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ABSTRACT

Continual learning (CL), which involves learning from sequential tasks without
forgetting, is mainly explored in supervised learning settings where all data are la-
beled. However, high-quality labeled data may not be readily available at a large
scale due to high labeling costs, making the application of existing CL methods
in real-world scenarios challenging. In this paper, we study a more practical facet
of CL: open-world continual learning, where the training data comes from the
open-world dataset and is partially labeled and non-i.i.d. Building on the insight
that task shifts in CL can be viewed as distribution transitions from known classes
to novel classes, we propose OpenACL, a method that explicitly leverages novel
classes in unlabeled data to enhance continual learning. Specifically, OpenACL
considers novel classes within open-world data as potential classes for upcom-
ing tasks and mines the underlying pattern from them to empower the model’s
adaptability to upcoming tasks. Furthermore, learning from extensive unlabeled
data also helps to tackle the issue of catastrophic forgetting. Extensive experi-
ments validate the effectiveness of OpenACL and show the benefit of learning
from open-world data.1

1 INTRODUCTION

Continual learning (CL), unlike conventional supervised learning which learns from independent
and identically distributed (i.i.d.) data, allows machines to continuously learn a model from a stream
of data with incremental class labels. One of the main challenges in CL is to tackle the issue of
the catastrophic forgetting, i.e., prevent forgetting the old knowledge as the model is learned on
new tasks (De Lange et al., 2021). Although many approaches (e.g., data replay (Rebuffi et al.,
2017; Lopez-Paz & Ranzato, 2017), weight regularization (Kirkpatrick et al., 2017; Li & Hoiem,
2017)) have been proposed to tackle catastrophic forgetting in CL, they rely on an assumption that
a complete set of labeled data is available for training and focus on a supervised learning setting.
Unfortunately, this assumption may not hold easily in real applications when obtaining high-quality
sample-label pairs is difficult, possibly due to high time/labor costs, data privacy concerns, lack of
data sources, etc. This is particularly the case for CL where the number of classes increases during
the learning process.

To effectively learn CL models from limited labeled data, recent studies (Smith et al., 2021; Wang
et al., 2021; Lee et al., 2019) suggest leveraging the semi-supervised learning (SSL) technique for
CL to learn from both labeled and unlabeled data. The idea of SSL is to improve model performance
by using limited labeled data and a larger amount of unlabeled data. In real applications, obtaining
a steady stream of labeled data can be very expensive and time-consuming for CL, especially in
new or rapidly evolving domains. However, obtaining large amounts of unlabeled data is relatively
easier. SSL has proven effective and is applied to many tasks including CL. Specifically, Wang et al.
(2021) considers a SSL setting where labeled and unlabeled data are assumed to be i.i.d. so that
the unlabeled data can be leveraged to help improve the model performance. However, the i.i.d.
assumption is commonly violated as the unlabeled data are usually acquired from different sources
and distributional shifts exist between unlabeled and labeled data. In a worse case, the unlabeled
data may be of low quality and contain large proportions of unknown data that do not belong to the
classes of CL tasks. For example, the training data collected from data providers are partly unlabeled

1Code available at https://anonymous.4open.science/r/openacl-5C3B/
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and contain some unknown data. To address this, Lee et al. (2019); Smith et al. (2021) extend Wang
et al. (2021) to non-i.i.d. settings by considering the existence of out-of-distribution (OOD) data
from external data streams. As an example, Smith et al. (2021) treats all seen classes up to the
current task as in-distribution (ID) data and uses a specific model and manually set threshold to
reject OOD samples. Similarly, Kim et al. (2023) considers unknown data during inference phase
and detects them by training a detector head.

However, how can we better leverage unlabeled data with novel classes for CL instead of simply
detecting them? We rethink the problem from the open-world perspective: although these data
belong to novel classes that are different from seen CL task classes up to the current task, some of
these classes may become future task classes in continual learning, e.g., an unseen class “car” at
the current task might be included in upcoming CL tasks. In this case, open-world unlabeled data
can help mitigate distribution shifts between different CL tasks if we can exploit the patterns within
unlabeled data, especially those of novel classes. Therefore, in this paper, we investigate a new
question in semi-supervised CL: instead of identifying and rejecting unknown classes in unlabeled
data, can we fully leverage open-world data to adapt a model to new tasks and improve the overall
performance in CL?

To answer this question, this paper considers open semi-supervised continual learning (Open SSCL)
where unlabeled datasets not only include seen classes up to the current CL task but also unseen
classes from the upcoming tasks and unknown classes that are not part of the CL task stream. Com-
pared to previous semi-supervised CL settings, it considers a more generalized unlabeled dataset
where samples are from both CL task classes and unexpected unknown classes without task identi-
fiers. Moreover, Open SSCL poses a unique challenge of determining which samples are relevant
to the CL task stream and how to utilize those valuable samples to make the model less sensitive
to distribution shifts between tasks, instead of simply identifying and rejecting them. Specifically,
the goal in Open SSCL is to continuously learn a model from both labeled and unlabeled data in an
open-world environment without forgetting, and meanwhile effectively utilizing unlabeled data to
adapt to novel classes. In other words, Open SSCL aims to use easy-to-obtain unlabeled open-world
data to improve CL model performance on past, current, and future tasks.

Toward this end, we propose an Open semi-supervised learning framework Adapting the model
to new tasks in Continual Learning (OpenACL). OpenACL learns unique proxies as representative
embeddings to capture characteristics of data belonging to both seen and novel classes. It actively
prepares the model for the CL task stream by learning the generalized representation function from
unlabeled data and adapting these proxies for upcoming tasks. Additionally, learning from seen
classes within the unlabeled data helps the model reinforce its memory of previously learned tasks,
thereby mitigating catastrophic forgetting. Our contributions can be summarized as follows:

• We formulate a problem of open semi-supervised continual learning (Open SSCL). It is motivated
by the fact that real data in practice mostly contains limited labeled data and large-scale unlabeled
data, with the existence of novel classes in unlabeled data. Notably, instead of rejecting data from
novel classes, Open SSCL utilizes them to enhance performance on new tasks.

• We propose OpenACL to solve the Open SSCL problem. It maintains multiple proxies for seen
tasks and reserves extra proxies for unseen tasks. Different from earlier works, our method bridges
two objectives by learning from both labeled and unlabeled data: tackle catastrophic forgetting by
established proxies for seen classes and improve the adaptation ability by actively linking reserved
proxies with classes in new CL tasks.

• We conduct extensive experiments to evaluate OpenACL and study the impact of using unlabeled
data in CL. We also extend the existing CL methods to the Open SSCL setting and compare them
with ours under a fair environment. The online continual learning results show that OpenACL
consistently outperforms others in adapting to new tasks and addressing catastrophic forgetting.

2 RELATED WORK

This paper is closely related to the literature on continual learning, semi-supervised learning, and
open set/world problems. We introduce each topic and discuss the differences with our work below.

Continual Learning (CL). The goal is to learn a model continuously from a sequence of tasks (non-
stationary data). One of the challenges in CL is to overcome the issue of catastrophic forgetting, i.e.,
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prevent forgetting the old knowledge as the model is learned on new tasks. Various approaches have
been proposed to prevent catastrophic forgetting, including regularization-based methods, rehearsal-
based methods, parameter isolation-based methods, etc. Specifically, regularization-based methods
prevent forgetting the old knowledge by regularizing model parameters; examples include Elastic
Weight Consolidation (Kirkpatrick et al., 2017), Synaptic Intelligence (Zenke et al., 2017), Incre-
mental Moment Matching (Lee et al., 2017), etc. In contrast, rehearsal-based methods (Rebuffi
et al., 2017; Lopez-Paz & Ranzato, 2017; Saha et al., 2021) tackle the problem by reusing the old
data (stored in a memory-efficient replay buffer) in previous tasks during the training process. Un-
like these approaches where a single model is used for all tasks, parameter isolation-based methods
(Mallya & Lazebnik, 2018) aims to improve the model performance on all tasks by isolating pa-
rameters for specific tasks. Note that all the above methods were studied in the classic supervised
learning setting. In contrast, our paper considers an open semi-supervised setting with not only
labeled data but also unlabeled data that is possibly from unknown classes.

Semi-Supervised Learning (SSL). It aims to learn a model from both labeled and unlabeled data,
and the labeled data are usually limited while the unlabeled ones are sufficient. Pseudo-labeling-
based methods, as discussed by Xie et al. (2020); Xu et al. (2021); Sohn et al. (2020), initially train
models using labeled data and subsequently assign pseudo labels to the unlabeled data, and uti-
lize these sample-pseudo-label pairs to further improve the model. On the other hand, consistency
regularization-based methods (Sajjadi et al., 2016; Meel & Vishwakarma, 2021) learn to ensure con-
sistency across different data. They augment the unlabeled data in different views of data (e.g., by
rotation, scaling, etc.), and a model is then trained on the augmented data via regularized optimiza-
tion such that the predictions for different views are consistent. While SSL has shown success in
many tasks, its application to CL is less studied. Because unlabeled data in practice may not follow
the identical distribution as the labeled data and they may come from different classes, SSL methods
introduced above may not perform well in real applications. This paper closes the gap where we
focus on CL and extend SSL to the open setting.

