

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MEDITok: A UNIFIED TOKENIZER FOR MEDICAL IM- AGE SYNTHESIS AND INTERPRETATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Advanced autoregressive models have reshaped multimodal AI. However, their transformative potential in medical imaging remains largely untapped due to the absence of a *unified* visual tokenizer—one capable of capturing fine-grained visual structures for faithful image reconstruction and realistic image synthesis, as well as rich semantics for accurate diagnosis and image interpretation. To this end, we present MedITok, the first unified tokenizer tailored for medical images, encoding both low-level structural details and high-level clinical semantics within a unified latent space. To balance these competing objectives, we introduce a novel two-stage training framework: a visual representation alignment stage that cold-starts the tokenizer reconstruction learning with a visual semantic constraint, followed by a textual semantic representation alignment stage that infuses detailed clinical semantics into the latent space. Trained on the meticulously collected large-scale dataset with over 30 million medical images and 2 million image-caption pairs, MedITok achieves state-of-the-art performance on more than 30 datasets across 9 imaging modalities and 4 different tasks. By providing a unified token space for autoregressive modeling, MedITok supports a wide range of tasks in clinical diagnostics and generative healthcare applications. Model and code are available in the supplementary material.

1 INTRODUCTION

The rapid evolution of advanced autoregressive (AR) models, such as GPT-4o (OpenAI, 2025), has revolutionized multimodal learning. These models excel at generating and understanding text, image, and audio data via unified processing of token-based representations. In medical imaging, AR models begin to demonstrate similar promise, powering report generation (Tanno et al., 2025), tumor segmentation (Chen et al., 2025a), counterfactual synthesis (Ma et al., 2025a), and diagnostic visual question answering (VQA) (Li et al., 2023). By translating complex biomedical image patterns into token sequences, these models can synthesize realistic images and interpret clinical cues (*e.g.*, ground-glass opacities on chest computed tomography, microcalcifications on mammography) in the images, with the potential to streamline workflows and improve patient outcomes.

A critical ingredient in building a powerful AR model is the *visual tokenizer*, which translates an input image to a sequence of discrete tokens suitable for AR modeling. Existing approaches can be divided into two categories. (1) Generation-oriented tokenizers optimized for pixel-level reconstruction¹, *e.g.*, VQGAN (Esser et al., 2021). These tokenizers precisely capture low-level structure in the image that is vital to image compression (Varma et al., 2025; Wang et al., 2024c) and

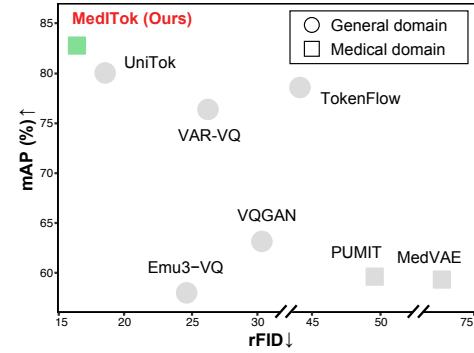


Figure 1: Performance comparison of different tokenizers on medical image reconstruction (rFID) and classification (mAP). MedITok achieves the best of both worlds.

¹In this paper, “reconstruction” refers to autoencoding reconstruction: decoding an input image from its latent representation.

054 generation (Zhu et al., 2024; Sun et al., 2024; Yu et al., 2024; Yao et al., 2025). However, they do not
 055 explicitly encode discriminative features and are therefore not suitable for interpreting the concepts
 056 and objects embedded in the image. (2) Interpretation-driven tokenizers trained with discriminative
 057 objectives, *e.g.*, CLIP (Radford et al., 2021). These tokenizers excel at capturing high-level textual
 058 semantics, making them indispensable for visual comprehension, but they fail to accurately retain
 059 spatial structures and textures in the image.

060 **Motivation.** Visual tokens that embed only one side of this structure-semantic spectrum will
 061 offload the representation learning burden onto downstream AR models, which often incurs heavy
 062 pre-training costs and can still leave either side under-utilized (Wang et al., 2024b; Chen et al., 2025b).
 063 These limitations are especially acute in the medical domain, where clinical tasks typically demand
 064 both precise visual structures and clinical semantics. However, current medical image tokenizers
 065 tend to specialize in one single aspect (Luo et al., 2023b; Zhang et al., 2023b), which lacks a unified,
 066 information-rich token space and thereby limits the potential of downstream medical AR models for
 067 accurate, interpretable, and data-efficient diagnosis.

068 Our goal is to democratize a foundation visual tokenizer for medical images. Nonetheless, training
 069 a unified tokenizer for medical images poses unique challenges: (1) A naïve joint optimization of
 070 visual reconstruction and textual semantic objectives often causes mutual interference and degraded
 071 performance (Wu et al., 2025; Qu et al., 2024). (2) Paired image-caption data for training is much
 072 more scarce in the medical domain, compared to the abundant unlabeled images.

073 To addresses these issues, we propose a novel two-stage training framework. Instead of directly
 074 coupling the visual reconstruction and textual semantic, it involves a *visual representation alignment*
 075 *stage* to first establish basic semantic awareness with strong reconstruction capabilities as a cold-start,
 076 followed by the *textual semantic alignment stage* for learning finer-grained semantic information. This
 077 framework leads to our model: MedITok, the first unified visual tokenizer tailored for medical images.
 078 MedITok encodes both low-level structural information, supporting image synthesis and compression,
 079 and high-level semantics, enabling medical image interpretation and multimodal comprehension,
 080 serving as a general foundation for diverse community use.

081 Specifically, the first training stage cold-starts MedITok on pure medical images, optimizing for
 082 reconstruction fidelity with a light semantic constraint on the latent space. Then, the textual semantic
 083 alignment stage tunes MedITok on image-caption pairs, enhancing semantic richness by aligning
 084 visual tokens to textual embeddings of detailed captions. This approach allows MedITok to *effectively*
 085 *encode structural and semantic information* while *exploiting both unpaired medical images and*
 086 *image-text pairs at scale*, making a unified token space to develop powerful AR models for diverse
 087 tasks. To achieve this, we meticulously collect a large-scale dataset comprising over 30 million
 088 medical images and 2 million image-caption pairs from more than 300 public sources, with broad
 089 coverage of imaging modalities, anatomies, and pathologies. This collection ensures that MedITok
 090 learns robust representations for medical image synthesis and interpretation.

091 **Contributions.** (1) We propose a novel training framework for developing a unified visual to-
 092 kenizer, which effectively scales up with medical image and text data and progressively builds a
 093 unified token space. (2) We introduce MedITok, the first medical image tokenizer that unifies the
 094 encoding of structural details and clinical semantics. (3) Extensive experimental results on over 30
 095 datasets, spanning 9 imaging modalities, across 4 different tasks, showcase MedITok’s state-of-the-art
 096 performance over existing approaches and broad applicability to diverse medical tasks. (4) Model
 097 and code will be open-source. Data access links are provided respecting all original licenses.

099 2 RELATED WORK

101 **AR Models in Medical Vision Tasks.** AR models have shown impressive scalability and generaliz-
 102 ability in general vision-language processing. In medical domain, these models have been extended
 103 to a variety of tasks: image captioning and VQA for interpreting scans and assist diagnosis (Li et al.,
 104 2023; Moor et al., 2023; Chen et al., 2024c), lesion segmentation model across different imaging
 105 modalities (Chen et al., 2025a), medical image synthesis for counterfactual analysis (Ma et al., 2025a)
 106 and modality transfer (Ren et al., 2024), *etc.* More recently, HealthGPT (Lin et al., 2025) further
 107 unifies both medical image synthesis and comprehension capabilities within an AR framework for
 108 broader applications. However, these methods typically general-domain tokenizers pre-trained on

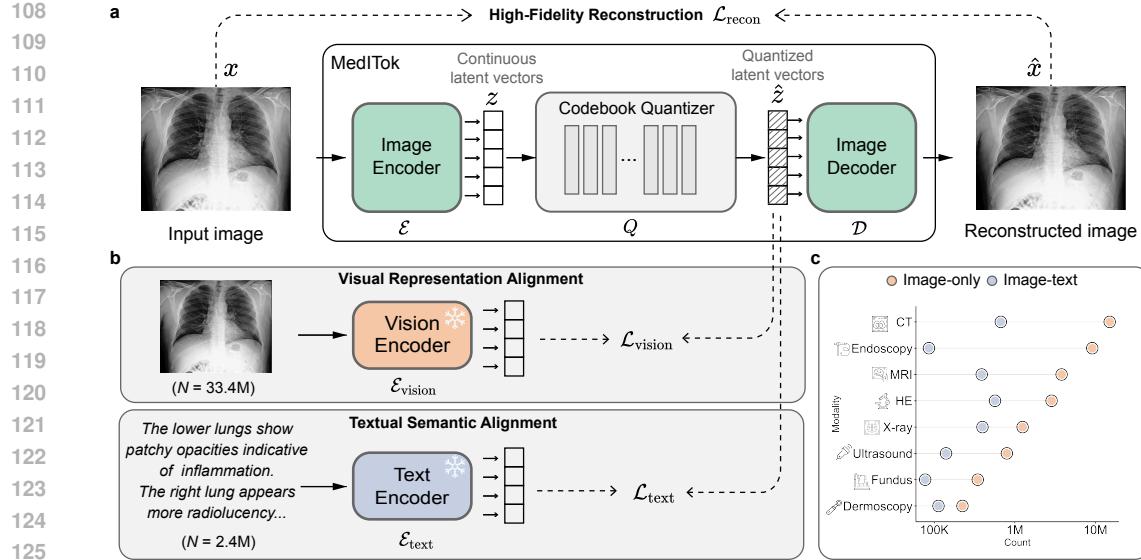


Figure 2: Overview of the proposed training framework. (a) Architecture of MedITok. (b) Two-stage training: visual representation alignment with pretrained visual semantics, followed by textual semantic alignment using clinical captions. (c) Statistics across modalities for our training data.

natural images, which encode insufficient clinical knowledge and capture either low-level structural detail or high-level clinical concepts, rarely both, whereas clinical tasks usually demand joint representation. To this end, we introduce MedITok, the first unified tokenizer tailored for medical images to support a wide range of tasks and empower advanced AR models in the medical field.

Unified Visual Tokenizers. Visual tokenizers encode images into token sequences suitable for AR modeling. Recent works (Wu et al., 2025; Ma et al., 2025b; Qu et al., 2024) seek to unify the encoding of both low-level details and high-level semantics into one single visual tokenizer, enhancing the multimodal generation and comprehension capabilities of downstream AR models. TokenFlow (Qu et al., 2024) proposes an intuitive dual-codebook design that explicitly decouples semantic and pixel-level cues. UniTok (Ma et al., 2025b) instead shows that simply scaling codebook capacity lets a single token space capture both, offering a more scalable solution. In medical imaging, recent research such as MedVAE (Varma et al., 2025) builds high-fidelity continuous latent compressors but stops short of providing unified tokens for downstream AR modeling. Our approach is the first medical-domain tokenizer to fill this gap, supplying unified token space to power the next generation of medical multimodal models.

3 METHODOLOGY

By encoding both low-level structural details and high-level clinical semantics, MedITok directly supports medical image reconstruction and classification tasks, and can be further integrated into AR models for more complex tasks, *e.g.*, medical image synthesis and interpretation, *etc.* Below, we start with a preliminary on the image tokenization (Sec. 3.1) and provide detailed description of our model and training framework (Sec. 3.2) and dataset curation process (Sec. 3.3).

3.1 PRELIMINARY

The drive to apply powerful autoregressive models from natural language processing to visual data has spurred the development of image tokenization techniques, converting images into sequences of visual tokens. Among these, Vector Quantization (VQ)-based approaches (Van Den Oord et al., 2017; Esser et al., 2021) are foundational.

In a typical VQ-based image tokenization, an image x is first mapped by an encoder \mathcal{E} to a spatial grid of latent vectors $z \in \mathbb{R}^{h \times w \times d}$. Each vector in this grid is then quantized by assigning it to the closest entry in a learned, finite codebook $\mathcal{C} = \{c_k\}_{k=1}^K$, where $c_k \in \mathbb{R}^d$ represents a visual token and K

162 is the codebook size. The quantized grid of latent vectors, $\mathbf{z}_q \in \mathbb{R}^{h \times w \times d}$, effectively represent the
 163 image as a compressed sequence of visual tokens. A decoder \mathcal{D} is then trained to reconstruct the
 164 image from these representations, producing $\hat{\mathbf{x}} = \mathcal{D}(\mathbf{z}_q)$. During training, the encoder \mathcal{E} , decoder \mathcal{D} ,
 165 and the codebook \mathcal{C} are jointly optimized. It typically involves a composite loss function designed to
 166 ensure both accurate reconstruction and effective codebook learning (Esser et al., 2021), defined as:
 167

$$\mathcal{L}_{\text{recon}}(\hat{\mathbf{x}}, \mathbf{x}, \mathbf{z}_q, \mathbf{z}) = \mathcal{L}_{\text{image}}(\hat{\mathbf{x}}, \mathbf{x}) + \lambda_{\text{comm}} \mathcal{L}_{\text{comm}}(\mathbf{z}_q, \mathbf{z}), \quad (1)$$

169 where $\mathcal{L}_{\text{image}}$ is the image fidelity loss consisting of a mean square error loss, a perceptual loss (Johnson
 170 et al., 2016), and an adversarial loss, encouraging high-fidelity reconstructions. The commitment
 171 loss (Van Den Oord et al., 2017) $\mathcal{L}_{\text{comm}}$ ensures the encoder outputs \mathbf{z} to commit to their nearest
 172 codebook vectors. Our work builds upon these foundational principles of VQ-based tokenization but
 173 introduces a novel training framework tailored to unified medical image tokenization.
 174

175 3.2 MEDITOK TRAINING FRAMEWORK

177 A unified visual tokenizer must reconcile two objectives that naturally compete: preserving low-level
 178 spatial detail for image reconstruction and synthesis, and learning a high-level semantic token space
 179 for image interpretation. Previous works (Wu et al., 2025; Ma et al., 2025b) combine visual reconstruc-
 180 tion and textual representation learning objectives in one go. Such training can lead to representation
 181 collapse or suboptimal trade-offs (Qu et al., 2024). Moreover, they typically rely on large-scale
 182 image-caption pairs while overlooking the abundance of unpaired images. We propose a novel two-
 183 stage training framework to train our unified visual tokenizer MedITok, unlocking the potential of
 184 unlabeled images in the medical domain and progressively transitioning from reconstruction-focused
 185 learning to unified token learning.

186 As depicted in Fig. 2, MedITok is comprised of an image encoder \mathcal{E} , a quantizer Q , and a decoder \mathcal{D} .
 187 Our framework begins with a *visual representation alignment* stage, which cold-starts the training
 188 of the image encoder \mathcal{E} and a decoder \mathcal{D} using a vast corpus of unpaired medical images. The
 189 primary focus is on capturing low-level structural information, guided by only a light semantic
 190 constraint from a pretrained vision encoder $\mathcal{E}_{\text{vision}}$. Subsequently, in the second stage termed *textual*
 191 *semantic alignment*, \mathcal{E} is refined using high-quality image-caption pairs. Here, the emphasis shifts
 192 towards enhancing the semantic richness of the learned tokens by aligning them with clinical captions
 193 processed by a pretrained text encoder $\mathcal{E}_{\text{text}}$. This approach not only alleviates the conflicts between
 194 reconstruction and semantic learning objectives but also allows us to effectively leverage large-scale
 195 unpaired images alongside paired image-text data for unified tokenizer training.

196 **Visual Representation Alignment.** Given an input image \mathbf{x} , the encoder \mathcal{E} produces continuous
 197 latent vectors \mathbf{z} , which are then quantized by the quantizer Q to yield discrete latent vectors $\mathbf{z}_q =$
 $Q(\mathbf{z})$. The decoder \mathcal{D} then learns to reconstruct the image $\hat{\mathbf{x}} = \mathcal{D}(\mathbf{z}_q)$. The pretrained vision encoder
 $\mathcal{E}_{\text{vision}}$ encodes the image \mathbf{x} into a semantic representation, which is then projected into the space of
 \mathbf{z}_q via a linear layer f_{vision} to provide semantic supervision for learning \mathbf{z}_q . We use a composite loss
 200 function for training, defined as:

$$\mathcal{L}_{\text{stage1}} = \mathcal{L}_{\text{recon}}(\hat{\mathbf{x}}, \mathbf{x}, \mathbf{z}_q, \mathbf{z}) + \lambda_{\text{vision}} \mathcal{L}_{\text{vision}}(\mathbf{z}_q, f_{\text{vision}}(\mathcal{E}_{\text{vision}}(\mathbf{x}))), \quad (2)$$

203 where $\mathcal{L}_{\text{vision}}$ is a contrastive loss that imposes light semantic constraint on the latent space, with
 204 the factor λ_{vision} set to 0.1. By prioritizing reconstruction while gently guiding the latent space with
 205 pre-trained visual semantics, this stage ensures MedITok develops a robust understanding of visual
 206 structure, preparing it for fine-grained semantic alignment in the subsequent stage.

208 **Textual Semantic Alignment.** This stage focuses on enhancing the semantic richness of the learned
 209 image tokens and aligning them with fine-grained textual representations extracted from detailed
 210 medical captions. The training in this stage is driven by the following loss function:

$$\mathcal{L}_{\text{stage2}} = \mathcal{L}_{\text{recon}}(\hat{\mathbf{x}}, \mathbf{x}, \mathbf{z}_q, \mathbf{z}) + \lambda_{\text{text}} \mathcal{L}_{\text{text}}(\mathbf{z}_q, f_{\text{text}}(\mathcal{E}_{\text{text}}(\mathbf{t}))), \quad (3)$$

213 where \mathbf{t} denotes the detailed caption of the image \mathbf{x} , and f_{text} is another linear layer. $\mathcal{L}_{\text{text}}$ is the
 214 contrastive loss, with a balancing factor λ_{text} set to 1. This stage further integrates the structural and
 215 semantic representation learning, empowering MedITok for a wide range of downstream medical
 216 applications requiring nuanced understanding.

216 3.3 DATASET CURATION
217

218 The development of MedITok necessitates a comprehensive and diverse dataset. To this end, we
219 undertake an extensive data collection effort, aggregating medical images and image-text pairs from
220 over 300 publicly available sources. For example, image-text pairs are collected from BIOMED-
221 ICA (Lozano et al., 2025), MedICaT (Subramanian et al., 2020), MIMIC-CXR (Johnson et al., 2019),
222 ROCov2 (Rückert et al., 2024), PMC-OA (Lin et al., 2023), MM-Retinal (Wu et al., 2024), and
223 GMAI-MM-Caption-1.7M (Li et al., 2024) datasets.

224 Quality control is a critical step in our data collection pipeline to ensure that the training data are of
225 sufficient quality for learning meaningful representations. We employ a combination of automated
226 and manual filtering to exclude images of low quality or limited clinical relevance. Specifically, an
227 image is excluded if, after proxy RGB conversion, it meets any of the following criteria: (1) low
228 pixel intensity range below 50; (2) insufficient resolution, where the smallest dimension is under 128
229 pixels; (3) low information content, indicated by a standard deviation of pixel values below 10; (4)
230 limited palette, with three or fewer unique pixel values; (5) unrelated content, such as tables, plots, or
231 non-clinical images extracted from publications. For text data, we only retain captions pertinent to
232 clinical imaging, determined by the tags within each dataset or clinical keyword matching.

233 These checks efficiently remove noisy and uninformative samples and ensures higher quality input
234 for our training framework, resulting in a massive corpus of 33,428,922 medical images for the visual
235 representation alignment stage, and 2,422,827 high-quality medical image-caption pairs for the textual
236 semantic alignment stage. This collection encompasses over eight imaging modalities, including
237 computed tomography (CT), dermoscopy, endoscopy, fundus photography, magnetic resonance
238 imaging (MRI), pathology, ultrasound, and X-ray, spanning a wide spectrum of anatomical regions
239 and pathological findings. We leave detailed sources and statistics in our Appendix A.

240 4 EXPERIMENTS
241

242 In this section, we present comprehensive experiments to evaluate the proposed MedITok across
243 four different task families, including medical image reconstruction, medical image classification,
244 modality-conditioned medical image synthesis, and medical visual question answering. Since each
245 task is evaluated using specialized metrics appropriate to its goals, we introduce them within each
246 corresponding subsection.

247 4.1 EXPERIMENTAL SETUP
248

249 **Datasets.** (1) For medical image reconstruction, we collect images from 23 publicly available
250 datasets (McCollough et al., 2017; Landman et al., 2015; Heimann et al., 2009; Kawahara et al.,
251 2018; Giotis et al., 2015; Ali et al., 2022; Kiranyaz et al., 2020; Cartucho et al., 2024; Ali et al.,
252 2020; Decencière et al., 2014; Ovreiu et al., 2021; Fraz et al., 2012; Hoover et al., 2000; Graham
253 et al., 2019b; Da et al., 2022; Nir et al., 2018b; Bao et al., 2025; Pati et al., 2020; Pedraza et al.,
254 2015; Al-Dhabyani et al., 2020; Lian et al., 2021; Halabi et al., 2019; Tabik et al., 2020), totaling
255 35,736 images covering 8 imaging modalities. (2) For medical image classification, we benchmark
256 on five subsets of the latest MedMNIST collection (Yang et al., 2023) in different imaging modalities,
257 including BreastMNIST (Al-Dhabyani et al., 2020) for ultrasound, DermaMNIST (Tschanl et al.,
258 2018; Codella et al., 2019) for dermoscopy, PathMNIST (Kather et al., 2019) for pathology images,
259 PneumoniaMNIST (Kermany et al., 2018) for chest X-ray, and RetinaMNIST (Liu et al., 2022)
260 for fundus photography, where all images are resized to 256×256 . (3) For modality-conditioned
261 medical image synthesis, we employ data from BloodMNIST (Acevedo et al., 2020), BreastMNIST,
262 ChestMNIST (Wang et al., 2017b), DermaMNIST, PathMNIST, and RetinaMNIST to train and test
263 the downstream AR image synthesis models. (4) Finally, for medical visual question answering, we
264 use PubMedVision (Chen et al., 2024c) dataset to train the downstream multimodal language models,
265 and evaluate them on two widely used medical visual question answering (VQA) benchmarks: VQA-
266 RAD (Lau et al., 2018) and SLAKE (Liu et al., 2021a). We carefully conduct manual cross-checking
267 on the data used for evaluating and training MedITok, minimizing the risk of data leakage. Please see
268 Appendix B for more details on statistics and tasks.

269 **Implementation Detail.** We build MedITok with a hybrid ViT architecture (Chen et al., 2024b)
270 using PyTorch (Paszke et al., 2019), and implement the quantizer with 8 codebooks, each containing

270 Table 1: Medical image reconstruction across different imaging modalities using different models.
 271 The best results are highlighted in **bold** and the second best results are underlined. SSIM values are
 272 presented as percentages. f_d denotes the downsampling factor. “ \downarrow ”: The lower the better.
 273

Metrics	Models	f_d	CT	Dermo.	Endo.	Fundus.	MRI	Patho.	US	X-ray	Avg.	Avg. rank
rFID (\downarrow)	VQGAN	8	15.97	33.57	27.33	27.22	21.33	67.68	29.48	18.66	30.16	4.9
	Emu3-VQ	8	11.83	27.91	20.83	16.27	13.52	69.89	25.43	11.99	24.71	3.4
	VAR-VQ	16	14.69	30.27	19.74	21.69	13.99	70.06	26.09	12.18	26.09	4.1
	TokenFlow	16	24.78	44.28	47.42	34.93	26.81	98.22	51.77	24.51	44.09	7.0
	UniTok	16	9.27	23.15	13.64	16.22	9.30	47.77	20.93	8.61	18.61	2.0
	PUMIT	16	32.67	53.46	56.22	27.51	25.43	142.98	37.04	23.78	49.88	7.1
PSNR (\uparrow)	MedVAE	8	20.17	140.39	114.00	117.39	23.34	123.20	30.60	11.54	73.64	6.5
	MedITok	16	7.88	22.27	10.66	14.39	6.32	46.54	17.64	6.55	16.53	1.0
	VQGAN	8	31.13	29.28	25.60	35.40	29.54	20.42	24.79	31.68	28.48	6.3
	Emu3-VQ	8	36.11	<u>31.68</u>	28.96	39.64	<u>34.32</u>	22.08	27.57	<u>35.81</u>	32.02	<u>2.6</u>
	VAR-VQ	16	31.32	29.26	25.75	35.73	29.83	20.86	25.22	31.10	28.63	5.8
	TokenFlow	16	28.64	27.23	23.72	33.45	27.68	19.33	23.26	28.71	26.50	7.8
SSIM (\uparrow)	UniTok	16	33.60	30.97	27.55	37.21	31.50	22.18	26.97	32.97	30.34	4.3
	PUMIT	16	33.64	30.23	<u>29.08</u>	37.33	33.13	<u>23.09</u>	28.31	33.89	31.09	3.1
	MedVAE	8	36.46	20.67	25.04	15.31	34.42	19.58	<u>28.29</u>	36.23	27.01	4.5
	MedITok	16	36.32	31.69	29.19	<u>37.72</u>	33.55	23.54	28.49	34.42	31.74	1.8
	VQGAN	8	88.51	75.28	76.84	92.32	84.39	48.42	68.18	91.14	78.14	6.8
	Emu3-VQ	8	92.79	79.34	<u>84.71</u>	94.33	95.72	54.70	75.14	95.54	83.78	3.5
4.096	VAR-VQ	16	89.51	76.69	79.21	93.08	93.68	47.40	69.99	90.79	80.04	6.0
	TokenFlow	16	82.43	67.19	69.47	89.60	90.22	33.09	56.56	84.50	71.63	7.8
	UniTok	16	92.42	<u>81.00</u>	84.47	<u>94.45</u>	95.47	56.42	76.40	92.74	84.17	3.9
	PUMIT	16	92.10	85.41	87.81	94.60	96.59	<u>63.81</u>	81.46	94.52	<u>87.04</u>	<u>2.6</u>
	MedVAE	8	<u>92.86</u>	75.32	81.52	69.46	<u>95.92</u>	53.10	77.45	94.77	80.10	4.4
	MedITok	16	93.73	85.47	88.99	95.27	97.22	65.99	83.93	<u>95.39</u>	88.25	1.1

4,096 eight-dimensional latent vectors. We train MedITok using AdamW (Loshchilov & Hutter, 2019) optimizer for 3 epochs in the first stage and 2 epochs in the second stage, with a global batch size of 512. Image resolution is of 256×256 . The encoder of MedITok is initialized with weights from UniTok for efficient training. We choose BiomedCLIP (Zhang et al., 2023b) as the pretrained semantic vision and text encoders for alignment in our training framework, which is frozen throughout the training. Detailed setup can be found in our Appendix C.

Competing Tokenizers. We compare MedITok with powerful visual tokenizers from both general and medical domains, including VQGAN (Esser et al., 2021), Emu3-VQ (Wang et al., 2024b), VAR-VQ (Tian et al., 2024), TokenFlow (Qu et al., 2024), UniTok (Ma et al., 2025b), PUMIT (Luo et al., 2023b), and MedVAE (Varma et al., 2025). VQGAN, Emu3-VQ, and VAR-VQ are pure VQ-based tokenizers trained on natural images without semantic alignments, yet showing great promise in building medical multimodal models (Lin et al., 2025; Ma et al., 2025a). TokenFlow and UniTok are two state-of-the-art unified image tokenizers in the general domains. PUMIT and MedVAE are two medical visual tokenizers that mainly focus on fine-grained detail preservation.

4.2 MEDICAL IMAGE RECONSTRUCTION

We employ reconstruction Fréchet inception distance (rFID) (Heusel et al., 2017), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM) (Wang et al., 2004) to evaluate the image reconstruction performance. Notably, Woodland et al. (2024) have shown that ImageNet-pretrained feature extractors are more consistent and aligned with human medical expert judgment than their counterparts pretrained on medical images, and we follow their work to implement rFID.

Quantitative results are shown in Table 1. MedVAE struggles on the modalities with colored imaging (e.g., fundus photography) as it is trained only on grayscale images (Varma et al., 2025). Notably, despite with a large downsampling factor of $16\times$, MedITok delivers the best overall reconstruction quality across 8 modalities, outperforming other tokenizers including those with only $8\times$ downsampling. This highlights the efficiency of MedITok in balancing compression with reconstruction fidelity. Fig. 3 visualizes images reconstructed by different tokenizers and corresponding error maps. MedVAE fails to preserve colors due to limited generalizability, while UniTok discards nuanced details. By contrast, our MedITok consistently preserves fine-grained structures and color fidelity. Please refer to Appendix D for more results.

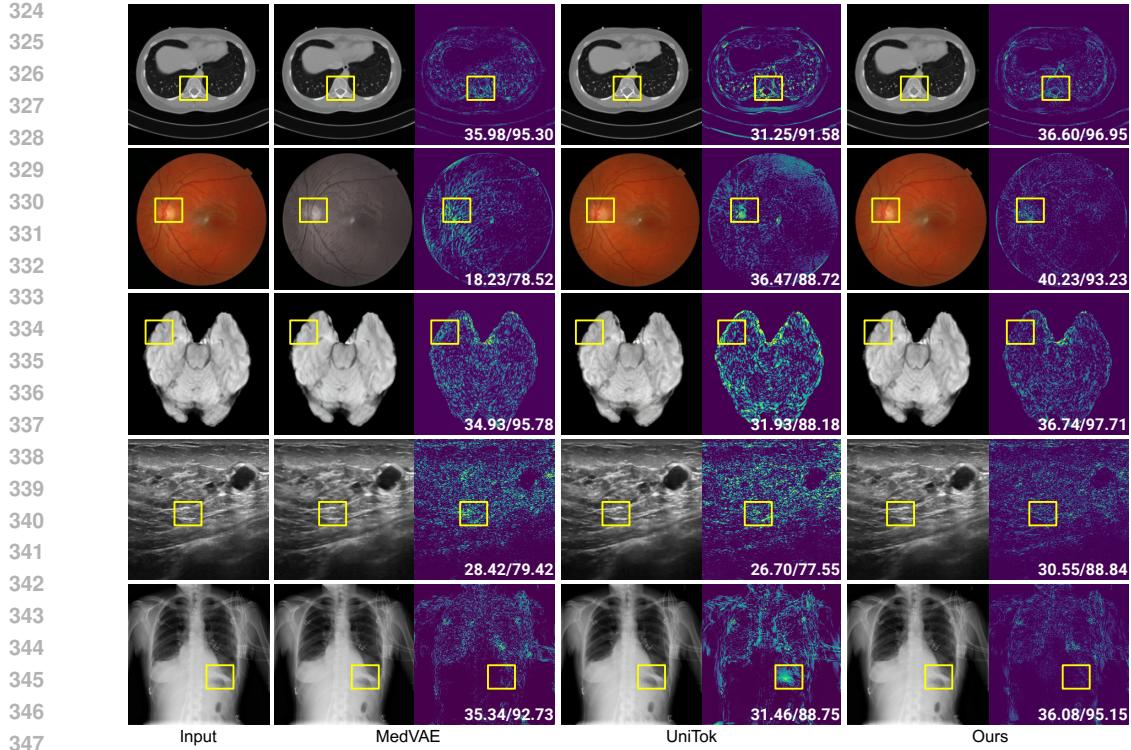


Figure 3: Reconstruction results across multiple imaging modalities. Each reconstructed image is paired with an absolute error map against the input image with PSNR/SSIM values.

Table 2: Downstream image classification performance (mAP / AUC) with linear probing setup. The best results are highlighted in **bold** and the second best results are underlined. Values are presented as percentages.

Models	Dermoscopy	Fundus	Pathology	Ultrasound	X-ray	AVG
VQGAN	35.71/85.97	41.59/77.33	72.69/94.57	73.29/76.35	91.34/93.32	62.92/85.51
Emu3-VQ	30.79/82.88	38.90/71.71	42.57/82.75	82.65/85.30	92.75/93.29	57.53/83.19
VAR-VQ	58.76/94.02	51.71/85.53	90.80/98.31	87.31/89.06	97.56/97.79	77.23/92.94
TokenFlow	61.78/93.50	52.07/83.77	95.21/99.23	88.19 /88.12	97.69/98.03	78.99/92.53
UniTok	66.16/94.60	<u>55.94</u> /85.05	96.63/99.49	87.34/88.60	95.98/96.84	80.41/92.92
PUMIT	23.64/71.92	36.60/72.87	81.52/96.50	68.81/73.67	88.80/91.64	59.87/81.31
MedVAE	37.66/85.26	39.31/75.29	48.02/84.85	77.74/82.36	95.41/95.47	59.54/84.64
MedITok (ours)	71.52 / <u>95.60</u>	56.41 / <u>86.88</u>	96.88 / <u>99.60</u>	<u>87.45</u> / 89.07	99.08 / <u>99.19</u>	82.27 / <u>94.07</u>

4.3 MEDICAL IMAGE CLASSIFICATION

To assess whether a visual tokenizer encodes clinical semantics in the latent space, we adopt a linear-probing (Alain & Bengio, 2016) protocol on a suite of medical image classification tasks (Yang et al., 2023). Specifically, we freeze each tokenizer and append a linear layer to its encoder, training the linear layer to convergence on the image classification task and report the performance in terms of mean average precision (mAP) and area under the ROC curve (AUC) on the corresponding test sets. Results are presented in Table 2. Models optimized purely for image reconstruction (e.g., Emu3-VQ, PUMIT) degrade on tasks where fine-grained clinical semantics are required for nuanced classification, e.g., retinal disease grading in fundus photographs. General-domain unified tokenizers like TokenFlow and UniTok show improved but limited performance. By contrast, our MedITok encodes rich clinical-relevant semantics and delivers the best overall classification performance, showing that rich semantic information is embedded in MedITok’s unified token space.

