Under review as a conference paper at ICLR 2026

MEDITOK: A UNIFIED TOKENIZER FOR MEDICAL IM-
AGE SYNTHESIS AND INTERPRETATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Advanced autoregressive models have reshaped multimodal Al. However, their
transformative potential in medical imaging remains largely untapped due to the
absence of a unified visual tokenizer—one capable of capturing fine-grained visual
structures for faithful image reconstruction and realistic image synthesis, as well
as rich semantics for accurate diagnosis and image interpretation. To this end, we
present MedITok, the first unified tokenizer tailored for medical images, encoding
both low-level structural details and high-level clinical semantics within a unified
latent space. To balance these competing objectives, we introduce a novel two-stage
training framework: a visual representation alignment stage that cold-starts the
tokenizer reconstruction learning with a visual semantic constraint, followed by
a textual semantic representation alignment stage that infuses detailed clinical
semantics into the latent space. Trained on the meticulously collected large-scale
dataset with over 30 million medical images and 2 million image-caption pairs,
MedITok achieves state-of-the-art performance on more than 30 datasets across
9 imaging modalities and 4 different tasks. By providing a unified token space
for autoregressive modeling, MedITok supports a wide range of tasks in clinical
diagnostics and generative healthcare applications. Model and code are available
in the supplementary material.

1 INTRODUCTION
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mography) in the images, with the potential to stream- Tok achieves the best of both worlds
line workflows and improve patient outcomes. ’

A critical ingredient in building a powerful AR model is the visual tokenizer, which translates
an input image to a sequence of discrete tokens suitable for AR modeling. Existing approaches
can be divided into two categories. (1) Generation-oriented tokenizers optimized for pixel-level
reconstruction’, e. g., VQGAN (Esser et al., 2021). These tokenizers precisely capture low-level
structure in the image that is vital to image compression (Varma et al., 2025; Wang et al., 2024c) and

'In this paper, “reconstruction” refers to autoencoding reconstruction: decoding an input image from its
latent representation.
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generation (Zhu et al., 2024; Sun et al., 2024; Yu et al., 2024; Yao et al., 2025). However, they do not
explicitly encode discriminative features and are therefore not suitable for interpreting the concepts
and objects embedded in the image. (2) Interpretation-driven tokenizers trained with discriminative
objectives, e.g., CLIP (Radford et al., 2021). These tokenizers excel at capturing high-level textual
semantics, making them indispensable for visual comprehension, but they fail to accurately retain
spatial structures and textures in the image.

Motivation. Visual tokens that embed only one side of this structure-semantic spectrum will
offload the representation learning burden onto downstream AR models, which often incurs heavy
pre-training costs and can still leave either side under-utilized (Wang et al., 2024b; Chen et al., 2025b).
These limitations are especially acute in the medical domain, where clinical tasks typically demand
both precise visual structures and clinical semantics. However, current medical image tokenizers
tend to specialize in one single aspect (Luo et al., 2023b; Zhang et al., 2023b), which lacks a unified,
information-rich token space and thereby limits the potential of downstream medical AR models for
accurate, interpretable, and data-efficient diagnosis.

Our goal is to democratize a foundation visual tokenizer for medical images. Nonetheless, training
a unified tokenizer for medical images poses unique challenges: (1) A naive joint optimization of
visual reconstruction and textual semantic objectives often causes mutual interference and degraded
performance (Wu et al., 2025; Qu et al., 2024). (2) Paired image-caption data for training is much
more scarce in the medical domain, compared to the abundant unlabeled images.

To addresses these issues, we propose a novel two-stage training framework. Instead of directly
coupling the visual reconstruction and textual semantic, it involves a visual representation alignment
stage to first establish basic semantic awareness with strong reconstruction capabilities as a cold-start,
followed by the fextual semantic alignment stage for learning finer-grained semantic information. This
framework leads to our model: MedITok, the first unified visual tokenizer tailored for medical images.
MedITok encodes both low-level structural information, supporting image synthesis and compression,
and high-level semantics, enabling medical image interpretation and multimodal comprehension,
serving as a general foundation for diverse community use.