Open-Set & Open-World Recognition. It considers scenarios where the data observed during
model deployment may come from unknown classes that do not exist during training. The goal is to
not only accurately classify the seen classes, but also effectively deal with unseen ones, e.g., either
distinguish them from the seen classes (open-set problem) or label them into new classes (open-
world problem). The existing methods for open-set recognition include traditional machine learning-
based methods (Bendale & Boult, 2015; Mendes Júnior et al., 2017; Rudd et al., 2017) and deep
learning-based methods (Dhamija et al., 2018; Shih et al., 2019; Yu et al., 2017; Yang et al., 2019).
OOD detection problem has also been discussed in CL tasks (Kim et al., 2022b;a). However, we
consider open settings but primarily focus on semi-supervised continual learning, where the model
is trained from a sequence of tasks and the training dataset includes both labeled and unlabeled data.

Open-Set/World Semi-Supervised Learning. It combines both open-set/world recognition and
SSL. The goal is to train a model from both labeled and unlabeled data, where the unlabeled data may
contain novel classes. One of the challenges is to make SSL less vulnerable to novel classes as they
are irrelevant to labeled class training. To this end, most existing methods (Guo et al., 2020; Saito
et al., 2021; Lu et al., 2022) first detect samples of novel categories, which are then rejected or re-
weighted to ensure performance. For example, Guo et al. (2020) proposes a method that selectively
uses unlabeled data by assigning weights to unlabeled samples. OpenMatch (Saito et al., 2021)
integrates a One-Vs-All detection scheme to filter out samples from novel classes in SSL training
loops. Cao et al. (2022) extends the open-set SSL and proposes open-world SSL, which requires
actively discovering novel classes. It is also known as generalized category discovery (GCD) Vaze
et al. (2022a). This setting is studied in (Rizve et al., 2022; Tan et al., 2023; Xiao et al., 2024) where
novel classes are discovered using unlabeled sample alignment. Our paper is motivated by the idea
of Open-world SSL. In particular, we note that the classes from untrained tasks in CL can indeed be
viewed as novel classes that need to be discovered, and it enables us to access open-world datasets
where data may be from seen classes, unseen classes from untrained tasks, and unknown classes that
are not related to CL tasks. Based on this, we study the Open SSCL problem. We will illustrate how
the unlabeled data can be leveraged in Open SSCL to mitigate catastrophic forgetting and adapt a
model to new tasks. Note that Open-world Continual Learning has been studied in Li et al. (2024),
however, this work focuses on supervised training and testing on open-world datasets with unknown
classes, which is more similar to the novel class discovery problem in CL like Roy et al. (2022);
Zhou et al. (2022).
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3 PROBLEM FORMULATION

In this section, we formulate the problem of open semi-supervised continual learning. Consider a CL
problem that aims to learn a model from a sequence of k tasks T = {T1, ...Tk}. Let D = {Dl,Du}
be a dataset associated with these tasks; it consists of n labeled data samples Dl = {(xi, yi)}ni=1
and m unlabeled samples Du = {xi}mi=1, where m ≫ n, feature xi ∈ X , and label yi ∈ Y =
{1, ..., N}. Under this semi-supervised continual learning, Dl is divided into multiple task sets
Dl = ∪i∈{1...k}Di

l based on labels (e.g., dividing CIFAR-10 dataset into 5 tasks with two labels
for each task). For each task Ti, we can only access labeled samples from a subset Di

l ⊂ Dl and
unlabeled samples from Du.

We shall consider semi-supervised continual learning in an open environment, where unlabeled data
x ∈ Du may come from the known classes Cl in labeled dataset Dl or unknown classes Cn, i.e.,
unlabeled data Du is from classes Cu = Cl ∪ Cn. In the context of continual learning, known
classes Cl in Dl are divided into {C1

l , ..., C
k
l }, with Ci

l ∩ Ci+1
l = ∅. Because the number of

learned classes is increasing along with task change in continual learning, we denote known classes
Ci

seen = ∪i
j=1C

j
l up to task Ti as the seen classes, the classes Ci

unseen = Cl\Ci
seen from future

tasks as unseen classes, the classes Cn that are not in CL tasks as unknown classes, and the union of
unseen classes and unknown classes Ci

novel = Ci
unseen ∪ Cn as the novel classes for the task Ti.

The goal is to continuously learn a model f from a sequence of tasks T that (i) can learn from novel
classes and identify them, and (ii) correctly classify known classes while avoiding forgetting the
previously learned tasks as the model gets updated. To achieve this, we seek to minimize the open
risk (Scheirer et al., 2014) under continual learning constraints (Lopez-Paz & Ranzato, 2017):

ft = argmin
f∈H

R
(
f(Dt

l )
)
+ λ̄ROt

(f) (1)

s.t. R
(
ft(Di

l)
)
≤ R

(
ft−1(Di

l)
)
;∀i ∈ [0...t− 1]

where R (f(Dt
l )) denotes the empirical risk of f on known training data at task t. ft is the model

learned at the end of task t; ROt(f) is the open space risk (Scheirer et al., 2012) and is defined as

ROt(f) =

∫
Ot

f(x)dx∫
S f(x)dx

.

where S is a space containing all samples from seen classes and samples from novel classes that are
mislabeled as seen. These novel samples formulate an open space O in the S. ROt

(f) measures the
potential risk of a function f misclassifying samples that are in open space Ot. Hyper-parameter
λ̄ ≥ 0 is a regularization constant. Under the constraint in equation 1, the model performance on
known classes does not decrease as the model gets updated.

4 PROPOSED METHOD

The key challenge in Open SSCL is to exploit unlabeled open-world datasets to simultaneously solve
catastrophic forgetting and improve the adaptation ability on new tasks of continual models. In this
section, we introduce a novel continual learning method OpenACL for Open SSCL to learn from CL
tasks and unlabeled open-world datasets. Instead of directly learning from raw data representations,
OpenACL learns proxies as representative embeddings that fit the centers of data representations to
characterize each class in the latent space.

Using proxies to characterize each class. In supervised learning, it is straightforward to char-
acterize a class (distribution) by averaging data representations as the geometric center of a class.
However, for novel classes, the absence of labels makes it unclear which data points should be
averaged to find the representation centers. Therefore, we consider using trainable parameters as
proxies to estimate the distributions of each class without requiring explicit labels. Specifically, we
call the class proxies associated with seen classes the “seen proxies”, and the proxies reserved for
potential future classes are termed “novel proxies”. These novel proxies are trained to capture the
patterns of classes in future tasks even before they are officially labeled, enabling OpenACL to an-
ticipate and quickly adapt to new tasks as they are introduced. Formally, we define the set of proxies
as G = {g1 . . . g|Cl∪Cn|} where |Cl ∪ Cn| represents the total number of seen classes Cl and novel
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Labeled DataLabeled Data
Task t Task t+1

Unlabeled DataUnlabeled Data

…

Novel SampleNovel Sample

ProxyProxy

…

Proxy
 Adaptation

Figure 1: In OpenACL, we minimize the distance between data representations of seen classes
and their associated proxies. Concurrently, semi-supervised proxy contrastive learning encourages
similar representations to share the same proxy distribution and enhances representations for both
known and novel classes. We assume data from the same class have similar representations in the
latent space, so the novel proxies are used to cluster representations from novel classes. Upon
entering the adaptation phase for a new task t + 1, we receive labeled data in task t + 1. For each
class within the task, we identify the proxy from the proxy pool (red pentagrams) that is the most
similar to representations of the class and allocate the class label to the proxy. By assigning novel
proxies to incoming new task classes, we could have some well-trained proxies and speed up the
learning process for the new task.

classes Cn. The function h maps data points to their representations in the latent space. While we
set the number of proxies to the sum of seen and novel classes for simplicity, it’s important to note
that knowing the exact number of novel classes in advance is not necessary. The number of proxies
can be flexible and dynamically adjusted as needed. We explore the impact of varying the number
of proxies and propose how to dynamically increase them in Appendix C.2.

In particular, OpenACL updates proxies using both labeled and unlabeled data to continually learn
from the task stream and enhance model robustness against distribution shift while strengthening
its memory of previously seen tasks. In addition, a proxy adaption method is introduced to identify
and allocate the most relevant novel proxies to incoming task classes during task transitions, thereby
facilitating rapid adaptation to new tasks. We introduce the framework of OpenACL in Figure 1.

