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Abstract

A common strategy to train deep neural networks (DNNs) is to use very large architectures
and to train them until they (almost) achieve zero training error. Empirically observed good
generalization performance on test data, even in the presence of lots of label noise, corroborate
such a procedure. On the other hand, in statistical learning theory it is known that over-fitting
models may lead to poor generalization properties, occurring in e.g. empirical risk minimization
(ERM) over too large hypotheses classes. Inspired by this contradictory behavior, so-called
interpolation methods have recently received much attention, leading to consistent and optimally
learning methods for some local averaging schemes with zero training error. However, there is no
theoretical analysis of interpolating ERM-like methods so far. We take a step in this direction
by showing that for certain, large hypotheses classes, some interpolating ERMs enjoy very good
statistical guarantees while others fail in the worst sense. Moreover, we show that the same
phenomenon occurs for DNNs with zero training error and sufficiently large architectures.

1 Introduction

During the last few decades statistical learning theory (SLT) has developed powerful techniques
to analyze many variants of (regularized) empirical risk minimizers (ERMs), see e.g. [4, 15, 14, 6,
12, 13, 11]. The resulting learning guarantees, which include finite sample bounds, oracle inequali-
ties, learning rates, adaptivity, and consistency, assume in most cases that the effective hypotheses
space of the considered method is sufficiently small in terms of some notion of capacity such as
VC-dimension, fat-shattering dimension, Rademacher complexities, covering numbers, or eigenval-
ues. Most training algorithms for DNNs also optimize an (regularized) empirical error term over a
hypotheses space, namely the class of functions that can be represented by the architecture of the
considered DNN, see [5, Part II]. However, unlike for many classical ERMs, the hypotheses space
is parametrized in a rather complicated manner. Consequently, the optimization problem is, in
general, harder to solve. A common way to address this is in practice is to use very large DNNs,
since despite their size, training them is often easier, see e.g. [10, 8] and the references therein.
Now, for sufficiently large DNNs it has been recently observed that common training algorithms
can achieve zero training error on randomly, or arbitrarily labeled training sets, see [16]. Because of
this ability, their effective hypotheses space can no longer have a sufficiently small capacity in the
sense of classical SLT, so that the usual techniques for analyzing learning algorithms are no longer
suitable, see e.g. the discussion on this in [16, 2]. In fact, SLT provides examples of large hypotheses
spaces for which zero training error is possible but a simple ERM fails to learn. This phenomenon
is known as over-fitting, and common wisdom suggests that succesful learning algorithms need to
avoid over-fitting, see e.g. [6, pp. 21-22]. Yet, recent empirical evidence suggests that learning in the
sense of a small test error is still possible for DNNs achieving zero training error, even if the labels
of data contain mis-information, see e.g. [16].

This somewhat paradoxical behavior has recently sparked some interests, leading to so-called
interpolating learning methods, that is, learning methods that achieve zero training error. For
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example, [3] establishes optimal least squares rates for the Nadaraya-Watson estimator with a par-
ticular kernel. Similar results are established for kernel ridge regression without regularization in
[7]. In summary, optimal learning rates are possible for certain interpolating learning methods, so
far, however, none of the considered interpolating methods has been ERM-like or even a DNN.

In this paper we consider a simple interpolating ERM as well as interpolating ReLU-DNNs of at
least two hidden layers with widths growing linearly in both input dimension and sample size. For
both, we show in Theorems 2.2 and 2.3 rigorous versions of the following informal statement:

Achieving zero training error does not guarantee anything about generalization
performance.

To be more precise, we show

Theorem 1.1. We can find hyptheses spaces or DNNs with exactly described minimal architecture,
as well as predictors f+D and f−D from these hypotheses spaces or architectures such that:

i) For every training data set D both f+D and f−D are interpolating (zero training error).

ii) The predictor f+D is consistent, i.e. it learns for essentially arbitrary data generating distribu-
tions.

iii) The predictor f−D fails to learn in the worst possible sense.

iv) There are versions of f+D that achieve minmax optimal learning rates under some standard
assumptions, while there are other versions of f+D that learn very slowly.

Moreover, both f+D and f−D can be found constructively using a simple and efficient training algorithm.

The rest of the paper is organized as follows: In Section 2 we present our main results and
we discuss their consequences. Section 3 is devoted to constructing statistically good and bad
interpolating predictors. In Section 4, a similar construction is derived for DNNs. All proofs are
deferred to the appendices.

2 Results

In this section we present our main results in Theorem 2.2 and Theorem 2.3 and discuss their conse-
quences. To this end, let us begin by introducing the necessary notations and notions. Throughout
this work, we consider X := [−1, 1]d if not specified otherwise. Moreover, L : Y × R → [0,∞)
denotes either the least squares loss Lls(y, t) = (y− t)2, the hinge loss Lhinge(y, t) = max{0, 1− ty},
or the binary classification loss Lclass(y, t) = 1(−∞,0](y sign t), where for the latter two we consider
Y = {−1, 1}, while for the least squares loss we consider Y = [−1, 1]. In any case, given a dataset
D := ((x1, y1), ..., (xn, yn)) ∈ (X × Y )n drawn i.i.d. from an unknown distribution P on X × Y , the
aim of supervised learning is to build a function fD : X −→ R based on D such that its risk

RL,P (fD) :=

∫
X×Y

L(y, fD(x)) dP (x, y) ,

is close to the smallest possible risk

R∗L,P = inf
f :X→R

RL,P (f) . (1)

In the following, R∗L,P is called the Bayes risk and an f∗L,P : X −→ R satisfying RL,P (f∗P ) = R∗L,P
is called Bayes decision function. Recall, that for the least squares loss, f∗L,P equals the conditional
mean function, i.e. f∗L,P (x) = EP (Y |x) for PX -almost all x ∈ X, where PX denotes the marginal
distribution of P on X. Moreover, sign f∗Lls,P

is a Bayes decision function for both Lhinge and Lclass.
Besides the Bayes risk we also need

R†L,P := RL,P (−f∗L,P ) .
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Obviously, we have R†L,P > R∗L,P if −f∗L,P is not another Bayes decision function. If fact, for the
least squares loss a simple calculation shows

R†L,P = R∗L,P + 4‖f∗L,P ‖22 ,

while for the hinge and the classification loss R†L,P describes the worst possible risk

R†L,P = sup
f :X→Y

RL,P (f)

for all Y -valued predictors. Now, to describe the class of learning algorithms we are interested in,
we need the empirical risk of an f : X → R, i.e.

RL,D(f) :=
1

n

n∑
i=1

L(yi, f(xi)) .

In the following we say that an f : X → Y interpolates D, if

RL,D(f) = R∗L,D := inf
f̃ :X→R

RL,D(f̃) ,

where we emphasize that f is required to be Y -valued, while the infimum is taken over all R-valued
functions. It is easy to check that for all three losses L mentioned above and all data sets D there
exists an f∗D interpolating D. Moreover, for these L we have R∗L,D > 0 if and only if D contains
contradicting samples, i.e. xi = xk but yi 6= yk. Finally, if R∗L,D = 0, then any interpolating f∗D
needs to satisfy f∗D(xi) = yi for all i = 1, . . . , n.

There are various ways to define nonparametric regression or classification estimates, see e.g. [6,
4]. In this paper we focus on ERMs and DNNs. Recall, that an ERM over some set F of functions
f : X → R chooses, for every data set D, an fD ∈ F that satisfies

RL,D(fD) = inf
f∈F
RL,D(f) .

Note that the definition of ERMs implicitly requires that the infimum on the right hand side is
attained, namely by fD. In general, however, fD does not need to be unique. It is well-known
that if we have a suitably increasing sequence of hypotheses classes Fn with controlled capacity,
then every ERM D 7→ fD that ensures fD ∈ Fn for all data sets D of length n learns in the sense
of e.g. universal consistency, and under additional assumptions it may also enjoy minmax optimal
learning rates, see e.g. [4, 14, 6, 12]. However, the controlled capacity basically rules out interpolating
ERMs. One may thus ask what happens if we consider larger hypotheses classes for which there do
exist interpolating ERMs for all data sets. Our first main result now shows that in this case there
may exist both a) well-learning interpolating ERMs and b) interpolating ERMs that have the worst
possible learning behavior. Before stating our main results we make an assumption on the class of
distributions we are considering:

Assumption 2.1. Define B∞ := [−1, 1]d. There exists a constant c ∈ (0,∞) such that for any t ≥ 0
and x ∈ X one has PX(x+ tB∞) ≤ ct.

This assumption is satisfied for instance if PX has a bounded Lebesgue-density and can be
relaxed.

Theorem 2.2. Let L be the least squares, the hinge, or the classification loss and suppose P is a
distribution on X × Y satisfying Assumption 2.1. For n ≥ 1 and s ∈ (0, 1] there exist a hypotheses
space Fs,n of functions X → Y and two interpolating ERMs D 7→ f+D,s and D 7→ f−D,s with f±D,s ∈
Fs,n for all data sets D of length |D| such that the following statements hold true:

i) For all (sn) ⊂ (0, 1] with sn → 0 and log(n)
nsdn

→ 0 we have in probability for |D| → ∞:

RL,P (f+D,sn)→ R∗L,P , (2)

RL,P (f−D,sn)→ R†L,P . (3)

3



ii) Let L be the least squares loss, f∗L,P be α-Hölder continuous and γ ∈ [0, 2α
2α+d ]. Then the choice

sn =

(
log(n)

n

) 1−γ
d

leads to

‖f+D,sn − f
∗
L,P ‖22 ≤ c

(
log(n)

n

)γ
(4)

‖f−D,sn − (−f∗L,P )‖22 ≤ c
(

log(n)

n

)γ
(5)

with probability Pn at least 1−nde−n(1−γ)
and for some constant c > 0. In particular, the rate

in (4) is minimax optimal up to the logarithmic factor only if γ = 2α
2α+d . Note that the choice

sn = 1/ log(n) is also possible, being independent of α.