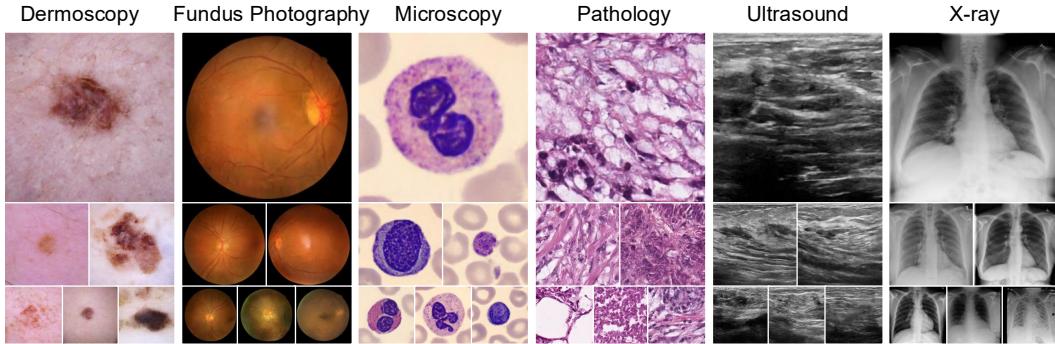
Figure 4: Modality-conditioned synthesized image examples produced by our LlamaGen_{MedITok}.

Table 3: Modality-conditioned medical image generation performance.

Table 4: Visual question answering accuracy on two medical benchmarks.

Models	gFID (↓)	Diversity (↑)	Models	VQARAD	SLAKE-val	SLAKE-test
LlamaGen _{VQGAN}	130.93 \pm 3.58	0.6503 \pm 0.03	LLaVA-Med	43.90 \pm 2.88	40.30 \pm 2.28	38.73 \pm 3.53
LlamaGen _{UniTok}	80.71 \pm 3.18	0.6584 \pm 0.02	LLaVA-Med _{UniTok}	49.66 \pm 1.11	44.44 \pm 2.04	43.84 \pm 1.28
LlamaGen _{MedITok-S1}	94.98 \pm 1.89	0.6479 \pm 0.02	LLaVA-Med _{MedITok-S1}	46.56 \pm 1.67	40.73 \pm 1.52	41.02 \pm 0.83
LlamaGen_{MedITok}	76.78\pm1.91	0.6883\pm0.01	LLaVA-Med _{MedITok}	52.99\pm2.14	49.02\pm3.45	48.09\pm1.42

4.4 MEDICAL IMAGE SYNTHESIS

We explore applying unified visual tokenizers to image synthesis task by incorporating each tokenizer in the LlamaGen (Sun et al., 2024) framework for modality-conditioned medical image synthesis, including six imaging modalities: dermoscopy, fundus photography, microscopy, pathology images, ultrasound, and X-ray. Specifically, we build two LlamaGen models using MedITok-S1, a variant of MedITok that only goes through the first training stage, and MedITok. These two models, denoted by “LlamaGen_{MedITok-S1}” and “LlamaGen_{MedITok}”, respectively, are compared with other LlamaGen variants with different visual tokenizers, *i.e.*, “LlamaGen_{VQGAN}” and “LlamaGen_{UniTok}”. We follow previous work (Bluethgen et al., 2024) to report generation Fréchet inception distance (gFID) and diversity score for evaluating the fidelity and the diversity of the synthesized images. For visual diversity metric, we first sample N images from the modality-to-image model for each modality, and calculate $\sum_{i \neq j} (1 - \text{MS-SSIM}(\mathbf{x}_i, \mathbf{x}_j)) / \binom{N}{2}$ for all distinct pairs $(\mathbf{x}_i, \mathbf{x}_j)$ among N synthesized images, where MS-SSIM denotes the multi-scale structural similarity index (Wang et al., 2003). The overall diversity score is defined as the mean diversity score over all imaging modalities.

Quantitative results in Table 3 show that LlamaGen using general-domain tokenizer like VQ-GAN or UniTok struggles with high-quality medical image generation. Notably, LlamaGen_{MedITok} achieves the best visual fidelity and diversity. We also note that LlamaGen_{MedITok} surpasses LlamaGen_{MedITok-S1} by a non-trivial margin, indicating that textual semantic alignment may regularize the token space and boost the image synthesis task. Fig. 4 illustrates images synthesized by LlamaGen_{MedITok} across various modalities, presenting realistic structures and textures of biological tissues and organs. Note that, although MedITok is not trained on microscopy modalities, it still supports realistic synthesis of microscopy images. Please refer to Appendix D for more examples.

4.5 MEDICAL IMAGE INTERPRETATION

We further evaluate the effectiveness of different tokenizers in medical image interpretation by integrating each as the image encoder in the LLaVA-Med (Li et al., 2023) framework, yielding three models: LLaVA-Med_{UniTok}, LLaVA-Med_{MedITok-S1}, and LLaVA-Med_{MedITok}. We initialize the language backbone using the released weights of LLaVA-Med, train these models on the PubMed-Vision (Chen et al., 2024c) dataset, and evaluate their accuracy on two widely used medical VQA benchmarks: VQA-RAD (Lau et al., 2018) and SLAKE (Liu et al., 2021a).

432 Table 5: Ablation studies of MedITok. “#Img”: number of images used in the first training stage,
 433 “#Img-txt”: number of image-text pairs used in the second training stage.

435	Idx.	Vision Target Repr.	Text Target Repr.	Objective	#Img	#Img-txt	PSNR	SSIM	mAP	AUC
436	(i)	CLIP-V	–	Contrast	800k	–	30.99	86.67	70.80	89.01
437	(ii)	BiomedCLIP-V	–	Contrast	800k	–	30.00	83.85	78.35	92.23
438	(iii)	BiomedCLIP-V	BiomedCLIP-T	Contrast	800k	1M	30.03	84.32	80.09	92.64
439	(iv)	BiomedCLIP-V	–	Contrast	1.8M	–	31.38	84.36	78.49	92.25
440	(v)	BiomedCLIP-V	BiomedCLIP-T	Contrast	800k	2.4M	29.74	84.14	80.28	92.72
441	(vi)	BiomedCLIP-V	BiomedCLIP-T	Contrast	2M	2.4M	30.20	85.50	82.23	93.61
442	(vii)	BiomedCLIP-V	BiomedCLIP-T	Contrast	33.4M	2.4M	31.74	88.25	82.27	94.07

443 As shown in Table 4, LLaVA-Med equipped with our final MedITok consistently outperforms other
 444 variants across all benchmarks. We observe a similar improvement from MedITok-S1 to MedITok as
 445 in Table 2, indicating the necessity of the textual semantic alignment stage. The underperformance of
 446 general-domain tokenizer, UniTok, highlights the importance of domain-specific semantic encoding.
 447 These results confirm that MedITok provides effective representations to develop powerful AR models
 448 for downstream medical image interpretation tasks.

449 4.6 ABLATION STUDIES

450 **Choice of Pre-trained Encoder.** Ideally, the pretrained encoders in the proposed training framework
 451 are designed to be flexible, provided they offer rich semantic representations, *e.g.*, CLIP-family (Rad-
 452 ford et al., 2021; Zhang et al., 2023b). We experiment with two options: the general-domain
 453 CLIP (Radford et al., 2021) and the biomedical-domain BiomedCLIP (Zhang et al., 2023b). Re-
 454 sults in Rows (i) and (ii) of Table 5 show that, by aligning to the representations produced from
 455 BiomedCLIP, MedITok achieves significant improvement in the medical image classification tasks
 456 while maintaining competitive image reconstruction performance, indicating that domain-specific
 457 pre-trained encoders can provide clinically-relevant semantics that benefit downstream medical tasks.

458 **Two-Stage Training.** We further validate the importance of the textual semantic alignment stage by
 459 comparing our full two-stage framework, shown in Row (iii) of Table 5, against a single-stage variant
 460 with the same number of training images, shown in Row (iv). Our two-stage approach boosts image
 461 classification without degrading reconstruction quality, highlighting that the textual representation
 462 alignment stage helps the model capture richer cross-modal semantics.

463 **Image Data Scaling.** One notable benefit of our proposed training framework is that it allows
 464 effective use of unpaired medical image datasets, which are typically more accessible than image-text
 465 data. Rows (v), (vi), and (vii) of Table 5 illustrate the impact of scaling up the number of unpaired
 466 image corpus in the first training stage. Notably, expanding the image data from 800k to 33.4M yields
 467 consistent improvements across all metrics, demonstrating the scalability of our proposed approach,
 468 allowing it to fully exploit medical image data to enhance both structural fidelity and downstream
 469 diagnostic performance. More experimental results can be found in Appendix D.

470 5 CONCLUSION

471 In this paper, we propose MedITok, a unified medical image tokenizer that encodes both low-level
 472 structural details and high-level clinical semantics. Leveraging a novel two-stage training framework
 473 which involves visual representation alignment on large-scale unpaired images and textual semantic
 474 alignment on high-quality image-caption pairs, MedITok learns a unified token space that facilitates
 475 medical image reconstruction, classification, synthesis, and VQA, outperforming existing general-
 476 domain and medical-domain models across multiple imaging modalities. By providing a unified
 477 token space, we believe MedITok will serve as a foundational building block for next-generation
 478 multimodal models in medical applications. Please refer to Appendix E for more discussion.

486 **Ethics Statement.** We affirm adherence to the ICLR Code of Ethics. This work uses only publicly
 487 available datasets with clear licensing; no new human or animal subjects were recruited and no
 488 protected health information beyond what is already de-identified in the source data was used. We
 489 discuss potential societal risks in Appendix E.4, including bias, misuse of generative models, and the
 490 need for oversight. Large language models were used only to aid and polish wording, improving the
 491 flow and clarity of the presentation; they did NOT generate analyses, experiments, figures, or results,
 492 and all technical content was authored by the authors.

493 **Reproducibility Statement.** We provide anonymized code and access to model weights in our sup-
 494 plementary material. Training data sources, preprocessing, and statistics are detailed in Appendix A
 495 with dataset lists (Tables S5–S8). Evaluation datasets, task definitions, and metrics appear in Sec. 4
 496 and Appendix B (including Tables S10 and S11). Experimental setups are detailed in Sec. 4 and
 497 Appendix C.
 498

500 REFERENCES

501 Aptos 2019 blindness detection. [https://www.kaggle.com/competitions/](https://www.kaggle.com/competitions/aptos2019-blindness-detection)
 502 <aptos2019-blindness-detection>. Accessed: 2025-05-22.

504 Machine learning for pseudopapilledema, 2020. URL <https://osf.io/2w5ce/>. Accessed:
 505 2025-05-22.

506 Adam Abeshouse, Jaeil Ahn, Rehan Akbani, Adrian Ally, Samirkumar Amin, Christopher D Andry,
 507 Matti Annala, Armen Aprikian, Joshua Armenia, Arshi Arora, et al. The molecular taxonomy of
 508 primary prostate cancer. *Cell*, 163(4):1011–1025, 2015.

510 Nurmukhammed Baktybekuly Abuev. Augmented ocular diseases [data set], 2021. URL [https://](https://www.kaggle.com/datasets/nurmukhammed7/augmented-ocular-diseases)
 511 <www.kaggle.com/datasets/nurmukhammed7/augmented-ocular-diseases>.
 512 Accessed: 2025-05-22.

513 Andrea Acevedo, Anna Merino, Santiago Alférez, Ángel Molina, Laura Boldú, and José Rodellar.
 514 A dataset of microscopic peripheral blood cell images for development of automatic recognition
 515 systems. *Data in Brief*, 30:105474, 2020.

517 Maruf Adewole, Jeffrey D. Rudie, Anu Gbadamosi, Oluyemisi Toyobo, Confidence Raymond,
 518 Dong Zhang, Olubukola Omidiji, Rachel Akinola, Mohammad Abba Suwaid, Adaobi Emegoakor,
 519 Nancy Ojo, Kenneth Aguh, Chinasa Kalaiwo, Gabriel Babatunde, Afolabi Ogunleye, Yewande
 520 Gbadamosi, Kator Iorpagher, Evan Calabrese, Mariam Aboian, Marius Linguraru, Jake Albrecht,
 521 Benedikt Wiestler, Florian Kofler, Anastasia Janas, Dominic LaBella, Anahita Fathi Kzeroonni,
 522 Hongwei Bran Li, Juan Eugenio Iglesias, Keyvan Farahani, James Eddy, Timothy Bergquist,
 523 Verena Chung, Russell Takeshi Shinohara, Walter Wiggins, Zachary Reitman, Chunhao Wang,
 524 Xinyang Liu, Zhifan Jiang, Ariana Familiar, Koen Van Leemput, Christina Lukas, Maire Piraud,
 525 Gian-Marco Conte, Elaine Johansson, Zeke Meier, Bjoern H Menze, Ujjwal Baid, Spyridon Bakas,
 526 Farouk Dako, Abiodun Fataude, and Uduanna C Anazodo. The brain tumor segmentation (brats)
 527 challenge 2023: Glioma segmentation in sub-saharan africa patient population (brats-africa). *arXiv*
 528 preprint <arXiv:2305.19369>, 2023.

529 Hugo JWJ Aerts, Emmanuel Rios Velazquez, Ralph TH Leijenaar, Chintan Parmar, Patrick Gross-
 530 mann, Sara Carvalho, Johan Bussink, René Monshouwer, Benjamin Haibe-Kains, Derek Rietveld,
 531 et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach.
 532 *Nature Communications*, 5(1):4006, 2014.

533 Oguz Akin, Pierre Elnajjar, Matthew Heller, Rose Jarosz, Bradley J. Erickson, Shanah Kirk, Yueh
 534 Lee, Marston W. Linehan, Rabindra Gautam, Raghu Vikram, Kimberly M. Garcia, Charles
 535 Roche, Ermelinda Bonaccio, and Joe Filippini. The cancer genome atlas kidney renal clear cell
 536 carcinoma collection (tcga-kirc), 2016. URL [https://www.cancerimagingarchive.](https://www.cancerimagingarchive.net/collection/tcga-kirc/)
 537 <net/collection/tcga-kirc/>.

538 Walid Al-Dhabyani, Mohammed Gomaa, Hussien Khaled, and Aly Fahmy. Dataset of breast
 539 ultrasound images. *Data in Brief*, 28:104863, 2020.

540 Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes.
 541 *arXiv preprint arXiv:1610.01644*, 2016.
 542

543 Syed Samiul Alam, Samiul Based Shuvo, Shams Nafisa Ali, Fardeen Ahmed, Arbil Chakma, and
 544 Yeong Min Jang. Benchmarking deep learning frameworks for automated diagnosis of ocular
 545 toxoplasmosis: A comprehensive approach to classification and segmentation. *arXiv preprint*
 546 *arXiv:2305.10975*, 2023.

547 B. Albertina, M. Watson, C. Holback, R. Jarosz, S. Kirk, Y. Lee, K. Rieger-Christ, and J. Lemmerman.
 548 The cancer genome atlas lung adenocarcinoma collection (tcga-luad) (version 4) [data set], 2016.
 549 URL <https://www.cancerimagingarchive.net/collection/tcga-luad>.
 550

551 Shams Nafisa Ali, Md Tazuddin Ahmed, Joydip Paul, Tasnim Jahan, SM Sani, Nawsabah Noor, and
 552 Taufiq Hasan. Monkeypox skin lesion detection using deep learning models: A feasibility study.
 553 *arXiv preprint arXiv:2207.03342*, 2022.

554 Sharib Ali, Noha Ghatwary, Barbara Braden, Dominique Lamarque, Adam Bailey, Stefano Realdon,
 555 Renato Cannizzaro, Jens Rittscher, Christian Daul, and James East. Endoscopy disease detection
 556 challenge 2020. *arXiv preprint arXiv:2003.03376*, 2020.

557 Ahmed Almazroa, Sami Alodhayb, Essameldin Osman, Eslam Ramadan, Mohammed Hummadi,
 558 Mohammed Dlaim, Muhamnad Alkatee, Kaamran Raahemifar, and Vasudevan Lakshminarayanan.
 559 Retinal fundus images for glaucoma analysis: the RIGA dataset. In *Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications*, volume 10579, pp. 55–62. SPIE,
 560 2018.

561 Mohamed Amgad, Habiba Elfandy, Hagar Hussein, Lamees A Atteya, Mai AT Elsebaie, Lamia S
 562 Abo Elnasr, Rokia A Sakr, Hazem SE Salem, Ahmed F Ismail, Anas M Saad, et al. Structured
 563 crowdsourcing enables convolutional segmentation of histology images. *Bioinformatics*, 35(18):
 564 3461–3467, 2019.

565 MD Anouk Stein, Carol Wu, Chris Carr, George Shih, Jamie Dulkowski, kalpathy, Leon Chen, Lu-
 566 ciano Prevedello, MD Marc Kohli, Mark McDonald, Peter, Phil Culliton, Safwan Halabi MD, and
 567 Tian Xia. Rnna pneumonia detection challenge. <https://kaggle.com/competitions/rsna-pneumonia-detection-challenge>, 2018. Kaggle.
 568

569 MD Anouk Stein, Carol Wu, Chris Carr, Errol Colak, George Shih, Jeff Rudie, John Mongan, Julia
 570 Elliott, Luciano Prevedello, MD Marc Kohli, Phil Culliton, and Robyn Ball. RSNA STR Pul-
 571 monary Embolism Detection, 2020. URL <https://www.kaggle.com/competitions/rsna-str-pulmonary-embolism-detection>. Kaggle.
 572

573 Michela Antonelli, Annika Reinke, Spyridon Bakas, Keyvan Farahani, Annette Kopp-Schneider,
 574 Bennett A Landman, Geert Litjens, Bjoern Menze, Olaf Ronneberger, Ronald M Summers, et al.
 575 The medical segmentation decathlon. *Nature Communications*, 13(1):4128, 2022.

576 Samuel G Armato III, Geoffrey McLennan, Luc Bidaut, Michael F McNitt-Gray, Charles R Meyer,
 577 Anthony P Reeves, Binsheng Zhao, Denise R Aberle, Claudia I Henschke, Eric A Hoffman, et al.
 578 The lung image database consortium (LIDC) and image database resource initiative (IDRI): a
 579 completed reference database of lung nodules on CT scans. *Medical Physics*, 38(2):915–931,
 2011.

580 Samuel G. Armato III, Lubomir Hadjiiski, Georgia D. Tourassi, Karen Drukker,
 581 Maryellen L. Giger, Feng Li, George Redmond, Keyvan Farahani, Justin S. Kirby,
 582 and Laurence P. Clarke. Spie-aapm-nci lung nodule classification challenge dataset,
 583 2015. URL <https://www.cancerimagingarchive.net/collection/spie-aapm-lung-ct-challenge/>.
 584

585 ZI Amanullah Asraf and Zabirul Islam. Covid19, pneumonia and normal chest x-ray pa dataset, 2021.
 586

587 Itzik Avital, Ilya Nelkenbaum, Galia Tsarfaty, Eli Konen, Nahum Kiryati, and Arnaldo Mayer. Neural
 588 segmentation of seeding rois (srois) for pre-surgical brain tractography. *IEEE Transactions on*
 589 *Medical Imaging*, 39(5):1655–1667, 2019.

594 Bhakti Baheti, Satrajit Chakrabarty, Hamed Akbari, Michel Bilello, Benedikt Wiestler, Julian Schwart-
 595 ing, Evan Calabrese, Jeffrey Rudie, Syed Abidi, Mina Mousa, et al. The brain tumor sequence
 596 registration (brats-reg) challenge: Establishing correspondence between pre-operative and follow-
 597 up mri scans of diffuse glioma patients. *arXiv preprint arXiv:2112.06979*, 2021.

598 Baidu AI Studio. X-ray hand joint classification dataset [data set], 2021. URL <https://aistudio.baidu.com/datasetdetail/69582/0>. Accessed: 2025-05-22.

600 Spyridon Bakas, Hamed Akbari, Aristeidis Sotiras, Michel Bilello, Martin Rozycki, Justin Kirby, John
 601 Freymann, Keyvan Farahani, and Christos Davatzikos. Segmentation labels for the pre-operative
 602 scans of the tcga-lgg collection, 2017a. URL <https://www.cancerimagingarchive.net/analysis-result/brats-tcga-lgg/>.

603 Spyridon Bakas, Hamed Akbari, Aristeidis Sotiras, Michel Bilello, Martin Rozycki, Justin Kirby, John
 604 Freymann, Keyvan Farahani, and Christos Davatzikos. Segmentation labels for the pre-operative
 605 scans of the tcga-gbm collection, 2017b. URL <https://www.cancerimagingarchive.net/analysis-result/brats-tcga-gbm/>.

606 Spyridon Bakas, Hamed Akbari, Aristeidis Sotiras, Michel Bilello, Martin Rozycki, Justin Kirby, John
 607 Freymann, Keyvan Farahani, and Christos Davatzikos. Advancing the cancer genome atlas
 608 glioma MRI collections with expert segmentation labels and radiomic features. *Scientific Data*, 4
 609 (1):1–13, 2017c.

610 Spyridon Bakas, Mauricio Reyes, Andras Jakab, Stefan Bauer, Markus Rempfler, Alessandro Crimi,
 611 Russell Takeshi Shinohara, Christoph Berger, Sung Min Ha, Martin Rozycki, et al. Identifying
 612 the best machine learning algorithms for brain tumor segmentation, progression assessment, and
 613 overall survival prediction in the brats challenge. *arXiv preprint arXiv:1811.02629*, 2018.

614 Sophia Bano, Francisco Vasconcelos, Luke M Shepherd, Emmanuel Vander Poorten, Tom Ver-
 615 cauteren, Sebastien Ourselin, Anna L David, Jan Deprest, and Danail Stoyanov. Deep placental
 616 vessel segmentation for fetoscopic mosaicking. In *International Conference on Medical Image
 617 Computing and Computer-Assisted Intervention*, pp. 763–773, 2020.

618 Rina Bao, Ya’nan Song, Sara V Bates, Rebecca J Weiss, Anna N Foster, Camilo Jaimes, Susan
 619 Sotardi, Yue Zhang, Randy L Hirschtick, P Ellen Grant, et al. Boston neonatal brain injury data for
 620 hypoxic ischemic encephalopathy (bonbid-hie): I. mri and lesion labeling. *Scientific Data*, 12(1):
 621 53, 2025.

622 Francisco José Fumero Batista, Tinguaro Diaz-Aleman, Jose Sigut, Silvia Alayon, Rafael Arnay, and
 623 Denisse Angel-Pereira. Rim-one dl: A unified retinal image database for assessing glaucoma using
 624 deep learning. *Image Analysis & Stereology*, 39(3):161–167, 2020.

625 R. R. Beichel, E. J. Ulrich, C. Bauer, A. Wahle, B. Brown, T. Chang, K. Plichta, B. Smith, J. Sun-
 626 derland, T. Braun, A. Fedorov, D. Clunie, M. Onken, V. A. Magnotta, Y. Menda, J. Riesmeier,
 627 S. Pieper, R. Kikinis, M. M. Graham, T. L. Casavant, M. Sonka, and J. Buatti. Data from
 628 qin-headneck (version 4) [data set], 2015. URL <https://www.cancerimagingarchive.net/collection/qin-headneck>.

629 Veronica Elisa Castillo Benítez, Ingrid Castro Matto, Julio César Mello Román, José Luis Vázquez
 630 Noguera, Miguel García-Torres, Jordan Ayala, Diego P. Pinto-Roa, Pedro E. Gardel-Sotomayor,
 631 Jacques Facon, and Sebastian Alberto Grillo. Dataset from fundus images for the study of diabetic
 632 retinopathy, February 2021.

633 Patrick Bilic, Patrick Christ, Hongwei Bran Li, Eugene Vorontsov, Avi Ben-Cohen, Georgios Kaassis,
 634 Adi Szeskin, Colin Jacobs, Gabriel Efrain Humpire Mamani, Gabriel Chartrand, et al. The liver
 635 tumor segmentation benchmark (LiTS). *Medical Image Analysis*, 84:102680, 2023.

636 Cancer Moonshot Biobank. Cancer moonshot biobank – gastroesophageal cancer collection
 637 (cmb-gec), 2022a. URL <https://www.cancerimagingarchive.net/collection/cmb-gec/>. Accessed: 2025-05-22.

638 Cancer Moonshot Biobank. Cancer moonshot biobank – melanoma collection (cmb-mel), 2022b. URL
 639 <https://www.cancerimagingarchive.net/collection/cmb-mel/>. Accessed:
 640 2025-05-22.

648 Christian Bluethgen, Pierre Chambon, Jean-Benoit Delbrouck, Rogier van der Sluijs, Małgorzata
 649 Połacin, Juan Manuel Zambrano Chaves, Tanishq Mathew Abraham, Shivanshu Purohit, Curtis P
 650 Langlotz, and Akshay S Chaudhari. A vision–language foundation model for the generation of
 651 realistic chest x-ray images. *Nature Biomedical Engineering*, pp. 1–13, 2024.

652 Hanna Borgli, Vajira Thambawita, Pia H Smedsrud, Steven Hicks, Debesh Jha, Sigrun L Eskeland,
 653 Kristin Ranheim Randel, Konstantin Pogorelov, Mathias Lux, Duc Tien Dang Nguyen, Dag
 654 Johansen, Carsten Griwodz, Håkon K Stensland, Enrique Garcia-Ceja, Peter T Schmidt, Hugo L
 655 Hammer, Michael A Riegler, Pål Halvorsen, and Thomas de Lange. HyperKvasir, a comprehensive
 656 multi-class image and video dataset for gastrointestinal endoscopy. *Scientific Data*, 7(1):283, 2020.
 657

658 Andrew A Borkowski, Marilyn M Bui, L Brannon Thomas, Catherine P Wilson, Lauren A DeLand,
 659 and Stephen M Mastorides. Lung and colon cancer histopathological image dataset (lc25000).
 660 *arXiv preprint arXiv:1912.12142*, 2019.

661 W. R. Bosch, W. L. Straube, J. W. Matthews, and J. A. Purdy. Head-neck cetuximab
 662 [data set], 2015. URL [https://www.cancerimagingarchive.net/collection/
 663 head-neck-cetuximab](https://www.cancerimagingarchive.net/collection/head-neck-cetuximab).

664

665 Nadia Brancati, Anna Maria Anniciello, Pushpak Pati, Daniel Riccio, Giosuè Scognamiglio, Guil-
 666 laume Jaume, Giuseppe De Pietro, Maurizio Di Bonito, Antonio Foncubierta, Gerardo Botti,
 667 Maria Gabrani, Florinda Feroce, and Maria Frucci. BRACS: A dataset for breast carcinoma
 668 subtyping in h&e histology images. *Database*, 2022:baac093, 10 2022. ISSN 1758-0463.
 669 doi: 10.1093/database/baac093.

670 Attila Budai, Rüdiger Bock, Andreas Maier, Joachim Hornegger, and Georg Michelson. Robust
 671 vessel segmentation in fundus images. *International Journal of Biomedical Imaging*, 2013(1):
 672 154860, 2013.

673

674 Wouter Bulten, Kimmo Kartasalo, Po-Hsuan Cameron Chen, Peter Ström, Hans Pinckaers, Kunal
 675 Nagpal, Yuannan Cai, David F Steiner, Hester Van Boven, Robert Vink, et al. Artificial intelligence
 676 for diagnosis and gleason grading of prostate cancer: the PANDA challenge. *Nature Medicine*, 28
 677 (1):154–163, 2022.

678 Myrthe AD Buser, Dominique C Simons, Matthijs Fitski, MHWA Wijnen, Annemieke S Littooij,
 679 Annemieke H ter Brugge, Iris N Vos, Markus HA Janse, Mathijs de Boer, Rens ter Maat, et al.
 680 Automated segmentation of pediatric neuroblastoma on multimodal mri: Results of the sppin
 681 challenge at miccai 2023. *arXiv preprint arXiv:2505.00369*, 2025.

682

683 Gabriele Campanella, Matthew G Hanna, Luke Geneslaw, Allen Miraflor, Vitor Werneck Krauss Silva,
 684 Klaus J Busam, Edi Brogi, Victor E Reuter, David S Klimstra, and Thomas J Fuchs. Clinical-grade
 685 computational pathology using weakly supervised deep learning on whole slide images. *Nature
 686 Medicine*, 25(8):1301–1309, 2019.

687 Sema Candemir, Stefan Jaeger, Kannappan Palaniappan, Jonathan P. Musco, Rahul K. Singh, Zhiyun
 688 Xue, Alexandros Karargyris, Sameer Antani, George Thoma, and Clement J. McDonald. Lung
 689 segmentation in chest radiographs using anatomical atlases with nonrigid registration. *IEEE
 690 Transactions on Medical Imaging*, 33(2):577–590, 2014a.

691

692 Sema Candemir, Stefan Jaeger, Kannappan Palaniappan, Jonathan P. Musco, Rahul K. Singh, Zhiyun
 693 Xue, Alexandros Karargyris, Sameer Antani, George Thoma, and Clement J. McDonald. Lung
 694 segmentation in chest radiographs using anatomical atlases with nonrigid registration. *IEEE
 695 Transactions on Medical Imaging*, 33(2):577–590, 2014b.

696 Aaron Carass, Snehashis Roy, Amod Jog, Jennifer L Cuzzocreo, Elizabeth Magrath, Adrian Gherman,
 697 Julia Button, James Nguyen, Ferran Prados, Carole H Sudre, et al. Longitudinal multiple sclerosis
 698 lesion segmentation: resource and challenge. *NeuroImage*, 148:77–102, 2017.

699

700 Carlos Cardenas, Abdallah Mohamed, Greg Sharp, Mark Gooding, Harini Veeraraghavan, and
 701 Yang Jinzhong. Data from aapm rt-mac grand challenge 2019, 2019. URL <https://www.cancerimagingarchive.net/collection/aapm-rt-mac/>.

702 Olivia Cardozo, Verena Ojeda, Rodrigo Parra, Julio César Mello-Román, José Luis Vázquez Noguera,
 703 Miguel García-Torres, Federico Divina, Sebastian A Grillo, Cynthia Villalba, Jacques Facon, et al.
 704 Dataset of fundus images for the diagnosis of ocular toxoplasmosis. *Data in Brief*, 48:109056,
 705 2023.

706 João Cartucho, Alistair Weld, Samyakh Tukra, Haozheng Xu, Hiroki Matsuzaki, Taiyo Ishikawa,
 707 Minjun Kwon, Yong Eun Jang, Kwang-Ju Kim, Gwang Lee, et al. SurgT challenge: Benchmark of
 708 soft-tissue trackers for robotic surgery. *Medical Image Analysis*, 91:102985, 2024.

709

710 Ling-Ping Cen, Jie Ji, Jian-Wei Lin, Si-Tong Ju, Hong-Jie Lin, Tai-Ping Li, Yun Wang, Jian-Feng
 711 Yang, Yu-Fen Liu, Shaoying Tan, et al. Automatic detection of 39 fundus diseases and conditions
 712 in retinal photographs using deep neural networks. *Nature communications*, 12(1):4828, 2021.

713 Pierre Chambon, Jean-Benoit Delbrouck, Thomas Sounack, Shih-Cheng Huang, Zhihong Chen, Maya
 714 Varma, Steven QH Truong, Chu The Chuong, and Curtis P Langlotz. CheXpert Plus: Augmenting
 715 a large chest x-ray dataset with text radiology reports, patient demographics and additional image
 716 formats. *arXiv preprint arXiv:2405.19538*, 2024.

717

718 E Chen, Hua-Nong Ting, Joon-Huang Chuah, and Jun Zhao. Segmentation of overlapping cells in
 719 cervical cytology images: a survey. *IEEE Access*, 2024a.

720 Huijun Chen, Xihai Zhao, Haozhong Sun, Jiaqi Dou, Chenlin Du, Runyu Yang, Xiaoqi Lin, Han Jiang,
 721 Shuwan Yu, Jiachen Liu, Zixuan Han, Chun Yuan, and Niranjan Balu. Cerebral artery segmentation
 722 challenge (cas) 2023 [data set], 2023. URL <https://codalab.lisn.upsaclay.fr/competitions/9804>. Accessed: 2025-05-22.

723

724 Jieneng Chen, Qihang Yu, Xiaohui Shen, Alan Yuille, and Liang-Chieh Chen. Vitamin: Designing
 725 scalable vision models in the vision-language era. In *Proceedings of the IEEE/CVF Conference on
 726 Computer Vision and Pattern Recognition*, pp. 12954–12966, 2024b.