4.1 PROXY LEARNING ON LABELED DATA

In the context of labeled data, our objective is to learn proxies that closely align with the seen
class representations and make predictions. We achieve this by minimizing the distance between
each data representation and its corresponding class proxy. Formally, given a labeled dataset Dl =
{(xi, yi)}ni=1 where the ground truth of data xi is known, we aim to maximize the cosine similarity

sim(gyi
, h(xi)) =

gT
yi

h(xi)

||gyi ||·||h(xi)|| between the data representation h(xi) and its class proxy gyi
. We

thus define the loss function Lp that encourages the data to be closer to its class proxy at task t as:

Lp = − 1

|Bl|

|Bl|∑
i=1

log
exp (sim (gyi

, h(xi))× s)∑|G|
j=1 exp (sim (gj , h(xi))× s))

(2)
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In equation 2, |Bl| is the number of labeled samples in a batch Bl. The parameter s controls the
softmax temperature when transforming similarity into probability, ensuring stable training (Wang
et al., 2018). By minimizing Lp, we align representations with their corresponding class proxies
while distancing them from proxies of other classes, and the label information helps to build a solid
mapping from each proxy to its associated seen task class.

4.2 SEMI-SUPERVISED PROXY REPRESENTATION LEARNING

To equip the model with the ability to exploit the open-world data and represent novel classes,
we introduce semi-supervised proxy contrastive learning to learn robust and discriminative repre-
sentations for both unlabeled and labeled data by assigning data with similar representations to a
common proxy, thereby capturing the underlying class structures—even for novel classes that the
model has not encountered before. Contrastive learning is designed to extract meaningful represen-
tations by exploiting both the similarities and dissimilarities between data instances. This is typically
achieved by comparing two augmented views (e.g., rotation, flipping, resizing) of the same instance
or different instances. However, in the context of open-world continual learning, solely focusing on
instance-level alignment is insufficient for capturing the semantic structures of novel classes within
unlabeled data. Instead, our objective shifts toward maintaining consistency in the distribution of
representations over a set of trainable proxies.

Given an instance x, we generate two augmented views x̃ and x̃′ and obtain their representations
h(x̃) and h(x̃)′ as suggested in (Chen et al., 2020). The probability of a view x̃ being assigned to a
proxy gi can be computed as:

pi(x̃) =
exp (sim (gi, h(x̃))× s)∑|G|

j=1 exp (sim (gj , h(x̃))× s))
(3)

To align the distribution of novel classes over proxies between two views via optimizing following:

Lu
c = − 1

|Bu|

|Bu|∑
i=1

log
exp(sim(p(x̃i), p(x̃

′
i))/κ)∑|Bu|

j=1 1[xj ̸=xi] exp (sim(p(x̃i), p(x̃j))/κ)
(4)

where Bu is an unlabeled minibatch including pairs of two augmented views x̃ and x̃′ from x. κ
is a temperature parameter. 1[·] ∈ {0, 1} is the condition function. Here, labeled data could also
be incorporated to improve the robustness of representations, thus, we also leverage labeled data
to extend the unsupervised proxy contrastive learning to semi-supervised proxy contrastive learn-
ing. This is advantageous as the labeled data can provide direct information about the relationship
between instances and their corresponding proxies. Following Khosla et al. (2020), we incorpo-
rate supervised signal in our proxy representation learning. For labeled minibatch Bl and unlabeled
minibatch Bu with two augmented views, we have a conjunct contrastive loss on proxy distribution:

Lc = Lu
c −

|Bl|∑
i=1

log
1

|Pi|
∑

x̃j∈Pi

exp(sim(p(x̃i), p(x̃j))/κ)∑
x̃k∈A(i) exp (sim(p(x̃i), p(x̃k))/κ)

(5)

Here, A(i) is a set Bl \ {x̃i}. Pi is the set of all positive samples {x̃j ∈ A(i) : yj = yi}.

The final objective combines the proxy contrastive loss and the supervised loss, weighted by a hyper-
parameter λ, i.e., the loss at task t is L = Lp + λLc. We set λ as 1 in our method.

The rationale of the proxy-level contrastive learning mechanism is multifold. By aligning the proxy
distributions of augmented views, we encourage instances with similar semantic content to be asso-
ciated with the same proxies. This leads to tight clusters in the latent space, effectively capturing
the intrinsic class structures, including those of novel classes not present in the labeled data. Es-
pecially, by specifying the proxies for novel classes, we reduce the intra-class variance (pushing
similar instances towards these proxies) to enhance the model’s ability to represent and recognize
novel classes and decrease the model’s tendency to misclassify novel classes in the seen classes,
thereby decreasing the open space risk ROt

. Furthermore, since the unlabeled data in equation 5
may include samples from previously trained tasks, the current task, and future tasks, our model
leverages a comprehensive proxy representation that spans the entire task continuum. This inher-
ently provides a regularizing effect to make up for catastrophic forgetting, minimizing the risk of
overwriting previous information.
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4.3 CONTINUAL PROXY ADAPTATION FOR NEW TASKS

The aforementioned proxy learning establishes a set of novel proxies learned from the intra-class
similarities within the unlabeled data. As new task classes may related to unlabeled data, we can
further leverage these novel proxies to adapt the CL model to a new task. Intuitively, upon transi-
tioning from task t to task t+1, the classes in the forthcoming task should already possess associated
proxies, considering their presence in the unlabeled data and our proxy representation learning group
similar unlabeled data. Thus, we could associate potential proxies with new classes shown in the
new task t+ 1 and adapt the model to the task quickly.

Specifically, consider labeled data {(x, y) ∈ Dt+1
l } at new task t+1. For each class label ȳ ∈ Ct+1

l ,
we want to find the most potential proxy for class ȳ by measuring the similarity of proxies to samples
from class ȳ. Define a count function I(x, gj) that returns 1 if gj is the most similar proxy for x and
0 otherwise:

I(x, gj) =

{
1 if gj = argmaxgk∈G sim(x, gk)

0 otherwise
(6)

We then determine the proxy g∗ȳ ∈ G by the number of its closet samples in {(x, y) ∈ Dt+1
l : y = ȳ}.

The one with the most grouped samples will be selected as g∗ȳ and be assigned with label ȳ.

g∗ȳ = argmax
gj∈G

∑
(xi,yi)∈Dt+1

l :yi=ȳ

I(xi, gj) (7)

In the implementation, if multiple classes in the new task t+ 1 are associated with the same proxy,
we randomly assign a class label y from these classes to the proxy. In addition, to avoid the trivial
solution that all unlabeled instances are assigned to a single proxy in the early stage of the training
(Caron et al., 2018; Cao et al., 2022), we adopt a reinitialization strategy. After assigning labels
for task t + 1 but before entering its training, the unassigned novel proxies are reinitialized. To
establish these initial novel proxies as a new task begins, we deploy the K-means algorithm, using
cosine distance as a metric to cluster centroids as initial novel proxies. The known proxies are used
as prior knowledge for the K-means algorithm, but remain static and are not subjected to updates
post-clustering. Specifically, given the proxy pool G and the set of seen class proxies for Ct+1

s , the
initialized centroids in K-means algorithm are selected as |Ct+1

s | known proxies and |G| − |Ct+1
s |

randomly selected data points from the unlabeled dataset Du. To reduce computation cost, K-means
is running on a subset of Du to obtain |G| centroids. we identify |Ct+1

s | centroids that are most
similar to the known proxies and exclude them using cosine similarity. The remaining centroids
are used to initialize the novel proxies in the proxy pool. This ensures a more representative set of
proxies for subsequent tasks and solves the trivial solution problem.

5 EXPERIMENTS

In this section, we introduce the datasets and the baselines. Then, we present results from various
benchmarks in comparison to baselines. Implementation details are available in Appendix B.1.

5.1 EXPERIMENT SETTING

Datasets. We adopt the following datasets in experiments. The data from known classes is parti-
tioned into labeled and unlabeled segments with ratios of 20% labeled data and 50% labeled data.

1. CIFAR-10 (Krizhevsky et al., 2009): The first 6 classes are organized into 3 tasks (k = 3), each
containing two classes. The remaining 4 classes are treated as unknown. For each task, we have
2,000 labeled instances under the 20% split and 5,000 labeled instances under the 50% split.

2. CIFAR-100 (Krizhevsky et al., 2009): The initial 80 classes from CIFAR-100 are segmented
into 16 tasks (k = 16). The subsequent 20 classes are treated as unknown. For every task, 500
instances are labeled under the 20% split, and 1,250 instances are labeled under the 50% split.