Specifically, the first training stage cold-starts MedITok on pure medical images, optimizing for
reconstruction fidelity with a light semantic constraint on the latent space. Then, the textual semantic
alignment stage tunes MedITok on image-caption pairs, enhancing semantic richness by aligning
visual tokens to textual embeddings of detailed captions. This approach allows MedITok to effectively
encode structural and semantic information while exploiting both unpaired medical images and
image-text pairs at scale, making a unified token space to develop powerful AR models for diverse
tasks. To achieve this, we meticulously collect a large-scale dataset comprising over 30 million
medical images and 2 million image-caption pairs from more than 300 public sources, with broad
coverage of imaging modalities, anatomies, and pathologies. This collection ensures that MedITok
learns robust representations for medical image synthesis and interpretation.

Contributions. (1) We propose a novel training framework for developing a unified visual to-
kenizer, which effectively scales up with medical image and text data and progressively builds a
unified token space. (2) We introduce MedITok, the first medical image tokenizer that unifies the
encoding of structural details and clinical semantics. (3) Extensive experimental results on over 30
datasets, spanning 9 imaging modalities, across 4 different tasks, showcase MedITok’s state-of-the-art
performance over existing approaches and broad applicability to diverse medical tasks. (4) Model
and code will be open-source. Data access links are provided respecting all original licenses.

2 RELATED WORK

AR Models in Medical Vision Tasks. AR models have shown impressive scalability and generaliz-
ability in general vision-language processing. In medical domain, these models have been extended
to a variety of tasks: image captioning and VQA for interpreting scans and assist diagnosis (Li et al.,
2023; Moor et al., 2023; Chen et al., 2024c), lesion segmentation model across different imaging
modalities (Chen et al., 2025a), medical image synthesis for counterfactual analysis (Ma et al., 2025a)
and modality transfer (Ren et al., 2024), etc. More recently, HealthGPT (Lin et al., 2025) further
unifies both medical image synthesis and comprehension capabilities within an AR framework for
broader applications. However, these methods typically general-domain tokenizers pre-trained on
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Figure 2: Overview of the proposed training framework. (a) Architecture of MedITok. (b) Two-
stage training: visual representation alignment with pretrained visual semantics, followed by textual
semantic alignment using clinical captions. (c) Statistics across modalities for our training data.

natural images, which encode insufficient clinical knowledge and capture either low-level structural
detail or high-level clinical concepts, rarely both, whereas clinical tasks usually demand joint repre-
sentation. To this end, we introduce MedITok, the first unified tokenizer tailored for medical images
to support a wide range of tasks and empower advanced AR models in the medical field.

Unified Visual Tokenizers. Visual tokenizers encode images into token sequences suitable for AR
modeling. Recent works (Wu et al., 2025; Ma et al., 2025b; Qu et al., 2024) seek to unify the encoding
of both low-level details and high-level semantics into one single visual tokenizer, enhancing the
multimodal generation and comprehension capabilities of downstream AR models. TokenFlow (Qu
et al., 2024) proposes an intuitive dual-codebook design that explicitly decouples semantic and
pixel-level cues. UniTok (Ma et al., 2025b) instead shows that simply scaling codebook capacity
lets a single token space capture both, offering a more scalable solution. In medical imaging, recent
research such as MedVAE (Varma et al., 2025) builds high-fidelity continuous latent compressors
but stops short of providing unified tokens for downstream AR modeling. Our approach is the first
medical-domain tokenizer to fill this gap, supplying unified token space to power the next generation
of medical multimodal models.

3 METHODOLOGY

By encoding both low-level structural details and high-level clinical semantics, MedITok directly
supports medical image reconstruction and classification tasks, and can be further integrated into AR
models for more complex tasks, e.g., medical image synthesis and interpretation, etc. Below, we start
with a preliminary on the image tokenization (Sec. 3.1) and provide detailed description of our model
and training framework (Sec. 3.2) and dataset curation process (Sec. 3.3).

3.1 PRELIMINARY

The drive to apply powerful autoregressive models from natural language processing to visual data
has spurred the development of image tokenization techniques, converting images into sequences of
visual tokens. Among these, Vector Quantization (VQ)-based approaches (Van Den Oord et al., 2017,
Esser et al., 2021) are foundational.