727

728 Junying Chen, Chi Gui, Ruyi Ouyang, Anningzhe Gao, Shunian Chen, Guiming Hardy Chen,
 729 Xidong Wang, Ruifei Zhang, Zhenyang Cai, Ke Ji, Guangjun Yu, Xiang Wan, and Benyou Wang.
 730 HuatuoGPT-Vision, towards injecting medical visual knowledge into multimodal LLMs at scale.
 731 *arXiv:2406.19280*, 2024c.

732

733 Pingjun Chen. Knee osteoarthritis severity grading dataset, 2018. URL <https://doi.org/10.17632/56rmx5bjcr.1>.

734

735 Tao Chen, Chenhui Wang, Zhihao Chen, and Hongming Shan. Autoregressive medical image
 736 segmentation via next-scale mask prediction. *arXiv preprint arXiv:2502.20784*, 2025a.

737

738 Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
 739 Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
 scaling. *arXiv preprint arXiv:2501.17811*, 2025b.

740

741 Stephanie J Chiu, Yuliya Lokhnygina, Adam M Dubis, Alfredo Dubra, Joseph Carroll, Joseph A Izatt,
 742 and Sina Farsiu. Automatic cone photoreceptor segmentation using graph theory and dynamic
 743 programming. *Biomedical optics express*, 4(6):924–937, 2013.

744

745 Muhammad EH Chowdhury, Tawsifur Rahman, Amith Khandakar, Rashid Mazhar, Muhammad Ab-
 746 dul Kadir, Zaid Bin Mahbub, Khandakar Reajul Islam, Muhammad Salman Khan, Atif Iqbal,
 747 Nasser Al Emadi, et al. Can ai help in screening viral and covid-19 pneumonia? *Ieee Access*, 8:
 132665–132676, 2020.

748

749 Noel Codella, Veronica Rotemberg, Philipp Tschandl, M Emre Celebi, Stephen Dusza, David
 750 Gutman, Brian Helba, Aadi Kalloo, Konstantinos Liopyris, Michael Marchetti, et al. Skin lesion
 751 analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging
 752 collaboration (ISIC). *arXiv preprint arXiv:1902.03368*, 2019.

753

754 Noel C. F. Codella, David Gutman, M. Emre Celebi, Brian Helba, Michael A. Marchetti, Stephen W.
 755 Dusza, Aadi Kalloo, Konstantinos Liopyris, Nabin Mishra, Harald Kittler, and Allan Halpern. Skin
 756 lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on
 757 biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic), 2018a.
 758 URL <https://arxiv.org/abs/1710.05006>.

756 Noel C. F. Codella, David A. Gutman, M. Emre Celebi, Brian Helba, Michael A. Marchetti, Stephen W.
 757 Dusza, Aadi Kalloo, Konstantinos Liopyris, Nabin K. Mishra, Harald Kittler, and Allan Halpern.
 758 Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium
 759 on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In *2018*
 760 *IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)*, pp. 168–172, 2018b.
 761

762 Olivier Commowick, Audrey Istance, Michael Kain, Baptiste Laurent, Florent Leray, Mathieu Simon,
 763 Sorina Camarasu Pop, Pascal Girard, Roxana Ameli, Jean-Christophe Ferré, et al. Objective
 764 evaluation of multiple sclerosis lesion segmentation using a data management and processing
 765 infrastructure. *Scientific Reports*, 8(1):13650, 2018.

766 National Cancer Institute Clinical Proteomic Tumor Analysis Consortium et al. The clinical proteomic
 767 tumor analysis consortium pancreatic ductal adenocarcinoma collection (cptac-pda). *The Cancer*
 768 *Imaging Archive* <https://doi.org/10.7937/K>, 9, 2018.

769 Chunyan Cui, Li Li, Hongmin Cai, Zhihao Fan, Ling Zhang, Tingting Dan, Jiao Li, and Jinghua
 770 Wang. The chinese mammography database (cmmdb): An online mammography database with
 771 biopsy confirmed types for machine diagnosis of breast, 2021. URL <https://doi.org/10.7937/tcia.eqde-4b16>. Accessed: 2025-05-22.
 772

773 Qian Da, Xiaodi Huang, Zhongyu Li, Yanfei Zuo, Chenbin Zhang, Jingxin Liu, Wen Chen, Jiahui
 774 Li, Dou Xu, Zhiqiang Hu, et al. DigestPath: A benchmark dataset with challenge review for the
 775 pathological detection and segmentation of digestive-system. *Medical Image Analysis*, 80:102485,
 776 2022.

777 B Dashtbozorg, J Zhang, F Huang, and BM ter Haar Romenij. Retinacheck: an interactive platform
 778 for retinal image analysis. In *13th IEEE International Symposium on Biomedical Imaging (ISBI*
 779 *2016)*, 2016.

780 Coen de Vente, Koenraad A. Vermeer, Nicolas Jaccard, He Wang, Hongyi Sun, Firas Khader, Daniel
 781 Truhn, Temirgali Aimyshev, Yerkebulan Zhanibekuly, Tien-Dung Le, Adrian Galdran, Miguel
 782 Ángel González Ballester, Gustavo Carneiro, R. G. Devika, Hrishikesh Panikkasseril Sethumadha-
 783 van, Densen Puthusseri, Hong Liu, Zekang Yang, Satoshi Kondo, Satoshi Kasai, Edward Wang,
 784 Ashritha Durvasula, Jónathan Heras, Miguel Ángel Zapata, Teresa Araújo, Guilherme Aresta,
 785 Hrvoje Bogunović, Mustafa Arikán, Yeong Chan Lee, Hyun Bin Cho, Yoon Ho Choi, Abdul
 786 Qayyum, Imran Razzak, Bram van Ginneken, Hans G. Lemij, and Clara I. Sánchez. AIROGS:
 787 Artificial intelligence for robust glaucoma screening challenge. *IEEE Transactions on Medical*
 788 *Imaging*, 43(1):542–557, 2024.

789 Etienne Decenciere, Guy Cazuguel, Xiwei Zhang, Guillaume Thibault, J-C Klein, Fernand Meyer,
 790 Beatriz Marcotegui, Gwénolé Quellec, Mathieu Lamard, Ronan Danno, et al. Teleophta: Machine
 791 learning and image processing methods for teleophthalmology. *Irbm*, 34(2):196–203, 2013.

792 Etienne Decencière, Xiwei Zhang, Guy Cazuguel, Bruno Lay, Béatrice Cochener, Caroline Trone,
 793 Philippe Gain, John-Richard Ordóñez-Varela, Pascale Massin, Ali Erginay, et al. Feedback on
 794 a publicly distributed image database: the messidor database. *Image Analysis & Stereology*, pp.
 795 231–234, 2014.

796 Yang Deng, Ce Wang, Yuan Hui, Qian Li, Jun Li, Shiwei Luo, Mengke Sun, Quan Quan, Shuxin
 797 Yang, You Hao, et al. Ctspine1k: A large-scale dataset for spinal vertebrae segmentation in
 798 computed tomography. *arXiv preprint arXiv:2105.14711*, 2021.

799 Derbi Hackathon Organizers. Derbi hackathon retinal fundus im-
 800 age dataset. [https://www.kaggle.com/datasets/nikkich9/](https://www.kaggle.com/datasets/nikkich9/derbi-hackathon-retinal-fundus-image-dataset)
 801 [derbi-hackathon-retinal-fundus-image-dataset](https://www.kaggle.com/datasets/nikkich9/derbi-hackathon-retinal-fundus-image-dataset), 2022. Accessed: 2025-
 802 05-22.

803 Shivang Desai, Ahmad Baghal, Thidathip Wongsurawat, Shaymaa Al-Shukri, Kim Gates, Phillip
 804 Farmer, Michael Rutherford, Geri D Blake, Tracy Nolan, Thomas Powell, et al. Chest imaging
 805 with clinical and genomic correlates representing a rural covid-19 positive population. (*No Title*),
 806 2020.

810 Reuben Dorent, Aaron Kujawa, Marina Ivory, Spyridon Bakas, Nicola Rieke, Samuel Joutard, Ben
 811 Glocker, Jorge Cardoso, Marc Modat, Kayhan Batmanghelich, Arseniy Belkov, Maria Baldeon
 812 Calisto, Jae Won Choi, Benoit M. Dawant, Hexin Dong, Sergio Escalera, Yubo Fan, Lasse
 813 Hansen, Mattias P. Heinrich, Smriti Joshi, Victoriya Kashtanova, Hyeon Gyu Kim, Satoshi
 814 Kondo, Christian N. Kruse, Susana K. Lai-Yuen, Hao Li, Han Liu, Buntheng Ly, Ipek Oguz,
 815 Hyungseob Shin, Boris Shirokikh, Zixian Su, Guotai Wang, Jianghao Wu, Yanwu Xu, Kai Yao,
 816 Li Zhang, Sébastien Ourselin, Jonathan Shapey, and Tom Vercauteren. Crossmoda 2021 challenge:
 817 Benchmark of cross-modality domain adaptation techniques for vestibular schwannoma and
 818 cochlea segmentation. *Medical Image Analysis*, 83:102628, 2023.

819 Emma Dugas, Jared, Jorge, and Will Cukierski. Diabetic retinopathy detection. <https://kaggle.com/competitions/diabetic-retinopathy-detection>, 2015. Kaggle.
 820

822 Bradley J. Erickson, David Mutch, Lynne Lippmann, and Rose Jarosz. The cancer genome at-
 823 las uterine corpus endometrial carcinoma collection (tcga-ucec), 2016. URL <https://www.cancerimagingarchive.net/collection/tcga-ucec/>.
 824

825 Enid M Eslick, John Kipritidis, Denis Gradinscak, Mark J Stevens, Dale L Bailey, Benjamin Harris,
 826 Jeremy T Booth, and Paul J Keall. Ct ventilation imaging derived from breath hold ct exhibits
 827 good regional accuracy with galligas pet. *Radiotherapy and Oncology*, 127(2):267–273, 2018.
 828

829 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
 830 synthesis. In *CVPR*, pp. 12873–12883, 2021.

831 S. Graham et al. CoNIC: Colon Nuclei Identification and Counting Challenge 2022. *arXiv preprint arXiv:2111.14485*, 2021.

834 Huihui Fang, Fei Li, Junde Wu, Huazhu Fu, Xu Sun, Jaemin Son, Shuang Yu, Menglu Zhang,
 835 Chenglang Yuan, Cheng Bian, et al. Refuge2 challenge: A treasure trove for multi-dimension
 836 analysis and evaluation in glaucoma screening. *arXiv preprint arXiv:2202.08994*, 2022.
 837

838 Huihui Fang, Fei Li, Junde Wu, Huazhu Fu, Xu Sun, José Ignacio Orlando, Hrvoje Bogunović, Xiulan
 839 Zhang, and Yanwu Xu. Open fundus photograph dataset with pathologic myopia recognition and
 840 anatomical structure annotation. *Scientific Data*, 11(1):99, 2024.

841 Andrey Fedorov, William JR Longabaugh, David Pot, David A Clunie, Steven D Pieper, David L
 842 Gibbs, Christopher Bridge, Markus D Herrmann, André Homeyer, Rob Lewis, et al. National
 843 cancer institute imaging data commons: toward transparency, reproducibility, and scalability in
 844 imaging artificial intelligence. *Radiographics*, 43(12):e230180, 2023.
 845

846 Muhammad Moazam Fraz, Paolo Remagnino, Andreas Hoppe, Bunyarit Uyyanonvara, Alicja R
 847 Rudnicka, Christopher G Owen, and Sarah A Barman. An ensemble classification-based approach
 848 applied to retinal blood vessel segmentation. *IEEE Transactions on Biomedical Engineering*, 59
 849 (9):2538–2548, 2012.

850 Jevgenij Gamper, Navid Alemi Koohbanani, Ksenija Benet, Ali Khuram, and Nasir Rajpoot. Pannuke:
 851 an open pan-cancer histology dataset for nuclei instance segmentation and classification. In
 852 *European Congress on Digital Pathology*, pp. 11–19, 2019.
 853

854 Jevgenij Gamper, Navid Alemi Koohbanani, Simon Graham, Mostafa Jahanifar, Syed Ali Khurram,
 855 Ayesha Azam, Katherine Hewitt, and Nasir Rajpoot. Pannuke dataset extension, insights and
 856 baselines. *arXiv preprint arXiv:2003.10778*, 2020.

857 Sergios Gatidis, Tobias Hepp, Marcel Früh, Christian La Fougère, Konstantin Nikolaou, Christina
 858 Pfannenberg, Bernhard Schölkopf, Thomas Küstner, Clemens Cyran, and Daniel Rubin. A whole-
 859 body FDG-PET/CT dataset with manually annotated tumor lesions. *Scientific Data*, 9(1):601,
 860 2022.

862 Elisa Drelie Gelasca, Jiyun Byun, Boguslaw Obara, and B.S. Manjunath. Evaluation and benchmark
 863 for biological image segmentation. In *IEEE International Conference on Image Processing*, Oct
 2008.

864 Ioannis Giotis, Nynke Molders, Sander Land, Michael Biehl, Marcel F Jonkman, and Nicolai Petkov.
 865 MED-NODE: A computer-assisted melanoma diagnosis system using non-dermoscopic images.
 866 *Expert Systems with Applications*, 42(19):6578–6585, 2015.

867

868 Germán González, Daniel Jimenez-Carretero, Sara Rodríguez-López, Carlos Cano-Espinosa, Miguel
 869 Cazorla, Tanya Agarwal, Vinit Agarwal, Nima Tajbakhsh, Michael B Gotway, Jianming Liang,
 870 et al. Computer aided detection for pulmonary embolism challenge (cad-pe). *arXiv preprint*
 871 *arXiv:2003.13440*, 2020.

872

873 Grace Maria Binu. Retinal occlusion dataset. <https://www.kaggle.com/datasets/gracemariabinu/retinal-occlusion-dataset>, 2023. Kaggle dataset (uploader:
 874 Grace Maria Binu). Accessed 2025-08-21.

875

876 Simon Graham, Hao Chen, Jevgenij Gamper, Qi Dou, Pheng-Ann Heng, David Snead, Yee Wah
 877 Tsang, and Nasir Rajpoot. Mild-net: Minimal information loss dilated network for gland instance
 878 segmentation in colon histology images. *Medical Image Analysis*, 52:199–211, 2019a.

879

880 Simon Graham, Quoc Dang Vu, Shan E Ahmed Raza, Ayesha Azam, Yee Wah Tsang, Jin Tae
 881 Kwak, and Nasir Rajpoot. Hover-net: Simultaneous segmentation and classification of nuclei in
 882 multi-tissue histology images. *Medical Image Analysis*, 58:101563, 2019b.

883

884 Michael Green, Edith M Marom, Eli Konen, Nahum Kiryati, and Arnaldo Mayer. Feature aggregation
 885 in perceptual loss for ultra low-dose (uld) ct denoising. In *2019 IEEE 16th International Symposium*
 886 *on Biomedical Imaging (ISBI 2019)*, pp. 1635–1638, 2019.

887

888 Matthew Groh, Caleb Harris, Luis Soenksen, Felix Lau, Rachel Han, Aerin Kim, Arash Koochek,
 889 and Omar Badri. Evaluating deep neural networks trained on clinical images in dermatology with
 890 the Fitzpatrick 17k dataset. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 891 *Pattern Recognition*, pp. 1820–1828, 2021.

892

893 Matthew Groh, Caleb Harris, Roxana Daneshjou, Omar Badri, and Arash Koochek. Towards
 894 transparency in dermatology image datasets with skin tone annotations by experts, crowds, and an
 895 algorithm. *Proceedings of the ACM on Human-Computer Interaction*, 6(CSCW2):1–26, 2022.

896

897 Aaron J Grossberg, Abdallah SR Mohamed, Hesham Elhalawani, William C Bennett, Kirk E Smith,
 898 Tracy S Nolan, Bowman Williams, Sasikarn Chamchod, Jolien Heukelom, Michael E Kantor,
 899 Theodora Browne, , Katherine A Hutcheson, G Brandon Gunn, Adam S Garden, William H
 900 Morrison, Steven J Frank, David I Rosenthal, John B Freymann, and Clifton D Fuller. Imaging and
 901 clinical data archive for head and neck squamous cell carcinoma patients treated with radiotherapy.
 902 *Scientific Data*, 5(1):1–10, 2018.

903

904 Aaron J Grossberg, Abdallah SR Mohamed, Hesham Elhalawani, William C Bennett, Kirk E Smith,
 905 Tracy S Nolan, Bowman Williams, Sasikarn Chamchod, Jolien Heukelom, Michael E Kantor,
 906 Theodora Browne, , Katherine A Hutcheson, G Brandon Gunn, Adam S Garden, William H
 907 Morrison, Steven J Frank, David I Rosenthal, John B Freymann, and Clifton D Fuller. Anderson
 908 cancer center head and neck quantitative imaging working group. (2020) hnsc version 4 [dataset],
 909 2020. URL <https://www.cancerimagingarchive.net/collection/hnsc>.

910

911 O. Grove, A. E. Berglund, M. B. Schabath, H. J. W. L. Aerts, A. Dekker, H. Wang, E. R. Velazquez,
 912 P. Lambin, Y. Gu, Y. Balagurunathan, E. Eikman, R. A. Gatenby, S. Eschrich, and R. J. Gillies.
 913 Data from: Quantitative computed tomographic descriptors associate tumor shape complexity
 914 and intratumor heterogeneity with prognosis in lung adenocarcinoma, 2015. URL <https://doi.org/10.7937/K9/TCIA.2015.A6V7JIWX>. All images are diagnostic contrast-
 915 enhanced CT scans obtained at diagnosis, prior to surgery. Study aimed to extract prognostic image
 916 features for lung adenocarcinoma.

917

918 Anubha Gupta, Shiv Gehlot, Shubham Goswami, Sachin Motwani, Ritu Gupta, Álvaro García Faura,
 919 Dejan Štepec, Tomaž Martinčič, Reza Azad, Dorit Merhof, et al. Segpc-2021: A challenge &
 920 dataset on segmentation of multiple myeloma plasma cells from microscopic images. *Medical*
 921 *Image Analysis*, 83:102677, 2023.

918 David Gutman, N Codella, Emre Celebi, Brian Helba, Michael Marchetti, Nabin Mishra, and
 919 Allan Halpern. Skin lesion analysis toward melanoma detection. In *International Symposium on*
 920 *Biomedical Imaging (ISBI), (International Skin Imaging Collaboration (ISIC), 2016)*, 2016.

921

922 Safwan S Halabi, Luciano M Prevedello, Jayashree Kalpathy-Cramer, Artem B Mamonov, Alexander
 923 Bilbily, Mark Cicero, Ian Pan, Lucas Araújo Pereira, Rafael Teixeira Sousa, Nitamar Abdala, et al.
 924 The RSNA pediatric bone age machine learning challenge. *Radiology*, 290(2):498–503, 2019.

925

926 Chu Han, Xipeng Pan, Lixu Yan, Huan Lin, Bingbing Li, Su Yao, Shanshan Lv, Zhenwei Shi, Jinhai
 927 Mai, Jiatai Lin, Bingchao Zhao, Zeyan Xu, Zhizhen Wang, Yumeng Wang, Yuan Zhang, Huihui
 928 Wang, Chao Zhu, Chunhui Lin, Lijian Mao, Min Wu, Luwen Duan, Jingsong Zhu, Dong Hu, Zijie
 929 Fang, Yang Chen, Yongbing Zhang, Yi Li, Yiwen Zou, Yiduo Yu, Xiaomeng Li, Haiming Li,
 930 Yanfen Cui, Guoqiang Han, Yan Xu, Jun Xu, Huihua Yang, Chunming Li, Zhenbing Liu, Cheng
 931 Lu, Xin Chen, Changhong Liang, Qingling Zhang, and Zaiyi Liu. Wsss4luad: Grand challenge
 932 on weakly-supervised tissue semantic segmentation for lung adenocarcinoma. *arXiv preprint*
arXiv:2204.06455, 2022.

933

934 Stephanie A Harmon, Thomas H Sanford, Sheng Xu, Evrim B Turkbey, Holger Roth, Ziyue Xu, Dong
 935 Yang, Andriy Myronenko, Victoria Anderson, Amel Amalou, et al. Artificial intelligence for the
 936 detection of covid-19 pneumonia on chest ct using multinational datasets. *Nature Communications*,
 937 11(1):4080, 2020.

938

939 Tobias Heimann, Bram Van Ginneken, Martin A Styner, Yulia Arzhaeva, Volker Aurich, Christian
 940 Bauer, Andreas Beck, Christoph Becker, Reinhard Beichel, György Bekes, et al. Comparison and
 941 evaluation of methods for liver segmentation from ct datasets. *IEEE Transactions on Medical*
942 Imaging, 28(8):1251–1265, 2009.

943

944 Nicholas Heller, Niranjan Sathianathan, Arveen Kalapara, Edward Walczak, Keenan Moore, Heather
 945 Kaluzniak, Joel Rosenberg, Paul Blake, Zachary Rengel, Makinna Oestreich, Joshua Dean, Michael
 946 Tradewell, Aneri Shah, Resha Tejpal, Zachary Edgerton, Matthew Peterson, Shaneabbas Raza,
 947 Subodh Regmi, Nikolaos Papanikopoulos, and Christopher Weight. C4kc kits challenge kidney
 948 tumor segmentation dataset, 2019. URL <https://www.cancerimagingarchive.net/collection/c4kc-kits/>.

949

950 Nicholas Heller, Fabian Isensee, Klaus H Maier-Hein, Xiaoshuai Hou, Chunmei Xie, Fengyi Li,
 951 Yang Nan, Guangrui Mu, Zhiyong Lin, Miofei Han, et al. The state of the art in kidney and kidney
 952 tumor segmentation in contrast-enhanced ct imaging: Results of the kits19 challenge. *Medical*
953 Image Analysis, pp. 101821, 2020.

954

955 Alessa Hering, Lasse Hansen, Tony CW Mok, Albert CS Chung, Hanna Siebert, Stephanie Häger,
 956 Annkristin Lange, Sven Kuckertz, Stefan Heldmann, Wei Shao, et al. Learn2reg: comprehensive
 957 multi-task medical image registration challenge, dataset and evaluation in the era of deep learning.
958 IEEE Transactions on Medical Imaging, 42(3):697–712, 2022a.

959

960 Alessa Hering, Lasse Hansen, Tony CW Mok, Albert CS Chung, Hanna Siebert, Stephanie Häger,
 961 Annkristin Lange, Sven Kuckertz, Stefan Heldmann, Wei Shao, et al. Learn2reg: comprehensive
 962 multi-task medical image registration challenge, dataset and evaluation in the era of deep learning.
963 IEEE Transactions on Medical Imaging, 42(3):697–712, 2022b.

964

965 Moritz R Hernandez Petzsche, Ezequiel de la Rosa, Uta Hanning, Roland Wiest, Waldo Valenzuela,
 966 Mauricio Reyes, Maria Meyer, Sook-Lei Liew, Florian Kofler, Ivan Ezhov, et al. Isles 2022: A
 967 multi-center magnetic resonance imaging stroke lesion segmentation dataset. *Scientific Data*, 9(1):
 968 762, 2022.

969

970 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 971 GANs trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in*
972 Neural Information Processing Systems, 30, 2017.

973

974 Laurens Hogeweg, Clara I. Sánchez, Pim A. de Jong, Pragnya Maduskar, and Bram van Ginneken.
 975 Clavicle segmentation in chest radiographs. *Medical Image Analysis*, 16(8):1490–1502, 2012.

972 Chandra Holback, Rose Jarosz, Fred Prior, David G. Mutch, Priya Bhosale, Kimberly Garcia, Yueh
 973 Lee, Shanah Kirk, Cheryl A. Sadow, Seth Levine, Evis Sala, Pierre Elnajjar, Tara Morgan, and
 974 Bradley J. Erickson. The cancer genome atlas ovarian cancer collection (tcga-ov), 2016. URL
 975 <https://www.cancerimagingarchive.net/collection/tcga-ov/>.

976 Sven Holm, Greg Russell, Vincent Nourrit, and Niall McLoughlin. Dr hagis—a fundus image
 977 database for the automatic extraction of retinal surface vessels from diabetic patients. *Journal of*
 978 *Medical Imaging*, 4(1):014503–014503, 2017.

980 A.D. Hoover, V. Kouznetsova, and M. Goldbaum. Locating blood vessels in retinal images by
 981 piecewise threshold probing of a matched filter response. *IEEE Transactions on Medical Imaging*,
 982 19(3):203–210, 2000.

983 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 984 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International*
 985 *Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeFYf9>.

987 Qiao Hu, Michael D Abràmoff, and Mona K Garvin. Automated separation of binary overlapping
 988 trees in low-contrast color retinal images. In *Medical Image Computing and Computer-Assisted*
 989 *Intervention–MICCAI 2013: 16th International Conference, Nagoya, Japan, September 22–26,*
 990 *2013, Proceedings, Part II 16*, pp. 436–443, 2013.

992 Arnaud Huaulmé, Kanako Harada, Quang-Minh Nguyen, Bogyu Park, Seungbum Hong, Min-Kook
 993 Choi, Michael Peven, Yunshuang Li, Yonghao Long, Qi Dou, et al. PEg TRAnsfer workflow
 994 recognition challenge report: Do multimodal data improve recognition? *Computer Methods and*
 995 *Programs in Biomedicine*, 236:107561, 2023.

996 Mir Tanvir Islam, Shafin T Mashfu, Abrar Faisal, Sadman Chowdhury Siam, Intisar Tahmid Naheen,
 997 and Riasat Khan. Deep learning-based glaucoma detection with cropped optic cup and disc and
 998 blood vessel segmentation. *Ieee Access*, 10:2828–2841, 2021.

999 Mir Tanvir Islam, Shafin T. Mashfu, Abrar Faisal, Sadman Chowdhury Siam, Intisar Tahmid Naheen,
 1000 and Riasat Khan. Deep learning-based glaucoma detection with cropped optic cup and disc and
 1001 blood vessel segmentation. *IEEE Access*, 10:2828–2841, 2022.

1002 IXI. IXI Dataset. <https://brain-development.org/ixi-dataset/>, 2010. Imperial
 1003 College London, Creative Commons CC BY-SA 3.0.

1005 Stefan Jaeger, Alexandros Karargyris, Sema Candemir, Les Folio, Jenifer Siegelman, Fiona Callaghan,
 1006 Zhiyun Xue, Kannappan Palaniappan, Rahul K. Singh, Sameer Antani, George Thoma, Yi-Xiang
 1007 Wang, Pu-Xuan Lu, and Clement J. McDonald. Automatic tuberculosis screening using chest
 1008 radiographs. *IEEE Transactions on Medical Imaging*, 33(2):233–245, 2014a.

1009 Stefan Jaeger, Alexandros Karargyris, Sema Candemir, Les Folio, Jenifer Siegelman, Fiona Callaghan,
 1010 Zhiyun Xue, Kannappan Palaniappan, Rahul K. Singh, Sameer Antani, George Thoma, Yi-Xiang
 1011 Wang, Pu-Xuan Lu, and Clement J. McDonald. Automatic tuberculosis screening using chest
 1012 radiographs. *IEEE Transactions on Medical Imaging*, 33(2):233–245, 2014b. doi: 10.1109/TMI.
 1013 2013.2284099.

1014 Jan Jantzen, Jonas Norup, Georgios Dounias, and Beth Bjerregaard. Pap-smear benchmark data for
 1015 pattern classification. *Nature inspired smart information systems (NiSiS 2005)*, pp. 1–9, 2005.

1017 Yuanfeng Ji, Haotian Bai, Chongjian Ge, Jie Yang, Ye Zhu, Ruimao Zhang, Zhen Li, Lingyan
 1018 Zhang, Wanling Ma, Xiang Wan, et al. Amos: A large-scale abdominal multi-organ benchmark
 1019 for versatile medical image segmentation. *Advances in Neural Information Processing Systems*,
 1020 35:36722–36732, 2022.

1021 Yiping Jiao, Jeroen van der Laak, Shadi Albarqouni, Zhang Li, Tao Tan, Abhir Bhalerao, Shenghua
 1022 Cheng, Jiabo Ma, Johnathan Pocock, Josien P.W. Pluim, Navid Alemi Koohbanani, Raja Muham-
 1023 mad Saad Bashir, Shan E Ahmed Raza, Sibo Liu, Simon Graham, Suzanne Wetstein, Syed Ali
 1024 Khurram, Xiuli Liu, Nasir Rajpoot, Mitko Veta, and Francesco Ciompi. LYSTO: The lymphocyte
 1025 assessment hackathon and benchmark dataset. *IEEE Journal of Biomedical and Health Informatics*,
 28(3):1161–1172, 2024.

1026 Amy Jin, Serena Yeung, Jeffrey Jopling, Jonathan Krause, Dan Azagury, Arnold Milstein, and
 1027 Li Fei-Fei. Tool detection and operative skill assessment in surgical videos using region-based
 1028 convolutional neural networks. *IEEE Winter Conference on Applications of Computer Vision*,
 1029 2018.

1030 Kai Jin, Xingru Huang, Jingxing Zhou, Yunxiang Li, Yan Yan, Yibao Sun, Qianni Zhang, Yaqi Wang,
 1031 and Juan Ye. FIVES: A fundus image dataset for artificial intelligence based vessel segmentation.
 1032 *Scientific Data*, 9(1):475, 2022.

1033

1034 Liang Jin, Jiancheng Yang, Kaiming Kuang, Bingbing Ni, Yiyi Gao, Yingli Sun, Pan Gao, Weiling
 1035 Ma, Mingyu Tan, Hui Kang, Jiajun Chen, and Ming Li. Deep-learning-assisted detection and
 1036 segmentation of rib fractures from ct scans: Development and validation of fracnet. *eBioMedicine*,
 1037 2020.

1038 Alistair EW Johnson, Tom J Pollard, Seth J Berkowitz, Nathaniel R Greenbaum, Matthew P Lungren,
 1039 Chih-ying Deng, Roger G Mark, and Steven Horng. MIMIC-CXR, a de-identified publicly
 1040 available database of chest radiographs with free-text reports. *Scientific Data*, 6(1):317, 2019.

1041

1042 Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
 1043 super-resolution. In *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
 1044 Netherlands, October 11–14, 2016, Proceedings, Part II* 14, pp. 694–711, 2016.

1045

1046 Petr Jordan, Philip M Adamson, Vrunda Bhattbhatt, Surabhi Beriwal, Sangyu Shen, Oskar
 1047 Radermecker, Supratik Bose, Linda S Strain, Michael Offe, David Fraley, et al. Pediatric
 1048 chest/abdomen/pelvic ct exams with expert organ contours (pediatric-ct-seg) (version 2)
 1049 [data set], 2021. URL <https://www.cancerimagingarchive.net/collection/pediatric-ct-seg>.

1050

1051 Petr Jordan, Philip M Adamson, Vrunda Bhattbhatt, Surabhi Beriwal, Sangyu Shen, Oskar Ra-
 1052 dermecker, Supratik Bose, Linda S Strain, Michael Offe, David Fraley, et al. Pediatric chest-
 1053 abdomen-pelvis and abdomen-pelvis CT images with expert organ contours. *Medical Physics*, 49
 (5):3523–3528, 2022.

1054

1055 Ma Jun, Ge Cheng, Wang Yixin, An Xingle, Gao Jiantao, Yu Ziqi, Zhang Minqing, Liu Xin, Deng
 1056 Xueyuan, Cao Shucheng, Wei Hao, Mei Sen, Yang Xiaoyu, Nie Ziwei, Li Chen, Tian Lu, Zhu
 1057 Yuntao, Zhu Qiongjie, Dong Guoqiang, and He Jian. Covid-19 ct lung and infection segmentation
 1058 dataset, April 2020. URL <https://doi.org/10.5281/zenodo.3757476>.

1059

1060 J. Kalpathy-Cramer, S. Napel, D. Goldgof, and B. Zhao. Multi-site collection of lung ct data with
 1061 nodule segmentations (version 3), 2015. URL <https://doi.org/10.7937/k9/tcia.2015.1buvfjr7>. CT images and segmentations of non-small cell lung cancer from multiple
 1062 institutions, designed for algorithm development and comparison.

1063

1064 Jakob Nikolas Kather, Johannes Krisam, Pornpimol Charoentong, Tom Luedde, Esther Herpel, Cleo-
 1065 Aron Weis, Timo Gaiser, Alexander Marx, Nektarios A Valous, Dyke Ferber, et al. Predicting
 1066 survival from colorectal cancer histology slides using deep learning: A retrospective multicenter
 1067 study. *PLoS Medicine*, 16(1):e1002730, 2019.

1068

1069 A. Emre Kavur, N. Sinem Gezer, Mustafa Barış, Sinem Aslan, Pierre-Henri Conze, Vladimir Groza,
 1070 Duc Duy Pham, Soumick Chatterjee, Philipp Ernst, Savaş Özkan, Bora Baydar, Dmitry Lachinov,
 1071 Shuo Han, Josef Pauli, Fabian Isensee, Matthias Perkonigg, Rachana Sathish, Ronnie Rajan,
 1072 Debdoot Sheet, Gurbandurdy Dovletov, Oliver Speck, Andreas Nürnberger, Klaus H. Maier-Hein,
 1073 Gözde Bozdağı Akar, Gözde Ünal, Oğuz Dicle, and M. Alper Selver. CHAOS Challenge -
 1074 combined (CT-MR) healthy abdominal organ segmentation. *Medical Image Analysis*, 69:101950,
 2021.