3. Tiny-ImageNet (Deng et al., 2009; Le & Yang, 2015): The initial 120 classes of Tiny-ImageNet
are divided into 20 tasks (k = 20), leaving 80 classes as unknown. For each task, there are 600
labeled instances in the 20% split and 1,500 labeled instances in the 50% split.
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Using the above split, we take two datasets as input: labeled Dl = {D1
l , ...,Dk

l } and unlabeled
Du consisting of unlabeled data from known classes Cl and all data from unknown classes Cn.
For each task i, we simultaneously sample data from the Di

l for the current task and the Du. The
proportion of labeled to unlabeled data in the sample matches the respective proportions in the
datasets. Note that, we consider Du is from open-world, so it covers all classes. Therefore, Du and
Dl come from two different distributions. We sequentially sampled the data from the Du without
knowing the source, i.e., the data comes from previous task classes, current task classes, future task
classes, or unknown classes. Datasets are introduced in detail in Appendix B.3. In addition to these
datasets, we also evaluate our method on a naturally-shifted dataset: Stanford Cars. The results are
provided in Appendix C.5.

Baselines. We compare OpenACL with existing methods in CL in both task incremental learning
(Task-IL) and class incremental learning (Class-IL) settings. The distinction between these settings
is elaborated upon in Appendix B.1. Additionally, our focus is on online continual learning, where
models are only allowed to be trained for 1 epoch. However, we still give the results for multiple
epoch training in Appendix C.3. To ensure a fair comparison, we first equip supervised learning-
based methods with a well-known SSL method: FixMatch (Sohn et al., 2020). Unlabeled samples
with low prediction confidence would be rejected during train and only those with high confidence
would be pseudo-labeled. Then, as our method is adapted from the contrastive learning idea to
align the distribution, we also add a contrastive learning loss (Chen et al., 2020) to baselines to
learn representation from unlabeled data. These baselines include: Joint, Independent (Lopez-Paz
& Ranzato, 2017), GEM (Lopez-Paz & Ranzato, 2017), iCaRL (Rebuffi et al., 2017), GSS (Aljundi
et al., 2019), ER (Chaudhry et al., 2019), DER (Buzzega et al., 2020), ER-ACE (Caccia et al., 2022),
DER (Buzzega et al., 2020), ER-ACE (Caccia et al., 2022), DVC (Gu et al., 2022), DistillMatch
(Smith et al., 2021), AutoNovel (Han et al., 2020), FACT (Zhou et al., 2022), ORCA (Cao et al.,
2022), and Refresh (Wang et al., 2024). We introduce these baselines in Appendix B.4.

Table 1: Average accuracy over three runs of experiments on Task-IL benchmarks. Some baselines
are adapted to SSL by incorporating them with FixMatch (Sohn et al., 2020) or SimCLR (Chen
et al., 2020) to learn from unlabeled data. Results are organized as SimCLR usage / FixMatch usage
/ No unlabeled data usage. The standard deviation results are reported in the Appendix D.

Method CIFAR-10 CIFAR-100 Tiny-ImageNet
Labels % 20 50 20 50 20 50
Joint 68.3 / 68.9 / 67.9 69.1 / 69.4 / 68.7 68.4 / 68.1 / 67.5 76.6 / 75.7 / 75.1 52.8 / 50.3 / 50.7 58.3 / 57.8 / 57.0
Single 57.5 / 57.6 / 54.7 59.3 / 57.0 / 57.6 33.5 / 34.1 / 32.3 37.9 / 36.3 / 37.2 20.9 / 20.5 / 19.6 25.9 / 23.3 / 23.1
Independent 62.5 / 64.2 / 61.3 63.9 / 62.3 / 62.5 26.7 / 30.3 / 31.8 36.2 / 36.2 / 33.4 21.6 / 21.5 / 23.2 26.5 / 28.0 / 27.0
iCaRL 56.0 / 57.4 / 56.7 57.2 / 58.7 / 58.3 45.8 / 45.9 / 46.4 44.1 / 42.3 / 41.8 25.2 / 25.3 / 23.5 31.3 / 29.0 / 26.5
DER 62.2 / 63.9 / 63.3 63.2 / 63.9 / 63.6 38.6 / 38.7 / 39.6 46.8 / 44.7 / 44.0 24.2 / 22.4 / 25.8 28.4 / 29.6 / 28.0
GEM 61.3 / 64.0 / 62.6 63.2 / 63.6 / 64.2 53.5 / 52.6 / 51.8 58.6 / 57.5 / 54.4 33.0 / 35.4 / 32.1 40.1 / 37.3 / 38.0
ER 62.9 / 62.3 / 61.3 64.9 / 63.8 / 62.6 54.8 / 55.3 / 53.7 59.9 / 58.5 / 57.8 35.2 / 36.3 / 35.7 41.7 / 41.4 / 40.2
ER-ACE 61.2 / 61.6 / 61.3 62.4 / 64.2 / 63.9 53.8 / 55.0 / 54.8 61.7 / 62.4 / 62.1 36.2 / 37.2 / 35.4 41.4 / 42.4 / 40.6
Refresh 63.0 / 63.1 / 61.7 62.6 / 64.3 / 62.6 54.7 / 55.3 / 55.1 61.2 / 61.9 / 61.0 35.8 / 36.9 / 35.8 42.6 / 42.2 / 41.5
DVC 57.4 61.7 57.6 62.7 36.8 43.5
DistillMatch 57.8 59.4 35.7 41.3 21.8 26.2
AutoNovel 56.3 56.5 58.7 63.3 37.4 43.1
FACT 53.2 55.3 55.9 62.8 35.0 42.3
ORCA 60.9 62.2 56.4 62.4 34.4 39.3
OpenACL 64.3 66.3 60.4 66.6 40.2 47.0

Table 2: Average accuracy over three runs of experiments on Class-IL benchmarks.

Method CIFAR-100 Tiny-ImageNet
Labels % 20 50 20 50
Joint 22.8 / 23.0 / 21.8 31.8 / 32.9 / 30.8 13.4 / 14.4 / 13.6 22.0 / 21.5 / 21.1
Single 3.1 / 2.8 / 2.5 3.0 / 2.5 / 3.0 1.9 / 2.0 / 1.7 2.4 / 2.8 / 2.7
iCaRL 6.8 / 7.0 / 6.3 7.3 / 8.3 / 7.0 4.5 / 3.3 / 3.4 4.1 / 4.8 / 4.2
DER 3.7 / 3.7 / 3.5 3.6 / 3.9 / 3.9 2.4 / 2.5 / 2.1 2.4 / 2.6 / 2.3
GEM 7.0 / 8.0 / 6.9 9.7 / 7.7 / 6.7 2.4 / 3.4 / 2.7 2.3 / 2.6 / 1.8
GSS 12.8 / 11.2 / 10.3 16.8 / 15.3 / 15.2 3.3 / 5.4 / 3.8 5.3 / 5.6 / 5.0
ER 10.9 / 12.0 / 11.5 15.6 / 15.8 / 16.9 3.3 / 4.2 / 3.9 4.8 / 6.7 / 5.7
ER-ACE 12.8 / 13.3 / 12.0 16.7 / 17.9 / 17.1 5.0 / 5.4 / 4.9 7.4 / 8.1 / 7.2
Refresh 10.6 / 11.6 / 11.2 16.9 / 18.1 / 17.3 5.2 / 5.5 / 5.4 6.6 / 7.3 / 6.9
DVC 11.2 16.2 5.8 8.3
DistillMatch 2.8 3.2 2.0 2.7
AutoNovel 13.2 17.9 6.5 9.2
FACT 12.9 16.3 5.9 8.2
ORCA 14.4 18.8 6.8 9.6
OpenACL 15.7 20.0 7.9 11.9
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5.2 RESULTS

Evaluation on split datasets. We contrasted our algorithm against established baselines in the
online Task-IL setting and online Class-IL setting with varying label ratios across seen classes. To
make a fair comparison, supervised continual learning methods are integrated with FixMatch or
SimCLR. Table 1 and 2 present the mean accuracy across all tasks for each method, both with and
without the inclusion of unlabeled data. The results in the Task-IL setting and Class-IL setting
demonstrate that OpenACL shows better performance compared with baselines. When there are
more classes in the data, the advantage becomes more obvious. Notably, we observe that some
baselines also benefit from unlabeled data enhanced by FixMatch or SimCLR. This emphasizes the
potential benefits of unlabeled data in the context of CL. However, directly integrating CL with
unlabeled data usage yields only modest improvements, highlighting the need for more specialized
methods for Open SSCL, like OpenACL. OpenACL’s superior performance suggests that specialized
algorithms tailored for Open SSCL can provide considerable benefits over traditional methods or
straightforward combinations of the existing methods.

Table 3: BWT and FWT results on 50% labeled dataset. We report the best results among three
implementations(SimCLR, FixMatch, and Normal). The results show as BWT / FWT.