SLT shows that for small hypotheses classes, all versions of ERM enjoy good statistical guar-
antees. Theorem 2.2 demonstrates that this is no longer true for large hypotheses classes. In fact,
we can find learning ERMs, see (2), (4) and ERMs whose risk converges to the worst possible one,
see (3), (5) (recall that −f∗L,P is not the Bayes decision function!). We may even have the whole
spectrum between these two, with arbitrarily slow convergence as in (4), (5). For such hypotheses
spaces, the description “ERM” is thus not sufficient to identify well-behaving learning algorithms.
Instead, additional, or even orthogonal assumptions need to be found for learning in such hypotheses
spaces.

Our next result says that the same phenomenon occurs for DNNs. To this end, we denote the
class of all ReLU-DNNs with 2 hidden layer by Ap = Ap1,p2 , with p = (p1, p2) ∈ N2 and where pj is
the number of neurons in layer j, see Section D in the appendix.

Theorem 2.3. Let L be the least squares loss or the hinge loss and suppose P is a distribution on
X × Y satisfying Assumption 2.1. We further let p1 ≥ 4dn and p2 ≥ 2n for all n ≥ 1. Then the
following statements hold true:

i) For all n ≥ 1 there exist two interpolating DNN predictors D 7→ f+D and D 7→ f−D with
f+D , f

−
D ∈ Ap1,p2 for all D of length n such that f+D satisfies (2) and f−D satisfies (3).

ii) If L is the least squares loss, f∗L,P is α-Hölder continuous, and γ ∈ [0, 2α
2α+d ], then there exist

two interpolating DNN predictors D 7→ f+D and D 7→ f−D with f+D , f
−
D ∈ Ap1,p2 for all data sets

D of length n such that f+D and f−D satisfy (4) and (5).

Finally, all these predictors can be found by explicit algorithms that have an O(d2n2) complexity.

To fully appreciate the Theorem 2.3 let us discuss its good and bad consequences: First, the
good interpolating DNN predictors f+D show that its is possible to train sufficiently large DNNs
such that they become consistent and enjoy optimal learning rates. In addition, this training can
be done in O(d2 · n2)-time if the DNNs are implemented as fully connected networks. Moreover,
the constructed DNNs have a particularly sparse structure and exploiting this can actually reduce
the training time to O(d · n · log n). While we believe that this is one of the very first statistically
sound end-to-end1 proofs of consistency and optimal rates for DNNs, we also need to admit that our
training algorithm is mostly interesting from a theoretical point of view, but useless for practical
purposes. Nonetheless, Theorem 2.3 also has its consequences for DNNs trained by variants of
stochastic gradient descent (SGD) if the resulting predictor is interpolating. Indeed, Theorem 2.3
shows that ending in a global minimum can have all sorts of consequences ranging from very good
to very bad learning behavior. So far, however, there is no statistically sound way to distinguish
between good and bad interpolating DNNs on the basis of the training set alone, and hence the only

1By “end-to-end” we mean the explicit construction of an efficient, feasible, and implementable training algorithm
and the rigorous statistical analysis of this very particular algorithm under minimal assumptions.
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way to identify good interpolating DNNs obtained by SGD is to use a validation set. Now, for the
good interpolating DNNs of Theorem 2.3 it is actually possible to construct a finite set of candidates
such that the one with the best validation error achieves the optimal learning rates without knowing
α. For DNNs trained by SGD, however, we do not have this luxury anymore. Indeed, while we can
still identify the best predicting DNN from a finite set of SGD-learned interpolating DNNs we no
longer have any theoretical understanding of whether there is any useful candidate among them, or
whether they all behave like an f−D .

3 The Histogram Rule Revisited

In this section we construct the good and bad interpolating ERMs of Theorem 2.2. In a nutshell,
the basic idea is to first consider classical histogram rules (HR), and then to inflate their hypotheses
space so that we can find interpolating ERMs in these inflated hypotheses spaces that coincide with
either the corresponding HR or its opposite predictor.

Let us begin by saying that L is interpolatable for D if there exists an f : X → Y that interpolates
D, i.e. RL,D(f) = R∗L,D Clearly, an f : X → Y interpolates D if and only if∑

k:xk=x∗i

L(xi, yi, f(x∗i )) = inf
c∈R

∑
k:xk=x∗i

L(xi, yi, c) , i = 1, . . . ,m, (6)

where x∗1, . . . , x
∗
m are the elements of DX := {xi : i = 1, . . . , n}. Note that (6) in particular ensures

that the infimum over R on the right is attained at some c∗i ∈ Y . Many common losses including
the least squares, the hinge, and the classification loss interpolate all D, and for the latter three
losses we have R∗L,D > 0 if and only if D contains contradicting samples, i.e. xi = xk but yi 6= yk.
Moreover, for the least squares loss, c∗i can be easily computed by averaging over all labels yk that
belong to some sample xk with xk = xi. For the hinge and classification loss we then have to take
f(xi) = sign c∗i , where c∗i is the solution obtained for the least squares loss, and sign 0 := 0.

A particular simple ERM are HRs. To recall the latter, we fix a finite partition A = (A1, . . . , Am)
of X and for x ∈ X we write A(x) for the unique cell Aj with x ∈ Aj . Moreover, we define

HA :=

{ m∑
j=1

cj1Aj : cj ∈ Y
}
, (7)

where 1Aj denotes the indicator function of the cell Aj . Now, given a data set D and a loss L an
A-histogram is an hD,A =

∑m
j=1 c

∗
j1Aj ∈ HA that satisfies∑

i:xi∈Aj

L(xi, yi, c
∗
j ) = inf

c∈Y

∑
i:xi∈Aj

L(xi, yi, c) (8)

for all non-empty cells Aj , that is {i : xi ∈ Aj} 6= ∅. Clearly, D 7→ hD,A is an ERM. Moreover, note
that in general hD,A is not uniquely determined, since c∗j ∈ Y can take arbitrary values on empty
cells Aj . In particular, there are more than one ERM over HA as soon as m,n ≥ 2.

Before we proceed, let us consider a few examples. First, for the least squares loss, a simple
calculation shows that for all non-empty cells Aj , the coefficient c∗j in (8) is uniquely determined by

c∗j =
1

|{i : xi ∈ Aj}|
∑

i:xi∈Aj

yi . (9)

In the following, we call every resulting D 7→ hD,A with hD,A =
∑m
j=1 c

∗
j1Aj ∈ HA an empirical

HR for regression (HRR). Moreover, if L is either the hinge loss L(y, t) := max{0, 1 − yt} or the
classification loss L(y, t) := 1(−∞,0](y sign t) with sign 0 := 1, then it is well-known that sign c∗j is a
solution of (8), where c∗j is given by (9) for all non-empty cells Aj . Note that this simply means
that for the hinge and classification loss the coefficient in (9) is determined by a majority vote over
the labels yi occuring in the cell Aj , where a tie is broken by voting for y = 1. Consequently, the
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plug-in estimator signhD,A is an A-histogram for both losses, if hD,A is an HRR. In the following,
we call every such D 7→ signhD,A an empirical HR for classification (HRC).

We are mostly interested in HRs on X = [−1, 1]d whose underlying partition essentially consists
of cubes with a fixed width. To rigorously deal with boundary effects, we first say that a partition
(Bj)j≥1 of Rd is cubic partition (CP) of width s > 0, if each cell Bj is a translated version of [0, s)d,
i.e. there is an x† ∈ Rd called offset such that for all j ≥ 1 there exist k := (k1, . . . , kd) ∈ Zd with

Bj = x† + sk + [0, s)d . (10)

Now, a partition A = (Aj)j∈J of X = [−1, 1]d is a CP of width s > 0, if there is a CP (Bj)j≥1 of Rd
with width s > 0 such that J = {j ≥ 1 : Bj ∩X 6= ∅} and Aj = Bj ∩X for all j ∈ J . If s ∈ (0, 1],
then, up to reordering, this (Bj)j≥1 is uniquely determined by A.

If the hypotheses space (7) is based on a cubic partition of X = [−1, 1]d with width s > 0, then
the resulting HRRs and HRCs are well understood. For example, universal consistency and learning
rates have been established for both the least squares and the classification loss. In general, these
results only require a suitable choice for the widths s = sn for n→∞ but no specific choice of the
cubic partition of width s. For this reason we write Hs :=

⋃
HA, where the union runs over all CPs

A of X with fixed width s ∈ (0, 1]. Our next goal is to consider inflated versions of Hs. Namely, for
r, s > 0 and m ≥ 0 we define

Fs,r,m :=

{
h+

m∑
i=1

bi1x∗i+tB∞ : h ∈ Hs, bi ∈ 2Y ∪ {0}, x∗i ∈ X, t ∈ [0, r]

}
,

where B∞ := [−1, 1]d. In other words, we have Fs,r,0 = Hs and for m ≥ 1, an f ∈ Fs,r,m changes
an h ∈ Hs on at most m small neighborhoods of some arbitrary x∗1, . . . , x

∗
m. In general, these

small neighborhoods x∗i + tB∞ may intersect and may be contained in more than one cell Aj of the
considered A. Since this may cause undesired boundary effects we say that an f ∈ Fs,r,m is properly
aligned if it has a representation

f =
∑
j∈J

cj1Aj +

m∑
i=1

bi1x∗i+tB∞ (11)

as in the definition of Fs,r,m and for all i, k = 1, . . . ,m we have

x∗i + tB∞ ⊂ B(x∗i ) , (12)

x∗i + tB∞ ∩ x∗k + tB∞ = ∅ whenever i 6= k, (13)

where B(x∗i ) is the unique cell x∗i ∈ B(x∗i ) of the partition (Bj)j≥1 that defines A. Note that this
gives A(x∗i ) = B(x∗i )∩X. In the following, F∗s,r,m denotes the set of all properly aligned f ∈ Fs,r,m.