1075

1076 Jeremy Kawahara, Sara Daneshvar, Giuseppe Argenziano, and Ghassan Hamarneh. Seven-point
 1077 checklist and skin lesion classification using multitask multimodal neural nets. *IEEE Journal of
 Biomedical and Health Informatics*, pp. 538–546, 2018.

1078

1079 Anahita Fathi Kazerooni, Nastaran Khalili, Xinyang Liu, Debanjan Haldar, Zhifan Jiang,
 1080 Syed Muhammed Anwar, Jake Albrecht, Maruf Adewole, Udunna Anazodo, Hannah Ander-
 1081 son, Sina Bagheri, Ujjwal Baid, Timothy Bergquist, Austin J. Borja, Evan Calabrese, Verena

1080 Chung, Gian-Marco Conte, Farouk Dako, James Eddy, Ivan Ezhov, Ariana Familiar, Keyvan
 1081 Farahani, Shuvanjan Haldar, Juan Eugenio Iglesias, Anastasia Janas, Elaine Johansen, Blaise V
 1082 Jones, Florian Kofler, Dominic LaBella, Hollie Anne Lai, Koen Van Leemput, Hongwei Bran Li,
 1083 Nazanin Maleki, Aaron S McAllister, Zeke Meier, Bjoern Menze, Ahmed W Moawad, Khanak K
 1084 Nandolia, Julija Pavaine, Marie Piraud, Tina Poussaint, Sanjay P Prabhu, Zachary Reitman, Andres
 1085 Rodriguez, Jeffrey D Rudie, Ibraheem Salman Shaikh, Lubdha M. Shah, Nakul Sheth, Russel Taki
 1086 Shinohara, Wenxin Tu, Karthik Viswanathan, Chunhao Wang, Jeffrey B Ware, Benedikt Wiestler,
 1087 Walter Wiggins, Anna Zapaishchikova, Mariam Aboian, Miriam Bornhorst, Peter de Blank,
 1088 Michelle Deutsch, Maryam Fouladi, Lindsey Hoffman, Benjamin Kann, Margot Lazow, Leonie
 1089 Mikael, Ali Nabavizadeh, Roger Packer, Adam Resnick, Brian Rood, Arastoo Vossough, Spyridon
 1090 Bakas, and Marius George Linguraru. The brain tumor segmentation (brats) challenge 2023: Focus
 1091 on pediatrics (cbtn-connect-dipgr-asnr-miccai brats-peds), 2023.

1092 Daniel S Kermany, Michael Goldbaum, Wenjia Cai, Carolina CS Valentim, Huiying Liang, Sally L
 1093 Baxter, Alex McKeown, Ge Yang, Xiaokang Wu, Fangbing Yan, et al. Identifying medical
 1094 diagnoses and treatable diseases by image-based deep learning. *Cell*, 172(5):1122–1131, 2018.

1095 Ungsoo Kim. Machine learn for glaucoma, 2018. URL <https://doi.org/10.7910/DVN/1YRRAC>. Accessed: 2025-05-22.

1096 P. Kinahan, M. Muzi, B. Bialecki, and L. Coombs. Data from acrin-flt-breast (version 2)
 1097 [data set], 2017. URL <https://www.cancerimagingarchive.net/collection/acrin-flt-breast>.

1098 P. Kinahan, M. Muzi, B. Bialecki, B. Herman, and L. Coombs. Data from the acrin 6668 trial
 1099 nsclc-fdg-pet (version 2) [data set], 2019. URL <https://www.cancerimagingarchive.net/collection/acrin-nsclc-fdg-pet>.

1100 Paul Kinahan, Mark Muzi, Brian Bialecki, and Laura Coombs. Data from the acrin 6685 trial hnscc-
 1101 fdg-pet/ct, 2020. URL <https://www.cancerimagingarchive.net/collection/acrin-hnscc-fdg-pet-ct/>.

1102 Diederik P Kingma. Adam: A method for stochastic optimization. In *International Conference on
 1103 Learning Representations*, 2014. URL <https://arxiv.org/abs/1412.6980>.

1104 Serkan Kiranyaz, Aysen Degerli, Tahir Hamid, Rashid Mazhar, Rayyan El Fadil Ahmed, Rayaan
 1105 Abouhasera, Morteza Zabihi, Junaid Malik, Ridha Hamila, and Moncef Gabbouj. Left ventricular
 1106 wall motion estimation by active polynomials for acute myocardial infarction detection. *IEEE
 1107 Access*, 8:210301–210317, 2020.

1108 S. Kirk, Y. Lee, C. A. Sadow, and S. Levine. The cancer genome atlas rectum ade-
 1109 nocarcinoma collection (tcga-read) (version 3) [data set], 2016a. URL <https://www.cancerimagingarchive.net/collection/tcga-read>.

1110 Shanahv Kirk, Yueh Lee, Prasanna Kumar, Joe Filippini, Brad Albertina, Mark Watson, Kim-
 1111 berly Rieger-Christ, and John Lemmerman. The cancer genome atlas lung squamous cell carci-
 1112 noma collection (tcga-lusc), 2016b. URL <https://www.cancerimagingarchive.net/collection/tcga-lusc/>.

1113 Arno Klein, Jesper Andersson, Babak A. Ardekani, John Ashburner, Brian Avants, Ming-Chang
 1114 Chiang, Gary E. Christensen, D. Louis Collins, James Gee, Pierre Hellier, Joo Hyun Song, Mark
 1115 Jenkinson, Claude Lepage, Daniel Rueckert, Paul Thompson, Tom Vercauteren, Roger P. Woods,
 1116 J. John Mann, and Ramin V. Parsey. Evaluation of 14 nonlinear deformation algorithms applied to
 1117 human brain mri registration. *NeuroImage*, 46(3):786–802, 2009.

1118 Arno Klein, Satrajit S. Ghosh, Forrest S. Bao, Joachim Giard, Yrjö Häme, Eliezer Stavsky, Noah
 1119 Lee, Brian Rossa, Martin Reuter, Elias Chaibub Neto, and Anisha Keshavan. Mindboggling
 1120 morphometry of human brains. *PLOS Computational Biology*, 13(2):1–40, 02 2017.

1121 Oleksandr Kovalyk, Juan Morales-Sánchez, Rafael Verdú-Monedero, Inmaculada Sellés-Navarro,
 1122 Ana Palazón-Cabanes, and José-Luis Sancho-Gómez. Papila: Dataset with fundus images and
 1123 clinical data of both eyes of the same patient for glaucoma assessment. *Scientific Data*, 9(1):291,
 1124 2022.

1134 Hugo J. Kuijf, J. Matthijs Biesbroek, Jeroen De Bresser, Rutger Heinen, Simon Andermatt, Mar-
 1135 iana Bento, Matt Berseth, Mikhail Belyaev, M. Jorge Cardoso, Adrià Casamitjana, D. Louis
 1136 Collins, Mahsa Dadar, Achilleas Georgiou, Mohsen Ghafoorian, Dakai Jin, April Khademi, Jesse
 1137 Knight, Hongwei Li, Xavier Lladó, Miguel Luna, Qaiser Mahmood, Richard McKinley, Alireza
 1138 Mehrtash, Sébastien Ourselin, Bo-Yong Park, Hyunjin Park, Sang Hyun Park, Simon Pezold,
 1139 Elodie Puybareau, Leticia Rittner, Carole H. Sudre, Sergi Valverde, Verónica Vilaplana, Roland
 1140 Wiest, Yongchao Xu, Ziyue Xu, Guodong Zeng, Jianguo Zhang, Guoyan Zheng, Christopher Chen,
 1141 Wiesje van der Flier, Frederik Barkhof, Max A. Viergever, and Geert Jan Biesseels. Standardized
 1142 assessment of automatic segmentation of white matter hyperintensities and results of the wmh
 1143 segmentation challenge. *IEEE Transactions on Medical Imaging*, 38(11):2556–2568, 2019.

1144 Neeraj Kumar, Ruchika Verma, Deepak Anand, Yanning Zhou, Omer Fahri Onder, Efstratios Tsouge-
 1145 nis, Hao Chen, Pheng-Ann Heng, Jiahui Li, Zhiqiang Hu, Yunzhi Wang, Navid Alemi Koohbanani,
 1146 Mostafa Jahanifar, Neda Zamani Tajeddin, Ali Gooya, Nasir Rajpoot, Xuhua Ren, Sihang Zhou,
 1147 Qian Wang, Dinggang Shen, Cheng-Kun Yang, Chi-Hung Weng, Wei-Hsiang Yu, Chao-Yuan
 1148 Yeh, Shuang Yang, Shuoyu Xu, Pak Hei Yeung, Peng Sun, Amirreza Mahbod, Gerald Schaefer,
 1149 Isabella Ellinger, Rupert Ecker, Orjan Smedby, Chunliang Wang, Benjamin Chidester, That-Vinh
 1150 Ton, Minh-Triet Tran, Jian Ma, Minh N. Do, Simon Graham, Quoc Dang Vu, Jin Tae Kwak,
 1151 Akshaykumar Gunda, Raviteja Chunduri, Corey Hu, Xiaoyang Zhou, Dariush Lotfi, Reza Safdari,
 1152 Antanas Kascenas, Alison O’Neil, Dennis Eschweiler, Johannes Stegmaier, Yanping Cui, Baocai
 1153 Yin, Kailin Chen, Xinmei Tian, Philipp Gruening, Erhardt Barth, Elad Arbel, Itay Remer, Amir
 1154 Ben-Dor, Ekaterina Siraztdinova, Matthias Kohl, Stefan Brauneck, Yuexiang Li, Xinpeng Xie,
 1155 Linlin Shen, Jun Ma, Krishanu Das Bakshi, Mohammad Azam Khan, Jaegul Choo, Adrián Colomer,
 1156 Valery Naranjo, Linmin Pei, Khan M. Iftekharuddin, Kaushiki Roy, Debotosh Bhattacharjee, Ani-
 1157 bal Pedraza, Maria Gloria Bueno, Sabarinathan Devanathan, Saravanan Radhakrishnan, Praveen
 1158 Koduganty, Zihan Wu, Guanyu Cai, Xiaojie Liu, Yuqin Wang, and Amit Sethi. A multi-organ
 1159 nucleus segmentation challenge. *IEEE Transactions on Medical Imaging*, 39(5):1380–1391, 2020.

1160 K.A. et al. Kurdziel. Data from NaF PROSTATE. The Cancer Imaging Archive Dataset, 2015.

1161 Dominic LaBella, Maruf Adewole, Michelle Alonso-Basanta, Talissa Altes, Syed Muhammad Anwar,
 1162 Ujjwal Baid, Timothy Bergquist, Radhika Bhalerao, Sully Chen, Verena Chung, et al. The asnr-
 1163 miccai brain tumor segmentation (brats) challenge 2023: Intracranial meningioma. *arXiv preprint*
 1164 *arXiv:2305.07642*, 2023.

1165 Zoé Lambert, Caroline Petitjean, Bernard Dubray, and Su Kuan. Segthor: Segmentation of thoracic
 1166 organs at risk in ct images. In *2020 Tenth International Conference on Image Processing Theory,
 1167 Tools and Applications (IPTA)*, pp. 1–6, 2020.

1168 Bennett Landman, Zhoubing Xu, J Igelsias, Martin Styner, T Langerak, and Arno Klein. MICCAI
 1169 multi-atlas labeling beyond the cranial vault—workshop and challenge. In *Proc. MICCAI Multi-Atlas
 1170 Labeling Beyond Cranial Vault—Workshop Challenge*, volume 5, pp. 12, 2015.

1171 Jason J Lau, Soumya Gayen, Asma Ben Abacha, and Dina Demner-Fushman. A dataset of clinically
 1172 generated visual questions and answers about radiology images. *Scientific Data*, 5(1):1–10, 2018.

1173 Patrick Leavey, Anita Sengupta, Dinesh Rakheja, Ovidiu Daescu, Harish B Arunachalam, and
 1174 Rashika Mishra. Osteosarcoma data from ut southwestern/ut dallas for viable and necrotic tumor
 1175 assessment [data set]. *Cancer Imaging Arch*, 14, 2019.

1176 Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan
 1177 Naumann, Hoifung Poon, and Jianfeng Gao. LLaVA-Med: Training a large language-and-vision
 1178 assistant for biomedicine in one day. *arXiv:2306.00890*, 2023.

1179 Liu Li, Mai Xu, Hanruo Liu, Yang Li, Xiaofei Wang, Lai Jiang, Zulin Wang, Xiang Fan, and Ningli
 1180 Wang. A large-scale database and a cnn model for attention-based glaucoma detection. *IEEE
 1181 Transactions on Medical Imaging*, 39(2):413–424, 2019.

1182 P. Li, S. Wang, T. Li, J. Lu, Y. HuangFu, and D. Wang. A large-scale ct and pet/ct
 1183 dataset for lung cancer diagnosis (Lung-PET-CT-Dx) [data set], 2020. URL <https://www.cancerimagingarchive.net/collection/lung-pet-ct-dx>.

1184

1185

1186

1187

1188

1189

1188 Tianbin Li, Yanzhou Su, Wei Li, Bin Fu, Zhe Chen, Ziyan Huang, Guoan Wang, Chenglong Ma,
 1189 Ying Chen, Ming Hu, Yanjun Li, Pengcheng Chen, Xiaowei Hu, Zhongying Deng, Yuanfeng Ji, Jin
 1190 Ye, Yu Qiao, and Junjun He. GMAI-VL & GMAI-VL-5.5M: A large vision-language model and a
 1191 comprehensive multimodal dataset towards general medical AI. *arXiv preprint arXiv:2411.14522*,
 1192 2024.

1193 Xia Li, Richard G Abramson, Lori R Arlinghaus, Hakmook Kang, Anuradha Bapsi Chakravarthy,
 1194 Vandana G Abramson, Jaime Farley, Ingrid A Mayer, Mark C Kelley, Ingrid M Meszoely, et al.
 1195 Multiparametric magnetic resonance imaging for predicting pathological response after the first
 1196 cycle of neoadjuvant chemotherapy in breast cancer. *Investigative Radiology*, 50(4):195–204,
 1197 2015.

1198 Jie Lian, Jingyu Liu, Shu Zhang, Kai Gao, Xiaoqing Liu, Dingwen Zhang, and Yizhou Yu. A structure-
 1199 aware relation network for thoracic diseases detection and segmentation. *IEEE Transactions on*
 1200 *Medical Imaging*, 40(8):2042–2052, 2021.

1201 Sook-Lei Liew, Bethany P Lo, Miranda R Donnelly, Artemis Zavaliangos-Petropulu, Jessica N Jeong,
 1202 Giuseppe Barisano, Alexandre Hutton, Julia P Simon, Julia M Juliano, Anisha Suri, et al. A
 1203 large, curated, open-source stroke neuroimaging dataset to improve lesion segmentation algorithms.
 1204 *Scientific Data*, 9(1):320, 2022.

1205 Tianwei Lin, Wenqiao Zhang, Sijing Li, Yuqian Yuan, Binhe Yu, Haoyuan Li, Wanggui He, Hao Jiang,
 1206 Mengze Li, Xiaohui Song, Siliang Tang, Jun Xiao, Hui Lin, Yueting Zhuang, and Chin Beng Ooi.
 1207 HealthGPT: A medical large vision-language model for unifying comprehension and generation
 1208 via heterogeneous knowledge adaptation. *arXiv preprint arXiv:2502.09838*, 2025.

1209 Weixiong Lin, Ziheng Zhao, Xiaoman Zhang, Chaoyi Wu, Ya Zhang, Yanfeng Wang, and Weidi
 1210 Xie. PMC-CLIP: Contrastive language-image pre-training using biomedical documents. In
 1211 *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pp.
 1212 525–536, 2023.

1213 M. W. Linehan, R. Gautam, C. A. Sadow, and S. Levine. The cancer genome atlas kidney chromo-
 1214 phobe collection (tcga-kich), 2016. URL <https://doi.org/10.7937/K9/TCIA.2016.YU3RBCZN>. Data set.

1215 Bo Liu, Li-Ming Zhan, Li Xu, Lin Ma, Yan Yang, and Xiao-Ming Wu. SLAKE: A semantically-
 1216 labeled knowledge-enhanced dataset for medical visual question answering. In *2021 IEEE 18th*
 1217 *International Symposium on Biomedical Imaging*, pp. 1650–1654, 2021a.

1218 Chi Liu, Xiaotong Han, Zhixi Li, Jason Ha, Guankai Peng, Wei Meng, and Mingguang He. A
 1219 self-adaptive deep learning method for automated eye laterality detection based on color fundus
 1220 photography. *PloS One*, 14(9):e0222025, 2019.

1221 Pengbo Liu, Hu Han, Yuanqi Du, Heqin Zhu, Yinhao Li, Feng Gu, Honghu Xiao, Jun Li, Chunpeng
 1222 Zhao, Li Xiao, Xinbao Wu, and S. Kevin Zhou. Deep learning to segment pelvic bones: large-scale
 1223 ct datasets and baseline models. *International Journal of Computer Assisted Radiology and*
 1224 *Surgery*, 16(5):749, 2021b.

1225 Ruhan Liu, Xiangning Wang, Qiang Wu, Ling Dai, Xi Fang, Tao Yan, Jaemin Son, Shiqi Tang, Jiang
 1226 Li, Zijian Gao, et al. DeepDRiD: Diabetic retinopathy—grading and image quality estimation
 1227 challenge. *Patterns*, 3(6), 2022.

1228 Pechin Lo, Bram Van Ginneken, Joseph M Reinhardt, Tarunashree Yavarna, Pim A De Jong, Benjamin
 1229 Irving, Catalin Fetita, Margarete Ortner, Rômulo Pinho, Jan Sijbers, et al. Extraction of airways
 1230 from CT (EXACT'09). *IEEE Transactions on Medical Imaging*, 31(11):2093–2107, 2012.

1231 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-
 1232 ence on Learning Representations*, 2019. URL <https://openreview.net/forum?id=Bkg6RiCqY7>.

1233 Meng Lou, Xiaoqing Liu, Yuqing Zhang, Yizhou Yu, and Hong-Yu Zhou. Liver lesion diagnosis
 1234 challenge on multi-phase MRI, April 2023. URL <https://doi.org/10.5281/zenodo.7852363>.

1242 Alejandro Lozano, Min Woo Sun, James Burgess, Liangyu Chen, Jeffrey J Nirschl, Jeffrey Gu,
 1243 Ivan Lopez, Josiah Aklilu, Austin Wolfgang Katzer, Collin Chiu, et al. BIOMEDICA: An open
 1244 biomedical image-caption archive, dataset, and vision-language models derived from scientific
 1245 literature. *arXiv preprint arXiv:2501.07171*, 2025.

1246

1247 Valeria De Luca, Tobias Benz, Satoshi Kondo, Christine Tanner, and Orcun Goksel. Evaluation
 1248 of 2d and 3d ultrasound tracking algorithms and impact on ultrasound-guided liver radiotherapy
 1249 margins. *Medical Physics*, 45(11):5105–5116, 2018. doi: 10.1002/mp.13147. URL <https://doi.org/10.1002/mp.13147>.

1250

1251 Fabiano R. Lucchesi and Natália D. Aredes. The cancer genome atlas stomach adenocarci-
 1252 noma collection (tcga-stad), 2016. URL <https://www.cancerimagingarchive.net/collection/tcga-stad/>.

1253

1254

1255 Gongning Luo, Kuanquan Wang, Jun Liu, Shuo Li, Xinjie Liang, Xiangyu Li, Shaowei Gan, Wei
 1256 Wang, Suyu Dong, Wenyi Wang, et al. Efficient automatic segmentation for multi-level pulmonary
 1257 arteries: The parse challenge. *arXiv preprint arXiv:2304.03708*, 2023a.

1258

1259 Lingxiao Luo, Xuanzhong Chen, Bingda Tang, Xinsheng Chen, Rong Han, Chengpeng Hu, Yujiang
 1260 Li, and Ting Chen. Building universal foundation models for medical image analysis with spatially
 1261 adaptive networks. *arXiv preprint arXiv:2312.07630*, 2023b.

1262

1263 Xiangde Luo, Wenjun Liao, Jianghong Xiao, Jieneng Chen, Tao Song, Xiaofan Zhang, Kang Li,
 1264 Dimitris N Metaxas, Guotai Wang, and Shaoting Zhang. WORD: A large scale dataset, benchmark
 1265 and clinical applicable study for abdominal organ segmentation from ct image. *Medical Image
 1266 Analysis*, 82:102642, 2022.

1267

1268 Chenglong Ma, Yuanfeng Ji, Jin Ye, Lu Zhang, Ying Chen, Tianbin Li, Mingjie Li, Junjun He, and
 1269 Hongming Shan. Towards interpretable counterfactual generation via multimodal autoregression.
arXiv preprint arXiv:2503.23149, 2025a.

1270

1271 Chuofan Ma, Yi Jiang, Junfeng Wu, Jihan Yang, Xin Yu, Zehuan Yuan, Bingyue Peng, and Xiaojuan
 1272 Qi. UniTok: A unified tokenizer for visual generation and understanding. *arXiv:2502.20321*,
 1273 2025b.

1274

1275 Jun Ma, Yao Zhang, Song Gu, Cheng Zhu, Cheng Ge, Yichi Zhang, Xingle An, Congcong Wang,
 1276 Qiyuan Wang, Xin Liu, et al. AbdomenCT-1k: Is abdominal organ segmentation a solved problem?
IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(10):6695–6714, 2021a.

1277

1278 Jun Ma, Yao Zhang, Song Gu, Cheng Ge, Shihao Mae, Adamo Young, Cheng Zhu, Xin Yang,
 1279 Kangkang Meng, Ziyan Huang, et al. Unleashing the strengths of unlabelled data in deep learning-
 1280 assisted pan-cancer abdominal organ quantification: the FLARE22 challenge. *The Lancet Digital
 1281 Health*, 6(11):e815–e826, 2024.

1282

1283 Yuhui Ma, Huaying Hao, Jianyang Xie, Huazhu Fu, Jiong Zhang, Jianlong Yang, Zhen Wang, Jiang
 1284 Liu, Yalin Zheng, and Yitian Zhao. Rose: a retinal oct-angiography vessel segmentation dataset
 1285 and new model. *IEEE Transactions on Medical Imaging*, 40(3):928–939, 2021b.

1286

1287 Mitchell Machtay, Fenghai Duan, Barry A Siegel, Bradley S Snyder, Jeremy J Gorelick, Janet S
 1288 Reddin, Reginald Munden, Douglas W Johnson, Larry H Wilf, Albert DeNittis, et al. Prediction
 1289 of survival by [18f] fluorodeoxyglucose positron emission tomography in patients with locally
 1290 advanced non–small-cell lung cancer undergoing definitive chemoradiation therapy: results of the
 acrin 6668/rtog 0235 trial. *Journal of clinical oncology*, 31(30):3823–3830, 2013.

1291

1292 P. Madhavi, S. Patel, and A. S. Tsao. Data from anti-pd-1 immunotherapy lung [data set], 2019. URL
 1293 https://www.cancerimagingarchive.net/collection/anti-pd-1_lung.

1294

1295 Daniel S Marcus, Anthony F Fotenos, John G Csernansky, John C Morris, and Randy L Buckner.
 1296 Open access series of imaging studies: longitudinal mri data in nondemented and demented older
 1297 adults. *Journal of Cognitive Neuroscience*, 22(12):2677–2684, 2010.

1296 Mojtaba Masoudi, Hamid-Reza Pourreza, Mahdi Saadatmand-Tarzjan, Noushin Eftekhari,
 1297 Fateme Shafiee Zargar, and Masoud Pezeshki Rad. A new dataset of computed-tomography
 1298 angiography images for computer-aided detection of pulmonary embolism. *Scientific Data*, 5(1):
 1299 1–9, 2018.

1300 Christian Matek, Sebastian Krappe, Christian Münzenmayer, Torsten Haferlach, and Carsten Marr.
 1301 Highly accurate differentiation of bone marrow cell morphologies using deep neural networks
 1302 on a large image data set. *Blood, The Journal of the American Society of Hematology*, 138(20):
 1303 1917–1927, 2021.

1304 Cynthia H McCollough, Adam C Bartley, Rickey E Carter, Baiyu Chen, Tammy A Drees, Phillip
 1305 Edwards, David R Holmes III, Alice E Huang, Farhana Khan, Shuai Leng, et al. Low-dose CT for
 1306 the detection and classification of metastatic liver lesions: results of the 2016 low dose CT grand
 1307 challenge. *Medical Physics*, 44(10):e339–e352, 2017.

1308 Xueyan Mei, Zelong Liu, Philip M Robson, Brett Marinelli, Mingqian Huang, Amish Doshi, Adam
 1309 Jacobi, Chendi Cao, Katherine E Link, Thomas Yang, et al. Radimagenet: an open radiologic deep
 1310 learning research dataset for effective transfer learning. *Radiology: Artificial Intelligence*, 4(5):
 1311 e210315, 2022.

1312 Teresa Mendonça, M Celebi, T Mendonca, and J Marques. Ph2: A public database for the analysis of
 1313 dermoscopic images. *Dermoscopy Image Analysis*, 2, 2015.

1314 Ahmed W. Moawad, Anastasia Janas, Ujjwal Baid, Divya Ramakrishnan, Leon Jekel, Kiril Krantchev,
 1315 Harrison Moy, Rachit Saluja, Klara Osenberg, Klara Wilms, Manpreet Kaur, Arman Avesta,
 1316 Gabriel Cassinelli Pedersen, Nazanin Maleki, Mahdi Salimi, Sarah Merkaj, Marc von Reppert,
 1317 Niklas Tillmans, Jan Lost, Khaled Bousabarah, Wolfgang Holler, MingDe Lin, Malte Westerhoff,
 1318 Ryan Maresca, Katherine E. Link, Nourel hoda Tahon, Daniel Marcus, Aristeidis Sotiras, Pamela
 1319 LaMontagne, Strajit Chakrabarty, Oleg Teytelboym, Ayda Youssef, Ayaman Nada, Yuri S. Velichko,
 1320 Nicolo Gennaro, Connectome Students, Group of Annotators, Justin Cramer, Derek R. Johnson,
 1321 Benjamin Y. M. Kwan, Boyan Petrovic, Satya N. Patro, Lei Wu, Tiffany So, Gerry Thompson,
 1322 Anthony Kam, Gloria Guzman Perez-Carrillo, Neil Lall, Group of Approvers, Jake Albrecht,
 1323 Udunna Anazodo, Marius George Lingaru, Bjoern H Menze, Benedikt Wiestler, Maruf Adewole,
 1324 Syed Muhammad Anwar, Dominic Labella, Hongwei Bran Li, Juan Eugenio Iglesias, Keyvan
 1325 Farahani, James Eddy, Timothy Bergquist, Verena Chung, Russel Takeshi Shinohara, Farouk
 1326 Dako, Walter Wiggins, Zachary Reitman, Chunhao Wang, Xinyang Liu, Zhifan Jiang, Koen Van
 1327 Leemput, Marie Piraud, Ivan Ezhov, Elaine Johanson, Zeke Meier, Ariana Familiar, Anahita Fathi
 1328 Kazerooni, Florian Kofler, Evan Calabrese, Sanjay Aneja, Veronica Chiang, Ichiro Ikuta, Umber
 1329 Shafique, Fatima Memon, Gian Marco Conte, Spyridon Bakas, Jeffrey Rudie, and Mariam Aboian.
 1330 The brain tumor segmentation (BraTS-METS) challenge 2023: Brain metastasis segmentation on
 1331 pre-treatment mri. *arXiv preprint arXiv:2306.00838*, 2023.

1332 Anna Montoya, Hasnin, kaggle446, shirzad, Will Cukierski, and yffud. Ul-
 1333 trasound nerve segmentation. [https://kaggle.com/competitions/](https://kaggle.com/competitions/ultrasound-nerve-segmentation)
 1334 [ultrasound-nerve-segmentation](https://kaggle.com/competitions/ultrasound-nerve-segmentation), 2016. Kaggle.

1335 Michael Moor, Qian Huang, Shirley Wu, Michihiro Yasunaga, Yash Dalmia, Jure Leskovec, Cyril
 1336 Zakka, Eduardo Pontes Reis, and Pranav Rajpurkar. Med-flamingo: a multimodal medical few-shot
 1337 learner. In *Proceedings of the 3rd Machine Learning for Health Symposium*, volume 225, pp.
 1338 353–367, 2023.

1339 Simmi Mourya, Sonaal Kant, Pulkit Kumar, Anubha Gupta, and Rita Gupta. All challenge dataset
 1340 of isbi 2019 (c-nmc 2019), 2019. URL [https://www.cancerimagingarchive.net/](https://www.cancerimagingarchive.net/collection/c-nmc-2019/)
 1341 [collection/c-nmc-2019/](https://www.cancerimagingarchive.net/collection/c-nmc-2019/).

1342 Benjamin Movsas, Chen Hu, Jeffrey Sloan, Jeffrey Bradley, Ritsuko Komaki, Gregory Masters, Vivek
 1343 Kavadi, Samir Narayan, Jeff Michalski, Douglas W. Johnson, Christopher Koprowski, Jr Curran,
 1344 Walter J., Yolanda I. Garces, Rakesh Gaur, Raymond B. Wynn, John Schallenkamp, Daphna Y.
 1345 Gelblum, Robert M. MacRae, Rebecca Paulus, and Hak Choy. Quality of Life Analysis of a
 1346 Radiation Dose-Escalation Study of Patients With Non-Small-Cell Lung Cancer: A Secondary
 1347 Analysis of the Radiation Therapy Oncology Group 0617 Randomized Clinical Trial. *JAMA*
 1348 *Oncology*, 2(3):359–367, 03 2016.

1349

1350 National Cancer Institute Clinical Proteomic Tumor Analysis Consortium (CPTAC). The clinical
 1351 proteomic tumor analysis consortium clear cell renal cell carcinoma collection (cptac-ccrcc), 2018a.
 1352 URL <https://www.cancerimagingarchive.net/collection/cptac-ccrcc/>.
 1353

1354 National Cancer Institute Clinical Proteomic Tumor Analysis Consortium (CPTAC). The clinical
 1355 proteomic tumor analysis consortium cutaneous melanoma collection (cptac-cm), 2018b. URL
 1356 <https://www.cancerimagingarchive.net/collection/cptac-cm/>.
 1357

1358 National Cancer Institute Clinical Proteomic Tumor Analysis Consortium (CPTAC). The clinical
 1359 proteomic tumor analysis consortium head and neck squamous cell carcinoma collection (cptac-
 1360 hnscc) (version 19) [data set], 2018. URL <https://www.cancerimagingarchive.net/collection/cptac-hnscc>.
 1361

1362 National Cancer Institute Clinical Proteomic Tumor Analysis Consortium (CPTAC). The clinical
 1363 proteomic tumor analysis consortium lung adenocarcinoma collection (cptac-luad) (version 12)
 1364 [data set], 2018. URL <https://www.cancerimagingarchive.net/collection/cptac-luad>.
 1365

1366 National Cancer Institute Clinical Proteomic Tumor Analysis Consortium (CPTAC). The clinical
 1367 proteomic tumor analysis consortium uterine corpus endometrial carcinoma collection (cptac-
 1368 ucec), 2019a. URL [https://www.cancerimagingarchive.net/collection/cptac-ucec/](https://www.cancerimagingarchive.net/collection/cptac-ucec).
 1369

1370 National Cancer Institute Clinical Proteomic Tumor Analysis Consortium (CPTAC). The clinical
 1371 proteomic tumor analysis consortium sarcomas collection (cptac-sar), 2019b. URL [https://www.cancerimagingarchive.net/collection/cptac-sar/](https://www.cancerimagingarchive.net/collection/cptac-sar).
 1372

1373 Ilya Nelkenbaum, Galia Tsarfaty, Nahum Kiryati, Eli Konen, and Arnaldo Mayer. Automatic
 1374 segmentation of white matter tracts using multiple brain mri sequences. In *2020 IEEE 17th
 1375 International Symposium on Biomedical Imaging (ISBI)*, pp. 368–371, 2020.
 1376

1377 Cancer Genome Atlas Network et al. Comprehensive molecular characterization of human colon and
 1378 rectal cancer. *Nature*, 487(7407):330, 2012.
 1379

1380 Duc Nguyen, DungNB, Ha Q. Nguyen, Julia Elliott, NguyenThanhNhan, and Phil Culliton. Vin-
 1381 bigdata chest x-ray abnormalities detection. <https://kaggle.com/competitions/vinbigdata-chest-xray-abnormalities-detection>, 2020. Kaggle.
 1382

1383 Uyen TV Nguyen, Alauddin Bhuiyan, Laurence AF Park, Ryo Kawasaki, Tien Y Wong, Jie Jin Wang,
 1384 Paul Mitchell, and Kotagiri Ramamohanarao. An automated method for retinal arteriovenous
 1385 nicking quantification from color fundus images. *IEEE Transactions on Biomedical Engineering*,
 1386 60(11):3194–3203, 2013.
 1387

1388 Guy Nir, Soheil Hor, Davood Karimi, Ladan Fazli, Brian F Skinnider, Peyman Tavassoli, Dmitry
 1389 Turbin, Carlos F Villamil, Gang Wang, R Storey Wilson, et al. Automatic grading of prostate cancer
 1390 in digitized histopathology images: Learning from multiple experts. *Medical Image Analysis*, 50:
 1391 167–180, 2018a.
 1392

1393 Guy Nir, Soheil Hor, Davood Karimi, Ladan Fazli, Brian F Skinnider, Peyman Tavassoli, Dmitry
 1394 Turbin, Carlos F Villamil, Gang Wang, R Storey Wilson, et al. Automatic grading of prostate cancer
 1395 in digitized histopathology images: Learning from multiple experts. *Medical Image Analysis*, 50:
 1396 167–180, 2018b.
 1397

1398 Chinedu Innocent Nwoye, Deepak Alappatt, Tong Yu, Armine Vardazaryan, Fangfang Xia, Zixuan
 1399 Zhao, Tong Xia, Fucang Jia, Yuxuan Yang, Hao Wang, Derong Yu, Guoyan Zheng, Xiaotian
 1400 Duan, Neil Getty, Ricardo Sanchez-Matilla, Maria Robu, Li Zhang, Huabin Chen, Jiacheng Wang,
 1401 Liansheng Wang, Bokai Zhang, Beerend Gerats, Sista Raviteja, Rachana Sathish, Rong Tao,
 1402 Satoshi Kondo, Winnie Pang, Hongliang Ren, Julian Ronald Abbing, Mohammad Hasan Sarhan,
 1403 Sebastian Bodenstedt, Nithya Bhasker, Bruno Oliveira, Helena R. Torres, Li Ling, Finn Gaida,
 Tobias Czempiel, João L. Vilaça, Pedro Morais, Jaime Fonseca, Ruby Mae Egging, Inge Nicole
 Wijma, Chen Qian, Guibin Bian, Zhen Li, Velmurugan Balasubramanian, Debdoot Sheet, Imanol
 Luengo, Yuanbo Zhu, Shuai Ding, Jakob-Anton Aschenbrenner, Nicolas Elini van der Kar, Mengya

1404 Xu, Mobarakol Islam, Lalithkumar Seenivasan, Alexander Jenke, Danail Stoyanov, Didier Mutter,
 1405 Pietro Mascagni, Barbara Seeliger, Cristians Gonzalez, and Nicolas Padoy. Cholectriplet2021: A
 1406 benchmark challenge for surgical action triplet recognition. *Medical Image Analysis*, 86:102803,
 1407 2023.