In a typical VQ-based image tokenizer, an image « is first mapped by an encoder £ to a spatial grid
of latent vectors z € R"*®>4 Each vector in this grid is then quantized by assigning it to the closest
entry in a learned, finite codebook C = {ck}szl, where ¢;, € R? represents a visual token and K
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is the codebook size. The quantized grid of latent vectors, z, € R"*w*? effectively represent the
image as a compressed sequence of visual tokens. A decoder D is then trained to reconstruct the
image from these representations, producing & = D(z,). During training, the encoder &£, decoder D,
and the codebook C are jointly optimized. It typically involves a composite loss function designed to
ensure both accurate reconstruction and effective codebook learning (Esser et al., 2021), defined as:

»Crecon (:i’a T, Zq, Z) = »Cimage(:ijv iI}) + )\comm['comm(zqv Z)a (1)

where Limage 18 the image fidelity loss consisting of a mean square error loss, a perceptual loss (John-
son et al., 2016), and an adversarial loss, encouraging high-fidelity reconstructions. The commitment
loss (Van Den Oord et al., 2017) Lcomm ensures the encoder outputs z to commit to their nearest
codebook vectors. Our work builds upon these foundational principles of VQ-based tokenization but
introduces a novel training framework tailored to unified medical image tokenization.

3.2 MEDITOK TRAINING FRAMEWORK

A unified visual tokenizer must reconcile two objectives that naturally compete: preserving low-level
spatial detail for image reconstruction and synthesis, and learning a high-level semantic token space
for image interpretation. Previous works (Wu et al., 2025; Ma et al., 2025b) combine visual reconstruc-
tion and textual representation learning objectives in one go. Such training can lead to representation
collapse or suboptimal trade-offs (Qu et al., 2024). Moreover, they typically rely on large-scale
image-caption pairs while overlooking the abundance of unpaired images. We propose a novel two-
stage training framework to train our unified visual tokenizer MedITok, unlocking the potential of
unlabeled images in the medical domain and progressively transitioning from reconstruction-focused
learning to unified token learning.

As depicted in Fig. 2, MedITok is comprised of an image encoder £, a quantizer ), and a decoder D.
Our framework begins with a visual representation alignment stage, which cold-starts the training
of the image encoder £ and a decoder D using a vast corpus of unpaired medical images. The
primary focus is on capturing low-level structural information, guided by only a light semantic
constraint from a pretrained vision encoder Eyigion. Subsequently, in the second stage termed fextual
semantic alignment, & is refined using high-quality image-caption pairs. Here, the emphasis shifts
towards enhancing the semantic richness of the learned tokens by aligning them with clinical captions
processed by a pretrained text encoder E;qxt. This approach not only alleviates the conflicts between
reconstruction and semantic learning objectives but also allows us to effectively leverage large-scale
unpaired images alongside paired image-text data for unified tokenizer training.

Visual Representation Alignment. Given an input image «, the encoder £ produces continuous
latent vectors z, which are then quantized by the quantizer () to yield discrete latent vectors zq =
Q(z). The decoder D then learns to reconstruct the image & = D(z,). The pretrained vision encoder
Evision €ncodes the image x into a semantic representation, which is then projected into the space of
zq4 via a linear layer fyision to provide semantic supervision for learning z,. We use a composite loss
function for training, defined as:

Estagel - Erecon (i; €, zqa Z) + Avisionﬁvision (ZQ7 fvision(gvision (m)))v (2)

where L.ision 1S a contrastive loss that imposes light semantic constraint on the latent space, with
the factor Ayision set to 0.1. By prioritizing reconstruction while gently guiding the latent space with
pre-trained visual semantics, this stage ensures MedITok develops a robust understanding of visual
structure, preparing it for fine-grained semantic alignment in the subsequent stage.