Our next goal is to show that F∗s,r,m contains interpolating predictors if r is sufficiently small

and m ≥ n. To this end, note that (13) holds for all t > 0 with t < 1
2 mini,k:i 6=k ‖x∗i − x∗k‖∞.

Clearly, a brute-force algorithm finds such a t in O(dm2)-time. However, a smarter approach is to
first sort the first coordinates x∗1,1, . . . , x

∗
m,1 and to determine the smallest positive distance t1 of two

consecutive, non-identical ordered coordinates. This approach is then repeated for the remaining
d − 1-coordinates, so at the end we have t1, . . . , td. Then t := min{t1, . . . , td}/3 satisfies (13) and
the used algorithm is O(d ·m logm) in time. Our next result shows that we can also ensure (12) by
jiggling the CPs.

Theorem 3.1. For all d ≥ 1, s ∈ (0, 1], and m ≥ 1 there exist x†1, . . . , x
†
K ∈ Rd with K := (m+ 1)d

such that for all x∗1, . . . , x
∗
m ∈ [−1, 1]d we find an ` ∈ {1, . . . ,K} such that the CP given by (10) with

offset x†` satisfies (12) for all t > 0 with t ≤ s
3m+3 .

While at first glance the number K of candidate offsets seems to be prohibitively large for an
efficient search, it turns out that the proof of Theorem (3.1) actually provides a simple O(d ·m)-

algorithm for identifying x†` coordinate-wise. This algorithm was used to find the aligned partition
in Figure 1.

The next result provides a sufficient condition for interpolating predictors in F∗s,r,m.
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Figure 1: Left. An inflated histogram on X = [−1, 1]2 for binary classification with positively
(red) and negatively (blue) labeled samples (crosses). The predictions c∗j on the 49 cells of the
cubic partition are determined by (8), i.e. by a majority vote if possible, and c∗j = 1, otherwise.
Misclassified samples are corrected according to (14) on a tB∞-neighborhood for some small t > 0.
The lighter red and blue background colors display the predictions of the inflated HR. Note that a
few samples are too close to the cell boundaries, i.e. (12) is violated. If the neighboring cell of such a
sample has an opposite prediction, the predictions of the inflated HR are no longer in {−1, 1}. The
regions where this happens are colored in dark blue and dark red, respectively. Right. An inflated HR
on X = [−1, 1]2 that is properly aligned to the same data set. Note that (12) ensures that boundary
effects as for the left HR do not take place. As a result, all predictions are in {−1, 1}. For inflated
HRs these effects seem to be a negligible technical nuisance. For their DNN counterparts considered
in Section 4, however, such effects may significantly complicate the constructions of interpolating
predictors, see Figure 2.

Proposition 3.2. Let L be a loss that is interpolatable for D = ((x1, yi), . . . , (xn, yn)) and let
x∗1, . . . , x

∗
m be as in (6). Moreover, for s ∈ (0, 1] and r > 0 we fix an f∗ ∈ F∗s,r,m with representation

(11) satisfying (12) and (13). For i = 1, . . . ,m let ji be the index such that x∗i ∈ Aji . Then f∗

interpolates D if for all i = 1, . . . ,m we have

bi = −cji + arg min
c∈Y

∑
k:xk=x∗i

L(xk, yk, c) . (14)

Note that for all cji ∈ Y the value bi given by (14) satisfies bi ∈ 2Y ∪ {0} and we have bi = 0 if
cji is contained in the arg min in (14). Moreover, (14) shows that an interpolating f∗ ∈ F∗s,r,m can
be an arbitrary A-step function h ∈ HA outside the small tB∞-neighborhoods around the samples
of D. In other words, as soon as we have found at least one such f∗ ∈ F∗s,r,m, we can arbitrarily
change it outside these small neighborhoods by changing its HA-part and recomputing the bi’s by
(14). Based on this observation, we can now construct different, interpolating f∗D ∈ F∗s,r,m that have
particularly good and bad learning behaviors.

Example 3.3 (Good and bad interpolating ERMs). Let L be the least squares loss and D =
((x1, yi), . . . , (xn, yn)) be a data set. For s ∈ (0, 1], r := 2−n, and m := n we fix an f+D,s ∈ F∗s,r,m
with representation (11) satisfying (12) and (13) such that (14) holds and such that its HA-part

h+D,A :=
∑
j∈J

c+j 1Aj

is an HRR. Analogously, for the hinge and classification loss L we demand h+D,A to be an HRC

and (14) needs to hold for L, instead. In all three cases f+D,s is an interpolating predictor. In the
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Figure 2: Left. Approximation g
(ε)
A (orange) of the indicator function 1A for A = [0.05, 0.45] (blue)

according to Lemma 4.1 for ε = 0.1 on X = [0, 1]. The construction of g
(ε)
A ensures that g

(ε)
A coincides

with 1A modulo a small set that is controlled by ε > 0. Right. A DNN (orange) for regression that
approximates the histogram 1[0,0.5) + 0.8 · 1[0.5,1) and a DNN (green) that additionally tries to
interpolate two samples x1 = 0.15 and x2 = 0.975 (located at the two vertical dotted lines) with
yi = −0.5. The label y1 is correctly interpolated since the alignment condition (12) is satisfied for x1
with t = 0.15 and ε = δ = t/3 = 0.05 as in Example 4.2. In contrast, y2 is not correctly interpolated
since condition (12) is violated for this t and hence ε and δ are too large.

following, a D 7→ f+D,s that chooses the CP A from the candidates described in Theorem 3.1 is called
a good interpolating histogram rule.

To find a bad interpolating predictor for D we consider the good f+D,s ∈ F∗s,r,m just constructed.

Then f−D,s ∈ F∗s,r,m denotes a predictor whoseHA-part is h−D,A := −h+D,A and whose bi’s are obtained

by (14). Clearly, f−D,s is an interpolating predictor with representation (11) satisfying (12), (13) and

(14). In the following, D 7→ f−D,s is called a bad interpolating histogram rule.

4 Approximation of Histograms with ReLU Networks

The goal of this section is to construct the DNNs of Theorem 2.3. To this end, we mimic inflated
histogram rules with DNNs of suitable depth and width.

Motivated by the representation (11) for histograms, the first step of our construction approx-
imates the indicator function of an multi-dimensional interval by a small part of a possibly large
DNN. This will be our main building block. Note that the ReLU activation function is particularly
suited for this approximation and it thus plays a key role in our entire construction.

For the formulation of the corresponding lemma we fix some notation. For z1, z2 ∈ Rd we write
z1 ≤ z2 if each coordinate satisfies z1,i ≤ z2,i, i = 1, . . . , d. We define z1 < z2 analogously. In
addition, if z1 ≤ z2, then the multi-dimensional interval is [z1, z2] := {z ∈ Rd : z1 ≤ z ≤ z2}, and we
similarly define (z1, z2) if z1 < z2. Finally, for s ∈ R, we let z1 + s := (z1,1 + s, . . . , z1,d + s).

Lemma 4.1. Let z1, z2 ∈ Rd with z1 < z2 and ε > 0 with ε < min{z2,i − z1,i : i = 1, . . . , d}. Then

for all A ⊂ X with [z1 + ε, z2 − ε] ⊂ A ⊂ [z1, z2] there exists a DNN g
(ε)
A ∈ A2d,1 with

{g(ε)A = 1A} = [z1 + ε, z2 − ε] ∪
(
X \ (z1, z2)

)
.

Figure 2 illustrates g
(ε)
A for d = 1. Moreover, the proof of Lemma 4.1 shows that out of the 2d2

weight parameters of the first layer, only 2d are non-zero. In addition, the 2d weight parameters of
the neuron in the second layer are all identical. In order to approximate inflated histograms we need
to know how to combine several functions of the form provided by Lemma 4.1 into a single neural
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network. A particularly appealing feature of our DNNs is that the concatenation of layer structures
is very easy. To be more precise, if c ∈ R, (p1, p2) ∈ N2, and g ∈ Ap, g′ ∈ Ap′ , then cg ∈ Ap and
g + g′ ∈ Ap+p′ , see Lemma D.1. In particular, our constructed DNNs have a particularly sparse
structure and the number of required neurons behaves in a very controlled and natural fashion.

With these insights, we are now able to find a representation similar to (11) and to define good
and bad interpolating DNNs, similarly to good and bad interpolating ERMs presented in Example
3.3. To this end, we choose a CP A = (Aj)j∈J of X with width s > 0 and define

H(ε)
A :=

{∑
j∈J

cj g
(ε)
Aj

: cj ∈ Y
}
, 0 < ε ≤ s

3
,

where g
(ε)
Aj

:= (g
(ε)
Bj

)|Aj is the restriction of g
(ε)
Bj

to Aj and g
(ε)
Bj

is the ε-approximation of 1Bj of

Lemma 4.1, where Bj is cell with Aj = ∩Bj ∩ X, see the text around (10). Moreover, we write

H(ε)
s :=

⋃
H(ε)
A , where the union runs over all CPs A of X with width s > 0. Our considerations

above show that we have H(ε)
s ⊂ Ap1,p2 with p1 = 2d|J | and p2 = |J |. Any ε-approximate histogram,

i.e., any function in H(ε)
s , can therefore be represented by a DNN with 2 hidden layers. Inflated

versions are now straightforward. Namely, for r, s, ε > 0 and m ≥ 0 we define

F (ε)
s,r,m :=

{
h(ε)+

m∑
i=1

big
(δ)
x∗i+tB∞

: h(ε) ∈ H(ε)
s , bi ∈ 2Y ∪ {0}, x∗i ∈ X, t ∈ (0, r], δ ∈ (0, t/3]

}
,

where g
(δ)
x∗i+tB∞

is a δ-approximation of 1x∗i+tB∞ . A short calculation shows that F (ε)
s,r,m ⊂ Ap1,p2

with p1 = 2d(m + |J |), p2 = m + |J | and |J | ≤ (2/s)d. With these preparations, we can now
introduce good and bad interpolating DNNs.