Single Independent iCaRL DER GEM ER ER-ACE Refresh DVC DistillMatch AutoNovel FACT ORCA OpenACL
CIFAR-100 -5.3 / 0.9 0 / 0 -5.3 / 0 0.3 / -0.3 11.6 / -0.3 11.5 / -5.1 12.4 / -1.7 14.5 / -4.9 11.1 / 1.6 -6.5 / -1.8 10.6 / 1.1 7.8 / 2.4 7.7 / 1.5 9.2 / 13.0
Tiny-ImageNet -6.3 / 0.4 0 / 0 -1.1 / 0 -0.5 / 0.8 4.8 / 0.1 4.3 / 0.6 6.0 / -0.1 6.4 / -0.2 5.9 / 0.5 -11.8 / -0.1 4.6 / 0.9 3.7 / 3.9 -0.3 / 0.2 2.7 / 10.9
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Figure 2: Average accuracy of the first three tasks on 50% labeled CIFAR-100 and Tiny-ImageNet
during Task-IL training. We test the models on the first three tasks after finishing subsequent tasks
to examine their ability to preserve prior knowledge.

Mitigate catastrophic forgetting. We follow Lopez-Paz & Ranzato (2017) to compare backward
transfer (BWT) and forward transfer (FWT) in Table 3. Positive BTW suggests that performance
on old tasks improved after learning new tasks, while a negative BWT implies that the model forgot
some of the previous tasks. ER-ACE, which is a specific method for OCL achieves the best BWT
among these baselines, while OpenACL achieves comparable performance as baselines on solving
catastrophic forgetting. We also track the average test accuracy on the first three tasks over time to
examine catastrophic forgetting. The results are presented in Figure 2. It shows that our method
performs the best on the first three tasks during training and is also more stable than baselines.
Besides, along with training, OpenACL even achieves better performance on the first few tasks,
while some baselines almost forget the first three tasks completely, especially in challenging datasets
like Tiny-ImageNet. These results validate that OpenACL can help to tackle catastrophic forgetting.

Adaptability to new tasks. FWT in Table 3 indicates the effect on the performance of learning
new tasks from prior learning. A positive FWT suggests the model’s “zero-shot” learning ability for
unseen tasks. The results show that OpenACL exhibits superior performance in FWT, highlighting
its exceptional zero-shot learning capability, confirming that it can swiftly adapt to new tasks lever-
aging unlabeled data knowledge. Further underlining its adaptability, we investigate the adaptability
by comparing accuracy after training a single batch of data in a new task. Figure 3 shows OpenACL
attains high accuracy across all tasks and maintains a stable performance throughout the process,
suggesting that our algorithm can efficiently learn and adapt to new tasks.

Evaluation on unlabeled data. To evaluate the impact of learning from unlabeled data in CL, we
compare OpenACL with its supervised learning counterpart, OpenACL(S). OpenACL(S) conducts
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Figure 3: Average accuracy on a novel task after training with a single batch in Task-IL.

Table 4: Average accuracy of the ablation study, focusing on unlabeled data usage, across three runs
on CIFAR-100 and Tiny-ImageNet within the Task-IL setting.

CIFAR-100 Tiny-ImageNet
ACC BWT FWT Acc BWT FWT

OpenACL(S) 58.8±1.24 3.0±0.57 7.8±1.89 38.3±1.12 −0.2±0.49 4.1±0.87

OpenACL(N) 62.3±0.78 7.0±0.67 10.4±1.01 44.0±0.63 1.9±0.57 8.1±0.50

OpenACL 66.6±0.28 9.2±1.65 13.0±1.48 47.0±0.42 2.7±1.36 10.9±1.10

supervised training without the use of unlabeled data, but keeps the proxy adaptation with the k-
means initialization. In addition to supervised learning, we examine an extreme situation in an open-
world setting where unlabeled data are completely different from the CL task data. OpenACL(N)
considers unlabeled data to be all from unknown classes that are entirely different from the CL
task classes. The results, presented in Table 4 indicate that without the inclusion of unlabeled data
during training, the performance of OpenACL(S) aligns more closely with that of ER and GEM in
terms of accuracy in table 1. Although OpenACL(S) retains some zero-shot learning capabilities
due to the proxy adaptation, this ability is diminished with the exclusion of unlabeled data. Notably,
the results of OpenACL(N) demonstrate that even when unlabeled data consist solely of unknown
classes, they still contribute to learning the representation function and improve performance on the
CL tasks. This finding suggests that the assumption requiring unlabeled data to contain potential
CL task classes is not strictly necessary to effectively leverage unlabeled data in CL. By utilizing
unlabeled data from unknown classes, we can still enhance the model’s ability to generalize and
adapt, thereby improving overall performance.

Ablation Study. We conduct multiple ablation experiments and present the results in Appendix
C. We first evaluate the importance of Proxy Adaptation in Table 7 and discuss how it improves
the adaptability of the model to new tasks. In addition, the number of proxies is predefined as
the number of all classes in previous experiments. Ideally, we want the number of proxies |g| to
match the number of all classes |Cu| in the dataset, but we may not know the exact number of
classes at the beginning of training in a real-world OCL scenario. Therefore, in Table 8, we evaluate
the model when proxies don’t have full support in the unlabeled data(|g| < |Cu|) and when the
number of proxies is more than the number of classes(|g| > |Cu|). Furthermore, we make OpenACL
incrementally update the number of proxies along training when predefined proxies are insufficient
for incoming task classes. The results show that the number of predefined proxies is less sensitive
to the model performance and OpenACL is able to dynamically increase the number of proxies to
adapt to more challenging problems.

6 CONCLUSION

In this paper, we study continual learning in an open scenario and formulate open semi-supervised
continual learning. Unlike traditional CL, Open SSCL learns from both labeled and unlabeled data
and allows novel classes to appear in unlabeled data. Recognizing the relationship between tran-
sitions from known tasks to upcoming tasks in CL and shifts from known classes to novel classes,
we propose OpenACL. It exploits the open-world data to enhance the model’s adaptability while
simultaneously mitigating catastrophic forgetting. Our study highlights the importance of using un-
labeled data and novel classes in CL and the potential of Open SSCL as a promising direction for
future research.
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A APPENDIX

B ADDITION EXPERIMENT SETTING

B.1 IMPLEMENTATION DETAILS

All experiments are conducted on a server equipped with multiple NVIDIA V100 GPUs, Intel
Xeon(R) Platinum 8260 CPU, and 256GB memory. The code is implemented with Python 3.9
and PyTorch 1.10.0.

We used the same network architecture as (Lopez-Paz & Ranzato, 2017), a reduced ResNet18 for
CIFAR and Tiny-ImageNet images. We consider two settings: task incremental learning (Task-IL)
and class incremental learning (Class-IL ). Task-IL assumes task id is known and used to select a
classifier (separate logits) for a specific task, while it is not allowed to use task id in Class-IL. There-
fore the Class-IL setting is much more challenging than the Task-IL setting. Note that, OpenACL
only uses the task id to separate logits for Lp in the Task-IL setting. In addition, the online training
setting is used in our experiments where the model is only allowed to train 1 epoch on task data,
every labeled and unlabeled sample is only seen once. However, we also perform 3 iterations over
a batch in Class-IL following Aljundi et al. (2019). Note that, it is different from training multiple
epochs on a task.

We train models using a stochastic gradient descent (SGD) optimizer. In the Task-IL setting, we
allow the use of task id to separate the replay memory. The size of the replay memory is set to 250
per task under 50% labeled dataset and 125 per task under 20% labeled dataset. OpenACL uses the
same memory replay strategy as the GEM to store labeled data but without the gradient projection.
We retrieve 10 samples from the memory to replay past tasks. In the Class-IL setting, to avoid using
task id, OpenACL adopts the same replay strategy as ER and uses Reservoir Sampling (Vitter, 1985)
to store labeled data. For replay-based methods, the size of the replay memory is set to 4,000 and
2,000 for 50% labeled dataset and 20% labeled dataset respectively. At every iteration, we retrieve
30 samples from the replay memory. However, GEM still uses the full memory. Only equation
equation 2 is used to update the model during replaying. During the training, in all experiments, we
set the batch size for labeled data to 10, and the batch size of unlabeled data to 10· Du

Dl
. It ensures that

the ratio of unlabeled to labeled data in each batch is proportionate to their overall distribution in the
datasets. We first shuffle the entire unlabeled dataset and then sequentially sample data unlabeled
instances from it. As the ratio of labeled to unlabeled samples in each batch matches the overall
ratio of the two datasets, we guarantee that each unlabeled data point is also accessed exactly once.
We search and choose hyperparameters for baselines to make a fair comparison. The learning rate
for baselines is searched from [0.001, 0.01, 0.05, 0.1, 0.5, 1.0] to find the best learning rate for
baselines. In addition, the temperature s in equation 2 and equation 3 is set to 10, as suggested in
previous methods (Cao et al., 2022), and κ is set to 0.07 as the original setting in (Chen et al., 2020).
The threshold in FixMatch of baselines is set to 0.8.