Textual Semantic Alignment. This stage focuses on enhancing the semantic richness of the learned
image tokens and aligning them with fine-grained textual representations extracted from detailed
medical captions. The training in this stage is driven by the following loss function:

£stage2 = »Crecon(:ﬁa Z, Zq» Z) + )\text»ctext (qu ftext (gtext (t))), (3)

where t denotes the detailed caption of the image x, and fiox¢ is another linear layer. Licys is the
contrastive loss, with a balancing factor Ayt set to 1. This stage further integrates the structural and
semantic representation learning, empowering MedITok for a wide range of downstream medical
applications requiring nuanced understanding.
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3.3 DATASET CURATION

The development of MedITok necessitates a comprehensive and diverse dataset. To this end, we
undertake an extensive data collection effort, aggregating medical images and image-text pairs from
over 300 publicly available sources. For example, image-text pairs are collected from BIOMED-
ICA (Lozano et al., 2025), MedICaT (Subramanian et al., 2020), MIMIC-CXR (Johnson et al., 2019),
ROCOV2 (Riickert et al., 2024), PMC-OA (Lin et al., 2023), MM-Retinal (Wu et al., 2024), and
GMAI-MM-Caption-1.7M (Li et al., 2024) datasets.

Quality control is a critical step in our data collection pipeline to ensure that the training data are of
sufficient quality for learning meaningful representations. We employ a combination of automated
and manual filtering to exclude images of low quality or limited clinical relevance. Specifically, an
image is excluded if, after proxy RGB conversion, it meets any of the following criteria: (1) low
pixel intensity range below 50; (2) insufficient resolution, where the smallest dimension is under 128
pixels; (3) low information content, indicated by a standard deviation of pixel values below 10; (4)
limited palette, with three or fewer unique pixel values; (5) unrelated content, such as tables, plots, or
non-clinical images extracted from publications. For text data, we only retain captions pertinent to
clinical imaging, determined by the tags within each dataset or clinical keyword matching.

These checks efficiently remove noisy and uninformative samples and ensures higher quality input
for our training framework, resulting in a massive corpus of 33,428,922 medical images for the visual
representation alignment stage, and 2,422,827 high-quality medical image-caption pairs for the textual
semantic alignment stage. This collection encompasses over eight imaging modalities, including
computed tomography (CT), dermoscopy, endoscopy, fundus photography, magnetic resonance
imaging (MRI), pathology, ultrasound, and X-ray, spanning a wide spectrum of anatomical regions
and pathological findings. We leave detailed sources and statistics in our Appendix A.

4 EXPERIMENTS

In this section, we present comprehensive experiments to evaluate the proposed MedITok across
four different task families, including medical image reconstruction, medical image classification,
modality-conditioned medical image synthesis, and medical visual question answering. Since each
task is evaluated using specialized metrics appropriate to its goals, we introduce them within each
corresponding subsection.

4.1 EXPERIMENTAL SETUP

Datasets. (1) For medical image reconstruction, we collect images from 23 publicly available
datasets (McCollough et al., 2017; Landman et al., 2015; Heimann et al., 2009; Kawahara et al.,
2018; Giotis et al., 2015; Ali et al., 2022; Kiranyaz et al., 2020; Cartucho et al., 2024; Ali et al.,
2020; Decenciere et al., 2014; Ovreiu et al., 2021; Fraz et al., 2012; Hoover et al., 2000; Graham
et al., 2019b; Da et al., 2022; Nir et al., 2018b; Bao et al., 2025; Pati et al., 2020; Pedraza et al.,
2015; Al-Dhabyani et al., 2020; Lian et al., 2021; Halabi et al., 2019; Tabik et al., 2020), totaling
35,736 images covering 8 imaging modalities. (2) For medical image classification, we benchmark
on five subsets of the latest MedMNIST collection (Yang et al., 2023) in different imaging modalities,
including BreastMNIST (Al-Dhabyani et al., 2020) for ultrasound, DermaMNIST (Tschandl et al.,
2018; Codella et al., 2019) for dermoscopy, PathMNIST (Kather et al., 2019) for pathology images,
PneumoniaMNIST (Kermany et al., 2018) for chest X-ray, and RetinaMNIST (Liu et al., 2022)
for fundus photography, where all images are resized to 256x256. (3) For modality-conditioned
medical image synthesis, we employ data from BloodMNIST (Acevedo et al., 2020), BreastMNIST,
ChestMNIST (Wang et al., 2017b), DermaMNIST, PathMNIST, and RetinaMNIST to train and test
the downstream AR image synthesis models. (4) Finally, for medical visual question answering, we
use PubMedVision (Chen et al., 2024c) dataset to train the downstream multimodal language models,
and evaluate them on two widely used medical visual question answering (VQA) benchmarks: VQA-
RAD (Lau et al., 2018) and SLAKE (Liu et al., 2021a). We carefully conduct manual cross-checking
on the data used for evaluating and training MedITok, minimizing the risk of data leakage. Please see
Appendix B for more details on statistics and tasks.