1408 OpenAI. Addendum to GPT-4o system card: Native image generation. Technical report, OpenAI, March 2025. URL https://cdn.openai.com/11998be9-5319-4302-bfbf-1167e093f1fb/Native_Image_Generation_System_Card.pdf. Accessed: 2025-05-16.

1413 OpenMEDLab. MedFM ChestDR 2023 Chest X-Ray Disease Screening Dataset. NeurIPS MedFM
 1414 Challenge Dataset, 2023.

1415 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 1416 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. DINOv2: Learning
 1417 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

1419 StructSeg Challenge Organizers. StructSeg2019: Head & Neck OAR Segmentation. MICCAI 2019
 1420 Challenge Dataset, 2019.

1422 Silvia Ovreiu, Elena-Anca Paraschiv, and Elena Ovreiu. Deep learning & digital fundus images:
 1423 Glaucoma detection using densenet. In *2021 13th International Conference on Electronics,
 1424 Computers and Artificial Intelligence*, pp. 1–4, 2021.

1425 Danielle F Pace, Adrian V Dalca, Tal Geva, Andrew J Powell, Mehdi H Moghari, and Polina Golland.
 1426 Interactive whole-heart segmentation in congenital heart disease. In *Medical Image Computing and
 1427 Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany,
 1428 October 5–9, 2015, Proceedings, Part III* 18, pp. 80–88. Springer, 2015.

1430 Andre GC Pacheco, Gustavo R Lima, Amanda S Salomao, Breno Krohling, Igor P Biral, Gabriel G
 1431 de Angelo, Fábio CR Alves Jr, José GM Esgario, Alana C Simora, Pedro BC Castro, et al. Pad-ufes-
 1432 20: A skin lesion dataset composed of patient data and clinical images collected from smartphones.
 1433 *Data in Brief*, 32:106221, 2020.

1434 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 1435 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 1436 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 1437 Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance deep
 1438 learning library. In *Advances in Neural Information Processing Systems*, pp. 8024–8035, 2019.

1439 Sarthak Pati, Ruchika Verma, Hamed Akbari, Michel Bilello, Virginia B Hill, Chiharu Sako, Ramon
 1440 Correa, Niha Beig, Ludovic Venet, Siddhesh Thakur, et al. Reproducibility analysis of multi-
 1441 institutional paired expert annotations and radiomic features of the ivy glioblastoma atlas project
 1442 (Ivy GAP) dataset. *Medical Physics*, 47(12):6039–6052, 2020.

1444 M. Patnana, S. Patel, and A. Tsao. Anti-PD-1 immunotherapy melanoma dataset [data set], 2019.

1445 Lina Pedraza, Carlos Vargas, Fabián Narváez, Oscar Durán, Emma Muñoz, and Eduardo Romero.
 1446 An open access thyroid ultrasound image database. In *10th International Symposium on Medical
 1447 Information Processing and Analysis*, volume 9287, pp. 188–193, 2015.

1449 João Pedrosa, Guilherme Aresta, Carlos Ferreira, Márcio Rodrigues, Patrícia Leitão, André Silva
 1450 Carvalho, João Rebelo, Eduardo Negrão, Isabel Ramos, António Cunha, et al. LNDb: a lung
 1451 nodule database on computed tomography. *arXiv preprint arXiv:1911.08434*, 2019.

1452 Peking University International Competition on Ocular Disease Intelligent Recognition (ODIR-2019).
 1453 Ocular disease intelligent recognition (odir-2019) [data set], 2019. URL <https://odir2019.grand-challenge.org/introduction/>. Accessed: 2025-05-22.

1456 Yifan Peng, Yuxing Tang, Sungwon Lee, Yingying Zhu, Ronald M Summers, and Zhiyong Lu.
 1457 Covid-19-ct-cxr: a freely accessible and weakly labeled chest x-ray and ct image collection on
 covid-19 from biomedical literature. *IEEE transactions on big data*, 7(1):3–12, 2020.

1458 Etta D Pisano and Martin J Yaffe. Digital mammography. *Radiology*, 234(2):353–362, 2005.
 1459

1460 Marco Pizzolato, Marco Palombo, Elisenda Bonet-Carne, Chantal M. W. Tax, Francesco Grussu, An-
 1461 drada Ianus, Fabian Bogusz, Tomasz Pieciak, Lipeng Ning, Hugo Larochelle, Maxime Descoteaux,
 1462 Maxime Chamberland, Stefano B. Blumberg, Thomy Mertzanidou, Daniel C. Alexander, Maryam
 1463 Afzali, Santiago Aja-Fernández, Derek K. Jones, Carl-Fredrik Westin, Yogesh Rathi, Steven H.
 1464 Baete, Lucilio Cordero-Grande, Thilo Ladner, Paddy J. Slator, Joseph V. Hajnal, Jean-Philippe Thi-
 1465 ran, Anthony N. Price, Farshid Sepehrband, Fan Zhang, and Jana Hutter. Acquiring and predicting
 1466 multidimensional diffusion (mudi) data: An open challenge. In Elisenda Bonet-Carne, Jana Hutter,
 1467 Marco Palombo, Marco Pizzolato, Farshid Sepehrband, and Fan Zhang (eds.), *Computational
 1468 Diffusion MRI*, pp. 195–208, 2020.

1469 Alibaba Tianchi Platform. Diabetic retinopathy arranged dataset. <https://tianchi.aliyun.com/dataset/93926>, 2023. Accessed: 2021-03-10.
 1470

1471 Gašper Podobnik, Primož Strojan, Primož Peterlin, Bulat Ibragimov, and Tomaž Vrtovec. Han-
 1472 seg: The head and neck organ-at-risk ct and mr segmentation dataset. *Medical Physics*, 50(3):
 1473 1917–1927, 2023.

1474 Prasanna Porwal, Samiksha Pachade, Manesh Kokare, Girish Deshmukh, Jaemin Son, Woong Bae,
 1475 Lihong Liu, Jianzong Wang, Xinhui Liu, Liangxin Gao, TianBo Wu, Jing Xiao, Fengyan Wang,
 1476 Baocai Yin, Yunzhi Wang, Gopichandh Danala, Linsheng He, Yoon Ho Choi, Yeong Chan Lee,
 1477 Sang-Hyuk Jung, Zhongyu Li, Xiaodan Sui, Junyan Wu, Xiaolong Li, Ting Zhou, Janos Toth,
 1478 Agnes Baran, Avinash Kori, Sai Saketh Chennamsetty, Mohammed Safwan, Varghese Alex,
 1479 Xingzheng Lyu, Li Cheng, Qinhao Chu, Pengcheng Li, Xin Ji, Sanyuan Zhang, Yaxin Shen, Ling
 1480 Dai, Oindrila Saha, Rachana Sathish, Tânia Melo, Teresa Araújo, Balazs Harangi, Bin Sheng,
 1481 Ruogu Fang, Debdoot Sheet, Andras Hajdu, Yuanjie Zheng, Ana Maria Mendonça, Shaoting
 1482 Zhang, Aurélio Campilho, Bin Zheng, Dinggang Shen, Luca Giancardo, Gwenolé Quellec, and
 1483 Fabrice Mériadeau. IDRiD: Diabetic retinopathy – segmentation and grading challenge. *Medical
 1484 Image Analysis*, 59:101561, 2020.

1485 Mohit Prabhushankar, Kiran Kokilepersaud, Yash-yeo Logan, Stephanie Trejo Corona, Ghassan
 1486 AlRegib, and Charles Wykoff. Olives dataset: Ophthalmic labels for investigating visual eye
 1487 semantics. *Advances in Neural Information Processing Systems*, 35:9201–9216, 2022.

1488 Praveen Govi. Coronahack - chest x-ray-dataset. <https://www.kaggle.com/datasets/praveengovi/coronahack-chest-xraydataset>, 2019. Kaggle dataset (uploader:
 1489 praveengovi). Accessed 2025-08-21.
 1490

1492 Pavle Prentašić, Sven Lončarić, Zoran Vatavuk, Goran Benčić, Marko Subašić, Tomislav Petković,
 1493 Lana Dujmović, Maja Malenica-Ravlić, Nikolina Budimlija, and Rašeljka Tadić. Diabetic retinopa-
 1494 thy image database (driddb): a new database for diabetic retinopathy screening programs research.
 1495 In *2013 8th International symposium on Image and Signal Processing and Analysis (ISPA)*, pp.
 1496 711–716, 2013.

1497 Bo Qian, Hao Chen, Xiangning Wang, Haoxuan Che, Gitaek Kwon, Jaeyoung Kim, Sungjin Choi,
 1498 Seoyoung Shin, Felix Krause, Markus Unterdechler, et al. Drac: diabetic retinopathy analysis
 1499 challenge with ultra-wide optical coherence tomography angiography images. *arXiv preprint
 1500 arXiv:2304.02389*, 2023.

1501 Liao Qu, Huichao Zhang, Yiheng Liu, Xu Wang, Yi Jiang, Yiming Gao, Hu Ye, Daniel K Du, Zehuan
 1502 Yuan, and Xinglong Wu. Tokenflow: Unified image tokenizer for multimodal understanding and
 1503 generation. *arXiv preprint arXiv:2412.03069*, 2024.

1504 Félix Quinton, Romain Popoff, Benoît Presles, Sarah Leclerc, Fabrice Mériadeau, Guillaume
 1505 Nodari, Olivier Lopez, Julie Pellegrinelli, Olivier Chevallier, Dominique Ginhac, Jean-Marc
 1506 Vigneaud, and Jean-Louis Alberini. A tumour and liver automatic segmentation (atlas) dataset on
 1507 contrast-enhanced magnetic resonance imaging for hepatocellular carcinoma. *Data*, 8(5), 2023.

1508 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 1509 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 1510 Learning transferable visual models from natural language supervision. In *International Conference
 1511 on Machine Learning*, pp. 8748–8763, 2021.

1512 Pranav Rajpurkar, Jeremy Irvin, Aarti Bagul, Daisy Ding, Tony Duan, Hershel Mehta, Brandon
 1513 Yang, Kaylie Zhu, Dillon Laird, Robyn L. Ball, Curtis Langlotz, Katie Shpanskaya, Matthew P.
 1514 Lungren, and Andrew Y. Ng. MURA: Large dataset for abnormality detection in musculoskeletal
 1515 radiographs. *arXiv preprint arXiv:1712.06957*, 2017.

1516 Sucheng Ren, Xiaoke Huang, Xianhang Li, Junfei Xiao, Jieru Mei, Zeyu Wang, Alan Yuille,
 1517 and Yuyin Zhou. Medical vision generalist: Unifying medical imaging tasks in context.
 1518 *arXiv:2406.05565*, 2024.

1519

1520 Blaine Rister, Darvin Yi, Kaushik Shivakumar, Tomomi Nobashi, and Daniel L Rubin. CT-ORG, a
 1521 new dataset for multiple organ segmentation in computed tomography. *Scientific Data*, 7(1):381,
 1522 2020.

1523

1524 Veronica Rotemberg, Nicholas Kurtansky, Brigid Betz-Stablein, Liam Caffery, Emmanouil
 1525 Chousakos, Noel Codella, Marc Combalia, Stephen Dusza, Pascale Guitera, David Gutman,
 1526 et al. A patient-centric dataset of images and metadata for identifying melanomas using clinical
 1527 context. *Scientific Data*, 8(1):34, 2021.

1528

1529 Holger R Roth, Le Lu, Amal Farag, Hoo-Chang Shin, Jiamin Liu, Evrim B Turkbey, and Ronald M
 1530 Summers. Deeporgan: Multi-level deep convolutional networks for automated pancreas seg-
 1531 mentation. In *Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part I* 18, pp.
 1532 556–564. Springer, 2015.

1533

1534 Holger R Roth, Ziyue Xu, Carlos Tor-Díez, Ramon Sanchez Jacob, Jonathan Zember, Jose Molto,
 1535 Wenqi Li, Sheng Xu, Baris Turkbey, Evrim Turkbey, et al. Rapid artificial intelligence solutions in
 1536 a pandemic—the covid-19-20 lung ct lesion segmentation challenge. *Medical Image Analysis*, 82:
 102605, 2022.

1537

1538 Aurko Roy, Ashish Vaswani, Arvind Neelakantan, and Niki Parmar. Theory and experiments on
 1539 vector quantized autoencoders. *arXiv preprint arXiv:1805.11063*, 2018.

1540

1541 Johannes Rückert, Louise Bloch, Raphael Brüngel, Ahmad Idrissi-Yaghbir, Henning Schäfer, Cynthia S
 1542 Schmidt, Sven Koitka, Obioma Pelka, Asma Ben Abacha, Alba G. Seco de Herrera, et al. ROCOV2:
 1543 Radiology objects in context version 2, an updated multimodal image dataset. *Scientific Data*, 11
 1544 (1):688, 2024.

1545

1546 Rina D. Rudyanto, Sjoerd Kerkstra, Eva M. van Rikxoort, Catalin Fetita, Pierre-Yves Brillet,
 1547 Christophe Lefevre, Wenzhe Xue, Xiangjun Zhu, Jianming Liang, İlkay Öksüz, Devrim Ünay,
 1548 Kamuran Kadipaşaoglu, Raúl San José Estépar, James C. Ross, George R. Washko, Juan-Carlos
 1549 Prieto, Marcela Hernández Hoyos, Maciej Orkisz, Hans Meine, Markus Hüllebrand, Christina
 1550 Stöcker, Fernando Lopez Mir, Valery Naranjo, Eliseo Villanueva, Marius Staring, Changyan Xiao,
 1551 Berend C. Stoel, Anna Fabijanska, Erik Smistad, Anne C. Elster, Frank Lindseth, Amir Hossein
 1552 Foruzan, Ryan Kiros, Karteek Popuri, Dana Cobzas, Daniel Jimenez-Carretero, Andres Santos,
 1553 Maria J. Ledesma-Carbayo, Michael Helmberger, Martin Urschler, Michael Pienn, Dennis G.H.
 1554 Bosboom, Arantza Campo, Mathias Prokop, Pim A. de Jong, Carlos Ortiz de Solorzano, Arrate
 1555 Muñoz-Barrutia, and Bram van Ginneken. Comparing algorithms for automated vessel segmen-
 1556 tation in computed tomography scans of the lung: the vessel12 study. *Medical Image Analysis*, 18
 1557 (7):1217–1232, 2014.

1558

1559 J. Saltz, M. Saltz, P. Prasanna, R. Moffitt, J. Hajagos, E. Bremer, J. Balsamo, and T. Kurc. Stony brook university covid-19 positive cases [data set], 2021. URL <https://www.cancerimagingarchive.net/collection/covid-19-ny-sbu>.

1560

1561 Abdullah Sarhan, Jon Rokne, Reda Alhajj, and Andrew Crichton. Transfer learning through weighted
 1562 loss function and group normalization for vessel segmentation from retinal images. In *2020 25th
 1563 International Conference on Pattern Recognition (ICPR)*, pp. 9211–9218, 2021.

1564

1565 Klaus Schoeffmann, Mario Taschwer, Stephanie Sarny, Bernd Münzer, Manfred Jürgen Primus, and
 1566 Doris Putzgruber. Cataract-101: video dataset of 101 cataract surgeries. In *Proceedings of the 9th
 1567 ACM Multimedia Systems Conference*, pp. 421–425, 2018.

1566 Jarrel Seah, Jen, Maggie, Meng Law, Phil Culliton, and Sarah Dowd. Ranzcr clip
 1567 - catheter and line position challenge. [https://kaggle.com/competitions/](https://kaggle.com/competitions/ranzcr-clip-catheter-line-classification)
 1568 [ranzcr-clip-catheter-line-classification](https://kaggle.com/competitions/ranzcr-clip-catheter-line-classification), 2020. Kaggle.
 1569

1570 Anjany Sekuboyina, Malek E Husseini, Amirkhossein Bayat, Maximilian Löffler, Hans Liebl, Hongwei
 1571 Li, Giles Tetteh, Jan Kukačka, Christian Payer, Darko Štern, et al. Verse: a vertebrae labelling and
 1572 segmentation benchmark for multi-detector ct images. *Medical Image Analysis*, 73:102166, 2021a.

1573 Anjany Sekuboyina, Malek E. Husseini, Amirkhossein Bayat, Maximilian Löffler, Hans Liebl, Hong-
 1574 wei Li, Giles Tetteh, Jan Kukačka, Christian Payer, Darko Štern, Martin Urschler, Maodong
 1575 Chen, Dalong Cheng, Nikolas Lessmann, Yujin Hu, Tianfu Wang, Dong Yang, Daguang Xu,
 1576 Felix Ambellan, Tamaz Amiranashvili, Moritz Ehlke, Hans Lamecker, Sebastian Lehnert, Marilia
 1577 Lirio, Nicolás Pérez de Olaguer, Heiko Ramm, Manish Sahu, Alexander Tack, Stefan Zachow,
 1578 Tao Jiang, Xinjun Ma, Christoph Angerman, Xin Wang, Kevin Brown, Alexandre Kirszenberg,
 1579 Élodie Puybareau, Di Chen, Yiwei Bai, Brandon H. Rapazzo, Timyoas Yeah, Amber Zhang,
 1580 Shangliang Xu, Feng Hou, Zhiqiang He, Chan Zeng, Zheng Xiangshang, Xu Liming, Tucker J.
 1581 Netherton, Raymond P. Mumme, Laurence E. Court, Zixun Huang, Chenhang He, Li-Wen Wang,
 1582 Sai Ho Ling, Lê Duy Huỳnh, Nicolas Bouthy, Roman Jakubicek, Jiri Chmelik, Supriti Mulay, Mo-
 1583 hanasankar Sivaprakasam, Johannes C. Paetzold, Suprosanna Shit, Ivan Ezhov, Benedikt Wiestler,
 1584 Ben Glocker, Alexander Valentinitisch, Markus Rempfler, Björn H. Menze, and Jan S. Kirschke.
 1585 Verse: A vertebrae labelling and segmentation benchmark for multi-detector ct images. *Medical*
 1586 *Image Analysis*, 73:102166, 2021b.

1587 Arnaud Arindra Adiyoso Setio, Alberto Traverso, Thomas De Bel, Moira SN Berens, Cas Van
 1588 Den Bogaard, Piergiorgio Cerello, Hao Chen, Qi Dou, Maria Evelina Fantacci, Bram Geurts,
 1589 et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary
 1590 nodules in computed tomography images: the LUNA16 challenge. *Medical Image Analysis*, 42:
 1591 1–13, 2017.

1592 Ahmed Shahin, Carmela Wegworth, David, Elizabeth Estes, Julia Elliott, Justin Zita, SimonWalsh,
 1593 Slepets, and Will Cukierski. Osic pulmonary fibrosis progression. <https://kaggle.com/competitions/osic-pulmonary-fibrosis-progression>, 2020. Kaggle.
 1594

1595 Jonathan Shapey, Aaron Kujawa, Reuben Dorent, Guotai Wang, Alexis Dimitriadis, Diana Grishchuk,
 1596 Ian Paddick, Neil Kitchen, Robert Bradford, Shakeel R Saeed, et al. Segmentation of vestibular
 1597 schwannoma from mri, an open annotated dataset and baseline algorithm. *Scientific Data*, 8(1):
 1598 286, 2021.

1599 S. Shikamaru. Glaucoma detection [data set], 2021. URL <https://www.kaggle.com/datasets/sshikamaru/glaucoma-detection>. Accessed: 2025-05-22.

1600 Junji Shiraishi, Shigehiko Katsuragawa, Junpei Ikezoe, Tsuneo Matsumoto, Takeshi Kobayashi,
 1601 Ken-ichi Komatsu, Mitate Matsui, Hiroshi Fujita, Yoshie Kodera, and Kunio Doi. Development of
 1602 a digital image database for chest radiographs with and without a lung nodule: receiver operating
 1603 characteristic analysis of radiologists' detection of pulmonary nodules. *American Journal of*
 1604 *Roentgenology*, 174(1):71–74, 2000.

1605 Nadya Shusharina and Thomas Bortfeld. Glioma image segmentation for radiotherapy: Rt tar-
 1606 gets, barriers to cancer spread, and organs at risk (glis-rt), 2021. URL <https://www.cancerimagingarchive.net/collection/glis-rt/>.

1607 Julio Silva-Rodríguez, Adrián Colomer, María A Sales, Rafael Molina, and Valery Naranjo. Going
 1608 deeper through the gleason scoring scale: An automatic end-to-end system for histology prostate
 1609 grading and cribriform pattern detection. *Computer Methods and Programs in Biomedicine*, 195:
 1610 105637, 2020.

1611 Korsuk Sirinukunwattana, Josien P.W. Pluim, Hao Chen, Xiaojuan Qi, Pheng-Ann Heng, Yun Bo
 1612 Guo, Li Yang Wang, Bogdan J. Matuszewski, Elia Bruni, Urko Sanchez, Anton Böhm, Olaf
 1613 Ronneberger, Bassem Ben Cheikh, Daniel Racoceanu, Philipp Kainz, Michael Pfeiffer, Martin
 1614 Urschler, David R.J. Snead, and Nasir M. Rajpoot. Gland segmentation in colon histology images:
 1615 The glas challenge contest. *Medical Image Analysis*, 35:489–502, 2017.

1620 Jayanthi Sivaswamy, SR Krishnadas, Gopal Datt Joshi, Madhulika Jain, and A Ujjwaft Syed Tabish.
 1621 Drishti-gs: Retinal image dataset for optic nerve head (ohn) segmentation. In *2014 IEEE 11th*
 1622 *International Symposium on Biomedical Imaging (ISBI)*, pp. 53–56, 2014.

1623

1624 Ecem Sogancioglu, Bram Van Ginneken, Finn Behrendt, Marcel Bengs, Alexander Schlaefer, Miron
 1625 Radu, Di Xu, Ke Sheng, Fabien Scalzo, Eric Marcus, et al. Nodule detection and generation on
 1626 chest x-rays: Node21 challenge. *IEEE Transactions on Medical Imaging*, 2024.

1627

1628 Md Fahimuzzman Sohan. So you need datasets for your covid-19 detection research using machine
 1629 learning? *arXiv preprint arXiv:2008.05906*, 2020.

1630

1631 Shuang Song, Rui Xu, Yong Luo, Bo Du, Jiancheng Yang, Kaiming Kuang, Yunlang She, and
 1632 Mengmeng Zhao. Mela dataset: A benchmark for mediastinal lesion analysis (training set part 1),
 May 2022a. URL <https://doi.org/10.5281/zenodo.6575197>.

1633

1634 Shuang Song, Rui Xu, Yong Luo, Bo Du, Jiancheng Yang, Kaiming Kuang, Yunlang She, and
 1635 Mengmeng Zhao. Mela dataset: A benchmark for mediastinal lesion analysis (training set part 2),
 May 2022b. URL <https://doi.org/10.5281/zenodo.6575270>.

1636

1637 Shuang Song, Rui Xu, Yong Luo, Bo Du, Jiancheng Yang, Kaiming Kuang, Yunlang She, and
 1638 Mengmeng Zhao. Mela dataset: A benchmark for mediastinal lesion analysis (training set part 3),
 May 2022c. URL <https://doi.org/10.5281/zenodo.6575407>.

1639

1640 Shuang Song, Rui Xu, Yong Luo, Bo Du, Jiancheng Yang, Kaiming Kuang, Yunlang She, and
 1641 Mengmeng Zhao. Mela dataset: A benchmark for mediastinal lesion analysis (validation set and
 1642 annotation), May 2022d. URL <https://doi.org/10.5281/zenodo.6597131>.

1643

1644 Fabio A Spanhol, Luiz S Oliveira, Caroline Petitjean, and Laurent Heutte. A dataset for breast cancer
 1645 histopathological image classification. *IEEE Transactions on Biomedical Engineering*, 63(7):
 1646 1455–1462, 2015.

1647

1648 J. Staal, M.D. Abramoff, M. Niemeijer, M.A. Viergever, and B. van Ginneken. Ridge-based vessel
 1649 segmentation in color images of the retina. *IEEE Transactions on Medical Imaging*, 23(4):501–509,
 2004.

1650

1651 Sergii Stirenko, Yuriy Kochura, Oleg Alienin, Oleksandr Rokovy, Yuri Gordienko, Peng Gang,
 1652 and Wei Zeng. Chest x-ray analysis of tuberculosis by deep learning with segmentation and
 1653 augmentation. In *2018 IEEE 38th International Conference on Electronics and Nanotechnology*
 (ELNANO), pp. 422–428, 2018.

1654

1655 Martin Styner, Joohwi Lee, Brian Chin, M Chin, Olivier Commowick, H Tran, Silva Markovic-Plese,
 1656 Valerie Jewells, and Simon Warfield. 3d segmentation in the clinic: A grand challenge ii: Ms
 1657 lesion segmentation. *MIDAS journal*, 2008:1–6, 2008.

1658

1659 Sanjay Subramanian, Lucy Lu Wang, Ben Bogin, Sachin Mehta, Madeleine van Zuylen, Sravanthi
 1660 Parasa, Sameer Singh, Matt Gardner, and Hannaneh Hajishirzi. MedICaT: A dataset of medical
 1661 images, captions, and textual references. In *Findings of the Association for Computational*
 1662 *Linguistics: EMNLP 2020*, pp. 2112–2120, 2020.

1663

1664 Carole H Sudre, Kimberlin Van Wijnen, Florian Dubost, Hieab Adams, David Atkinson, Frederik
 1665 Barkhof, Mahlet A Birhanu, Esther E Bron, Robin Camarasa, Nish Chaturvedi, et al. Where is
 1666 valdo? vascular lesions detection and segmentation challenge at miccai 2021. *Medical Image*
 1667 *Analysis*, 91:103029, 2024.

1668

1669 Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
 1670 Autoregressive model beats diffusion: Llama for scalable image generation. *arXiv preprint*
 1671 *arXiv:2406.06525*, 2024.

1672

1673 Siham Tabik, Anabel Gómez-Ríos, José Luis Martín-Rodríguez, Iván Sevillano-García, Manuel
 1674 Rey-Area, David Charte, Emilio Guirado, Juan-Luis Suárez, Julián Luengo, MA Valero-González,
 1675 et al. COVIDGR dataset and COVID-SDNet methodology for predicting covid-19 based on chest
 1676 x-ray images. *IEEE Journal of Biomedical and Health Informatics*, 24(12):3595–3605, 2020.

1674 Ryutaro Tanno, David G. T. Barrett, Andrew Sellergren, Sumedh Ghaisas, Sumanth Dathathri, Abigail
 1675 See, Johannes Welbl, Charles Lau, Tao Tu, Shekoofeh Azizi, Karan Singhal, Mike Schaeckermann,
 1676 Rhys May, Roy Lee, SiWai Man, Sara Mahdavi, Zahra Ahmed, Yossi Matias, Joelle Barral,
 1677 S. M. Ali Eslami, Danielle Belgrave, Yun Liu, Sreenivasa Raju Kalidindi, Shravya Shetty, Vivek
 1678 Natarajan, Pushmeet Kohli, Po-Sen Huang, Alan Karthikesalingam, and Ira Ktena. Collaboration
 1679 between clinicians and vision-language models in radiology report generation. *Nature Medicine*,
 1680 31(2):599–608, 2025.

1681 National Lung Screening Trial Research Team. The national lung screening trial: overview and study
 1682 design. *Radiology*, 258(1):243–253, 2011.

1683

1684 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
 1685 Scalable image generation via next-scale prediction. *Advances in neural information processing
 1686 systems*, 37:84839–84865, 2024.

1687 Kimberley M. Timmins, Irene C. van der Schaaf, Edwin Bennink, Ynte M. Ruigrok, Xingle An,
 1688 Michael Baumgartner, Pascal Bourdon, Riccardo De Feo, Tommaso Di Noto, Florian Dubost,
 1689 Augusto Fava-Sanches, Xue Feng, Corentin Giroud, Inteneur Group, Minghui Hu, Paul F. Jaeger,
 1690 Juhana Kaiponen, Michał Klimont, Yuexiang Li, Hongwei Li, Yi Lin, Timo Loehr, Jun Ma,
 1691 Klaus H. Maier-Hein, Guillaume Marie, Bjoern Menze, Jonas Richiardi, Saifeddine Rjiba, Dhaval
 1692 Shah, Suprosanna Shit, Jussi Tohka, Thierry Urruty, Urszula Walińska, Xiaoping Yang, Yunqiao
 1693 Yang, Yin Yin, Birgitta K. Velthuis, and Hugo J. Kuijf. Comparing methods of detecting and
 1694 segmenting unruptured intracranial aneurysms on tof-mras: The adam challenge. *NeuroImage*,
 1695 238:118216, 2021.

1696 T Tong and M Li. Abdominal or pelvic enhanced ct images within 10 days before surgery of 230
 1697 patients with stage ii colorectal cancer (stageii-colorectal-ct)[dataset]. *The Cancer Imaging Archive*,
 1698 2022.

1699

1700 Emily B Tsai, Scott Simpson, Matthew P Lungren, Michelle Hershman, Leonid Roshkovan, Errol
 1701 Colak, Bradley J Erickson, George Shih, Anouk Stein, Jayashree Kalpathy-Cramer, et al. The rsna
 1702 international covid-19 open radiology database (ricord). *Radiology*, 299(1):E204–E213, 2021.

1703 Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The HAM10000 dataset, a large collection of
 1704 multi-source dermatoscopic images of common pigmented skin lesions. *Scientific Data*, 5(1):1–9,
 1705 2018.

1706 Martin Vallieres, Emily Kay-Rivest, Léo Jean Perrin, Xavier Liem, Christophe Furstoss, Hugo JW
 1707 Aerts, Nader Khaouam, Phuc Felix Nguyen-Tan, Chang-Shu Wang, Khalil Sultanem, et al. Ra-
 1708 diomics strategies for risk assessment of tumour failure in head-and-neck cancer. *Scientific Reports*,
 1709 7(1):10117, 2017.

1710

1711 Aaron Van Den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning.
 1712 *Advances in Neural Information Processing Systems*, 30, 2017.

1713

1714 Bram van Ginneken. Lola11, April 2021. URL <https://doi.org/10.5281/zenodo.4708800>.

1715

1716 Bram Van Ginneken, Samuel G Armato III, Bartjan de Hoop, Saskia van Amelsvoort-van de Vorst,
 1717 Thomas Duindam, Meindert Niemeijer, Keelin Murphy, Arnold Schilham, Alessandra Retico,
 1718 Maria Evelina Fantacci, et al. Comparing and combining algorithms for computer-aided detection
 1719 of pulmonary nodules in computed tomography scans: the anode09 study. *Medical Image Analysis*,
 1720 14(6):707–722, 2010.

1721

1722 Mart van Rijthoven, Witali Aswolinskiy, Leslie Tessier, and Francesco Ciompi. Tiger training
 1723 dataset (roi-level annotations of wsirois subset), 2022. URL <https://zenodo.org/record/6014422>.