B.2 METRIC

Three metrics are used in our experiments, including Accuracy (ACC), Backward Transfer (BWT),
and Forward Transfer (FWT) (Lopez-Paz & Ranzato, 2017; Yan et al., 2021).

ACC: We report the average accuracy on all trained tasks to evaluate the fundamental classification
performance of all methods.

BWT: BWT measures the influence of learning a new task t on previous tasks {1, ..., t− 1}. To
calculate the BWT, we define accuracy on test classes Ct

l at task t as the At
Ct

l
. BWT is computed as

follows:

BWT =
1

|T − 1|

|T |∑
i=2

1

i

i∑
j=1

Ai
Ci

l
−Aj

C
j
l

(8)

FWT: FWT gauges how the model performs on upcoming task t + 1 at task t. Let ā be a vector
storing accuracy for all tasks at random initialization status. After finishing all the tasks, we have
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FWT:

FWT =
1

|T − 1|

|T |∑
i=2

Ai−1

Ci
l

− āi (9)

B.3 DATASET ILLUSTRATION

In this section, we provide a more detailed illustration of our datasets.

The CIFAR-10 dataset comprises 50,000 images across 10 classes. We designate the first 6 classes
as seen classes and divide them into 3 tasks, each encompassing 2 classes. For these 6 classes, we
further split data from them into labeled and unlabeled subsets. In our experiment, we adopt two
different division ratios for data from seen classes: 20% labeled (thus, 80% unlabeled) and 50%
labeled (equally, 50% unlabeled). For example, with a 20% labeling ratio, each class includes 1,000
labeled and 4,000 unlabeled instances, so |Dl| is 6,000. We then maintain the unlabeled dataset Du

using the unlabeled instances from the seen classes and all data from the 4 unknown classes, totaling
44,000 instances. Similarly, with a 50% labeling ratio, each class has 2,500 labeled and 2,500
unlabeled instances, leading to Dl with 15,000 labeled instances and Du with 35,000 unlabeled
instances.

For the CIFAR-100 dataset, which includes 50,000 images across 100 classes, the first 80 classes
are treated as seen classes and divided into 16 tasks with five classes each. Under a 20% labeled
and 80% unlabeled ratio, there are 8,000 labeled instances and 32,000 unlabeled instances across 80
seen classes. The corresponding unlabeled dataset Du consists of 32,000 unlabeled instances from
80 seen classes and 10,000 instances from 20 unknown classes.

The Tiny ImageNet contains 100,000 images of 200 classes (500 for each class). We split the first
120 classes into 20 tasks, each containing 6 classes. Under a 20% labeled and 80% unlabeled ratio,
we have 12,000 labeled instances and 48,000 unlabeled instances. The unlabeled dataset Du consists
of 48,000 unlabeled instances from 120 seen classes and 40,000 instances from 80 unknown classes.

During training, for each task i, we simultaneously sample data from the labeled dataset Di
l for

the current task i and the shuffled unlabeled dataset Du. Du consists of data from all classes,
including previous task classes, current task classes, future task classes (whose labels have not been
revealed and are thus treated as novel classes for the current task i), and unknown classes that are not
included in the continual learning tasks. In each iteration, we sample both labeled and unlabeled data
for each batch, adhering to the respective proportions of labeled and unlabeled data in the datasets.
For example, in the CIFAR-10 dataset with a 50% labeling ratio, where we have 15,000 labeled
instances and 35,000 unlabeled instances, we maintain this proportion in our sampling approach for
each iteration. Consequently, in a single batch, we sample 10 labeled instances and 23 unlabeled
instances. For each task, we access 5,000 labeled instances from 2 classes, and 11,500 instances
from 10 classes. This approach ensures that each unlabeled sample is utilized only once in the
online continual learning process.

B.4 BASELINES

In this paper, we adopt the following methods as baselines:

1. Joint: It gives an upper bound given by training all tasks jointly.
2. Single (Lopez-Paz & Ranzato, 2017): It sequentially trains a single network across all tasks.
3. Independent (Lopez-Paz & Ranzato, 2017): It trains multiple networks; each is trained indepen-

dently for specific task.
4. GEM (Lopez-Paz & Ranzato, 2017): Gradient Episodic Memory (GEM) maintains an episodic

memory to store samples from previous tasks and ensure the gradients for new tasks do not
interfere with learned tasks.

5. iCaRL (Rebuffi et al., 2017): iCaRL uses a nearest-exemplar method and distillation to maintain
a set of exemplars for each class.

6. GSS (Aljundi et al., 2019): Gradient-based sample selection(GSS) selects and replays a subset of
diverse data based on the gradient to solve online continual learning.

7. ER (Chaudhry et al., 2019): Experience Replay (ER) trains both incoming data and data from the
replay memory. Despite its simplicity, ER surpasses many advanced continual learning methods.
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8. DER (Buzzega et al., 2020): Dark Experience Replay(DER) stores examples with their outputs,
and minimizes the difference between outputs from the current model and memory.

9. ER-ACE (Caccia et al., 2022): ER-ACE deploys asymmetric cross-entropy for online continual
learning problem.

10. DVC (Gu et al., 2022): DVC improves representations with contrastive learning for online con-
tinual learning. We extend their contrastive learning module to our setting.

11. DistillMatch (Smith et al., 2021): DistillMatch is a distillation-based method that considers SSCL
by rejecting samples that are not seen in CL tasks. It uses each data more than once to train the
model and OOD detector. To adapt DistillMatch to online continual learning, we provide the
ground truth for OOD samples, assisting in their exclusion.

12. ORCA (Cao et al., 2022): ORCA is an open-World semi-Supervised learning method which
recognizes previously seen classes and discovers novel classes at the same time. We combine
ORCA with ER to adapt it to the CL setting.

13. AutoNovel (Han et al., 2020): AutoNovel is designed for the novel class discovery problem by
first training on the labeled dataset and then transferring to the unlabeled dataset to discover novel
classes using rank statistics. We adapt its unlabeled data learning method to our setting.

14. FACT (Zhou et al., 2022): FACT reserves the embedding space for new classes in future tasks to
achieve forward compatibility. Considering its idea to prepare for future tasks is related to our
work, we also adapt this method to our setting and make comparison.

15. Refresh (Wang et al., 2024): Refresh learning operates by initially unlearning current data and
subsequently relearning it, which effectively enhances the learning process. We augment ER with
refresh learning.

These methods include simple ERM methods like Single and Independent to establish basic per-
formance baselines; continual learning (CL) methods such as GEM, iCaRL, GSS, ER, DER, and
Refresh to evaluate OpenACL against regular CL approaches; state-of-the-art OCL methods like
ER-ACE and DVC, which specifically address the challenges of the OCL problem; and novel class-
related methods such as DistillMatch, AutoNovel, FACT, and ORCA, considering their relevance in
handling novel class scenarios. For novel class discovery methods like AutoNovel and FACT that
require a pre-training phase, we utilized SimCLR to pre-train the models.

B.5 COMPUTATION AND PARAMETER USAGE

Here, we present the number of parameters used in each method in Table 5. OpenACL maintains
additional proxies for unseen classes, with the parameter count for each proxy equaling the repre-
sentation dimension in latent space. We also evaluate the time required for a batch update, with the
results detailed in Table 6. Note that the reported time is solely for a single update iteration and does
not account for memory replay.

Table 5: The number of model parameters for different datasets.

OpenACL Refresh DVC Others
CIFAR-10 1094740 2188212 1096544 1094106
CIFAR-100 1109140 2212040 1136948 1106020

Tiny-ImageNet 1125140 2224920 1158788 1112460

Table 6: Average computation time for one update.

Refresh DVC DistillMatch ORCA OpenACL Others
Time / ms 145.9±4.36 / 139.2±5.26 / 98.9±2.63 82.5±2.50 73.8±5.13 87.6±3.75 76.4±1.96 84.6±2.01 / 75.5±3.49 / 29.1±2.66

C ADDITIONAL EXPERIMENTS

C.1 ABLATION STUDY ON ADAPTATION

We also conduct an ablation study on the CIFAR-100 and Tiny-ImageNet datasets by removing
each component separately to examine their importance. Specifically, we systematically evaluate
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the impact of (i) Omitting the proxy adaptation (denoted as w/o PA), (ii) Excluding the k-means
initialization in the proxy adaptation (denoted as w/o K), (iii) Omitting proxy allocation for new
tasks while retaining the k-means initialization in the proxy adaptation (denoted as w/o A). The
analysis of w/o PA is intended to explain the effectiveness of proxy adaptation when shifting to new
tasks. Meanwhile, the evaluation of w/o K aims to affirm that the model’s adaptability is mainly
from our continual proxy learning mechanism, not the k-means initialization. OpenACL w/o A is
discussed to show the sole influence of the k-means initialization.
Table 7: Ablation study on the proxy adaptation. We report average accuracy over three runs using
different variants of OpenACL in Task-IL.