Implementation Detail. We build MedITok with a hybrid ViT architecture (Chen et al., 2024b)
using PyTorch (Paszke et al., 2019), and implement the quantizer with 8 codebooks, each containing
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Table 1: Medical image reconstruction across different imaging modalities using different models.
The best results are highlighted in bold and the second best results are underlined. SSIM values are
presented as percentages. fq denotes the downsampling factor. “}”: The lower the better.

Metrics Models fa CT Dermo. Endo. Fundus. MRI  Patho. UsS X-ray \ Avg.  Avg. rank
VQGAN 8 1597 3357 27.33 2722 2133 67.68 29.48 18.66 | 30.16 49
Emu3-VQ 8 11.83 2791 20.83 16.27 1352 69.89 2543 11.99 | 24.71 34
YFID (}) VAR-VQ 16 14.69  30.27 19.74 21.69 13.99 70.06 26.09 12.18 | 26.09 4.1
TokenFlow 16 2478  44.28 47.42 34.93 26.81 9822 51.77 2451 | 44.09 7.0
UniTok 16 9.27 23.15 13.64 16.22 9.30 47.77 2093  8.61 18.61 2.0
PUMIT 16 32.67 5346 56.22 27.51 2543 14298 37.04 2378 | 49.88 7.1
MedVAE 8 20.17 14039 11400 11739 2334 12320 30.60 11.54 | 73.64 6.5
MedITok 16 7.88 22.27 10.66 14.39 632 46,54 17.64 6.55 | 16.53 1.0
VQGAN 8§ 31.13 2928 25.60 3540 2954 2042 2479 31.68 | 2848 6.3
Emu3-VQ 8 36.11 31.68 28.96 39.64 3432 2208 27.57 35.81 | 32.02 2.6
PSNR (1) VAR-VQ 16 3132 2926 25.75 35.73 29.83  20.86 2522 31.10 | 28.63 5.8
TokenFlow 16 28.64  27.23 23.72 33.45 27.68 1933 2326 28.71 | 26.50 7.8
UniTok 16 33.60 30.97 27.55 37.21 31.50 2218 2697 3297 | 30.34 43
PUMIT 16 33.64 3023 29.08 37.33 33.13  23.09 2831 33.89 | 31.09 3.1
MedVAE 8 3646  20.67 25.04 15.31 3442 1958 2829 36.23 | 27.01 4.5
MedITok 16 36.32  31.69 29.19 3772 3355 2354 2849 3442 | 31.74 1.8
VQGAN 8 8851 75.28 76.84 92.32 8439 4842 68.18 91.14 | 78.14 6.8
Emu3-VQ 8 9279 79.34 84.71 94.33 9572 5470 75.14 95.54 | 83.78 35
SSIM (1) VAR-VQ 16 89.51 76.69 79.21 93.08 93.68 47.40 69.99 90.79 | 80.04 6.0
TokenFlow 16 8243  67.19 69.47 89.60  90.22 33.09 56.56 84.50 | 71.63 7.8
UniTok 16 9242  81.00 84.47 94.45 9547 5642 7640 92.74 | 84.17 39
PUMIT 16 92.10 8541 87.81 94.60 9659 63.81 8146 94.52 | 87.04 2.6
MedVAE 8 9286 7532 81.52 69.46 9592 53.10 7745 94.77 | 80.10 44
MedITok 16 9373 8547 88.99 95.27 97.22 6599 8393 95.39 | 88.25 1.1

4,096 eight-dimensional latent vectors. We train MedITok using AdamW (Loshchilov & Hutter,
2019) optimizer for 3 epochs in the first stage and 2 epochs in the second stage, with a global batch
size of 512. Image resolution is of 256 x 256. The encoder of MedITok is initialize with weights
from UniTok for efficient training. We choose BiomedCLIP (Zhang et al., 2023b) as the pretrained
semantic vision and text encoders for alignment in our training framework, which is frozen throughout
the training. Detailed setup can be found in our Appendix C.