1724

1725 Maya Varma, Ashwin Kumar, Rogier van der Sluijs, Sophie Ostmeier, Louis Blankemeier, Pierre
 1726 Chambon, Christian Bluethgen, Jip Prince, Curtis Langlotz, and Akshay Chaudhari. MedVAE:
 1727 Efficient automated interpretation of medical images with large-scale generalizable autoencoders.
arXiv:2502.14753, 2025.

1728 Ruchika Verma, Neeraj Kumar, Abhijeet Patil, Nikhil Cherian Kurian, Swapnil Rane, Simon Gra-
 1729 ham, Quoc Dang Vu, Mieke Zwager, Shan E. Ahmed Raza, Nasir Rajpoot, Xiyi Wu, Huai Chen,
 1730 Yijie Huang, Lisheng Wang, Hyun Jung, G. Thomas Brown, Yanling Liu, Shuolin Liu, Seyed
 1731 Alireza Fatemi Jahromi, Ali Asghar Khani, Ehsan Montahaei, Mahdieh Soleymani Baghshah,
 1732 Hamid Behroozi, Pavel Semkin, Alexandre Rassadin, Prasad Dutande, Romil Lodaya, Ujjwal Baid,
 1733 Bhakti Baheti, Sanjay Talbar, Amirreza Mahbod, Rupert Ecker, Isabella Ellinger, Zhipeng Luo, Bin
 1734 Dong, Zhengyu Xu, Yuehan Yao, Shuai Lv, Ming Feng, Kele Xu, Hasib Zunair, Abdessamad Ben
 1735 Hamza, Steven Smiley, Tang-Kai Yin, Qi-Rui Fang, Shikhar Srivastava, Dwarikanath Mahapatra,
 1736 Lubomira Trnavska, Hanyun Zhang, Priya Lakshmi Narayanan, Justin Law, Yinyin Yuan, Ab-
 1737 hiroop Tejomay, Aditya Mitkari, Dinesh Koka, Vikas Ramachandra, Lata Kini, and Amit Sethi.
 1738 Monusac2020: A multi-organ nuclei segmentation and classification challenge. *IEEE Transactions*
 1739 *on Medical Imaging*, 40(12):3413–3423, 2021.

1740 Iris Vos, Ynte Ruigrok, and Hugo Kuijf. Results of the crown challenge on automated assessment of
 1741 circle of willis morphology. In *Medical Imaging with Deep Learning*, 2024.

1742 Chuanbo Wang, Amirreza Mahbod, Isabella Ellinger, Adrian Galdran, Sandeep Gopalakrishnan,
 1743 Jeffrey Niezgoda, and Zeyun Yu. Fuseg: The foot ulcer segmentation challenge. *Information*, 15
 1744 (3):140, 2024a.

1745 Dequan Wang, Xiaosong Wang, Lilong Wang, Mengzhang Li, Qian Da, Xiaoqiang Liu, Xiangyu
 1746 Gao, Jun Shen, Junjun He, Tian Shen, et al. A real-world dataset and benchmark for foundation
 1747 model adaptation in medical image classification. *Scientific Data*, 10(1):574, 2023.

1748 Linda Wang, Zhong Qiu Lin, and Alexander Wong. Covid-net: a tailored deep convolutional neural
 1749 network design for detection of covid-19 cases from chest x-ray images. *Scientific Reports*, 10(1):
 1750 19549, Nov 2020.

1751 Wenxuan Wang, Fan Zhang, Yufeng Cui, Haiwen Diao, Zhuoyan Luo, Huchuan Lu, Jing Liu, and
 1752 Xinlong Wang. End-to-end vision tokenizer tuning. *arXiv preprint arXiv:2505.10562*, 2025.

1753 Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammad Bagheri, and Ronald M Summers.
 1754 Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classifi-
 1755 cation and localization of common thorax diseases. In *Proceedings of the IEEE Conference on*
 1756 *Computer Vision and Pattern Recognition*, pp. 2097–2106, 2017a.

1757 Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammad Bagheri, and Ronald M Summers.
 1758 Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classifi-
 1759 cation and localization of common thorax diseases. In *Proceedings of the IEEE Conference on*
 1760 *Computer Vision and Pattern Recognition*, pp. 2097–2106, 2017b.

1761 Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
 1762 Zhang, Yueze Wang, Zhen Li, Qiying Yu, Yingli Zhao, Yulong Ao, Xuebin Min, Tao Li, Boya Wu,
 1763 Bo Zhao, Bowen Zhang, Liangdong Wang, Guang Liu, Zheqi He, Xi Yang, Jingjing Liu, Yonghua
 1764 Lin, Tiejun Huang, and Zhongyuan Wang. Emu3: Next-token prediction is all you need. *arXiv*
 1765 *preprint arXiv:2409.18869*, 2024b.

1766 Yuran Wang, Zhijing Wan, Yansheng Qiu, and Zheng Wang. Devil is in details: Locality-aware 3d
 1767 abdominal ct volume generation for self-supervised organ segmentation. In *Proceedings of the*
 1768 *32nd ACM International Conference on Multimedia*, pp. 10640–10648, 2024c.

1769 Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multiscale structural similarity for image quality
 1770 assessment. In *The Thirty-Seventh Asilomar Conference on Signals, Systems & Computers*, 2003,
 1771 volume 2, pp. 1398–1402, 2003.

1772 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
 1773 error visibility to structural similarity. *IEEE Transactions on Image Processing*, 13(4):600–612,
 1774 2004.

1775 Jakob Wasserthal, Hanns-Christian Breit, Manfred T Meyer, Maurice Pradella, Daniel Hinck, Alexan-
 1776 der W Sauter, Tobias Heye, Daniel T Boll, Joshy Cyriac, Shan Yang, et al. TotalSegmentator:
 1777 robust segmentation of 104 anatomic structures in CT images. *Radiology: Artificial Intelligence*, 5
 1778 (5):e230024, 2023.

1782 William H. Wolberg, W. Nick Street, and Olvi L. Mangasarian. Breast cancer wisconsin (diagnostic) data set. [https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+\(Diagnostic\)](https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)), 1995. Accessed: 2025-05-22.

1783

1784

1785 McKell Woodland, Austin Castelo, Mais Al Taie, Jessica Albuquerque Marques Silva, Mohamed Eltaher, Frank Mohn, Alexander Shieh, Suprateek Kundu, Joshua P. Yung, Ankit B. Patel, and Kristy K. Brock. Feature extraction for generative medical imaging evaluation: New evidence against an evolving trend. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 87–97, 2024.

1786

1787

1788

1789

1790

1791 Junde Wu, Huihui Fang, Fei Li, Huazhu Fu, Fengbin Lin, Jiongcheng Li, Yue Huang, Qinji Yu, Sifan Song, Xinxing Xu, et al. Gamma challenge: glaucoma grading from multi-modality images. *Medical Image Analysis*, 90:102938, 2023a.

1792

1793

1794 Ruiqi Wu, Chenran Zhang, Jianle Zhang, Yi Zhou, Tao Zhou, and Huazhu Fu. MM-Retinal: Knowledge-enhanced foundational pretraining with fundus image-text expertise. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 722–732, 2024.

1795

1796

1797 Yecheng Wu, Zhuoyang Zhang, Junyu Chen, Haotian Tang, Dacheng Li, Yunhao Fang, Ligeng Zhu, Enze Xie, Hongxu Yin, Li Yi, Song Han, and Yao Lu. VILA-U: a unified foundation model integrating visual understanding and generation. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=02haSp0453>.

1798

1799

1800

1801 Yifan Wu, Hayden Gunraj, Chi-en Amy Tai, and Alexander Wong. COVIDx CXR-4: An expanded multi-institutional open-source benchmark dataset for chest x-ray image-based computer-aided covid-19 diagnostics. *arXiv preprint arXiv:2311.17677*, 2023b.

1802

1803

1804

1805 Yiming Xiao, Hassan Rivaz, Matthieu Chabanas, Maryse Fortin, Ines Machado, Yangming Ou, Mattias P Heinrich, Julia A Schnabel, Xia Zhong, Andreas Maier, et al. Evaluation of mri to ultrasound registration methods for brain shift correction: the curious2018 challenge. *IEEE Transactions on Medical Imaging*, 39(3):777–786, 2019.

1806

1807

1808

1809 Feng Xu, Chuang Zhu, Wenqi Tang, Ying Wang, Yu Zhang, Jie Li, Hongchuan Jiang, Zhongyue Shi, Jun Liu, and Mulan Jin. Predicting axillary lymph node metastasis in early breast cancer using deep learning on primary tumor biopsy slides. *Frontiers in Oncology*, pp. 4133, 2021.

1810

1811

1812 Xuanang Xu, Fugen Zhou, Bo Liu, Dongshan Fu, and Xiangzhi Bai. Efficient multiple organ localization in ct image using 3d region proposal network. *IEEE Transactions on Medical Imaging*, 38(8):1885–1898, 2019.

1813

1814

1815

1816 Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and Bingbing Ni. MedMNISTv2-a large-scale lightweight benchmark for 2d and 3d biomedical image classification. *Scientific Data*, 10(1):41, 2023.

1817

1818

1819 Jinzhong Yang, Greg Sharp, Harini Veeraraghavan, Wouter Van Elmpt, Andre Dekker, Tim Lustberg, and Mark Gooding. Data from lung ct segmentation challenge 2017 (lctsc), 2017. URL <https://www.cancerimagingarchive.net/collection/lctsc/>.

1820

1821

1822 Jingfeng Yao, Bin Yang, and Xinggang Wang. Reconstruction vs. generation: Taming optimization dilemma in latent diffusion models. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 15703–15712, 2025.

1823

1824

1825 Fengshou Yin, Jiang Liu, Damon Wing Kee Wong, Ngan Meng Tan, Beng Hai Lee, Jun Cheng, Min Thet Htoo, Zhuo Zhang, Yanwu Xu, Xinting Gao, and Ruchir Srivastava. ACHIKO-I retinal fundus image database and its evaluation on cup-to-disc ratio measurement. In *2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA)*, pp. 224–227, 2013.

1826

1827

1828

1829

1830 yiweichen04. Retina_dataset, 2016. URL https://github.com/yiweichen04/retina_dataset.

1831

1832 Lijun Yu, Jose Lezama, Nitesh Bharadwaj Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong Cheng, Agrim Gupta, Xiuye Gu, Alexander G Hauptmann, Boqing Gong, Ming-Hsuan Yang, Irfan Essa, David A Ross, and Lu Jiang. Language model beats diffusion - tokenizer is key to visual generation. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=gzqrANCF4g>.

1833

1834

1835

1836 Anna Zawacki, Carol Wu, George Shih, Julia Elliott, Mikhail Fomitchev, Mohannad Hussain,
 1837 ParasLakhani, Phil Culliton, and Shunxing Bao. Siim-acr pneumothorax segmentation. <https://kaggle.com/competitions/siim-acr-pneumothorax-segmentation>, 2019.
 1838 Kaggle.
 1839

1840 Jun Zhan, Junqi Dai, Jiasheng Ye, Yunhua Zhou, Dong Zhang, Zhigeng Liu, Xin Zhang, Ruibin Yuan,
 1841 Ge Zhang, Linyang Li, Hang Yan, Jie Fu, Tao Gui, Tianxiang Sun, Yu-Gang Jiang, and Xipeng
 1842 Qiu. AnyGPT: Unified multimodal LLM with discrete sequence modeling. In *Proceedings of the*
 1843 *62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 1844 pp. 9637–9662, August 2024.
 1845

1846 Minghui Zhang, Yangqian Wu, Hanxiao Zhang, Yulei Qin, Hao Zheng, Wen Tang, Corey Arnold,
 1847 Chenhao Pei, Pengxin Yu, Yang Nan, et al. Multi-site, multi-domain airway tree modeling. *Medical*
 1848 *Image Analysis*, 90:102957, 2023a.
 1849

1850 Sheng Zhang, Yanbo Xu, Naoto Usuyama, Hanwen Xu, Jaspreet Bagga, Robert Tinn, Sam Preston,
 1851 Rajesh Rao, Mu Wei, Naveen Valluri, Cliff Wong, Andrea Tupini, Yu Wang, Matt Mazzola, Swad-
 1852 heen Shukla, Lars Liden, Jianfeng Gao, Angela Crabtree, Brian Piening, Carlo Bifulco, Matthew P.
 1853 Lungren, Tristan Naumann, Sheng Wang, and Hoifung Poon. BiomedCLIP: a multimodal biomedical
 1854 foundation model pretrained from fifteen million scientific image-text pairs. *arXiv preprint arXiv:2303.00915*, 2023b.
 1855

1856 Chuang Zhu, Wenkai Chen, Ting Peng, Ying Wang, and Mulan Jin. Hard sample aware noise robust
 1857 learning for histopathology image classification. *IEEE Transactions on Medical Imaging*, 41(4):
 1858 881–894, 2021.
 1859

1860 Lei Zhu, Fangyun Wei, Yanye Lu, and Dong Chen. Scaling the codebook size of VQ-GAN to 100,000
 1861 with a utilization rate of 99%. In *Advances in Neural Information Processing Systems*, volume 37,
 1862 pp. 12612–12635, 2024.
 1863

1864 Xiahai Zhuang. Multivariate mixture model for myocardial segmentation combining multi-source
 1865 images. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 41(12):2933–2946,
 1866 2018.
 1867

1868 Aneeq Zia, Kiran Bhattacharyya, Xi Liu, Ziheng Wang, Satoshi Kondo, Emanuele Colleoni, Beatrice
 1869 van Amsterdam, Razeen Hussain, Raabid Hussain, Lena Maier-Hein, et al. Surgical visual domain
 1870 adaptation: Results from the miccai 2020 surgyisdom challenge. *arXiv preprint arXiv:2102.13644*,
 1871 2021.
 1872

1873 Aneeq Zia, Max Berniker, Rogerio Garcia Nespolo, Conor Perreault, Kiran Bhattacharyya, Xi Liu,
 1874 Ziheng Wang, Satoshi Kondo, Satoshi Kasai, Kousuke Hirasawa, Bo Liu, David Austin, Yiheng
 1875 Wang, Michal Futrega, Jean-Francois Puget, Zhenqiang Li, Yoichi Sato, Ryo Fujii, Ryo Hachiuma,
 1876 Mana Masuda, Hideo Saito, An Wang, Mengya Xu, Mobarakol Islam, Long Bai, Winnie Pang,
 1877 Hongliang Ren, Chinedu Nwoye, Luca Sestini, Nicolas Padoy, Maximilian Nielsen, Samuel
 1878 Schüttler, Thilo Sentker, Hümeysra Husseini, Ivo Baltruschat, Rüdiger Schmitz, René Werner,
 1879 Aleksandr Matsun, Mugariya Farooq, Numan Saaed, Jose Renato Restom Viera, Mohammad
 1880 Yaqub, Neil Getty, Fangfang Xia, Zixuan Zhao, Xiaotian Duan, Xing Yao, Ange Lou, Hao Yang,
 1881 Jintong Han, Jack Noble, Jie Ying Wu, Tamer Abdulbaki Alshirbaji, Nour Aldeen Jalal, Herag
 1882 Arabian, Ning Ding, Knut Moeller, Weiliang Chen, Quan He, Muhammad Bilal, Taofeek Akinosh,
 1883 Adnan Qayyum, Massimo Caputo, Hunaid Vohra, Michael Loizou, Anuoluwapo Ajayi, Ilhem
 1884 Berrou, Faatiyah Niyi-Odumosu, Charlie Budd, Oluwatosin Alabi, Tom Vercauteren, Ruoxi Zhao,
 1885 Ayberk Acar, John Han, Jumanh Atoum, Yinhong Qin, Jie Ying Wu, Surong Hua, Lu Ping,
 1886 Wenming Wu, Rongfeng Wei, Jinlin Wu, You Pang, Zhen Chen, Tim Jaspers, Amine Yamlahi,
 1887 Piotr Kalinowski, Dominik Michael, Tim Rädsch, Marco Hübner, Danail Stoyanov, Stefanie
 1888 Speidel, Lena Maier-Hein, and Anthony Jarc. Intuitive surgical surgtolloc challenge results:
 1889 2022–2023. *arXiv preprint arXiv:2305.07152*, 2025.
 1890

1891 M. L. Zuley, R. Jarosz, S. Kirk, Y. Lee, R. Colen, K. Garcia, D. Delbeke, M. Pham, P. Nagy,
 1892 G. Sevinc, M. Goldsmith, S. Khan, J. M. Net, F. R. Lucchesi, and N. D. Arede. The cancer
 1893 genome atlas head-neck squamous cell carcinoma collection (tcga-hnsc), 2016. URL <https://doi.org/10.7937/K9/TCIA.2016.LXKQ47MS>. Data set.
 1894

1890

1891

1892

1893

1894

1895

1896

1897

1898

Appendix of Paper:
“MedITok: A Unified Tokenizer for Medical Image
Synthesis and Interpretation”

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

CONTENTS

A	Training Dataset	37
A.1	Data Collection	37
A.2	Data Preprocessing	37
A.3	Data Statistics	38
B	Benchmarking Datasets	40
B.1	Image Reconstruction	40
B.2	Image Classification	40
B.3	Image Synthesis	40
B.4	Visual Question Answering	40
C	Experimental Setups	41
C.1	Implementation Details	41
C.2	Downstream Tasks	41
D	Additional Results	42
D.1	Additional Ablation Studies	42
D.2	Adaptation to 3D Medical Volumes	44
D.3	Visual Turing Test	44
D.4	Difference between Stages	45
D.5	Failure Cases	46
D.6	Efficiency Comparison	46
D.7	Additional Visualization	48
E	Discussion	48
E.1	Choice of Discrete Codebooks	49
E.2	Comparison with Related Works	49
E.3	Limitation and Future Directions	50
E.4	Broader Impact	50

Figure S1: Overview of the training data for MediTOK. Left: exemplar images used in the first training stage. Right: word cloud generated from the captions used in the second training stage.

Return to: [Introduction](#) | [Experiments](#) | [Appendix Contents](#)

A TRAINING DATASET

In this section, we provide a comprehensive overview of the training dataset used in this work, including the collection (Appendix A.1), preprocessing (Appendix A.2), and statistics (Appendix A.3) of image-only datasets and image-text paired datasets. The construction of this training dataset is pivotal to the success of our proposed MedITok, as it ensures a diverse and high-quality representation of medical images and text descriptions across multiple modalities, anatomical regions, and clinical contexts.

A.1 DATA COLLECTION

We begin by identifying and collecting medical imaging datasets from over 300 publicly available sources, ensuring broad coverage of imaging modalities and clinical scenarios. Our selection criteria include: **(1) Appropriate Licensing:** We only select datasets with clear licensing, ensuring compliance with data usage policies; **(2) Clinical Relevance:** Only datasets that provide diagnostic-quality images or clinically annotated images were included; and **(3) Diversity in Imaging Modalities and Anatomies:** We prioritize datasets that collectively cover a wide range of anatomical regions and pathologies.

A.2 DATA PREPROCESSING

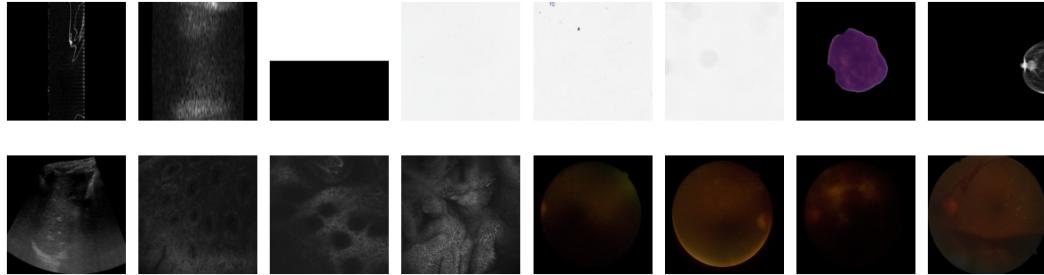
A.2.1 EXTRACTING 2D IMAGES FROM 3D VOLUMES

A significant portion of our dataset comprises volumetric medical images (CT and MRI). To fully utilize these data to train our 2D visual tokenizer, we carefully convert them into 2D image slices using a modality-specific preprocessing strategy.

CT images extracted from volumes. Each 3D CT volume is first converted to Hounsfield Units (HU) using the rescaling slope and intercept recorded in the metadata, and is then clipped to the range of $[-1000, 2000]$. To obtain 2D slices from the 3D volume, we extract slices along three orthogonal planes (axial, coronal, and sagittal), and select every fifth slice along each plane. We then perform an initial quality filtering by retaining CT slices that met all the following criteria: (1) a background ratio (the proportion of pixels with HU values ≤ -1000) ≤ 0.6 , (2) a valid body ratio (the proportion of pixels with HU values ≥ -300) ≥ 0.1 , and (3) a pixel intensity standard deviation < 100 . These criteria ensure the removal of largely empty slices with minimal anatomical content.

Note that, we save the CT images extracted from 3D volumes in their original HU values without scaling them to the $[0, 255]$ range. By doing so, we can apply various CT window settings on the CT images during model training as a form of data augmentation, as detailed in Appendix C.1.

1998 **MRI images extracted from volumes.** We process each MRI volume by clipping voxel values
 1999 to the $[0.5^{\text{th}}, 99.5^{\text{th}}]$ percentile range, followed by min-max normalization to $[-1, 1]$. The 2D slices
 2000 are extracted using the same way as CT preprocessing. The initial quality filtering for MRI excludes
 2001 those slices with mean pixel values ≤ -0.9 or standard deviation ≤ 0.2 .
 2002



2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 Figure S2: Low-quality images filtered by our quality control pipeline.

A.2.2 QUALITY CONTROL

Once we obtain all the 2D images, we implement the following process to ensure that only high-quality, clinically relevant images are included in the training dataset:

- Dynamic Range Check: Images with pixel intensity ranges below 50 were filtered out to ensure adequate contrast.
- Resolution Filtering: Images with a minimum dimension below 128 pixels were excluded to maintain structural integrity.
- Information Content Validation: Images with low standard deviation (below 10) in pixel values were discarded.
- Palette Limitation Removal: Images with three or fewer unique pixel values were removed.
- Relevance Verification: Non-clinical images, such as tables, plots, or irrelevant illustrations, were manually screened and excluded.

For instance, the “Relevance Verification” is mainly applied on the BIOMEDICA (Lozano et al., 2025) dataset, which originally contains approximately 24,050,423 image-text pairs extracted from biomedical publications. Each image-text pair is tagged with primary and secondary labels. We retain only those pairs with a primary label of “Clinical Imaging” and a secondary label matching one of the following: “computerized tomography”, “clinical imaging”, “light microscopy”, “immuno-histochemistry”, “endoscopy”, “eye”, “X-ray radiography”, “ultrasound”, “magnetic resonance”, “brain”, “skin lesion”, and “mammography”. Image-text pairs tagged with irrelevant secondary labels (e.g., “scientific illustration”, “ambiguous”, “plot”, “diagram”, etc.) are all excluded. Such filtering significantly reduces the BIOMEDICA dataset from 24,050,423 to 1,216,529 image-text pairs for use in our experiments.

Following the automated checks described above, we perform a manual quality assessment by randomly sampling 10 images from each dataset for manual visual inspection. If any low-quality outliers are identified, we further examine other images from the corresponding dataset to evaluate overall quality. Finally, we try our best to remove the images that share the same sources with data in our benchmarking datasets in Appendix B.

Fig. S2 displays some low-quality images detected by the dynamic range check, information content validation, and palette limitation removal. For another example, Fig. S3 shows images that are not tagged as “clinical imaging” in the original BIOMEDICA (Lozano et al., 2025) dataset.

A.3 DATA STATISTICS

After the collection and the preprocessing, we present detailed sources and image counts of our “image-only” dataset, which is used in the first training stage of MedITok, in Tables S5–S8. The details of the “image-caption” dataset, used in the second training stage, are presented in Table S9.

Figure S3: Irrelevant images filtered out by our quality control pipeline.

2106
 2107 [Return to: Introduction](#) | [Experiments](#) | [Appendix Contents](#)
 2108
 2109

2110 B BENCHMARKING DATASETS 2111

2112 This section outlines the datasets used for evaluating the performance of MedITok across four
 2113 core tasks: medical image reconstruction (Appendix B.1), classification (Appendix B.2), modality-
 2114 conditioned image synthesis (Appendix B.3), and visual question answering (Appendix B.4). We
 2115 tried our best to avoid any overlap or data leakage between the training data of MedITok and these
 2116 benchmark datasets.

2117 B.1 IMAGE RECONSTRUCTION 2118

2119 To assess the reconstruction capabilities of MedITok, we curated a high-quality evaluation set of
 2120 35,736 images spanning 8 imaging modalities. These images are collected from 23 publicly available
 2121 datasets, as detailed in Table S10. Importantly, all images used for evaluation are strictly excluded
 2122 from the training corpus to prevent any overlap. This evaluation set reflects a diverse distribution
 2123 of anatomical structures, imaging protocols, and clinical contexts, enabling robust testing of image
 2124 fidelity and structural preservation.

2125 B.2 IMAGE CLASSIFICATION 2126

2127 We adopt five subsets from the latest version² of MedMNIST (Yang et al., 2023) benchmark to
 2128 evaluate the semantic encoding quality of the visual tokens produced by different tokenizers. These
 2129 include:

- 2130 • BreastMNIST (Al-Dhabyani et al., 2020) (ultrasound): binary classification of benign vs.
 2131 malignant tumors.
- 2132 • DermaMNIST (Tschantl et al., 2018; Codella et al., 2019) (dermoscopy): 7-way classifica-
 2133 tion of skin lesions.
- 2134 • PathMNIST (Kather et al., 2019) (pathology): 9-class colorectal cancer tissue types.
- 2135 • PneumoniaMNIST (Kermany et al., 2018) (X-ray): pneumonia detection in chest radio-
 2136 graphs.
- 2137 • RetinaMNIST (Liu et al., 2022) (fundus): diabetic retinopathy grading.

2138 The original images in each benchmark are of a resolution of 224×224 , and are resized to 256×256
 2139 resolution for consistency with the tokenizer input. These tasks collectively test the extent to which
 2140 the visual tokenizer encodes discriminative, clinically meaningful semantics. Detailed training and
 2141 test split can be found in Table S11.

2142 B.3 IMAGE SYNTHESIS 2143

2144 To evaluate the generative capability of downstream autoregressive models built on top of MedITok,
 2145 we conduct experiments on modality-conditioned image synthesis. Specifically, we use six subsets
 2146 from the latest MedMNIST collection (Yang et al., 2023), including BloodMNIST (Acevedo et al.,
 2147 2020) for microscopy, BreastMNIST (Al-Dhabyani et al., 2020) for ultrasound, ChestMNIST (Wang
 2148 et al., 2017b) for chest x-ray, DermaMNIST (Tschantl et al., 2018; Codella et al., 2019) for der-
 2149 moscopy, PathMNIST (Kather et al., 2019) for pathology images, and RetinaMNIST (Liu et al., 2022)
 2150 for fundus photography. We gather the training partition of these subsets with their imaging modality
 2151 labels to construct the training data for the downstream medical image synthesis models, which are
 2152 trained to generate images conditioned on modality labels.

2153 B.4 VISUAL QUESTION ANSWERING 2154

2155 To test the utility of different visual tokenizers for medical image interpretation in multimodal
 2156 settings, we benchmark on two widely adopted datasets for visual question answering (VQA) task:
 2157

2158 ²<https://doi.org/10.5281/zenodo.10519652>
 2159

(1) VQA-RAD (Lau et al., 2018): A radiology-specific VQA dataset with natural language questions and answers grounded in diagnostic images. We use its test set containing 451 question-answer pairs for evaluation. (2) SLAKE (Liu et al., 2021a): A multi-modal, bilingual medical VQA benchmark with more diverse imaging modalities and question types. The validation set (SLAKE-val) with 2,094 questions and test set (SLAKE-test) with 2,099 questions are adopted in our experiments.

To train vision-language model for medical image interpretation (*i.e.*, LLaVA-Med (Li et al., 2023) variants with different visual tokenizers as the image encoder), we use the PubMedVision (Chen et al., 2024c) dataset, which consists of high-quality image-question-answer triplets derived from medical publications. All VQA benchmarks are held out from the training set to ensure fair and unbiased evaluation.

Return to: [Introduction](#) | [Experiments](#) | [Appendix Contents](#)

C EXPERIMENTAL SETUPS

In this section, we first describe the detailed implementation and training setup of MedITok (Appendix C.1) and its downstream applications (Appendix C.2) on four core tasks: image reconstruction, image classification, image synthesis, and visual question answering.

C.1 IMPLEMENTATION DETAILS

Architecture. MedITok consists of a ViT-based (Chen et al., 2024b) image encoder and decoder, with a multi-codebook vector quantizer (Ma et al., 2025b) in the bottleneck. The encoder produces a 2D grid of latent representations, which are discretized using 8 parallel codebooks, each with 4,096 eight-dimensional vectors, resulting in a total vocabulary size of 32,768. The decoder reconstructs the image from quantized latent vectors.

Training of MedITok. Both training stages (*i.e.*, visual representation alignment, and textual semantic alignment) share the same reconstruction loss defined as follows:

$$\mathcal{L}_{\text{recon}}(\hat{\mathbf{x}}, \mathbf{x}, \mathbf{z}_q, \mathbf{z}) = \mathcal{L}_{\text{image}}(\hat{\mathbf{x}}, \mathbf{x}) + \lambda_{\text{comm}} \mathcal{L}_{\text{comm}}(\mathbf{z}_q, \mathbf{z}), \quad (\text{S1})$$

$$\mathcal{L}_{\text{image}}(\hat{\mathbf{x}}, \mathbf{x}) = \|\hat{\mathbf{x}} - \mathbf{x}\|_2^2 + \lambda_{\text{adv}} \mathcal{L}_{\text{adv}}(\hat{\mathbf{x}}, \mathbf{x}) + \lambda_{\text{perc}} \mathcal{L}_{\text{perc}}(\hat{\mathbf{x}}, \mathbf{x}), \quad (\text{S2})$$

$$\mathcal{L}_{\text{comm}}(\mathbf{z}_q, \mathbf{z}) = \|\mathbf{z}_q - \text{sg}[\mathbf{z}]\|_2^2 + \beta \|\text{sg}[\mathbf{z}_q] - \mathbf{z}\|_2^2, \quad (\text{S3})$$

where \mathcal{L}_{adv} denotes the adversarial loss (Esser et al., 2021), $\mathcal{L}_{\text{perc}}$ the perceptual loss (Johnson et al., 2016), and $\mathcal{L}_{\text{comm}}$ the commitment loss (Van Den Oord et al., 2017). “ $\text{sg}[\cdot]$ ” denotes the stop-gradient operation. We follow the default setting of VQGAN (Esser et al., 2021) to set λ_{adv} as an adaptive weight and fix $\beta = 0.25$, $\lambda_{\text{perc}} = 1$, and $\lambda_{\text{comm}} = 1$. The discriminator involved in computing \mathcal{L}_{adv} adopts the DINOv2 (Oquab et al., 2023) architecture. We use the AdamW (Loshchilov & Hutter, 2019) optimizers for both MedITok and the discriminator, with betas of (0.9, 0.95) and a weight decay of 0.02 for MedITok, and (0.5, 0.9) and 0.2 for the discriminator. The learning rate is initialized at 5×10^{-4} and decayed to 5×10^{-5} via cosine annealing; for the discriminator, it starts at 2×10^{-5} and decays to 2×10^{-6} . The two-stage full-data training took approximately 4 days on 8 NVIDIA H100 GPUs.

We employ random resized cropping, random image flipping, random image rotation for data augmentation in the first training stage. For CT image input in HU values, we further introduce **CT windowing augmentation**, which randomly applies the following windows on the HU values: full window ($[-1000, 2000]$ HU, probability $p = 0.2$), common window ($[-1000, 1000]$ HU, $p = 0.3$), soft tissue window ($[-150, 250]$ HU, $p = 0.3$), lung window ($[-1400, 200]$ HU, $p = 0.15$), and bone window ($[-500, 1300]$ HU, $p = 0.05$).

C.2 DOWNSTREAM TASKS

Medical image classification. For classification tasks, we evaluate the discriminative power of the learned visual tokens through a linear probing protocol (Alain & Bengio, 2016). Specifically, for a pretrained visual tokenizer (*e.g.*, MedITok), we only use its image encoder and quantizer, keep

them frozen, and append a single linear layer on top of the quantizer. Given an image, the image encoder produces the continuous feature maps, which are then discretized to a grid of visual tokens and are flattened to feed the linear layer for image classification. The linear layer is trained using the Adam (Kingma, 2014) optimizer with a learning rate of 10^{-4} and a batch size of 128. Since the tokens produced by different tokenizers lead to different convergence speed for the linear layer, we train each linear layer until convergence and report the peak performance for a fair comparison.