Example 4.2 (Good and bad interpolating DNN). Let L be the least squares or the hinge
loss, and D = ((x1, yi), . . . , (xn, yn)) be a data set. For s ∈ (0, 1], r := 2−n, and m := n let

f+D,s =
∑
j∈J

c+j 1Aj +

m∑
i=1

bi1x∗i+tB∞ ∈ F
∗
s,r,m

be the good interpolating HR according to Example 3.3. In particular, t > 0 satisfies (12) and (13).
For ε := δ := t/3 we then define the good interpolating DNN by

g+D,s =
∑
j∈J

c+j g
(ε)
Aj

+

m∑
i=1

big
(δ)
x∗i+tB∞

.

Clearly, we have ε = δ ≤ t/3 ≤ min{2−n, s/6} and g+D,s ∈ F
(ε)
s,r,n. Moreover, for s ≥ 2n−1/d we

find |J | ≤ n, and hence g+D,s ∈ A4dn,2n. Note that every wider and/or deeper architecture includes

A4dn,2n. Finally, the bad interpolating DNN g−D,s is defined analogously using the bad interpolating
HR from Example 3.3, instead.
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A Histograms based on Data-Dependent Partitions

Our aim is to show consistency and to derive learning rates for histograms based on a random
partition of the input space. We first introduce some notation: We denote by Ps the set of all CPs
of fixed width s ∈ (0, 1] of Rd and by PXs the set of all CPs on X. Note that cells of A ∈ PXs are
obtained by intersecting the cells of B ∈ Ps with X. An m-sample CP rule of fixed width s ∈ (0, 1]
for Rd is a map πs,m : Rdm −→ Ps to which we associate a non-random family of partitions
Ps,m := πs,m(Rdm) ⊂ Ps. Thus, Ps,m is the set of all partitions generated by the rule πs,m for all
possible realizations of a training set DX . In particular, πs,m applied to the input training sample
(x∗1, ..., x

∗
m) produces a data-dependent CP. Again, by restricting the cells of an element B ∈ Ps,m

to X, we obtain a partition A of X and the set of all such A will be denoted by PXs,m. Recall that

Theorem 3.1 provides us with a special partitioning rule πs,m : Rdm −→ Ps, where |Ps,m| = (m+1)d.

A.1 Regression

Let us also introduce an infinite sample version of a classical histogram

hP,A =
∑
j∈J

cj1Aj , cj =
1

PX(Aj)

∫
Aj

f∗L,P (x)dPX(x) .

Similarly to empirical histograms one has

RL,P (hP,A) = inf
h∈HA

RL,P (h) .

Recall, the histogram rule for regression based on a data-dependent partition AD ∈ PXs,n is a map
L : D 7−→ hD,AD with

hD,AD =
∑
j∈J

c∗j1Aj ,

where the c∗j are defined in (9).
Our first result establishes an oracle inequality for the excess risk of the histogram rule based on

a data-dependent partition for regression when using the least square loss.

Proposition A.1 (Oracle Inequality). Let L be the least square loss. Assume that |PXs,n| = Ks,n <
∞. For any ε > 0, τ > 0

sup
A∈PXs,n

RL,P (hD,A)−R∗L,P ≤ 6 sup
A∈PXs,n

(R∗L,P,HA −R
∗
L,P ) + 8ε

+ 128 sup
A∈PXs,n

τ + 1 + logN (HA, || · ||∞, ε)
n

,

with Pn−probability at least 1− 2Ks,ne
−τ .

Proof of Proposition A.1: This follows from the result in [12], p. 284 by taking a union bound.
In particular, the assumptions required there are satisfied with θ = 1 and B = V = 4, resulting from
L being the least square loss (see [12], p. 245).

In the following, we establish universal consistency of L with respect to the least square loss and
derive learning rates. To do so we need an additional assumption for the a-priori smoothness of the
regression function.

Assumption A.2 (Regularity). For α ∈ (0, 1] and C > 0 we let Σ(α,C) denote the class of α−
Hölder continuous functions f : X −→ R, i.e.,

|f(x)− f(x′)| ≤ C ||x− x′||α ,

for any x, x′ ∈ X.
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Lemma A.3 (Approximation Error). Let A be a CP of width s ∈ (0, 1]. Then, for any ε > 0 there
exists sε > 0 such that for any CP of width s ∈ (0, sε] one has

RL,P (hP,A)−R∗L,P < ε .

Moreover, if the regularity Assumption A.2 holds, then for all s ∈ (0, 1] we have

||hP,A − f∗L,P ||2 < 2Csα .

Proof of Lemma A.3: For the proof of the first assertion we fix an ε > 0. Then recall that there
exists a continuous f : Rd → R with compact support such that

‖f∗L,P − f‖2 ≤ ε , (15)

see e.g.[1, Theorem 29.14 and Lemma 26.2]. Moreover, since ‖f∗L,P ‖∞ ≤ 1, we can assume without
loss of generality that ‖f‖∞ ≤ 1. Moreover, since f is continuous and has compact support, f is
uniformly continuous, and hence there exists a δ ∈ (0, 1] such that for all x, x′ ∈ X with ‖x−x′‖∞ ≤ δ
we have ∣∣f(x)− f(x′)

∣∣ ≤ ε . (16)

We define sε := δ. Now, we fix a CP A = (Aj)j∈J of width s > 0 for some s ∈ (0, sε]. For x ∈ X
with PX(A(x)) > 0 we then have

hP,A(x) =
1

PX(A(x))

∫
A(x)

f∗L,P dPX .

For such x we then define

f̄(x) :=
1

PX(A(x))

∫
A(x)

f dPX .

For the remaining x ∈ X we simply set f̄(x) := 0. With these preparations we then have

‖hP,A − f∗L,P ‖2 ≤ ‖hP,A − f̄‖2 + ‖f̄ − f‖2 + ‖f − f∗L,P ‖2 . (17)

Clearly, (15) shows that the third term is bounded by ε. Let us now consider the second term. Here
we note that for an x ∈ X with PX(A(x)) > 0 we have

∣∣f(x)− f̄(x)
∣∣ =

1

PX(A(x))

∣∣∣∣∫
A(x)

f(x)− f(x′) dPx(x′)

∣∣∣∣
≤ 1

PX(A(x))

∫
A(x)

∣∣f(x)− f(x′)
∣∣ dPx(x′)

≤ ε ,

where in the last step we used (16). Consequently, we obtain

‖f − f̄‖22 =
∑

j∈J:PX(Aj)>0

∫
A(x)

∣∣f(x)− f̄(x)
∣∣2 dPx(x′) ≤

∑
j∈J:PX(Aj)>0

ε2 · PX(Aj) ≤ ε2 .

In other words, the second term is bounded by ε, too. Let us finally consider the first term. Here
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we have

‖hP,A − f̄‖22 =
∑

j∈J:PX(Aj)>0

∫
Aj

∣∣hP,A − f̄ ∣∣2 dPX
=

∑
j∈J:PX(Aj)>0

∫
Aj

∣∣∣∣ 1

PX(A(x))

∫
Aj

f∗L,P dPX −
1

PX(Aj)

∫
A(x)

f dPX

∣∣∣∣2 dPX
=

∑
j∈J:PX(Aj)>0

∣∣∣∣∫
Aj

f∗L,P dPX −
∫
Aj

f dPX dPX

∣∣∣∣2

≤
∣∣∣∣ ∑
j∈J:PX(Aj)>0

∫
Aj

f∗L,P dPX −
∫
Aj

f dPX dPX

∣∣∣∣2
= ‖f∗L,P − f‖21
≤ ‖f∗L,P − f‖22
≤ ε2 .

Consequently, the first term is bounded by ε, too, and hence we conclude by (17) that

RL,P (hP,A)−R∗L,P = ‖hP,A − f∗L,P ‖22 ≤ 9ε2 .

A simple variable transformation then yields the first assertion.
To show the second assertion we simply consider f = f∗L,P and note that we can choose sε =

(ε/C)1/α. Repeating the proof of the first case for arbitrary ε > 0 and s ∈ (0, sε] then yields

‖hP,A − f∗L,P ‖2 ≤ 2ε .

Now let s ∈ (0, 1]. For ε := Csα we then obtain the assertion.

Based on the oracle inequality Proposition A.1 and the Approximation error bound Lemma A.3
we can now establish universal consistency of any histogram rule hD,AD based on a data-dependent
partition AD from PXs,n, growing at most polynomially with the sample size.

Proposition A.4 (Consistency). Assume sn → 0 and log(n)
nsdn

→ 0 as n→∞. Further suppose that

|PXsn,n| = Ksn,n ≤ cnβ, for some c <∞, 0 < β. The learning method L : D 7−→ hD,AD is universally
consistent, that is,

RL,P (hD,AD ) −→ R∗L,P
in probability for |D| → ∞.

Proof of Proposition A.4: Let ε > 0 and τ > 0. Applying the oracle inequality in Proposition
A.1 gives with Pn−probability at least 1− 2Ks,ne

−τ

RL,P (hD,AD )−R∗L,P ≤ sup
A∈PXs,n

RL,P (hD,A)−R∗L,P

≤ 6 sup
A∈PXs,n

(R∗L,P,HA −R
∗
L,P ) + 8ε

+ 128 sup
A∈PXs,n

τ + 1 + logN (HA, || · ||∞, ε)
n

(18)

Next, Lemma A.3 gives for any CP A of width s ∈ (0, sε]

R∗L,P,HA −R
∗
L,P = RL,P (hP,A)−RL,P (f∗L,P ) < ε . (19)

Further, the covering number is bounded by

logN (HA, || · ||∞, ε) ≤ cds−d log(1/ε) , (20)
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for some cd <∞. Thus, combining this bound with (19) and with (18) yields with Pn−probability
at least 1− 2Ks,ne

−τ

RL,P (hD,AD )−R∗L,P ≤ 14ε+ 128
τ + 1 + cds

−d log(1/ε)

n
. (21)

Finally, the result follows by choosing τ =
√
n and ε = 1/ log(n).