Competing Tokenizers. We compare MedITok with powerful visual tokenizers from both general
and medical domains, including VQGAN (Esser et al., 2021), Emu3-VQ (Wang et al., 2024b), VAR-
VQ (Tian et al., 2024), TokenFlow (Qu et al., 2024), UniTok (Ma et al., 2025b), PUMIT (Luo et al.,
2023b), and MedVAE (Varma et al., 2025). VQGAN, Emu3-VQ, and VAR-VQ are pure VQ-based
tokenizers trained on natural images without semantic alignments, yet showing great promise in
building medical multimodal models (Lin et al., 2025; Ma et al., 2025a). TokenFlow and UniTok are
two state-of-the-art unified image tokenizers in the general domains. PUMIT and MedVAE are two
medical visual tokenizers that mainly focus on fine-grained detail preservation.

4.2 MEDICAL IMAGE RECONSTRUCTION

We employ reconstruction Fréchet inception distance (rFID) (Heusel et al., 2017), peak signal-to-
noise ratio (PSNR), and structural similarity index measure (SSIM) (Wang et al., 2004) to evaluate
the image reconstruction performance. Notably, Woodland et al. (2024) have shown that ImageNet-
pretrained feature extractors are more consistent and aligned with human medical expert judgment
than their counterparts pretrained on medical images, and we follow their work to implement rFID.

Quantitative results are shown in Table 1. MedVAE struggles on the modalities with colored
imaging (e.g., fundus photography) as it is trained only on grayscale images (Varma et al., 2025).
Notably, despite with a large downsampling factor of 16x, MedITok delivers the best overall
reconstruction quality across 8 modalities, outperforming other tokenizers including those with
only 8x downsampling. This highlights the efficiency of MedITok in balancing compression
with reconstruction fidelity. Fig. 3 visualizes images reconstructed by different tokenizers and
corresponding error maps. MedVAE fails to preserve colors due to limited generalizability, while
UniTok discards nuanced details. By contrast, our MedITok consistently preserves fine-grained
structures and color fidelity. Please refer to Appendix D for more results.
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Figure 3: Reconstruction results across multiple imaging modalities. Each reconstructed image is
paired with an absolute error map against the input image with PSNR/SSIM values.

Table 2: Downstream image classification performance (mAP / AUC) with linear probing setup. The
best results are highlighted in bold and the second best results are underlined. Values are presented
as percentages.

Models Dermoscopy Fundus Pathology Ultrasound X-ray \ AVG

VQGAN 35.71/85.97  41.59/77.33  72.69/94.57 73.29/76.35 91.34/93.32 | 62.92/85.51
Emu3-VQ 30.79/82.88  38.90/71.71  42.57/82.75  82.65/85.30  92.75/93.29 | 57.53/83.19
VAR-VQ 58.76/94.02  51.71/85.53  90.80/98.31  87.31/89.06  97.56/97.79 | 77.23/92.94
TokenFlow 61.78/93.50  52.07/83.77 95.21/99.23  88.19/88.12  97.69/98.03 | 78.99/92.53
UniTok 66.16/94.60  55.94/85.05 96.63/99.49  87.34/88.60  95.98/96.84 | 80.41/92.92
PUMIT 23.64/71.92  36.60/72.87  81.52/96.50 68.81/73.67  88.80/91.64 | 59.87/81.31
MedVAE 37.66/85.26  39.31/75.29  48.02/84.85 77.74/82.36  95.41/95.47 | 59.54/84.64
MedITok (ours)  71.52/95.60 56.41/86.88 96.88/99.60 87.45/89.07 99.08/99.19 | 82.27/94.07