Medical image synthesis. For image synthesis, we integrate the visual tokenizer with LlamaGen-B (Sun et al., 2024), an autoregressive model designed for image generation, with 12 transformer layers, 12 heads, and 768 token dimension. We first tokenize each training image, producing a discrete token sequence. Then, LlamaGen is trained to autoregressively predict the token sequence conditioned on a modality label token. LlamaGen models are optimized using AdamW (Loshchilov & Hutter, 2019) with betas of (0.9, 0.95), a weight decay of 0.05, and a learning rate of 10^{-4} . The models are trained for 200 epochs with a batch size of 128. We do not employ advanced strategy for sampling (e.g., classifier-free guidance) and synthesize images with a temperature parameter of 1.

Medical visual question answering. For VQA, we adapt LLaVA-Med (Li et al., 2023) by replacing its image encoder with different visual tokenizers, followed by a projector to produce visual embeddings compatible with the pretrained language backbone³. We follow the staged training procedure of original LLaVA-Med, which includes a pretraining stage for the projector (with all other components frozen) and a fine-tuning stage for the language model using LoRA (Hu et al., 2022). The pretraining is conducted on 500k image-caption pairs in PubmedVision (Chen et al., 2024c) dataset for one epoch with batch size 32, while the fine-tuning takes two epochs on the 100k visual question-answer pairs.

Return to: [Introduction](#) | [Experiments](#) | [Appendix Contents](#)

D ADDITIONAL RESULTS

This section compiles extended evidence to complement the main results, including additional ablation studies (Appendix D.1), adaptation to 3D medical volumes (Appendix D.2), additional visual Turing test for medical image synthesis (Appendix D.3), analyses of the differences between codebooks across training stages (Appendix D.4) and representative failure cases (Appendix D.5), comparison of data scale and inference efficiency (Appendix D.6), and additional visualizations for reconstruction, synthesis, and VQA (Appendix D.7), including qualitative generative and VQA examples that illustrate behavior beyond aggregate metrics.

D.1 ADDITIONAL ABLATION STUDIES

We present additional ablation studies in Table S1 to further investigate the effectiveness of our data quality control and the proposed training framework.

Separating Rather Than Combining Two Stages. In contrast to previous works, we propose incorporating an extra training stage (e.g., visual representation alignment) in the training of unified visual tokenizer. A natural idea question comes: can we combine this stage and the subsequent textual semantic alignment stage together in one stage? That is, in each iteration, we optimize the following loss function:

$$\begin{aligned} \mathcal{L} = & \mathcal{L}_{\text{recon}}(\hat{\mathbf{x}}, \mathbf{x}, \mathbf{z}_q, \mathbf{z}) \\ & + \lambda_{\text{vision}} \mathcal{L}_{\text{vision}}(\mathbf{z}_q, f_{\text{vision}}(\mathcal{E}_{\text{vision}}(\mathbf{x}))) \\ & + \lambda_{\text{text}} \mathcal{L}_{\text{text}}(\mathbf{z}_q, f_{\text{text}}(\mathcal{E}_{\text{text}}(\mathbf{t}))), \end{aligned} \quad (\text{S4})$$

In Rows (i) and (ii) of Table S1, we empirically compare combined single-stage and our two-stage training under the same setting. The combined-stage training only slightly improves semantic metrics but significantly degrades reconstruction quality. This may be attributed to the dominance of semantic alignment objectives, which in turn escalates the inherent conflicts between reconstruction (low-level) and semantic (high-level) alignment objectives. In contrast, we use the visual representation learning

³<https://huggingface.co/microsoft/llava-med-v1.5-mistral-7b>

2268 Table S1: More ablation studies of MediTok. “#Img”: number of images used in the first training
 2269 stage, “#Img-txt”: number of image-text pairs used in the second training stage. “BiomedCLIP-T
 2270 (combined)”: textual semantic alignment is combined with the visual representation alignment as one
 2271 single stage. “BiomedCLIP-T[†]”: the BiomedCLIP (Zhang et al., 2023b) text encoder is activated
 2272 during training.

2273

Idx.	Vision Target Repr.	Text Target Repr.	λ_{vision}	#Img	#Img-txt	PSNR	SSIM	mAP	AUC
(i)	BiomedCLIP-V	BiomedCLIP-T (combined)	0.1	800k	1M	29.20	83.22	81.10	91.97
(ii)	BiomedCLIP-V	BiomedCLIP-T	0.1	800k	1M	30.03	84.32	80.09	92.64
(iii)	–	BiomedCLIP-T	0	800k	24M (all BIOMEDICA)	32.23	89.36	57.97	76.98
(iv)	–	BiomedCLIP-T	0	800k	1M (filtered BIOMEDICA)	32.55	89.49	63.29	81.68
(v)	BiomedCLIP-V	BiomedCLIP-T	0.1	800k	1M	30.03	84.32	80.09	92.64
(vi)	BiomedCLIP-V	BiomedCLIP-T	1	800k	1M	29.99	83.02	82.00	91.81
(vii)	–	BiomedCLIP-T	0	–	2.4M	29.06	79.61	80.29	91.25
(viii)	–	BiomedCLIP-T	0	–	2.4M (+800k) [*]	30.05	82.12	80.06	91.18
(ix)	BiomedCLIP-V	BiomedCLIP-T	0.1	800k	2.4M	29.74	84.14	80.28	92.72
(x)	BiomedCLIP-V	BiomedCLIP-T	0.1	2M	2.4M	30.20	85.50	82.23	93.61
(xi)	BiomedCLIP-V	BiomedCLIP-T [†]	0.1	33.4M	2.4M	34.03	91.05	51.41	69.84
(xii)	BiomedCLIP-V	BiomedCLIP-T	0.1	33.4M	2.4M	31.74	88.25	82.27	94.07
(xiii)	BiomedCLIP-V	–	Cos. sim	800k	–	30.18	84.01	66.19	85.77
(xiv)	BiomedCLIP-V	–	Contrast	800k	–	30.00	83.85	78.35	92.23

2287 ^{*}: we convert 800k pure images to pseudo image-text pairs by tagging each image with a short caption “This is a \${modality} image.”

2288

2289

2290 as a cold-start to transit from a reconstruction-based tokenizer to a unified tokenizer more smoothly,
 2291 improving joint optimization of these competing objectives.

2292

2293

2294 We also note that separating two stages provides more flexibility, particularly when training with
 2295 significantly imbalanced data collections in the medical domain, where unlabeled images are far more
 2296 abundant than image-text pairs (14x in our final training set). A staged design allows us to exploit
 2297 such imbalanced data effectively and provides engineering flexibility for making modifications to
 2298 the pretrained encoders (e.g., adding trainable parameters), while avoiding potential gradient issues
 2299 caused by heterogeneous batches.

2300

2301

2302 **Data Quality Control.** Rows (iii) and (iv) of Table S1 presents the result from our pilot study
 2303 to evaluate the effectiveness of our data quality control pipeline. We pretrain MediTok with pure
 2304 reconstruction objective in the first training stage, and continue the second training stage on the
 2305 BIOMEDICA (Lozano et al., 2025) dataset.

2306

2307

2308 Specifically, in Row (iii), we adopt all 24M image-text pairs in this dataset, while in Row (iv), we use
 2309 a much smaller subset with approximately 1M pairs, as described in Appendix A.2.2. Surprisingly,
 2310 despite the significant reduction in the training dataset size, the tokenizer in Row (iv) exhibits much
 2311 stronger medical image reconstruction and classification capabilities, compared to the one in Row (iii).
 2312 This highlights the importance of data quality control in training a powerful visual tokenizer⁴.

2313

2314

2315

2316

2317

2318

2319

2320 λ_{vision} **Balancing Reconstruction and Contrastive Learning.** In Rows (v) and (vi), we explores
 2321 the effect of different magnitude for the visual representation alignment in the first training stage
 2322 by varying λ_{vision} in Eq. 2. By setting a light semantic constraint ($\lambda_{\text{vision}} = 0.1$), we observe an
 2323 improvement across three metrics (PSNR, SSIM, and AUC) while maintaining competitive mAP, and
 2324 we fix this factor in other experiments.

2325

2326

2327 **Cold-Starting with Visual Representation Alignment.** In Rows (vii) and (viii), we bypass the
 2328 visual representation alignment stage and train MediTok solely using the textual semantic alignment
 2329 objective. While this configuration yields reasonable semantic performance, it exhibits a significant
 2330 degradation in SSIM, compared with other configurations like Row (ix) of Table S1, showing the
 2331 necessity of the visual pretraining stage for cold-starting MediTok by learning structural coherent
 2332 representations with a light semantic constraint.

2333

2334

2335 ⁴We would like to note that this filtering was tailored to downstream tasks that mainly involve clinical images,
 2336 and that other image types (e.g., tables, plots, and non-clinical images) in BIOMEDICA remain highly valuable
 2337 for applications that require table understanding or scientific figure interpretation.

2322 **Freezing the Pretrained Text Encoder.** In Row (xi), we investigate the impact of unfreezing the
 2323 BiomedCLIP text encoder during the second stage. Although this introduces learnable capacity into
 2324 the text encoder, it disrupts the stability and alignment of the token space, leading to a trade-off:
 2325 improved reconstruction metrics but severely degraded downstream classification, compared to the
 2326 results in Row (xii). This suggests that freezing the pretrained textual backbone acts as an anchor,
 2327 preserving the semantic information necessary for clinical interpretation.

2328 **Visual Representation Alignment Objective.** We explore two alignment objectives for training
 2329 MedITok: contrastive learning and cosine similarity (inspired by [Yao et al. \(2025\)](#)). Comparing
 2330 Rows (xiii) and (xiv), we observe that using cosine-similarity loss yields only marginal gains in PSNR
 2331 but substantially degrads downstream classification, whereas the contrastive objective produces a more
 2332 discriminative token space, improving both fine-grained classification and maintaining reconstruction
 2333 quality.

2335 D.2 ADAPTATION TO 3D MEDICAL VOLUMES

2337 Three-dimensional data are vital in the medical domain. Our initial milestone targeted a 2D im-
 2338 age tokenizer, considering that (1) 2D images cover more medical imaging domains (*e.g.* fundus
 2339 photography, histopathology, *etc.*), (2) 2D models provide more flexibility, and (3) computational
 2340 costs.

2341 However, we note that MedITok can also be applied in 3D medical data. We compare MedITok,
 2342 UniTok, and MedVAE on two 3D datasets: SLIVER07 ([Heimann et al., 2009](#)) for volume reconstruc-
 2343 tion and OrganMNIST3D ([Bilic et al., 2023](#); [Xu et al., 2019](#)) for multi-class volume classification of
 2344 11 body organs. To adapt these 2D tokenizers to 3D volumes, we employed a slice-based strategy:
 2345 processing individual slices independently and then aggregating either reconstructed slices (for
 2346 reconstruction) or per-slice features (for classification). The results are summarized in Table S2.

2348 Table S2: Additional evaluation on 3D datasets.

Models	rFID	PSNR	SSIM	mAP	AUC
MedVAE	20.38	34.21	89.98	76.04	94.77
UniTok	6.89	31.08	86.16	83.25	96.15
MedITok	4.94	33.56	89.54	84.00	97.71

2355 Despite not being trained explicitly on 3D radiology data, MedITok still achieves reconstruction
 2356 quality comparable to MedVAE which is a *radiology-specialized* visual tokenizer, with notably
 2357 lower rFID for better visual fidelity and competitive PSNR/SSIM indicating reconstruction accuracy.
 2358 UniTok encodes visual semantics, yet failing to preserve critical structural details with a significant
 2359 drop in PSNR and SSIM. More importantly, MedITok significantly outperforms MedVAE on 3D
 2360 volume classification tasks, proving superior transferable representations in 3D settings. Visualization
 2361 of 3D reconstruction results are shown in Fig. S4.

2363 D.3 VISUAL TURING TEST

2365 We conducted a Visual Turing Test on the downstream medical image synthesis task, as a proxy
 2366 evaluation of the quality of latent space encoded by different tokenizers. Specifically, we compare
 2367 two autoregressive medical image synthesis models as in Sec. 4.4: (1) LlamaGen-MedITok, using
 2368 MedITok as its visual tokenizer; and (2) LlamaGen-UniTOK, using UniTok instead, a state-of-the-art
 2369 unified visual tokenizer.

2370 We randomly mixed 75 chest X-rays: 25 real, 25 synthesized by LlamaGen-MedITok, and 25 by
 2371 LlamaGen-UniTOK, and asked a board-certified radiologist with over 10 years' experience to score
 2372 the "realness" of each image on a continuous 0–1 scale. From these scores, we computed (i) AUC for
 2373 classifying real versus synthetic images and (ii) "fooling rate" or "over-confidence", the proportion
 2374 of synthetic images scored higher than 0.5. As shown in Table S3, the radiologist had more difficulty
 2375 distinguishing MedITok-synthesized images from real ones, indicating that MedITok enables a more
 clinically plausible latent space.

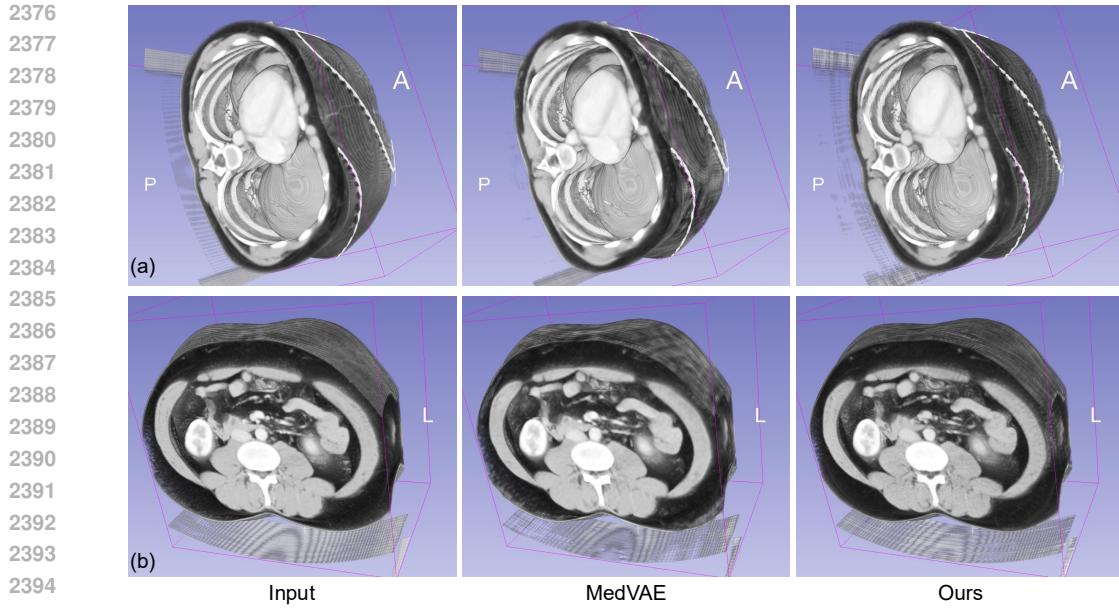


Figure S4: Visualization of 3D reconstruction results.

Table S3: Visual Turing test on downstream medical image synthesis. We report area under the ROC curve (AUC) for real vs. synthetic discrimination and the fooling rate.

Model	AUC	Fooling rate
LlamaGen-UniTOK	0.602 (95% CI 0.430–0.772)	56.0% (CI 37.1–73.3%)
LlamaGen-MedITOK	0.462 (95% CI 0.307–0.622)	72.0% (CI 52.4–85.7%)

D.4 DIFFERENCE BETWEEN STAGES

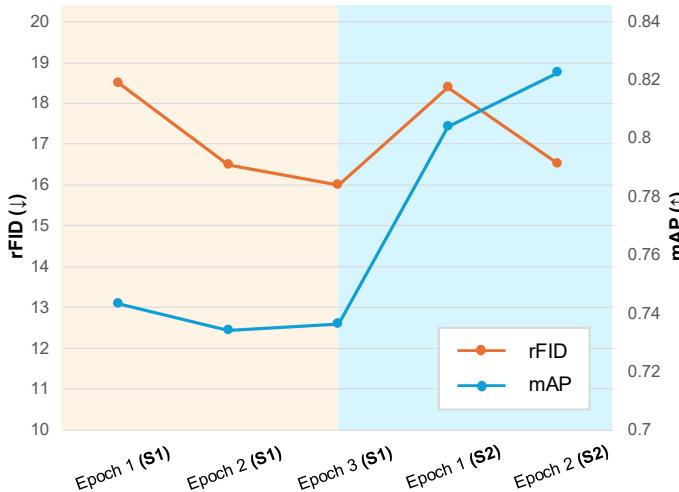
We compare the two stages through both performance behavior and the geometry of their learned codebooks. In Tables 3 and 4, models built upon the Stage-2 MedITok (4th row) significantly outperform those using the Stage-1 tokenizer (3rd row) in both image synthesis and interpretation, confirming that Stage 2 enhances semantic capacity without sacrificing reconstruction quality.

Empirically, Fig. S5 shows the test performance curve. In Stage 1, rFID steadily decreases while mAP remains flat or drifts slightly downward, consistent with a phase that emphasizes reconstructive accuracy over discriminative semantics. When training continues into Stage 2, mAP rises sharply, showing a strong boost in classification performance as semantic constraints are reinforced. rFID exhibits a transient increase at the first epoch in Stage 2 but then returns to a level close to the endpoint of Stage 1, indicating that reconstruction quality is largely preserved. Overall, these dynamics support the design of the two-stage schedule: Stage 1 secures a high-fidelity codebook with light semantic constraint, and Stage 2 further enhances clinical semantics in the latent vectors while retaining structural information encoding.

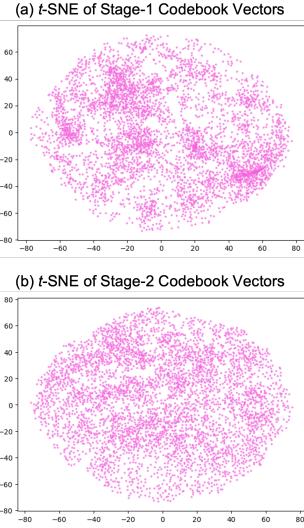
To understand why, we visualize the codebook vectors with t-SNE. As shown in Fig. S6, after Stage 2 (strong semantic alignment), the vectors spread more uniformly, pushing features to be well-distributed on the hypersphere, whereas Stage 1 (light semantic constraint) produces visibly clustered pockets.

The clustering in Stage 1 is also consistent with known VQ-VAE behavior: without additional pressures, codebooks tend to exhibit codebook collapse (Roy et al., 2018), yielding concentrated regions in latent space. The move toward a more uniform, semantically aligned latent in Stage 2 therefore explains both the stronger interpretive/synthesis performance. Notably, recent work (Yao et al., 2025) in latent diffusion reaches a congruent conclusion: aligning VAE latents to semantic-rich

2430 features promotes generative quality by regularizing the latent geometry, with only limited impact on
 2431 reconstruction.
 2432



2451 Figure S5: Training dynamics of MedITok, where rFID on the
 2452 reconstruction test set and mAP on the classification test set are
 2453 reported for checkpoints from three Stage-1 (S1) epochs followed
 2454 by two Stage-2 (S2) epochs.



2455 Figure S6: *t*-SNE visualization of codebook vectors in
 2456 two training stages.

2457 D.5 FAILURE CASES

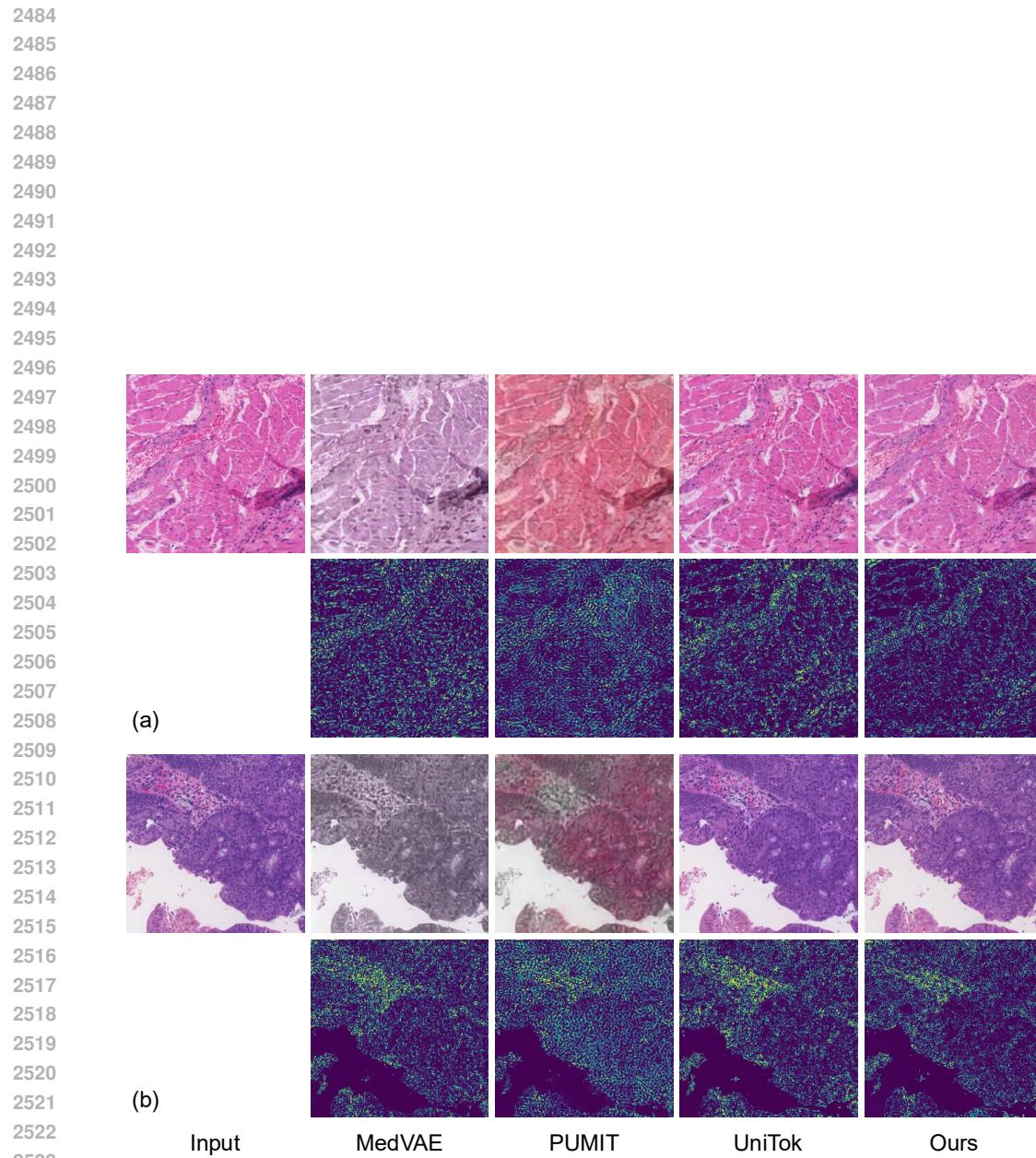
2458 Despite the inspiring performance, MedITok may produce inferior reconstruction for histopathology
 2459 images due to their rich fine-grained textures and structural complexity. As shown in the “Patho.”
 2460 column of Table 1, all tokenizers struggle with this modality, though MedITok still outperforms
 2461 existing baselines. This represents a common challenge in histopathology tokenization that warrants
 2462 future investigation. Qualitative examples for these failure cases are shown in Fig. S7.

2463 D.6 EFFICIENCY COMPARISON

2464 In Table S4, we provide details on the inference GPU memory consumption (GB), and frame-per-
 2465 second (FPS) throughput across different settings (*e.g.*, B8: batch size 8, R256: resolution 256).
 2466 MedITok achieves comparable memory consumption and throughput to existing tokenizers while
 2467 delivering state-of-the-art reconstruction quality and latent representation (Tables 1 and 2), showing
 2468 both efficiency and effectiveness.

2469 Table S4: Comparison of different models in terms of inference memory usage, and frames per
 2470 second (FPS).

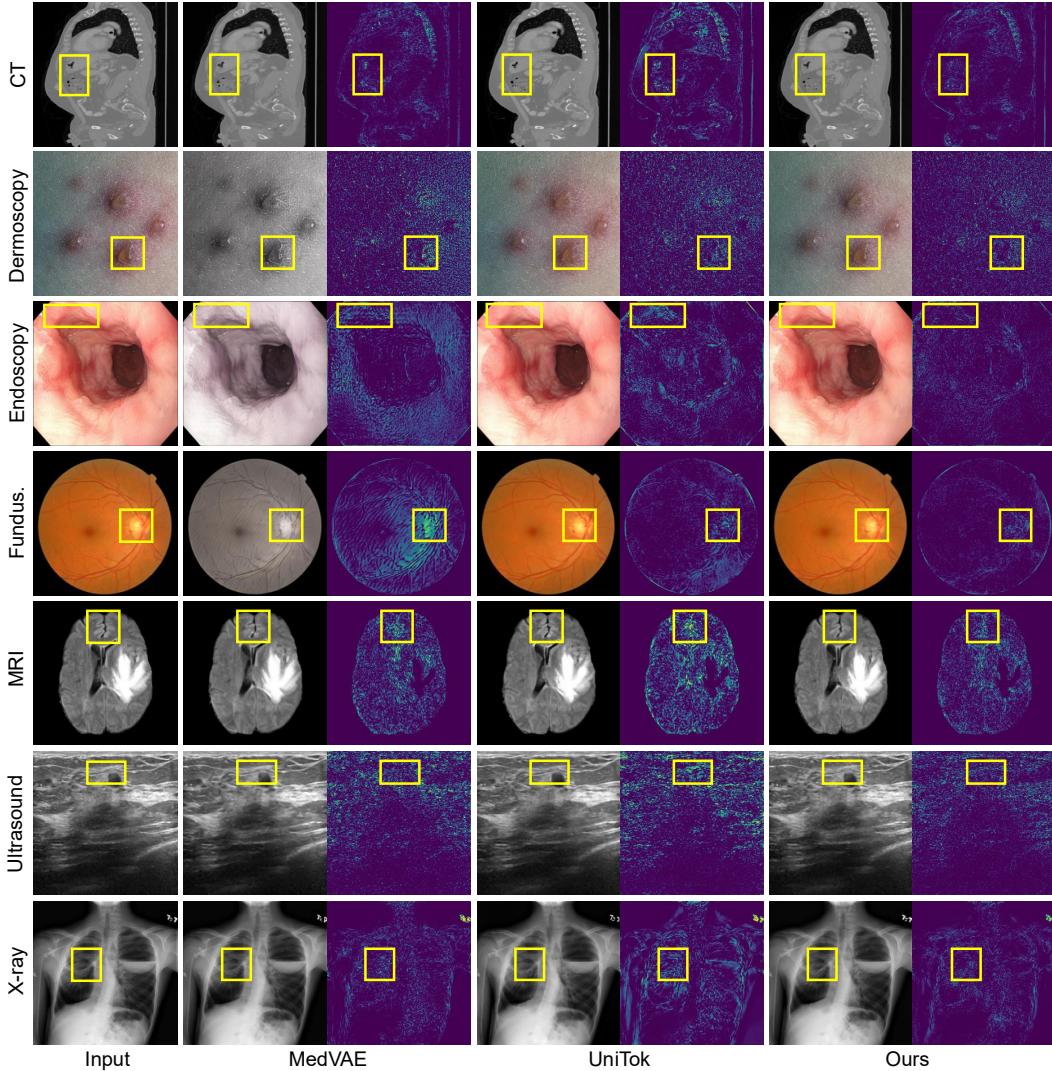
2471 Model	2472 Memory (B16, R256)	2473 Memory (B8, R512)	2474 FPS (B16, R256)	2475 FPS (B8, R512)
VQGAN	3.29	6.31	136.24	17.76
PUMIT	0.36	0.56	4440.09	1691.37
VAR-VQ	4.21	7.97	171.26	40.95
Emu3-VQ	41.12	OOM	12.68	OOM
VAR-VQ	4.21	7.98	171.26	40.95
TokenFlow	7.91	Not Supported	44.15	Not Supported
MedVAE	4.61	8.89	101.56	24.34
MedITok	4.69	6.75	92.81	20.63



2524 Figure S7: Two failure cases for image reconstruction. Due to the extremely rich details in histopathology images, existing visual tokenizers may still produce lower-fidelity reconstructions.
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

2538 D.7 ADDITIONAL VISUALIZATION
2539

2540 Fig. S8 shows more examples for qualitative evaluation of medical image reconstruction, where MedITok achieves the best visual quality with lowest errors. Fig. S9 compares the modality-conditioned
2541 synthesized images produced by different LlamaGen models. Notably, the LlamaGen model that
2542 adopts our MedITok as the visual tokenizer yields diverse and realistic medical images. Figs. S10–S12
2543 presents the visual question answering results of LLaVA models that incorporate different visual
2544 tokenizers as their respective image encoder.
2545



2581 Figure S8: More reconstruction results across multiple imaging modalities. Each reconstructed image
2582 is paired with an absolute error map against the input image. Regions of interest are highlighted via
2583 yellow bounding boxes.
2584

2585 [Return to: Introduction](#) | [Experiments](#) | [Appendix Contents](#)

2588 E DISCUSSION
2589

2590 This section synthesizes our design choices, positioning, limitations, and societal implications. We
2591 first justify the choice of discrete codebooks (Appendix E.1). We then situate MedITok relative to
representative related works, clarifying differences in objectives, training, and latent space spaces

(Appendix E.2). Next, we discuss current limitations of MedITok, and outline concrete avenues for future work (Appendix E.3). Finally, we reflect on broader impact and responsible use (Appendix E.4).

E.1 CHOICE OF DISCRETE CODEBOOKS

Our choice of discrete tokenization is driven by the goal of building a unified latent space that can power AR models across both image synthesis and interpretation tasks in the medical domain.

To that end, discrete tokens offer the following key advantages:

- **Leveraging advances in AR modeling:** Discrete tokenization allows the medical community to directly benefit from the broader ecosystem of discrete-sequence modeling, *e.g.*, unified training objectives, any-to-any modality transfer (Zhan et al., 2024; Chen et al., 2025b), and efficient decoding and infrastructure, which are not easily transferable to continuous tokenizers.
- **Unified latent space for visual synthesis and interpretation:** Discrete tokens act as a shared representational “language” across modalities. They support AR models that can both synthesize medical images and interpret them using a single AR backbone (Lin et al., 2025). In contrast, continuous representations (*e.g.*, VAEs, CLIP) typically lack this versatility, either being hard to decode (CLIP) or poorly aligned with semantic embeddings (VAE).
- **Seamless integration with different modalities.** Discrete visual tokens are natively compatible with discrete textual tokens, enabling direct multimodal fusion in AR models without additional heads or diffusion modules. This compatibility is critical for scaling medical AR models in the style of GPT-4o, where all modalities are treated as token sequences.

E.2 COMPARISON WITH RELATED WORKS

We situate MedITok alongside two related works: MedVAE (Varma et al., 2025) and VF-VAE (Yao et al., 2025).

MedVAE is an effective continuous variational autoencoder (VAE) designed for efficient medical image interpretation. Our primary departure from MedVAE lies in where and how semantics are bound to the latent space. Before detailing the differences, we briefly describe the training stage of interest for MedVAE and MedITok:

- MedVAE first trains a continuous VAE, then freezes the VAE encoder and decoder and learns a lightweight projector whose output is optimized so that the BiomedCLIP image embedding of the projected latent matches the embedding of the input image via an ℓ_2 loss, *i.e.*, $\ell_2(\mathcal{E}_{\text{vision}}(f(\mathbf{z})), \mathcal{E}_{\text{vision}}(\mathbf{x}))$, where $\mathcal{E}_{\text{vision}}$ denotes the pretrained BiomedCLIP vision encoder, f is the projector, \mathbf{x} is the input image, and \mathbf{z} is the corresponding latent.
- MedITok utilizes $\mathcal{L}_{\text{contrastive}}(f(\mathbf{z}), \mathcal{E}_{\text{text}}(\mathbf{t}))$ (or $\mathcal{L}_{\text{contrastive}}(f(\mathbf{z}), \mathcal{E}_{\text{vision}}(\mathbf{x}))$, as in the first stage), where $\mathcal{L}_{\text{contrastive}}$ is the contrastive loss, and \mathbf{t} denotes the caption. In either stage, the encoder and decoder of MedITok are trainable.

This clearly shows the following main differences:

1. MedVAE enforces the latent \mathbf{z} to be *perceptually close* to the input image \mathbf{x} under BiomedCLIP, which focuses more on improving the reconstruction fidelity, while MedITok aligns \mathbf{z} to the embedding space of BiomedCLIP so the MedITok *encodes more clinical semantics*.
2. MedVAE keeps the VAE encoder and decoder frozen in the second stage, which can be viewed as treating semantics as post-hoc *extraction* from a fixed latent. In contrast, MedITok *injects* semantics into a discrete token space since the encoder and decoder of the tokenizer is *both trainable*.
3. Since MedVAE focuses more on preserving structural details in radiological images, it did not utilize caption data for training and did not provide unified latent space for a wide range of downstream modalities and tasks. In contrast, by aligning latent tokens to BiomedCLIP embedding space, MedITok provides richer, fine-grained clinical semantics, which can be reflected in Table 2, where MedITok shows significantly better performance than MedVAE on image classification tasks.