Finally, we derive learning rates.

Proposition A.5 (Learning Rates). Suppose the regularity Assumption A.2 holds. Let the width
sn be chosen according to

sn =

(
log(n)

n

) 1
2α+d

.

If |PXsn,n| = Ksn,n ≤ cnβ, for some c <∞, 0 ≤ β, then

RL,P (hD,AD )−R∗L,P ≤ cd,α
(

log(n)

n

) 2α
2α+d

with Pn−probability at least 1− cnβe−nγ , with γ = d
2α+d .

Proof of Proposition A.5: Under the regularity Assumption A.2, Lemma A.3 gives us

R∗L,P,HA −R
∗
L,P = ||hP,A − f∗L,P ||2L2

≤ ||hP,A − f∗L,P ||2L∞
< Cs2α .

Plugging this bound into (18) and using (20) once more leads us to

RL,P (hD,AD )−R∗L,P ≤ Cs2α + 8ε+ 128
τ + 1 + cds

−d log(1/ε)

n
, (22)

with Pn−probability at least 1− 2Ks,ne
−τ , for any τ > 0 and ε > 0. Finally, choosing

sn =

(
log(n)

n

) 1
2α+d

, εn = n−
2α

2α+d , τn = n
d

2α+d

gives the result.

Remark A.6. The proof of Proposition A.5 shows actually more: If we let γ ∈ [0, 2α
2α+d ] and choose

in (22)

τn = n1−γ , εn = n−γ , sn =

(
log(n)

n

) 1−γ
d

we get

RL,P (hD,AD )−R∗L,P ≤ c
(

log(n)

n

)γ
with Pn−probability at least 1 − 2Ks,ne

−τn , for some c < ∞. This rate is optimal in the mini-
max sense only if γ = 2α

2α+d . In other words: If the width of the random cubic partition is chosen
inappropriately, the method L : D 7−→ hD,AD can learn arbitrarily bad.
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A.2 Classification

Proposition A.7 (Consistency). Let L be the classification loss and signhD,AD be a plug-in classi-

fication rule, where hD,AD is an HRR based on a random partition. Assume sn → 0 and log(n)
nsdn

→ 0

as n → ∞. Further suppose that |PXsn,n| = Ksn,n ≤ cnβ, for some c < ∞, 0 < β. The learning
method L : D 7−→ hD,AD is universally consistent, that is,

RL,P (signhD,AD ) −→ R∗L,P

in probability for |D| → ∞.

Proof of Proposition A.7: The assertion follows by applying a well-known calibration inequality
between the classification and the least squares loss, namely

RLclass,P (f)−R∗Lclass,P
≤
√
RLls,P (f)−R∗Lls,P

=
∥∥ f − f∗Lls,P

∥∥
2
,

see e.g. [12, Table 3.1 and Theorem 3.22] for the inequality and [12, Example 2.6] for the identity.
Then apply Proposition A.4.

B General Aspects of Histograms and other Lego Pieces

In this section we collect some useful Lemmas which we shall need for proving our main Theorem
2.2. The first Lemma provides a simple characterization of ERMs.

Lemma B.1 (Characterization of ERMs). Let A ⊆ X be non-empty, A := (A1, . . . , Am) be a
partition of A, and

FA :=

{ m∑
j=1

αj1Aj : αj ∈ Y
}

with Y = R or Y = {−1,+1}. Moreover, let D = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n be a data
set and let LA(x, y, t) = 1A(x)L(y, t), where L is either the classification loss or least squares loss.
Further denote by Nj =

∑
i:xi∈Aj 1Aj (xi) the number of covariates falling into Aj. Then, for every

f∗ ∈ FA with representation f∗ =
∑m
j=1 αj1Aj , the following statements are equivalent:

i) The function f∗ is an empirical risk minimizer, that is

RLA,D(f∗) = min
f∈FA

RLA,D(f) .

ii) • Let Y = R. For all j ∈ {1, . . . ,m} satisfying Nj 6= and
∑
i:xi∈Aj yi 6= 0 we have

αj =
1

Nj

∑
i:xi∈Aj

yi . (23)

If
∑
i:xi∈Aj yi = 0, then αj = 0. If Nj = 0, then any αj ∈ Y is a minimizer.

• Let Y = {−1,+1}. For all j ∈ {1, . . . ,m} satisfying
∑
i:xi∈Aj yi 6= 0 we have

αj = sign

(
1

Nj

∑
i:xi∈Aj

yi

)
= sign

( ∑
i:xi∈Aj

yi

)
. (24)

If
∑
i:xi∈Aj yi = 0, both αj = −1 and αj = 1 are minimizers.
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Proof of of Lemma B.1: We first note that for an f∗ ∈ FA with representation f∗ =
∑m
j=1 αj1Aj

we have

RLA,D(f∗) =
1

n

n∑
i=1

1A(xi)L
(
yi, f

∗(xi)
)

=
1

n

m∑
j=1

∑
i:xi∈Aj

L(yi, αj) .

Consequently, f∗ is an empirical risk minimizer, if and only if αj minimizes
∑
i:xi∈Aj L(yi, ·) for all

j ∈ {1, . . . ,m}.
Now let Y = R and LA(x, y, t) = 1A(x)L(y, t), with L the least square loss. Then∑

i:xi∈Aj

L(yi, αj) =

( ∑
i:xi∈Aj

1Aj (xi)

)
α2
j − 2αj

( ∑
i:xi∈Aj

yi

)
+ y2i

which is minimized for αj =

∑
i:xi∈Aj

yi∑
i:xi∈Aj

1Aj (xi)
.

If Y = {−1,+1} and LA(x, y, t) = 1A(x)L(y, t) with L the classification loss, then (24) is the only
minimizer, whereas, in the case

∑
i:xi∈Aj yi = 0, both αj = −1 and αj = 1 minimize the term. This

completes the proof.

The next Lemma provides a bound on the difference of the risks of two measurable functions
with respect to both, the classification loss and the least squares loss.

Lemma B.2. Let f1, f2 : X −→ Y be measurable functions and let A ⊂ X be measurable and
non-empty.

i) If Y = {−1,+1} and LA(x, y, t) = 1A(x)L(y, t) with L the classification loss, then∣∣RLA,P (f1)−RLA,P (f2)
∣∣ ≤ PX(A ∩ {f1 6= f2}

)
.

ii) If Y = [−1, 1] and LA(x, y, t) = 1A(x)L(y, t) with L the least square loss, then∣∣RLA,P (f1)−RLA,P (f2)
∣∣ ≤M PX

(
A ∩ {f1 6= f2}

)
,

where M = M1 +M2 with

Mj = sup
x∈X
|f∗L,P (x)− fj(x)|2 , j = 1, 2 .

Proof of Lemma B.2:

i) By definition, we have

∣∣RL,P (f1)−RL,P (f2)
∣∣ =

∣∣∣∣∫
A×Y

1(−∞,0](yf1(x))− 1(−∞,0](yf2(x)) dP (x, y)

∣∣∣∣
≤
∫
A×Y

∣∣1(−∞,0](yf1(x))− 1(−∞,0](yf2(x))
∣∣ dP (x, y)

≤
∫
A×Y

1{f1 6=f2} dP (x, y) ,

and this yields the assertion.

ii) Again by definition, we have

RL,P (f1)−RL,P (f2) =

∫
A

∫
Y

(y − f1(x))2 − (y − f2(x))2dP (y|x)dPX(x) .

16



Using (a − b)2 − (a − c)2 = (b − c)((b − a) − (c − a)) and integrating w.r.t. y yields for the
absolute value of the rhs of the above equation∣∣∣∣∫

A

(f1(x)− f2(x))((f1(x)− y) + (f2(x)− y))dP (y|x)dPX(x)

∣∣∣∣
=

∣∣∣∣∫
A

(f1(x)− f2(x))((f1(x)− f∗L,P (x)) + (f2(x)− f∗L,P (x)))dPX(x)

∣∣∣∣
=

∣∣∣∣∫
A∩{f1 6=f2}

(f∗L,P (x)− f1(x))2 − (f∗L,P (x)− f2(x))2dPX(x)

∣∣∣∣
≤ (M1 +M2)PX(A ∩ {f1 6= f2}) ,

with
Mj = sup

x∈X
|f∗L,P (x)− fj(x)|2 , j = 1, 2 .

Lemma B.3. Let A1, A2 ⊂ X be non-empty, disjoint, and measurable with A1 ∪ A2 = X. Let
L : Y × R −→ R be loss and define LAj (x, y, t) = 1Aj (x)L(y, t), for j = 1, 2. Then we have

R∗L,P = R∗LA1
,P +R∗LA2

,P .

Proof of Lemma B.3: See e.g. [9], Lemma 9.

Lemma B.4 (Label Flipping). Let Y = {−1, 1}, and P be a distribution on X × Y . Moreover, let
Pϕ denote the pushforward measure of the label flipping map ϕ : X × Y → X × Y given by

ϕ(x, y) := (x,−y) .

Then for all f : X → R we have∣∣RLclass,P (f)− (1−R∗Lclass,P
)
∣∣ ≤ ‖f − f∗Lls,Pϕ

‖2 .