CIFAR-100 Tiny-ImageNet
ACC BWT FWT Acc BWT FWT

w/o PA 65.9±0.77 10.1±1.65 0.4±3.40 45.6±0.22 2.8±0.15 0.7±0.70

w/o K 66.2±0.94 10.2±1.49 9.8±1.13 46.2±0.36 3.4±1.54 9.9±0.38

w/o A 66.4±0.38 7.6±0.99 1.4±1.01 45.1±0.38 1.9±1.01 1.0±0.90

OpenACL 66.6±0.28 9.2±1.65 13.0±1.48 47.0±0.42 2.7±1.36 10.9±1.10

As shown in Table 7, the performance of OpenACL is compromised upon the removal of any single
component. We mainly consider FWT in this experiment because the proxy adaptation is designed
to adapt to the new tasks. A comparison between OpenACL w/o PA and OpenACL demonstrates a
considerable enhancement in FWT with the use of the proxy adaptation. However, even without the
proxy adaptation, the model still manages a mild positive FWT which verifies that our method can
learn a general representation for both seen classes and unseen classes.

Furthermore, it also shows that the improvement of adaptation is not achieved by k-means initial-
ization. By looking at OpenACL w/o K, it still achieves good performance on FWT compared
with others. Therefore, k-means initialization is only used to amplify the adaptability of the model.
Then, by analyzing the results of OpenACL w/o A, we could find that k-means initialization brings
about a minor improvement but still serves a role in augmenting our adaptation strategy. In addition,
ablation on the proxy adaptation also shows this component does not markedly affect accuracy.

C.2 ABLATION STUDY ON THE NUMBER OF PROXIES

Ideally, we want the number of proxies |G| to match the number of all classes |Cu| in the dataset.
Here we evaluate using the different number of Proxies on OpenACL in Table 8. Even if |g| ≠ |Cu|,
OpenACL still attains high performance when classes don’t have full support in the unlabeled data
or when some proxies are not activated by data. Therefore we do not require prior knowledge of the
distribution of novel classes.

Table 8: Ablation study on the number of proxies

CIFAR-100 Tiny-ImageNet
Proxies 20 50 Proxies 20 50

90 60.0±0.73 66.3±0.15 150 40.4±0.69 47.1±0.89

100 60.4±1.19 66.6±0.28 200 40.2±0.45 47.0±0.42

200 60.3±0.99 65.0±0.68 300 39.7±1.01 46.8±0.58

300 59.6±1.19 65.1±0.33 400 39.0±1.21 46.5±0.75

Incremental 60.0±0.99 64.9±0.84 Incremental 40.0±1.06 46.2±0.81

Additionally, in real open-world OCL scenarios where the number of classes in the labeled dataset
is unknown, the predefined proxies might be not enough during training, because we may not know
the number of labeled classes at the beginning of a real-world OCL scenario. Therefore, we also
study the feasibility to incrementally update the number of proxies. Here, we conduct an additional
experiment (Incremental in Table 8) where predefined proxies are insufficient for incoming task
classes. In this experiment, we set the predefined number of proxies as 50 and 100 for CIFAR-100
(80 task classes and 20 unknown classes) and TinyImageNet (120 task classes and 80 unknown
classes), respectively. If 80% proxies are assigned to task classes during training, we reinitialize
another 50 proxies for CIFAR-100 and 100 proxies for Tiny-ImageNet to train the model using all
proxies. The results show that OpenACL is able to dynamically increase the number of proxies,
even if the predefined proxies are not enough during training (smaller than the number of labeled
classes).
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C.3 EXPERIMENTS OF MULTI-EPOCH TRAINING

In the previous experiments, we focused on the challenging online continual learning setting to
better simulate the dynamic environments where the data stream continuously evolves. However,
OpenACL is capable of the general case of continual learning. Here, we also conduct experiments
to compare our method with two best baselines where we train for 10 epochs on each task, instead of
just 1 epoch. Each task is not revisited. Results in Tables 9 and 10 show that OpenACL consistently
outperforms others when trained with multiple epochs.

Table 9: Average accuracy over three runs of multiple epochs training on Task-IL benchmarks

Method CIFAR-100 Tiny-ImageNet
Labels % 20 50 20 50
ER-ACE 57.2±1.41 / 57.0±1.58 / 55.7±2.53 64.8±1.12 / 64.5±1.36 / 64.4±1.16 36.9±0.71 / 36.2±1.41 / 36.7±0.73 42.2±0.59 / 42.1±0.62 / 41.2±1.06

DVC 63.2±1.26 68.7±0.86 43.6±1.03 47.1±0.90

OpenACL 65.7±1.60 72.7±0.37 46.3±1.52 49.8±0.52

Table 10: Average accuracy over three runs of multiple epochs training on Class-IL benchmarks

Method CIFAR-100 Tiny-ImageNet
Labels % 20 50 20 50
ER-ACE 9.6±2.28 / 10.2±0.90 / 9.7±4.30 19.3±0.70 / 18.9±0.47 / 20.4±0.53 6.3±0.37 / 5.2±0.24 / 6.8±0.61 7.4±0.29 / 6.1±2.25 / 7.6±0.23

DVC 18.2±1.96 24.1±1.21 8.8±0.77 11.7±1.37

OpenACL 22.9±0.86 27.0±1.02 10.2±0.44 13.6±0.84

C.4 EXPERIMENTS OF LABELED/UNLABELED RATIO

In this part, we study the effect of the labeled/unlabeled data ratio by varying this ratio within
extreme cases to study how well the proposed method works in different scenarios. We conduct
the new experiments on 10% labeled data and 80% labeled data in the Task-IL setting and present
results in Table 11.

Table 11: Average accuracy with varying ratio

Method CIFAR-100 Tiny-ImageNet
Labels % 10 80 10 80
ER-ACE 51.0±0.47 / 51.7±0.58 / 50.3±0.71 64.9±0.71 / 64.1±0.69 / 63.8±0.75 32.9±1.42 / 33.7±0.66 / 32.3±1.59 44.3±0.65 / 44.9±0.70 / 44.0±0.60

DVC 53.2±2.02 64.6±0.49 35.4±0.36 45.6±0.58

OpenACL 55.2±1.17 68.5±0.37 38.2±0.68 48.4±1.04

C.5 EXPERIMENTS ON STANFORD CARS DATASET

In this section, we further evaluate our model on Stanford Cars Dataset Krause et al. (2013) from
Semantic Shift Benchmark Vaze et al. (2022b). We use the same class split as the Semantic Shift
Benchmark where there are 98 known classes and 98 unknown classes. The 98 known classes are
split into 14 tasks. All images are resized to 224x224 and ResNet-18 is used as the backbone. As the
number of images is relatively limited, we only split the data from known classes into 50% labeled
and 50% unlabeled. We train 10 epochs for each task. The results are presented in Table 12.

D SUPPLEMENTARY RESULTS

Here, we present the full version of table 1 and 2 in table 13 and 14.
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Table 12: Average accuracy on Stanford Cars

Method Stanford Cars (Task-IL) Stanford Cars (Class-IL)
ER-ACE 17.0±0.85 / 16.8±0.28 / 16.7±0.57 3.1±0.25 / 3.2±0.31 / 2.9±0.21

DVC 17.0±0.98 3.8±0.25

ORCA 18.3±1.16 4.3±0.36

OpenACL 20.8±1.02 8.0±0.45

Table 13: Table 1 with standard deviation

Method CIFAR-10 CIFAR-100 Tiny-ImageNet
Labels % 20 50 20 50 20 50
Joint 68.3±0.60 / 68.9±0.93 / 67.9±0.80 69.1±1.22 / 69.4±1.25 / 68.7±1.94 68.4±0.26 / 68.1±0.53 / 67.5±0.94 76.6±1.27 / 75.7±0.55 / 75.1±0.79 52.8±1.01 / 50.3±0.35 / 50.7±0.33 58.3±0.97 / 57.8±0.66 / 57.0±1.76

Single 57.5±3.67 / 57.6±3.49 / 54.7±2.54 59.3±2.78 / 57.0±1.83 / 57.6±2.05 33.5±1.27 / 34.1±3.10 / 32.3±2.48 37.9±2.82 / 36.3±2.63 / 37.2±1.61 20.9±1.99 / 20.5±0.69 / 19.6±0.54 25.9±1.14 / 23.3±0.83 / 23.1±1.16