2646 Another related work is VF-VAE (Yao et al., 2025), which targets the reconstruction-generation
 2647 trade-off in continuous VAE tokenizers for natural-image latent diffusion, proposing a single-stage
 2648 joint reconstruction and alignment objective that aligns latents to a frozen vision foundation model to
 2649 improve generative quality and training efficiency. The differences are as follows:
 2650

- 2651 1. Primary task. VF-VAE focuses on improved visual generation using semantic constraint
 2652 in latent diffusion, whereas our work targets unified generation and interpretation (e.g.,
 2653 classification/VQA) across diverse medical modalities. This dual-use requirement drives
 2654 our design choices.
- 2655 2. Methodology design. VF-VAE employs a single-stage objective to refine the latent space
 2656 for better visual generation. In contrast, we use a two-stage curriculum to reach the unified
 2657 goal while exploiting abundant unlabeled medical data. Moreover, VF-VAE uses cosine
 2658 similarity as the alignment objective. However, as shown in Rows (x) and (xi) of Table S1,
 2659 such objective significantly degrades the medical image classification performance.
- 2660 3. Architecture. VF-VAE operates in a continuous VAE/diffusion setting; MedITok produces
 2661 discrete, AR-ready tokens. Architecture is not the crux here, but this helps explain down-
 2662 stream usage differences.
- 2663 4. Community. VF-VAE contributes greatly to the field of general visual generation at de-
 2664 signing effective VAEs. Our goal, however, is to democratize a foundation visual tokenizer
 2665 for medical images to serve downstream applications, with effectiveness, scalability, and
 2666 general usability for the medical image community.

2668 E.3 LIMITATION AND FUTURE DIRECTIONS

2669 While MedITok demonstrates strong performance across multiple medical vision tasks, there remain
 2670 important considerations and limitations that motivate future work.

2672 *First*, our two-stage training framework effectively balances structural fidelity and semantic alignment.
 2673 However, optimizing simultaneously for both properties remains non-trivial. It is interesting and
 2674 valuable to explore disentangling structural and semantic objectives during training (Qu et al., 2024)
 2675 or jointly optimizing the tokenizer with a downstream model that unifies visual generation and
 2676 interpretation (Wang et al., 2025). We opt for the current two-stage design for its simplicity and
 2677 effectiveness.

2678 *Second*, although the current version of MedITok is designed mainly for 2D medical images across
 2679 multiple imaging modalities, we have also shown that MedITok can be easily adapted to 3D medical
 2680 tasks that require volume processing (Table S2). Nonetheless, MedITok could benefit from future
 2681 advancement such as 3D native training or mixed training using 2D images and 3D volumes, as well
 2682 as evaluation on more sophisticated tasks.

2683 *Third*, due to resource constraints, our current experiments utilize 2.4 million image-caption pairs –
 2684 modest in scale compared to billion-scale training regimes in the general domain (Ma et al., 2025b).
 2685 We believe that the proposed framework is scalable and can benefit significantly from larger and more
 2686 diverse image-text corpora. Future efforts may explore combining public data with institution-curated
 2687 pairs.

2688 In summary, while MedITok sets a strong foundation for unified medical visual tokenization, ongoing
 2689 work is needed to address the above limitations. We envision that MedITok’s flexible and expressive
 2690 design can be extended to diverse downstream tasks. More broadly, we hope this work paves the
 2691 way toward building scalable, general-purpose generative models that can advance medical AI and
 2692 ultimately contribute to improving human health.

2694 E.4 BROADER IMPACT

2696 This work presents a unified visual tokenizer tailored for medical images, offering a flexible and
 2697 generalizable foundation for a wide range of medical AI applications. MedITok has the potential
 2698 to accelerate the development of general-purpose medical AI systems and reduce task-specific
 2699 engineering efforts. Its modular and pretrained nature also lowers the barrier for medical researchers
 to develop high-performance models with limited data and compute.

2700 However, this progress also raises societal considerations. Insufficient training data may lead to
2701 biased models that underperform in underrepresented populations or clinical contexts. Additionally,
2702 the deployment of powerful downstream generative models in medicine, based on our MedITok,
2703 must be guided by strict ethical oversight to prevent misuse, misinformation, or over-reliance without
2704 clinical validation. We advocate for responsible development and interdisciplinary collaboration to
2705 ensure that such technologies benefit patients and healthcare systems.

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

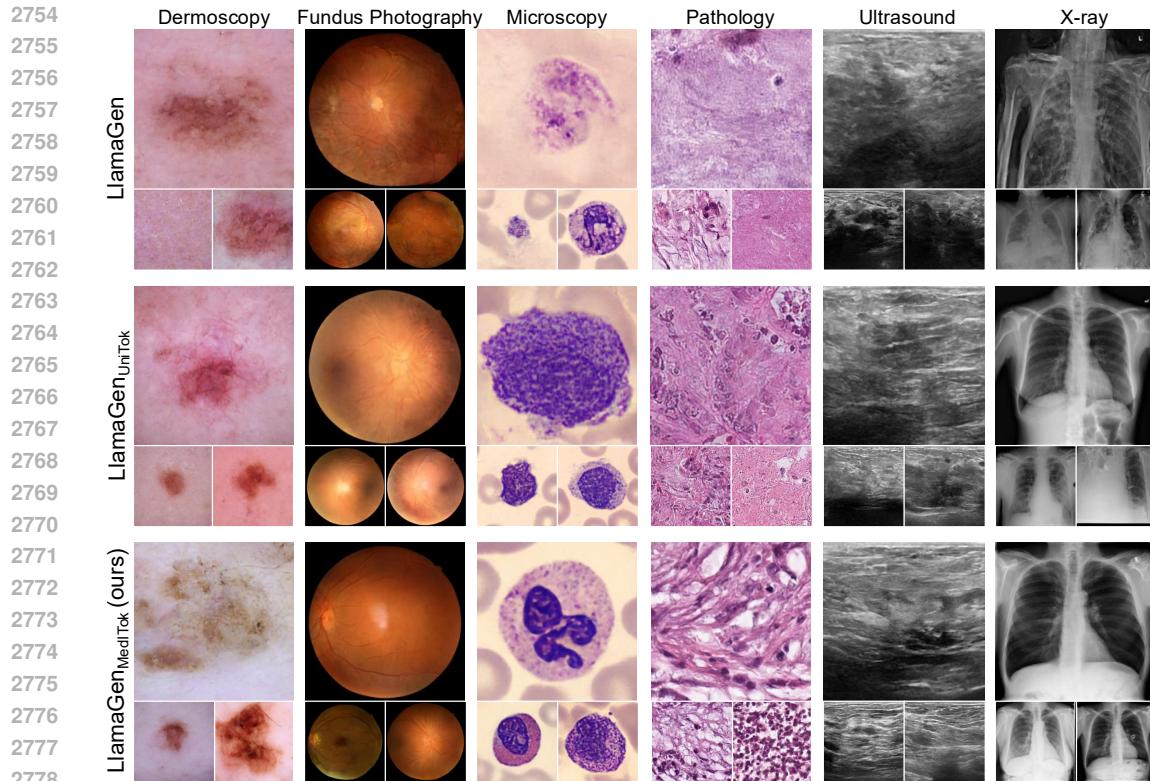


Figure S9: Qualitative comparison of medical images generated by LlamaGen models based on different visual tokenizers.

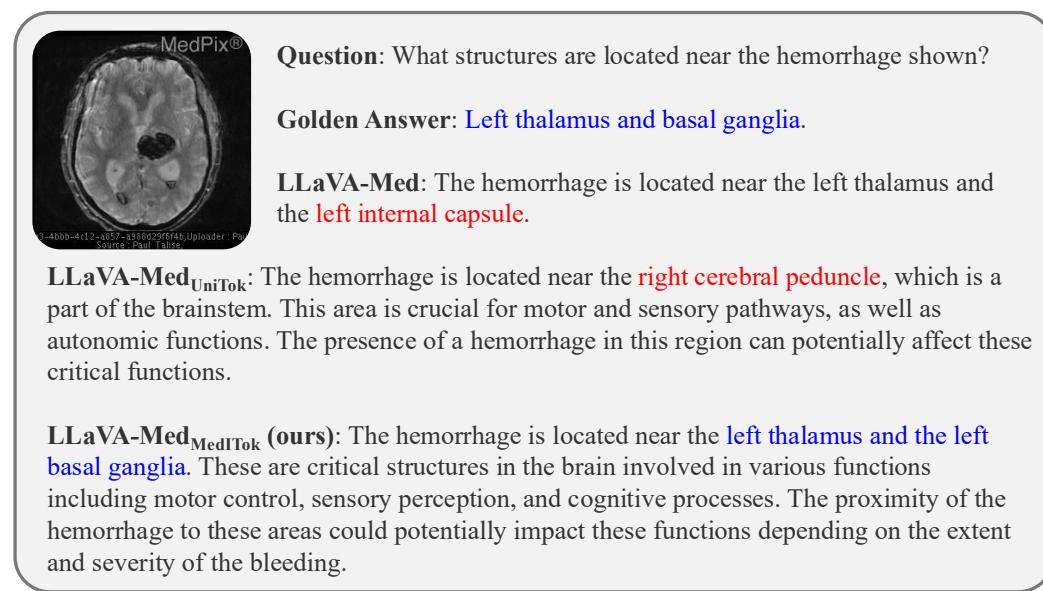


Figure S10: Visual question answering results on an MRI image.

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

Question: In which lobe do you see an abnormal mass in the above images?

Golden Answer: Right upper lobe.

LLaVA-Med: The abnormal mass is located in the **right upper lobe** of the lung.

LLaVA-Med_{UniTok}: The abnormal mass is located in the **right lower lobe** of the lung.

LLaVA-Med_{MediTOK} (ours): The abnormal mass is located in the **right upper lobe** of the lung, as seen in the provided chest radiographs. This mass is characterized by its irregular shape and increased density compared to the surrounding lung tissue. The presence of such a mass could indicate a variety of conditions, ranging from benign tumors to malignant growths, necessitating further diagnostic evaluation such as a CT scan or biopsy to determine the exact nature and extent of the pathology.

Figure S11: Visual question answering results on a chest X-ray image.

Question: 图片中体积最大的器官是什么?

Golden Answer: 肝脏.

LLaVA-Med: The body with the largest volume in the image is the **liver**.

LLaVA-Med_{UniTok}: 根据提供的CT扫描图像, 体积最大的器官是**肝脏**。图像显示, 脾脏的体积约为1100毫米的立方体积, 远大于其他器官的体积。脾脏的体积增大可能与某些疾病或病理状况有关, 如脾脏肿大症、脾脏炎症或脾脏肿瘤等。此外, 图像还显示肝脏、肾脏、脊柱和腹腔内的脂肪等其他器官的体积和形态。

LLaVA-Med_{MediTOK} (ours): 根据图像, 体积最大的器官是**肝脏**。肝脏在这张CT扫描中呈现出较为均匀的密度, 表明其内部结构相对均匀。

Figure S12: Visual question answering results on a CT image.

Table S5: Medical Image Datasets in Stage 1 (Part 1 of 4).

Dataset Name	Count	Dataset Name	Count
Rsna-Str-Pulmonary-Embolism-Detection (Anouk Stein et al., 2020)	5,604,627	Bcnb-Task5 (Xu et al., 2021)	76,559
Endovis2023-Surgtoolloc (Zia et al., 2025)	3,710,685	Bcnb-Task1-0 (Xu et al., 2021)	76,558
Panda (Bulten et al., 2022)	1,616,913	Bcnb-Task6 (Xu et al., 2021)	76,558
Mela (Song et al., 2022a;b;c;d)	1,403,843	Msd-Liver (Antonelli et al., 2022)	76,395
Ixi (IXI)	924,870	Ct-Org (Rister et al., 2020)	76,195
Ribfrac2020 (Jin et al., 2020)	810,265	Endovis-2021-Petraw (Huaulté et al., 2023)	75,718
Radimagenet (Mei et al., 2022)	779,768	Head-Neck-Pet-Ct (Vallieres et al., 2017)	75,109
Autopet (Gatidis et al., 2022)	590,785	Ctspine1K (Deng et al., 2021)	72,835
Brats2023-Gli (Bakas et al., 2017c)	513,263	Bcnb-Task1-2 (Xu et al., 2021)	71,991
Atm2022 (Zhang et al., 2023a)	501,147	Lndb (Pedrosa et al., 2019)	70,292
Lidc-Idri-All-Ct (Armato III et al., 2011)	474,076	Cptac-Hnscc (National Cancer Institute Clinical Proteomic Tumor Analysis Consortium (CPTAC), 2018)	69,731
Luna16 (Setio et al., 2017)	431,694	Lung-Pet-Ct-Dx (Li et al., 2020)	66,564
Brats2023-Men (LaBella et al., 2023)	384,425	Anti-Pd-1-Melanoma (Patnana et al., 2019)	65,411
Mimic-Cxr (Johnson et al., 2019)	377,110	Nsclc-Cetuximab (Movsas et al., 2016)	64,730
Qin-Headneck (Beichel et al., 2015)	307,946	Anode09 (Van Ginneken et al., 2010)	63,250
Biomedica (Lozano et al., 2025)	291,155	Opc-Radiomics	62,726
Flare22 (Ma et al., 2024)	280,531	Acrin-Nsclc-Fdg-Pet (Kinahan et al., 2019)	62,701
Braintumour (Bakas et al., 2018)	263,310	Sln-Breast (Campanella et al., 2019)	61,968
Chexpertplus (Chambon et al., 2024)	223,460	Bcnb-Task2 (Xu et al., 2021)	61,828
Totalsegmentator-Dataset (Wasserthal et al., 2023)	218,477	Msd-Lung (Antonelli et al., 2022)	61,117
Pediatric-Ct-Seg (Jordan et al., 2022; 2021)	204,602	Bcnb-Task1-3 (Xu et al., 2021)	59,521
Acrin6668 (Machtay et al., 2013)	188,098	Midrc-Ricord-1B (Tsai et al., 2021)	59,247
Covid-19-Ny-Sbu (Saltz et al., 2021)	185,668	Bcnb-Task1-4 (Xu et al., 2021)	59,091
Bracs (Brancati et al., 2022)	177,712	Learn2Reg2022-L2R-Task1-Oasis (Hering et al., 2022b)	57,984
Abdomenct1K (Ma et al., 2021a)	172,963	Amos2022 (Ji et al., 2022)	56,217
Bone-Marrow-Cytomorphology (Matek et al., 2021)	171,378	Learn2Reg22-L2R-Oasis (Hering et al., 2022b)	52,992
Ctpelvic1K (Liu et al., 2021b)	127,315	Cataract101 (Schoeffmann et al., 2018)	52,676
Parse22 (Luo et al., 2023a)	122,629	Brats2023-Ped (Kazerooni et al., 2023)	51,769
Nih-Chest-X-Rays (Wang et al., 2017a)	112,115	Vestibular-Schwannoma-Seg (Shapey et al., 2021)	51,575
Lits (Bilic et al., 2023)	107,056	Midrc-Ricord-1A (Tsai et al., 2021)	50,913
Hnscc (Grossberg et al., 2018; 2020)	101,861	Lc25000 (Borkowski et al., 2019)	50,000
Airogs (de Vente et al., 2024)	101,280	Cptac-Luad (National Cancer Institute Clinical Proteomic Tumor Analysis Consortium (CPTAC), 2018)	48,952
Head-Neck-Cetuximab (Bosch et al., 2015)	100,356	Ct-Covid-19-August2020 (Harmon et al., 2020)	48,791
Brats2023-Met (Moawad et al., 2023)	93,775	Fastpet-Ld (Green et al., 2019)	48,097
Acrin-Flt-Breast (Kinahan et al., 2017)	91,948	Oasis2 (Marcus et al., 2010)	47,744
Bcnb-Task4 (Xu et al., 2021)	89,894	Osic-Pul-Fib-Pro (Shahin et al., 2020)	46,014
Covidx-Cxr-4 (Wu et al., 2023b)	84,802	Anti-Pd-1-Lung (Madhavi et al., 2019)	45,497
Nlst (Team, 2011)	79,194	Tcga-Luad (Albertina et al., 2016)	45,049
Cad-Pe (González et al., 2020)	78,583	Isic2020 (Rotemberg et al., 2021)	44,106
Bcnb-Task3 (Xu et al., 2021)	76,559	Longitudinal-multiple-sclerosis-lesion-segmentation (Carass et al., 2017)	41,984

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

2916
2917
2918
2919
2920
2921

Table S6: Medical Image Datasets in Stage 1 (Part 2 of 4).

Dataset Name	Count	Dataset Name	Count
Covid-19-Ar (Desai et al., 2020)	41,664	Lysto (Jiao et al., 2024)	19,990
Glis-Rt (Shusharina & Bortfeld, 2021)	41,143	Cas2023 (Chen et al., 2023)	19,200
Mura (Rajpurkar et al., 2017)	39,939	Tcga-Ov (Holback et al., 2016)	19,077
Spie-Aapm (Armato III et al., 2015)	39,670	Sicavp2 (Silva-Rodríguez et al., 2020)	18,783
Tcga-Lusc (Kirk et al., 2016b)	38,998	Vin-Big-Data (Nguyen et al., 2020)	17,999
Atlas-2 (Liew et al., 2022)	38,400	Wmh (Kuijf et al., 2019)	16,896
Spie-Aapm-Lung-Ct-Challenge (Armato III et al., 2015)	38,373	Fizpatrick17K (Groh et al., 2021; 2022)	16,577
M2Cai16-Tool (Jin et al., 2018)	37,314	Chest-Image-Pneum (Zawacki et al., 2019)	15,251
Hyperkvasir (Borgli et al., 2020)	36,329	C-Nmc-2019 (Mourya et al., 2019)	15,105
Brats-Tcga-Gbm (Bakas et al., 2017b)	35,770	Covid-19-20 (Roth et al., 2022)	15,045
Lld-Mmri2023 (Lou et al., 2023)	35,751	Aod-14800 (Abuev, 2021)	14,805
Diabetic (Platform, 2023)	35,059	Aapm-Rt-Mac (Cardenas et al., 2019)	14,080
EyePacs (Dugas et al., 2015)	35,059	Mindboggle (Klein et al., 2017)	12,575
Ranzer-Clip (Seah et al., 2020)	33,664	SiiM-Acr-Pneumothorax (Zawacki et al., 2019)	12,053
Isic2019 (Codella et al., 2018a)	33,541	Chest-X-Ray-Images-With-Pneumothorax-Masks (Zawacki et al., 2019)	12,047
Verse20 (Sekuboyina et al., 2021b)	32,944	Han-Seg (Podobnik et al., 2023)	11,939
CovidXcxr-2 (Wang et al., 2020)	31,238	Valdo-Task1 (Sudre et al., 2024)	11,915
Lola11 (van Ginneken, 2021)	30,207	Valdo-Task3 (Sudre et al., 2024)	11,915
Rsna-Pdc (Anouk Stein et al., 2018)	29,684	Cptac-Ucec (National Cancer Institute Clinical Proteomic Tumor Analysis Consortium (CPTAC), 2019a)	11,595
C4Kc-Kits (Heller et al., 2019)	28,843	Tcga-Stad (Lucchesi & Aredes, 2016)	11,204
Word (Luo et al., 2022)	27,154	Ultrasound-Nerve-Segmentation (Montoya et al., 2016)	11,143
Acrin-Hnscc-Fdg-Pet-Ct (Kinahan et al., 2020)	27,117	Mssseg08 (Styner et al., 2008)	10,965
Kits2021 (Heller et al., 2020)	26,503	Wsss4Luad (Han et al., 2022)	10,091
Exact09 (Lo et al., 2012)	25,560	Medfm-Colon-2023 (Wang et al., 2023)	10,009
Bcnb-Task1-1 (Xu et al., 2021)	25,370	Knee-Osteoarthritis-Dataset (Chen, 2018)	9,766
Surgvisdom (Zia et al., 2021)	24,360	Segthor (Lambert et al., 2020)	9,661
Brats-Tcga-Lgg (Bakas et al., 2017a)	23,336	Brain-Ptm (Avital et al., 2019; Nelkenbaum et al., 2020)	9,600
Tega-Ucec (Erickson et al., 2016)	22,946	Msd-Colon (Antonelli et al., 2022)	9,191
Tcga-Kirc (Akin et al., 2016)	22,644	Covid19Ctscans (Jun et al., 2020)	9,119
Cptac-Sar (National Cancer Institute Clinical Proteomic Tumor Analysis Consortium (CPTAC), 2019b)	22,432	Cholect50 (Nwoye et al., 2023)	8,919
Crossmoda2023 (Dorent et al., 2023)	21,981	Msd-Pancreas (Antonelli et al., 2022)	8,666
Cptac-Cm (National Cancer Institute Clinical Proteomic Tumor Analysis Consortium (CPTAC), 2018b)	21,867	Fumpe (Masoudi et al., 2018)	8,402
Brats2023-Ssa (Adewole et al., 2023)	20,910	Lctsc (Yang et al., 2017)	8,300
Pancreas-Ct (Roth et al., 2015)	20,709	Ct-Vs-Pet-Ventilation-Imaging (Eslick et al., 2018)	8,252
Vessel2012 (Rudyanto et al., 2014)	20,442	Head-Neck-Radiomics-Hn1 (Aerts et al., 2014)	8,161
Yangxi (Liu et al., 2019)	20,394	Qin-Breast (Li et al., 2015)	8,051
Mssseg2016 (Commowick et al., 2018)	20,352	Chaos-Task-4 (Kavur et al., 2021)	7,977
Oia-Odir (Peking University International Competition on Ocular Disease Intelligent Recognition (ODIR-2019), 2019)	19,992	Pannuke (Gamper et al., 2019; 2020)	7,810

2966
2967
2968
2969

2970
2971
2972
2973
2974
2975
2976
2977

Table S7: Medical Image Datasets in Stage 1 (Part 3 of 4).

Dataset Name	Count	Dataset Name	Count
Sppin2023 (Buser et al., 2025)	7,616	Pad-Ufes-20 (Pacheco et al., 2020)	2,298
Atlas2023 (Quinton et al., 2023)	7,364	Msd-Spleen (Antonelli et al., 2022)	2,169
Msd-Hepaticvessel (Antonelli et al., 2022)	6,859	Breakhis-100X (Spanhol et al., 2015)	2,081
Mmwhs (Zhuang, 2018)	6,400	Breakhis-200X (Spanhol et al., 2015)	2,011
Hsa-Nrl (Zhu et al., 2021)	6,160	Breakhis-40X (Spanhol et al., 2015)	1,991
Coronahack (Praveen Govi, 2019)	5,933	Breakhis-400X (Spanhol et al., 2015)	1,820
Rus-Chn (Baidu AI Studio, 2021)	5,921	Cptac-Pda (Consortium et al., 2018)	1,792
Dhrf (Derbi Hackathon Organizers, 2022)	5,680	Tiger-Wsirois-Roi-Level-Tissue-Cells (van Rijthoven et al., 2022)	1,775
Aptos2019-Blindness-Detection (apt)	5,590	Breast-Diagnosis (Wolberg et al., 1995)	1,656
Curious2019 (Xiao et al., 2019)	5,376	Cmb-Gec (Biobank, 2022a)	1,625
Cmb-Mel (Biobank, 2022b)	5,289	Riga-Dataset (Almazroa et al., 2018)	1,617
Clust15-2D (Luca et al., 2018)	5,255	Refuge2-Cls (Fang et al., 2022)	1,600
Cmmid (Cui et al., 2021)	5,202	Harvardglaucoma-1547 (Kim, 2018)	1,544
Tcga-Hnsc (Zuley et al., 2016)	5,172	Tcga-Kich (Linehan et al., 2016)	1,484
Continuous-Registration-Task3 (Baheti et al., 2021)	5,120	Papilledema (pap, 2020)	1,369
Messeg (Commwowick et al., 2018)	5,120	Continuous-Registration-Task6 (Hering et al., 2022a)	1,280
Node21 (Sogancioglu et al., 2024)	4,882	Isbi2016-Part3 (Gutman et al., 2016)	1,279
Conic2022 (et al., 2021)	4,870	Isic2016-Task1 (Gutman et al., 2016)	1,279
Lag-4854 (Li et al., 2019)	4,854	Fusec2021 (Wang et al., 2024a)	1,210
Medfm-Chestdr-2023 (OpenMEDLab, 2023)	4,848	Hvsmr-2016 (Pace et al., 2015)	1,152
Stageii-Colorectal-Ct (Tong & Li, 2022)	4,672	Osteosarcoma-Tumor-Assessment (Leavey et al., 2019)	1,143
Naf-Prostate (Kurdziel, 2015)	4,664	Isic2016-Task2B-Globules (Gutman et al., 2016)	1,142
Chest-X-Ray-Pa (Asraf & Islam, 2021)	4,574	Isic2016-Task2B-Streaks (Gutman et al., 2016)	1,142
Lunget-Diagnosis (Grove et al., 2015)	4,155	Jsic (Cen et al., 2021)	997
Covid19-Radio-Data (Chowdhury et al., 2020)	3,886	Isles2022 (Hernandez Petzsche et al., 2022)	938
Structseg2019-Subtask1 (Organizers, 2019)	3,634	Covid-19-Ct-Cxr-Det (Peng et al., 2020)	929
Structseg2019-Subtask4 (Organizers, 2019)	3,634	Covid-19-Ct-Cxr (Peng et al., 2020)	918
Structseg2019-Subtask2 (Organizers, 2019)	3,413	E-Ophtha (Decenciere et al., 2013)	905
Qin-Lung-Ct (Kalpathy-Cramer et al., 2015)	3,586	Dao-Slocpasa (Chiu et al., 2013)	840
Structseg2019-Subtask3 (Organizers, 2019)	3,413	Continuous-Registration-Task5 (Klein et al., 2009)	813
Tcga-Coad (Network et al., 2012)	3,093	Fives (Jin et al., 2022)	800
Tcga-Prad (Abeshouse et al., 2015)	3,007	Segpc2021 (Gupta et al., 2023)	773
Bidr-2838 (Islam et al., 2021)	2,838	Paraguay-757 (Benítez et al., 2021)	757
Refuge2 (Fang et al., 2022)	2,800	Mudi2019 (Pizzolato et al., 2020)	695
Cptac-Crc (National Cancer Institute Clinical Proteomic Tumor Analysis Consortium (CPTAC), 2018a)	2,798	Pulmonary-Chest-X-Ray-China (Jaeger et al., 2014a; Candemir et al., 2014b)	662
Isic2017 (Codella et al., 2018b)	2,748	Glaucoma-Detection (Shikamaru, 2021)	650
Verse19 (Sekuboyina et al., 2021a)	2,650	Beh-634 (Islam et al., 2022)	634
Palm19 (Fang et al., 2024)	2,379		

3018
3019
3020
3021
3022
3023

3024
3025
3026
3027
3028
3029

Table S8: Medical Image Datasets in Stage 1 (Part 4 of 4).

Dataset Name	Count	Dataset Name	Count
Retina-Cataract-Dataset (yiweichen04, 2016)	601	Orvs (Sarhan et al., 2021)	202
Idrid (Porwal et al., 2020)	597	Gamma3 (Wu et al., 2023a)	200
Sz-Cxr (Stirenko et al., 2018)	566	Fund-179 (Yin et al., 2013)	179
Cmb-Pca (Fedorov et al., 2023)	532	Drac2022-Taska2 (Qian et al., 2023)	174
Crass (Hogeweg et al., 2012)	518	Drac2022-Taska3 (Qian et al., 2023)	174
Herlev (Jantzen et al., 2005)	504	Tcg-a-Read (Kirk et al., 2016a)	168
Papila (Kovalyk et al., 2022)	488	Glas (Sirinukunwattana et al., 2017)	165
Rimonedl (Batista et al., 2020)	485	Drac2022-Taska1 (Qian et al., 2023)	151
Fetoscopy-Placenta-Dataset (Bano et al., 2020)	482	Tiger-Wsirois-Roi-Level-Tissue-Bcss (Amgad et al., 2019)	151
Tcg-a-Blca (Kirk et al., 2016a)	439	Tcg-a-Lgg (Kirk et al., 2016a)	145
Drimdb (Prentašić et al., 2013)	428	Pulmonary-Chest-X-Ray-Montgomery (Jaeger et al., 2014b; Candemir et al., 2014a)	138
Toxofundus (Cardozo et al., 2023; Alam et al., 2023)	411	Bcss (Amgad et al., 2019)	121
Adam (Timmings et al., 2021)	400	Drishti-Gs-Cup (Sivaswamy et al., 2014)	101
Ph2 (Mendonça et al., 2015)	400	Drishti-Gs-Od (Sivaswamy et al., 2014)	101
Crown (Vos et al., 2024)	384	Avn (Nguyen et al., 2013)	90
Rose (Ma et al., 2021b)	348	Jsr-Lung (Shiraishi et al., 2000)	60
Mias (Pisano & Yaffe, 2005)	322	Breast-Cancer-Cell-Seg (Gelasca et al., 2008)	58
Covid-19-Image-Dataset (Sohan, 2020)	317	Monuseg (Kumar et al., 2020)	51
Gamma (Wu et al., 2023a)	300	Hrf (Budai et al., 2013)	45
Monusac20 (Verma et al., 2021)	283	Drhagis (Holm et al., 2017)	40
Rod (Grace Maria Binu, 2023)	281	Drive (Staal et al., 2004)	40
Jsr (Shiraishi et al., 2000)	247	Rite (Hu et al., 2013)	40
Jsr-Gender-Cls (Shiraishi et al., 2000)	247	Hrf-Quality-Cls (Budai et al., 2013)	36
Tcg-a-Sarc (Kirk et al., 2016a)	241	Retinacheck (Dashtbozorg et al., 2016)	30
Crag (Graham et al., 2019a)	213	Olives-Fundus-Photography (Prabhushankar et al., 2022)	14
Panda-Radboud (Nir et al., 2018a)	206	Occmepv (Chen et al., 2024a)	8

3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067

Table S9: Medical Image Datasets in Stage 2.

Dataset Name	Count	Dataset Name	Count
Biomedica (Lozano et al., 2025)	1,216,529	Mimic-Cxr (Johnson et al., 2019)	107,684
Gmai-VI-5.5M (Li et al., 2024)	671,824	Rocov2 (Rückert et al., 2024)	59,212
Medicat (Subramanian et al., 2020)	204,772	Pmc-Oa (Lin et al., 2023)	36,386
Llava-Med-Instruct-Fig-Captions (Li et al., 2023)	122,843	Mm-Retinal (Wu et al., 2024)	3,577

3074
3075
3076
3077

Table S10: Medical Image Datasets for Image Reconstruction Evaluation.

Dataset Name	Count	Dataset Name	Count
Ivygap-Radiomics (Pati et al., 2020)	8,456	Monkeypox (Ali et al., 2022)	802
Chestx-Det (Lian et al., 2021)	3,578	Breast-Ultrasound-Images-Dataset (Al-Dhabyani et al., 2020)	647
Aapm-lowdose-ct (McCollough et al., 2017)	3,413	Ddti (Pedraza et al., 2015)	637
Btcv-Cervix (Landman et al., 2015)	3,039	Hie2023 (Bao et al., 2025)	554
Surgt (Cartucho et al., 2024)	2,933	Digestpath19-Cls (Da et al., 2022)	455
Silver07 (Heimann et al., 2009)	2,291	EndoCV2020-EDD (Ali et al., 2020)	386
Derm7Pt (Kawahara et al., 2018)	2,013	Mednode (Giotis et al., 2015)	170
Messidor (Decencière et al., 2014)	1,748	Gleason (Nir et al., 2018b)	103
Rsna-Bone-Age (Halabi et al., 2019)	1,596	Consep (Graham et al., 2019b)	41
Hmc-Qu (Kiranyaz et al., 2020)	1,269	Chase (Fraz et al., 2012)	28
Covidgr (Tabik et al., 2020)	852	Stare (Hoover et al., 2000)	20

Table S11: Downstream Medical Vision Tasks Datasets. “CLS”: classification. “M2I”: modality-to-image synthesis. “VQA”: visual question answering.

Dataset	Train	Test	Modality	Task	Type	Classes
PneumoniaMNIST (Kermany et al., 2018)	4,708	1,148	X-ray	CLS	2	
PathMNIST (Kather et al., 2019)	89,996	500	pathology	CLS; M2I	9	
ChestMNIST (Wang et al., 2017b)	78,468	500	X-ray	M2I	14	
BloodMNIST (Acevedo et al., 2020)	11,959	500	microscopy	M2I	8	
DermaMNIST (Tschandl et al., 2018; Codella et al., 2019)	7,007	500	dermoscopy	CLS; M2I	7	
RetinaMNIST (Liu et al., 2022)	1,080	500	fundus photography	CLS; M2I	5	
BreastMNIST (Al-Dhabyani et al., 2020)	546	234	ultrasound	CLS; M2I	2	
Pubmed-Vision-Caption (Chen et al., 2024c)	555,103	0	Unknown	VQA	–	
Pubmed-Vision-VQA (Chen et al., 2024c)	100,000	0	Unknown	VQA	–	
VQARAD-Test (Lau et al., 2018)	0	451	Unknown	VQA	–	
Slake-Test (Liu et al., 2021a)	0	2,094	Unknown	VQA	–	
Slake-Val (Liu et al., 2021a)	0	2,099	Unknown	VQA	–	