions, and eviction strategies.508

Detailed results are summarized in Table 3.509

Number of Heads Reducing the number of AG510

heads from 4 (setting (1)) to 2 or 1 (settings (2-1)511

and (2-2)) leads to decreases in both accuracy and512

eviction ratio. This indicates that the capacity of513

AG is closely tied to the number of heads.514

Head Dimensions Similarly, decreasing the di-515

mensionality of AG heads (settings (3-1) and (3-2))516

results in lower eviction capabilities and accuracy,517

highlighting the importance of maintaining suffi-518

cient head dimensionality.519

Layer-wise Guided Eviction Strategies Set-520

tings (4-1) and (4-2) investigate using the previ-521

ous layer’s hidden states and AG module to guide522

eviction decisions in the current layer, introducing 523

inter-layer dependency to enable parallelism. In 524

(4-1), eviction starts from the second layer onward: 525

the first layer does not evict, while each subsequent 526

layer uses the eviction information from the imme- 527

diately preceding layer (e.g., the first layer predicts 528

eviction for the second layer, the second for the 529

third, and so forth). In (4-2), eviction begins from 530

the third layer, with the second layer guiding the 531

third, the third guiding the fourth, etc. This design 532

stems from the observation that the first two layers 533

retain most KV pairs after standard AG training, 534

as shown in Figure 1, where these early layers ex- 535

hibit minimal masking. By skipping eviction in 536

these initial layers, computational resources are 537

saved without significantly impacting performance. 538

Although these guided strategies introduce paral- 539

lelism and reduce computation in early layers, they 540

result in a slight decrease in accuracy and eviction 541

ratio compared to setting (1), indicating a trade-off 542

between efficiency and effectiveness. 543

Replacement of MHA′ with Linear Layer Set- 544

ting (5) replaces the MHA′ in AG with a simple 545

linear layer to determine eviction. The sharp drop 546

in eviction effectiveness and accuracy compared to 547

(1) underscores the necessity of using attention-like 548

mechanisms to capture global in-context informa- 549

tion for successful eviction. 550

Recent Token Retention Settings (6-1) and (6- 551

2) vary the number of recent tokens retained at 552

5 and 10, respectively. The results suggest that 553

increasing the number of recent tokens does not 554

necessarily improve performance within the AG 555

framework. Future work could explore more so- 556

phisticated approaches for managing recent tokens, 557

such as learnable weighted strategies. 558

5 Conclusion 559

In conclusion, the proposed Attention-Gate mecha- 560

nism offers a flexible and adaptive solution to KV- 561

Cache eviction in large language models. By dy- 562

namically identifying and discarding less important 563

tokens in a data-driven manner, Attention-Gate ad- 564

dresses the limitations of static and attention-score- 565

based strategies, providing efficient context-aware 566

eviction. This mechanism integrates seamlessly 567

with pre-trained models and can be easily tuned, 568

making it a practical and effective method for en- 569

hancing both performance and memory efficiency 570

in various tasks. 571
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Limitations572

This work primarily focuses on the prefilling stage.573

Due to limited computational resources, experi-574

ments were not conducted on larger-scale models.575
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A Additional Experiments 724

A.1 Additional Results for Continual 725

Pre-training 726

In this section, we perform continual pre-training 727

on Llama2-7B using the same training data and hy- 728

perparameter settings described in Section 4.1. The 729

baselines are training-free, while in our method, 730

only the AG module is trainable. The results are 731

shown in Table 4. 732

A.2 Results of Continual Pre-training on 733

Mistral 734

We conducted continual pre-training on Mistral- 735

7B (Jiang et al., 2023) using 5,000 samples from 736

RedPajama (Computer, 2023), and the results are 737

shown in Table 5. Compared to the performance 738

of Llama2-7B presented in Table 4, Mistral’s per- 739

formance slightly declined. We hypothesize that 740

this may be due to the distribution of RedPajama’s 741

data being less suited to Mistral. Additionally, this 742

raises the question of whether KV-Cache eviction is 743

model-dependent, and whether its effectiveness is 744

related to the model’s expressive power. Although 745

the parameter counts of Mistral-7B and Llama2-7B 746

are similar, Mistral-7B significantly outperforms 747

Llama2-7B. This could suggest that Mistral is uti- 748

lizing more tokens or scoring them with finer gran- 749

ularity, which results in fewer redundant tokens and 750

thus makes eviction less effective. Furthermore, 751

it is possible that Mistral’s use of grouped-query 752

attention (GQA), which inherently involves com- 753

pression, may make it more challenging to increase 754

the eviction ratio effectively in this context. 755

A.3 More Visualization 756

Figure 5 provides a comprehensive view of the 757

layers and attention heads from Figure 4. 758
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Metric PIQA ARC-C ARC-E RTE COPA BoolQ HellaSwag Avg.

Llama2-7B Acc. 76.33 37.29 51.32 51.99 62.00 69.94 68.16 59.58

Local Acc. 69.97 31.86 48.68 51.99 60.00 57.86 37.08 51.06
streamingLLM Acc. 72.69 33.22 51.15 50.18 63.00 62.05 40.85 53.31

H2O Acc. 75.9 33.22 52.03 52.71 47.00 67.37 66.32 56.36

Ours Acc. 76.17 33.90 49.03 52.35 63.00 67.52 66.33 58.33
%Evict. 54.29 51.03 51.05 46.70 40.02 57.75 52.16 51.87

Table 4: Performance comparison of Llama2-7B and various KV-Cache eviction strategies across seven tasks. Our
approach trains only the AG module during continual pre-training, keeping other components frozen. The table
reports accuracy (Acc.) for Llama2-7B and all eviction methods, with Llama2-7B serving as the upper bound for
accuracy. Metric %Evict. refers to the mean KV-Cache eviction ratio, representing the percentage of tokens evicted
from the KV-Cache. The eviction ratio is fixed at 50% for the baseline methods, including a local strategy (retaining
only recent tokens), streamingLLM, and H2O. In contrast, our method achieves higher average accuracy while
maintaining a higher average %Evict..

Metric PIQA ARC-C ARC-E RTE COPA BoolQ HellaSwag Avg.

Mistral-7B Acc. 80.09 42.37 63.14 48.01 76 64.22 73.02 63.84

Ours Acc. 75.90 34.24 55.2 48.01 65 62.2 67.91 58.35
Eviction 37.14 39.48 37.80 40.93 45.27 44.68 50.92 42.32

Table 5: Performance comparison between Mistral-7B and Ours across various tasks.
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(i)
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 31

(ii)
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Figure 5: The complete version of Figure 4. Two key observations emerge in (i): 1. the first two layers are denser
compared to the subsequent layers, and 2. bright-yellow vertical lines, representing critical tokens for inference,
consistently appear across heads in deeper layers.
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