Independent 62.5±3.22 / 64.2±1.35 / 61.3±2.56 63.9±3.69 / 62.3±2.43 / 62.5±2.83 26.7±3.98 / 30.3±3.28 / 31.8±2.88 36.2±2.30 / 36.2±2.15 / 33.4±1.67 21.6±0.83 / 21.5±1.07 / 23.2±1.72 26.5±0.84 / 28.0±2.21 / 27.0±1.79

iCaRL 56.0±1.07 / 57.4±1.38 / 56.7±2.19 57.2±1.35 / 58.7±0.97 / 58.3±2.20 45.8±1.50 / 45.9±2.68 / 46.4±0.58 44.1±1.38 / 42.3±1.70 / 41.8±1.09 25.2±1.03 / 25.3±1.75 / 23.5±1.39 31.3±1.01 / 29.0±1.72 / 26.5±2.71

DER 62.2±0.71 / 63.9±3.30 / 63.3±2.09 63.2±2.58 / 63.9±2.42 / 63.6±2.39 38.6±3.03 / 38.7±2.51 / 39.6±3.24 46.8±1.92 / 44.7±2.36 / 44.0±2.82 24.2±2.64 / 22.4±2.68 / 25.8±1.02 28.4±2.24 / 29.6±2.27 / 28.0±1.66

GEM 61.3±1.08 / 64.0±2.24 / 62.6±2.18 63.2±0.82 / 63.6±2.39 / 64.2±0.52 53.5±1.38 / 52.6±0.79 / 51.8±0.82 58.6±1.57 / 57.5±1.59 / 54.4±1.67 33.0±1.07 / 35.4±1.56 / 32.1±1.49 40.1±2.10 / 37.3±1.20 / 38.0±2.35

ER 62.9±1.17 / 62.3±3.32 / 61.3±3.58 64.9±3.88 / 63.8±6.12 / 62.6±2.89 54.8±1.74 / 55.3±0.65 / 53.7±1.09 59.9±2.87 / 58.5±1.39 / 57.8±0.84 35.2±0.55 / 36.3±1.79 / 35.7±1.20 41.7±0.34 / 41.4±0.39 / 40.2±0.10

ER-ACE 61.2±1.83 / 61.6±3.78 / 61.3±2.45 62.4±0.91 / 64.2±2.95 / 63.9±1.99 53.8±2.08 / 55.0±0.78 / 54.8±1.78 61.7±0.71 / 62.4±0.93 / 62.1±0.86 36.2±1.36 / 37.2±0.78 / 35.4±1.25 41.4±0.54 / 42.4±1.63 / 40.6±0.74

Refresh 63.0±2.25 / 63.1±3.04 / 61.7±1.31 62.6±1.91 / 64.3±2.35 / 62.6±2.70 54.7±2.71 / 55.3±0.52 / 55.1±0.20 61.2±1.18 / 61.9±1.26 / 61.0±1.17 35.8±0.87 / 36.9±1.16 / 35.8±0.38 42.6±0.23 / 42.2±1.51 / 41.5±0.55

DVC 57.4±0.86 61.7±3.23 57.6±0.92 62.7±2.08 36.8±0.61 43.5±0.35

DistillMatch 57.8±6.45 59.4±1.67 35.7±1.78 41.3±1.96 21.8±0.49 26.2±2.05

AutoNovel 56.3±1.82 56.5±2.11 58.7±0.13 63.3±0.83 37.4±0.74 43.1±4.74

FACT 53.2±3.27 55.3±1.78 55.9±2.86 62.8±1.00 35.0±1.49 42.3±0.67

ORCA 60.9±1.93 62.2±2.13 56.4±1.17 62.4±0.68 34.4±1.19 39.3±0.95

OpenACL 64.3±2.75 66.3±1.17 60.4±1.19 66.6±0.28 40.2±0.45 47.0±0.42

Table 14: Table 2 with standard deviation

Method CIFAR-100 Tiny-ImageNet
Labels % 20 50 20 50
Joint 22.8±0.80 / 23.0±0.64 / 21.8±0.48 31.8±2.09 / 32.9±0.85 / 30.8±1.60 13.4±0.83 / 14.4±0.31 / 13.6±1.28 22.0±2.25 / 21.5±1.40 / 21.1±0.88

Single 3.1±0.20 / 2.8±0.20 / 2.5±0.09 3.0±0.37 / 2.5±0.69 / 3.0±0.31 1.9±0.09 / 2.0±0.11 / 1.7±0.12 2.4±0.12 / 2.8±0.27 / 2.7±0.13

iCaRL 6.8±1.19 / 7.0±0.56 / 6.3±1.25 7.3±0.66 / 8.3±0.50 / 7.0±0.96 4.5±0.95 / 3.3±0.19 / 3.4±0.30 4.1±0.29 / 4.8±0.36 / 4.2±0.31

DER 3.7±0.11 / 3.7±0.23 / 3.5±0.31 3.6±0.23 / 3.9±0.57 / 3.9±0.81 2.4±0.11 / 2.5±0.13 / 2.1±0.19 2.4±0.10 / 2.6±0.16 / 2.3±0.27

GEM 7.0±0.14 / 8.0±0.47 / 6.9±1.48 9.7±1.06 / 7.7±2.15 / 6.7±2.27 2.4±0.08 / 3.4±0.24 / 2.7±0.17 2.3±0.66 / 2.6±0.09 / 1.8±0.44

GSS 12.8±0.64 / 11.2±0.32 / 10.3±1.28 16.8±1.11 / 15.3±2.27 / 15.2±1.54 3.3±0.21 / 5.4±0.63 / 3.8±0.33 5.3±0.40 / 5.6±0.36 / 5.0±0.13

ER 10.9±0.71 / 12.0±0.84 / 11.5±1.38 15.6±0.93 / 15.8±0.98 / 16.9±0.45 3.3±0.06 / 4.2±0.46 / 3.9±0.15 4.8±0.22 / 6.7±0.61 / 5.7±0.31

ER-ACE 12.8±0.20 / 13.3±0.90 / 12.0±0.79 16.7±0.79 / 17.9±0.63 / 17.1±1.20 5.0±0.55 / 5.4±0.56 / 4.9±0.36 7.4±0.74 / 8.1±0.90 / 7.2±0.52

Refresh 10.6±0.57 / 11.6±1.58 / 11.2±0.92 16.9±0.20 / 18.1±1.00 / 17.3±1.20 5.2±0.48 / 5.5±0.22 / 5.4±0.74 6.6±0.46 / 7.3±0.39 / 6.9±0.30

DVC 11.2±0.78 16.2±2.08 5.8±0.40 8.3±1.42

DistillMatch 2.8±0.06 3.2±0.17 2.0±0.18 2.7±0.14

AutoNovel 13.2±0.61 17.9±1.19 6.5±0.57 9.2±0.58

FACT 12.9±0.84 16.3±0.89 5.9±0.90 8.2±1.18

ORCA 14.4±0.37 18.8±0.52 6.8±0.57 9.6±1.20

OpenACL 15.7±0.44 20.0±1.23 7.9±0.37 11.9±1.06
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Algorithm 1 OpenACL

Require: tasks T1, ..., Tk; labeled dataset Dl and unlabeled dataset Du; memory M; proxies G;
representation function h; task classes Cl = {C1

l , ..., C
k
l }; temperature parameters s and κ;

learning rate η
1: for t ∈ {T1, . . . , Tk} do
2: if t ̸= T1 then
3: for ȳ ∈ Ct

l do
4: gȳ = argmaxgj∈G:j≥

∑t−1
i=1 |Ci

l |
∑

(xi,yi)∈Dt+1
l :yi=ȳ I(xi, gj) ▷ Proxy Adaptation

5: end for
6: for j = max(Ct

l ) + 1 to m do
7: gj = reinitialize(Du)
8: end for
9: end if

10: for a batch Bl = {(x̃i, x̃i
′, yi)}|Bl|

i=1 ⊂ Dt
l do

11: Bu = {(x̃u
i , x̃

u
i

′
)}|Bu|

i=1 ⊂ Du ▷ Random Sample from Du

12: Lp = − 1
|Bl|

∑|Bl|
i=1 log

exp (sim(gyi ,h(x̃i))×s)∑|G|
j=1 exp (sim(gj ,h(x̃i))×s))

13: Lu
c = − 1

|Bu|
∑|Bu|

i=1 log
exp(sim(p(x̃u

i ),p(x̃
u
i
′
))/κ)∑|Bu|

j=1 1[xj ̸=xi]
exp(sim(p(x̃u

i ),p(x̃
u
j ))/κ)

14: Lc = Lu
c −

∑|Bl|
i=1 log

1
|Pi|

∑
x̃j∈Pi

exp(sim(p(x̃i),p(x̃j))/κ)∑
x̃k∈A(i) exp (sim(p(x̃i),p(x̃k))/κ)

15: G, h = GradientDescent(Lp + Lc;G, h, η)
16: M = Update(M, Bl)
17: G, h = MemoryReplay(M;G, h, η)
18: end for
19: end for
20: Output G and h
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