Proof of Lemma B.4: As usual, we write η(x) := P (y = 1|x). Obviously, this gives ηϕ = 1 − η,
where ηϕ := Pϕ(y = 1|x). By the last equation in the proof of [12, Theorem 2.31] we then find

RLclass,Pϕ(f)−R∗Lclass,Pϕ
=

∫
X

∣∣2ηϕ − 1
∣∣ · 1(−∞,0]

(
(2ηϕ − 1) sign f

)
dPX

=

∫
X

|2η − 1| · 1(−∞,0]
(
(1− 2η) sign f

)
dPX

=

∫
X

|2η − 1| dPX −
∫
X

|2η − 1| · 1(0,∞)

(
(1− 2η) sign f

)
dPX

=

∫
X

|2η − 1| dPX −
∫
X

|2η − 1| · 1(−∞,0)
(
(2η − 1) sign f

)
dPX

=

∫
X

|2η − 1| dPX −
∫
X

|2η − 1| · 1(−∞,0]
(
(2η − 1) sign f

)
dPX

=

∫
X

|2η − 1| dPX −
(
RLclass,P (f)−R∗Lclass,P

)
,

where in the second to last step we used |2η − 1| · 1{0}
(
(2η − 1) sign f

)
= 0, and the last step is

another application of the last equation in the proof of [12, Theorem 2.31]. Now observe that we
have

|2η − 1|+ min{η, 1− η} = 1−min{η, 1− η}
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and since R∗Lclass,P
= EPX min{η, 1− η}, see e.g. [12, Example 2.4] we find

(1−R∗Lclass,P
)−RLclass,P (f) = RLclass,Pϕ(f)−R∗Lclass,Pϕ

.

Now the assertion follows by applying a well-known calibration inequality between the classification
and the least squares loss, namely

RLclass,Pϕ(f)−R∗Lclass,Pϕ
≤
√
RLls,Pϕ(f)−R∗Lls,Pϕ

=
∥∥ f − f∗Lls,Pϕ

∥∥
2
,

see e.g. [12, Table 3.1 and Theorem 3.22] for the inequality and [12, Example 2.6] for the identity.

C Proof of Main Theorem 2.2

C.1 Proof of Main Theorem 2.2

The first Lemma in this section gives a useful bound of the excess risk of inflated histograms in
terms of related classical histograms. Handling classical histograms can be done with the results
from Section A. This is the main step for proving Theorem 2.2.

Lemma C.1. Let L be the least squares, the hinge or the classification loss. For s ∈ (0, 1], r > 0
and m ≥ 0 let f∗ ∈ F∗s,r,m be an (interpolating) predictor having representation (11), with hA being
its HA−part. If Assumption 2.1 is satisfied, then the excess risk satisfies

RL,P (f∗)−R∗L,P ≤ RL,P (hA)−R∗L,P +mMcr , (25)

for some M ∈ R+, depending on the loss function and where c ∈ (0,∞) is from Assumption 2.1.

Proof of Proposition C.1: We split the excess risk as

RL,P (f∗)−R∗L,P ≤ (RL,P (f∗)−RL,P (hA)) +
(
RL,P (hA)−R∗L,P

)
. (26)

By definition, for t ∈ [0, r], one has

{
f∗ 6= hA

}
=

m⋃
i=1

x∗i + tB∞ . (27)

Applying Lemma B.2 and taking Assumption 2.1 into account, we find almost surely

RL,P (f∗)−RL,P (hA) ≤M
m∑
i=1

PX (x∗i + tB∞) ≤ mMc r , (28)

for some M ∈ R+.

We now prove our main result.
Proof of Theorem 2.2: Choose a good interpolating histogram rule f+D,s ∈ F∗s,r,n as in Example

3.3 and a bad interpolating histogram rule f−D,s ∈ F∗s,r,n according to Example 3.3.

i) Let L be the least squares, the hinge or the classification loss. Recall that Theorem 3.1 defines
a partitioning rule πs,n : Rdn −→ Ps, where |Ps,n| = (n + 1)d. The claim in Eq. (2) follows
from Proposition A.4, Proposition A.7 and by applying Lemma C.1. More precisely, (25) gives
us with probability at least 1− 2(n+ 1)de−

√
n

RL,P (f+D,sn)−R∗L,P ≤ RL,P (h+D,sn)−R∗L,P +Mnrn ≤ ε

provided sn satisfies the assumptions of Theorem 2.2, rn = 2−n and n is sufficiently large.
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Next, consider a bad interpolating histogram rule f−D,s ∈ F∗s,r,n. We first consider the case of
L being the least squares loss and have owing to Lemma C.1

RL,P (f−D,s)−R
†
L,P = RL,P (f−D,s)−RL,P (h−D,s)

+ RL,P (h−D,s)−RL,P (−f∗L,P )

≤ nMcr + || − h−D,s − f
∗
L,P ||22

= nMcr + ||h+D,s − f
∗
L,P ||22 . (29)

Now, the analysis of D 7→ h+D,sn in Proposition A.4 ensures ‖h+D,sn − f
∗
L,P ‖2 → 0 for n→∞,

and thus (29) immediately shows that

RL,P (f−D,sn) −→ R†L,P

in probability for n→∞, if additionally εn = rn = 2−n.

A similar observation can be made for the classification loss, since by Lemma B.4 and

RLclass,P (sign f) = RLclass,P (f)

we have ∣∣RLclass,P (signh−D,s)− (1−R∗Lclass,P
)
∣∣ ≤ ∥∥h−D,s − f∗Lls,Pϕ

∥∥
2

=
∥∥h+D,s − f∗Lls,P

∥∥
2
, (30)

where h±D,s denote the HA-part of the good and bad interpolating HRs for regression, and

signh−D,s is the HA-part of the bad interpolating HR for classification. Finally, for the hinge

loss, f−D,s coincides with the corresponding function for the classification loss.

ii) Let L be the least squares loss, f∗L,P be α-Hölder continuous and suppose PX satisfies Assump-

tion 2.1. Choose sn as in Theorem 2.2 and rn = 2−n. From Lemma C.1 and Proposition A.5
with |PXsn,n| = (n+ 1)d we obtain for n sufficiently large

RL,P (f+D,sn)−R∗L,P ≤ RL,P (h+D,s)−R
∗
L,P +Mcnrn

≤ c′M,d,α

(
log(n)

n

) 2α
2α+d

for some c′M,d,α < ∞ and with Pn−probability at least 1 − nde−nβ , with β = d
2α+d . Finally,

the rates for the full range γ ∈ [0, 2α
2α+d ] follow by using the arguments as in Remark A.6.

C.2 Auxiliary Technical Proofs

Proof of Theorem 3.1: Let us write δ := s/(m+ 1). For j ∈ {0, . . . ,m} we then define

z†j :=
(
j +

1

2

)
δ .

Moreover, our candidate offsets x†1, . . . , x
†
K ∈ Rd are exactly those vectors whose coordinates equal

z†j for some j ∈ {0, . . . ,m}. Clearly, this gives K = (m+ 1)d. Now let x∗1, . . . , x
∗
m ∈ [−1, 1]d. In the

following, we will identify the offset x†` coordinate-wise. We begin by determining its first coordinate

x†`,1. To this end, we define

Ij :=
⋃
k∈Z

[
ks+ jδ, ks+ (j + 1)δ

)
.
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Our first goal is to show that I0, . . . , Im are a partition of R. To this end, we fix an x ∈ R. Then there
exists a unique k ∈ Z with ks ≤ x < (k+1)s. Moreover, for y := x−ks ∈ [0, s), there exists a unique
j ∈ {0, . . . ,m} with jδ ≤ y < (j + 1)δ. Consequently, we have found x ∈ [ks + jδ, ks + (j + 1)δ).
This shows R ⊂ I0, . . . , Im, and the converse inclusion is trivial. Let us now fix an x ∈ Ij ∩Ij′ . Then
there exist k, k′ ∈ Z such that

x ∈
[
ks+ jδ, ks+ (j + 1)δ

)
∩
[
k′s+ j′δ, k′s+ (j′ + 1)δ

)
(31)

Since (j + 1)δ ≤ s and (j′ + 1)δ ≤ s we conclude that ks ≤ x < (k + 1)s and k′s ≤ x < (k′ + 1)s.
As observed above this implies k = k′. Now consider y := x− ks ∈ [0, s). Then (31) implies

y ∈
[
jδ, (j + 1)δ

)
∩
[
j′δ, (j′ + 1)δ

)
,

and again we have seen above that this implies j = j′. This shows Ij ∩ Ij′ = ∅ for all j 6= j′.
Let us now denote the first coordinate of x∗i by x∗i,1. Then D∗X,1 := {x∗i,1 : i = 1, . . . ,m} satisfies

|D∗X,1| ≤ m and since we have m + 1 cells Ij , we conclude that there exists a j∗1 ∈ {0, . . . ,m} with
D∗X,1 ∩ Ij∗1 = ∅. We define

x†`,1 := z†j∗1
=
(
j∗1 +

1

2

)
δ .

Next we repeat this construction for the remaining d − 1 coordinates, so that we finally obtain
x†` := (z†j∗1

, . . . , z†j∗d
) ∈ Rd for indices j∗1 , . . . , j

∗
d ∈ {0, . . . ,m} found by the above reasoning.

It remains to show that (12) holds the CP (10) with offset x†` and all t > 0 with t ≤ s
3m+3 = δ/3.

To this end, we fix an x∗i . Then its cell B(x∗i ) is described by a unique k := (k1, . . . , kd) ∈ Zd,
namely

B(x∗i ) =
[
x†`,1 + k1s, x

†
`,1 + (k1 + 1)s

)
× · · · ×

[
x†`,d + kds, x

†
`,d + (kd + 1)s

)
.

Let us now consider the first coordinate x∗i,1. By construction we then know that x∗i,1 6∈ Ij∗1 and(
j∗1 +

1

2

)
· δ + k1s ≤ x∗i,1 <

(
j∗1 +

1

2

)
· δ + (k1 + 1)s . (32)

Now x∗i,1 6∈ Ij∗1 implies

x∗i,1 6∈
[
(k1 + 1)s+ j∗1δ, (k1 + 1)s+ (j∗1 + 1)δ

)
Since the right hand side of (32) excludes the case x∗i,1 ≥ (k1 + 1)s+ (j∗1 + 1)δ, hence we find

x∗i,1 < (k1 + 1)s+ j∗1δ = x†`,1 + (k1 + 1)s− δ/2

This shows x∗i,1+r < x†`,1+(k1+1)s for all r ∈ [−t, t]. Analogously, we can show x∗i,1+r > x†`,1+k1s
for all r ∈ [−t, t]. By repeating these considerations for the remaining d−1-coordinates, we conclude
that x∗i + tB∞ ⊂ B(x∗i ).

Proof of Proposition 3.2: By our assumptions we have

c∗i := bi + cji ∈ arg min
c∈Y

∑
k:xk=x∗i

L(xk, yk, c) = arg min
c∈R

∑
k:xk=x∗i

L(xk, yk, c) ,

where the last equality is a consequence of the fact that there is an f : X → Y satisfying (6).
Moreover, since (12) and (13) hold, we find f∗(x∗i ) = h(x∗i ) + bi = cji + bi = c∗i , and therefore f∗

interpolates D by (6).

D General Aspects of Neural Nets and other Lego Pieces

D.1 DNN Algebra

This Section is devoted to showing how networks of different sizes can be combined to build new
ones.
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Given an activation function σ : R −→ R and b ∈ Rm we define the shifted activation function
σb : Rm −→ Rm as

σb(y) := (σ(y1 + b1), ..., σ(ym + bm))T .

A hidden layer of width m and with input dimension M is a function H : RM → Rm of the form

H(x) = (σb ◦A)(x) , x ∈ RM ,

where A is a M ×m weight matrix and b ∈ Rm is a shift vector or bias. Clearly, each pair (A,b)
describes a layer, but in general, a layer, if viewed as a function, can be described by more than
one such pair. A network architecture is described by a width vector m = (m0, ...,mL) ∈ NL+1,
where the positive integer L is the number of layers, L − 1 is the number of hidden layers or the
depth. Here, m0 is the input dimension and mL is the output dimension. A neural network with
architecture m ∈ NL+1 is a function f : Rm0 −→ RmL+1 , having a representation of the form

f(x) = HL ◦HL−1 ◦ · · · ◦H1(x)

= A(L)σb(L−1)A(L−1)σb(L−2) · ... ·A(2)σb(1)A(1)(x) + b(L) , (33)

where A(l) is a ml ×ml−1 weight matrix and b(l) ∈ Rml is a shift vector or bias, associated to layer
l = 1, ..., L. Moreover, if the layers H1, . . . ,HL−1, HL are represented by the pairs(

A(1),b(1)
)
, . . . ,

(
A(L),b(L)

)
then we say that the network is represented by (A,B), where A := (A(1), . . . , A(L)) and B :=
(b(1), . . . ,b(L)). As for layers, each pair (A,B) determines a neural network, but in general, a
neural network, if viewed as a function, can be described by more than one such pair. We denote
the set of all neural networks of architecture (m0,m1, . . . ,mL) by Am0,(m1,...,mL−1),mL .

In the sequel, we confine ourselves to ReLU-activation functions | · |+ : R → [0,∞) defined by
|t|+ := max{0, t}. Moreover, we consider networks where the last layer is a single neuron without
activation function, that is,

HL(x) = 〈a, x〉+ b , x ∈ RmL−1

Lemma D.1. i) Let d ≥ 1 and m ∈ NL−1. Assume f ∈ Ad,m,1 has representation A :=
(A(1), . . . , A(L−1), a) and B := (B(1), . . . , B(L−1), b). Then for α ∈ R and c ∈ R, the function
αf + c ∈ Ad,m,1 has representation

(A(1), . . . , A(L−1), αa) (B(1), . . . , B(L−1), αb+ c)

and |f |+ ∈ Ad,(m,1),1 has representation

(A(1), . . . , A(L−1), a, 1) (B(1), . . . , B(L−1), b, 0) .

ii) Let d ≥ 1, L ≥ 2, and m̃, m̂ ∈ NL−1. Then for all f ∈ Ad,m̃,1 and g ∈ Ad,m̂,1 we have

f + g ∈ Ad,m̃+m̂,1 .

More precisely, if (Ã, B̃) (Â, B̂) are representations of f and g, then A := (A(1), . . . , A(L−1), a)
and B := (B(1), . . . , B(L−1), b) defined by

A(1) :=

(
Ã(1)

Â(1)

)
∈ R(m̃1+m̂1)×d , b(1) :=

(
b̃(1)

b̂(1)

)
∈ Rm̃1+m̂1

and for l = 2, . . . , L− 1

A(l) :=

(
Ã(l) 0

0 Â(l)

)
∈ R(m̃l+m̂l)×(m̃l−1+m̂l−1) , b(l) :=

(
b̃(l)

b̂(l)

)
∈ Rm̃l+m̂l ,

a :=
(
ã â

)
∈ Rm̃L+m̂L , b := b̃+ b̂ ∈ R ,

gives a representation (A,B) of f + g.

21



Proof of Lemma D.1:

i) The first assertion immediately follows from representation (33) while for the second note that
building the positive part is nothing else than applying a shifted ReLU activation function
with weight equal to 1 and zero bias.

ii) Let

f(x) = H̃L ◦ ... ◦ H̃1(x) , x ∈ Rd

and
g(x) = ĤL ◦ ... ◦ Ĥ1(x) , x ∈ Rd .

For K = 1, ..., L we introduce the concatenation of layers

W̃K(x) := H̃K ◦ ... ◦ H̃1(x) , x ∈ Rd

and similarly ŴK . Then, since the last layer is just a single neuron without activation function
given by

H̃L(x) = 〈ã, x〉+ b̃ , x ∈ Rm̃L−1

and
ĤL(x) = 〈â, x〉+ b̂ , x ∈ Rm̂L−1 ,

we immediately obtain

(f + g)(x) = 〈ã, W̃L−1(x)〉+ b̃+ 〈â, ŴL−1(x)〉+ b̂

= 〈
(
ã
â

)
,

(
W̃L−1(x)

ŴL−1(x)

)
〉+ b̃+ b̂

and thus
a =

(
ã â

)
∈ Rm̃L+m̂L b = b̃+ b̂ ∈ R .

Moreover, for any l = 2, ..., L− 1 we have(
W̃l(x)

Ŵl(x)

)
=

(
H̃l ◦ W̃l−1(x)

Ĥl ◦ Ŵl−1(x)

)

=

∣∣∣∣∣
(
Ã(l) 0

0 Â(l)

)(
W̃l−1(x)

Ŵl−1(x)

)
+

(
b̃(l)

b̂(l)

)∣∣∣∣∣
+

,

with
Ã(l) ∈ Rm̃l×m̃l−1 , Â(l) ∈ Rm̂l×m̂l−1

and
b̃(l) ∈ Rm̃l , b̂(l) ∈ Rm̂l

and where we apply | · |+ on each component. Finally, the representation for A(1) and b(1) follows
again from simple algebra.

D.2 Neuron Lego

In this section we collect the main pieces to approximate histograms with DNNs. The first Lemma
is a longer and more detailed version of Lemma 4.1 and shows how to approximate an indicator
function on a multidimensional interval by a ReLU-DNN with 2 hidden layers.
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Lemma D.2. Let z1 = (z1,1, . . . , z1,d) ∈ Rd and z2 = (z2,1, . . . , z2,d) ∈ Rd with z1 < z2, and let
ε > 0 satisfy

ε < min
{z2,i − z1,i

2
: i = 1, . . . , d

}
.

Moreover, for i = 1, . . . , d and j = 1, 2 let h
(j)
i : R → [0,∞) be the neurons with weights a

(j)
i ∈ Rd

and biases b
(j)
i ∈ R given by

a
(1)
i = −1

ε
ei, b

(1)
i =

z1,i + ε

ε
,

a
(2)
i =

1

ε
ei, b

(2)
i = −z2,i − ε

ε
.

Let Hε : Rd → R2d be the hidden layer defined by

Hε(x) :=
(
h
(1)
1 (x), . . . , h

(1)
d (x), h

(2)
1 (x), . . . , h

(2)
d (x)

)
, x ∈ Rd,

and in addition, let h : R2d → R be the neuron with weight a ∈ R2d and bias b given by

a = (−1,−1, . . . ,−1) , b = 1 .

Then fε : Rd → [0,∞) defined by fε := h ◦Hε is continuous and we have

{fε > 0} ⊂ (z1, z2) , {fε = 1} = [z1 + ε, z2 − ε] , and {fε > 1} = ∅ .

In particular, fε ∈ Ad,(2d,1),1.

Proof of Lemma D.2: The specific form of h shows that

fε(x) = h ◦H =

∣∣∣∣ d∑
i=1

aih
(1)
i (x) +

d∑
i=1

ad+ih
(2)
i (x) + b

∣∣∣∣
+

=

∣∣∣∣− d∑
i=1

h
(1)
i (x)−

d∑
i=1

h
(2)
i (x) + 1

∣∣∣∣
+

=

∣∣∣∣ d∑
i=1

(
1− h(1)i (x)− h(2)i (x)

)
− d+ 1

∣∣∣∣
+

, (34)

and hence we first investigate the functions 1− h(1)i − h
(2)
i . To this end, let us fix an i ∈ {1, . . . , d}

and an x = (x1, . . . , xd) ∈ Rd. Then we obviously have

h
(1)
i (x) =

∣∣〈a(1)i , x〉+ b
(1)
i

∣∣
+

=
∣∣∣−xi

ε
+
z1,i + ε

ε

∣∣∣
+

=

{
−xi+z1,i+ε

ε if xi ≤ z1,i + ε

0 else,

and

h
(2)
i (x) =

∣∣〈a(2)i , x〉+ b
(2)
i

∣∣
+

=
∣∣∣xi
ε
− z2,i − ε

ε

∣∣∣
+

=

{
xi−z2,i+ε

ε if xi ≥ z2,i − ε
0 else.

Since z1,i + ε < z2,i − ε, we consequently find

1− h(1)i (x)− h(2)i (x) =


xi−z1,i

ε if xi ≤ z1,i + ε

1 if xi ∈ [z1,i + ε, z2,i − ε]
−xi−z2,iε if xi ≥ z2,i − ε .
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In particular, we have{
1− h(1)i − h

(2)
i > 0

}
=
{

(x1, . . . , xd) ∈ Rd : xi ∈ (z1,i, z2,i)
}
, (35){

1− h(1)i − h
(2)
i = 1

}
=
{

(x1, . . . , xd) ∈ Rd : xi ∈ [z1,i + ε, z2,i − ε]
}
, (36){

1− h(1)i − h
(2)
i > 1

}
= ∅ . (37)

Combining our initial equation (34) with (36) and (37) yields

{fε = 1} =

{∣∣∣∣ d∑
i=1

(
1− h(1)i − h

(2)
i

)
− d+ 1

∣∣∣∣
+

= 1

}
=

{ d∑
i=1

(
1− h(1)i − h

(2)
i

)
= d

}
= [z1 + ε, z2 − ε] .

and a combination of (34) with (35) gives

{fε > 0} =

{∣∣∣∣ d∑
i=1

(
1− h(1)i − h

(2)
i

)
− d+ 1

∣∣∣∣
+

> 0

}
=

{ d∑
i=1

(
1− h(1)i − h

(2)
i

)
> d− 1

}

⊂
d⋂
i=1

{
1− h(1)i − h

(2)
i > 0

}
= (z1, z2) ,

where for the proof of the inclusion assume that it was not true. Then there would be an x ∈ Rd
and an i0 ∈ {1, . . . , d} with

d∑
i=1

(
1− h(1)i (x)− h(2)i (x)

)
> d− 1 and 1− h(1)i0 (x)− h(2)i0 (x) ≤ 0 .

without loss of generality we may assume that i0 = d. Then combining both inequalities we find

d− 1 <

d−1∑
i=1

(
1− h(1)i (x)− h(2)i (x)

)
+
(
1− h(1)d (x)− h(2)d (x)

)
≤

d−1∑
i=1

(
1− h(1)i (x)− h(2)i (x)

)
and this shows that there would be an i ∈ {1, . . . , d − 1} with 1 − h

(1)
i (x) − h

(2)
i (x) > 1. This

contradicts (37).
Finally, the equation {fε > 1} = ∅ immediately follows from combining (34) and (37). The

continuity of fε is obvious.

As a second step in our construction presented in Section 4 we use Lemma D.2 and combine that
with Lemma D.1 to approximate step-functions (i.e., histograms based on cubic partitions) with
ReLU-DNNs with 2 layers.

Proposition D.3. Let A1, . . . , Ak be mutually disjoint subsets of X := [−1, 1]d such that for each
i ∈ {1, . . . , k} there exist z−i , z

+
i ∈ X with z−i < z+i and (z−i , z

+
i ) ⊂ Ai ⊂ [z−i , z

+
i ]. Moreover, let z±i,j

be the j-th coordinate of z±i . Then for all f : X → R of the form

f =

k∑
i=1

αi1Ai (38)

where αi ∈ R, all ε > 0 satisfying

ε < min
{z+i,j − z−i,j

2
: i = 1 . . . , k and j = 1, . . . , d

}
and all m1 ≥ 2dk and m2 ≥ k, there exists a neural network gε of architecture (d,m1,m2, 1) such
that

{f = gε} =

k⋃
i=1

[z−i + ε, z+i − ε] ∪ (X \ (z−i , z
+
i )) .
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Proof of Proposition D.3: By assumption, for any ε > 0 we have for any i = 1, ..., k the inclusion

[z−i + ε, z+i − ε] ⊂ Ai ⊂ [z−i , z
+
i ] .

For each pair z−i , z
+
i ∈ X Lemma 4.1 gives us a function g

(ε)
i = hi ◦Hi ∈ Ad,(2d,1),1 such that

{g(ε)i > 0} ⊂ (z−i , z
+
i ) , {g(ε)i = 1} = [z−i + ε, z+i − ε] and {g(ε)i > 1} = ∅ .

In particular

{g(ε)i = 1Ai} = Ai ∩ {g(ε)i = 1} ∩ {g(ε)i = 0} = [z−i + ε, z+i − ε] ∪X \ (z−i , z
+
i ) .

Moreover, for any αi ∈ R Lemma D.1 ensures αig
(ε)
i ∈ Ad,(2d,1),1 with

{αig(ε)i = αi1Ai} = [z−i + ε, z+i − ε] ∪X \ (z−i , z
+
i ) .

Finally, applying Lemma D.1 once more shows that

gε :=
k∑
i=1

αig
(ε)
i

belongs to Ad,(2kd,k),1 and satisfies

{f = gε} =

k⋃
i=1

[z−i + ε, z+i − ε] ∪ (X \ (z−i , z
+
i )) .

E Proof of Main Theorem 2.3

The first Lemma provides a bound for the excess risk of approximations of inflated histograms in
terms of the excess risk of the corresponding classical histograms.

Lemma E.1. Let L be the least squares, the hinge or the classification loss. Let ε, r, s > 0 and

m ≥ 0 and f (ε) ∈ F (ε)
s,r,m be a DNN having representation

f (ε) = h
(ε)
A +

m∑
i=1

big
(δ)
x∗i+tB∞

, δ ≤ t/2 ,

with h
(ε)
A being its ε-approximation HA-part and hA its exact HA-part. If Assumption 2.1 is satisfied,

then the excess risk satisfies

RL,P (f (ε))−R∗L,P ≤ RL,P (hA)−R∗L,P + 2mMc̃(ε+ r) , (39)

for some M ∈ R+, depending on the loss function and where c̃ ∈ (0,∞) is from Assumption 2.1.

Proof of Proposition E.1: We split the excess risk as

RL,P (f (ε))−R∗L,P ≤
(
RL,P (f (ε))−RL,P (h

(ε)
A )
)

+
(
RL,P (h

(ε)
A )−RL,P (hA)

)
+
(
RL,P (hA)−R∗L,P

)
. (40)

By construction, for t ∈ [0, r], one has

{
f (ε) 6= h

(ε)
A
}

=

m⋃
i=1

x∗i + (t+ δ)B∞
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and thus Lemma B.2 together with Assumption 2.1 gives

RL,P (f (ε))−RL,P (h
(ε)
A ) ≤M

m∑
i=1

PX (x∗i + (t+ δ)B∞) ≤ 2mMcr , (41)

for some M ∈ R+ depending on the loss function. Furthermore, by the same token and with
Proposition D.3 we find

RL,P (h
(ε)
A )−RL,P (hA) ≤Mc′ ε , (42)

for some c′ ∈ (0,∞). Collecting (42), (41) and (40) finishes the proof by setting c̃ = c+ c′.

Proof of Theorem 2.3: The proof follows closely the lines of the proof of Theorem 2.2. Choose

a good interpolating DNN g+D,s ∈ F
(ε)
s,r,n and a bad interpolating DNN g−D,s ∈ F

(ε)
s,r,n as in Example

4.2.

i) Let L be the least squares or the hinge loss. Recall that Theorem 3.1 defines a partitioning
rule πs,n : Rdn −→ Ps, where |Ps,n| = (n+ 1)d. The claim in Eq. (2) follows from Proposition
A.4, Proposition A.7 and by applying Lemma E.1. More precisely, for any ε′ > 0, (39) gives
us with probability at least 1− 2(n+ 1)de−

√
n

RL,P (g+D,s)−R
∗
L,P ≤ RL,P (h+D,s)−R

∗
L,P + 2Mc̃n(ε+ r) ≤ ε′

provided s = sn satisfies the assumptions of Theorem 2.2, ε = εn = 2−n, r = rn = 2−n and n
is sufficiently large.

Next, consider a bad interpolating DNN g−D,s ∈ F
(ε)
s,r,n. We first consider the case of L being

the least squares loss and have owing to Lemma E.1

RL,P (g−D,s)−R
†
L,P ≤ 2Mc̃n(ε+ r) + || − h−D,s − f

∗
L,P ||22

= 2Mc̃n(ε+ r) + ||h+D,s − f
∗
L,P ||22 . (43)

Now, the analysis of D 7→ h+D,sn in Proposition A.4 ensures ‖h+D,sn − f
∗
L,P ‖2 → 0 for n→∞,

and thus (29) immediately shows that

RL,P (g−D,s) −→ R
†
L,P

in probability for n → ∞, if additionally εn = rn = 2−n. The reasoning for the classification
loss and hinge loss is the same as in the proof of Theorem 2.2.

ii) Let L be the least squares loss, f∗L,P be α-Hölder continuous and suppose PX satisfies Assump-

tion 2.1. Choose sn, εn as in Theorem 2.2 and rn = 2−n. From Lemma E.1 and Proposition
A.5 with |PXsn,n| = (n+ 1)d we obtain for n sufficiently large

RL,P (g+D,sn)−R∗L,P ≤ RL,P (h+D,sn)−R∗L,P + 2Mc̃n(εn + rn)

≤ c′M,d,α

(
log(n)

n

) 2α
2α+d

for some c′M,d,α < ∞ and with Pn−probability at least 1 − nde−nγ , with γ = d
2α+d . Finally,

the rates for the full range γ ∈ [0, 2α
2α+d ] follow by using the arguments as in Remark A.6.
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