4.3 MEDICAL IMAGE CLASSIFICATION

To assess whether a visual tokenizer encodes clinical semantics in the latent space, we adopt a
linear-probing (Alain & Bengio, 2016) protocol on a suite of medical image classification tasks (Yang
et al., 2023). Specifically, we freeze each tokenizer and append a linear layer to its encoder, training
the linear layer to convergence on the image classification task and report the performance in terms
of mean average precision (mAP) and area under the ROC curve (AUC) on the corresponding test
sets. Results are presented in Table 2. Models optimized purely for image reconstruction (e.g.,
Emu3-VQ, PUMIT) degrade on tasks where fine-grained clinical semantics are required for nuanced
classification, e.g., retinal disease grading in fundus photographs. General-domain unified tokenizers
like TokenFlow and UniTok show improved but limited performance. By contrast, our MedITok
encodes rich clinical-relevant semantics and delivers the best overall classification performance,
showing that rich semantic information is embedded in MedITok’s unified token space.
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Figure 4: Modality-conditioned synthesized image examples produced by our LlamaGenyeqrrok-

Table 3: Modality-conditioned medi- Table 4: Visual question answering accuracy
cal image generation performance. on two medical benchmarks.

Models gFID ({) Diversity (1) Models VQARAD SLAKE-val SLAKE-test

LlamaGenvgoean ~ 130.93+3.58 0.6503+0.03 LLaVA-Med 43.90+2.88 40.30+2.28 38.73+3.53
LlamaGenynitok 80.71+3.18 0.658440.02 LLaVA-Meduynitok 49.66+1.11 44.444204 43.84+1.28
LlamaGenmedrrok.si1  94.98+1.89 0.64794+0.02 LLaVA-Medmedrroks1 46.56+1.67 40.73+152 41.024+0.83
LlamaGenyeqrrok 76.78+191 0.6883+0.01 LLaVA-Medmedarok 52.99+2.14 49.02+3.45 48.09+1.42

4.4 MEDICAL IMAGE SYNTHESIS

We explore applying unified visual tokenizers to image synthesis task by incorporating each tokenizer
in the LlamaGen (Sun et al., 2024) framework for modality-conditioned medical image synthesis,
including six imaging modalities: dermoscopy, fundus photography, microscopy, pathology images,
ultrasound, and X-ray. Specifically, we build two LlamaGen models using MedITok-S1, a variant of
MedITok that only goes through the first training stage, and MedITok. These two models, denoted
by “LlamaGenyjeqrrok-s1” and “LlamaGenyegrrok”’, respectively, are compared with other LlamaGen
variants with different visual tokenizers, i.e., “LlamaGenyqgan” and “LlamaGenyyitox”. We follow
previous work (Bluethgen et al., 2024) to report generation Fréchet inception distance (gFID) and
diversity score for evaluating the fidelity and the diversity of the synthesized images. For visual
diversity metric, we first sample N images from the modality-to-image model for each modality, and
calculate 3, (1 — MS-SSIM(z;, mj))/(ff) for all distinct pairs (x;, ;) among N synthesized
images, where MS-SSIM denotes the multi-scale structural similarity index (Wang et al., 2003). The
overall diversity score is defined as the mean diversity score over all imaging modalities.

Quantitative results in Table 3 show that LlamaGen using general-domain tokenizer like VQ-GAN or
UniTok struggles with high-quality medical image generation. Notably, LlamaGenyeqrrok achieves
the best visual fidelity and diversity. We also note that LlamaGenyeqrtox surpasses LlamaGenyeqrok_si
by a non-trivial margin, indicating that textual semantic alignment may regularize the token space
and boost the image synthesis task. Fig. 4 illustrates images synthesized by LlamaGenyedrrok across
various modalities, presenting realistic structures and textures of biological tissues and organs. Note
that, although MedITok is not trained on microscopy modalities, it still supports realistic synthesis of
microscopy images. Please refer to Appendix D for more examples.

4.5 MEDICAL IMAGE INTERPRETATION

We further evaluate the effectiveness of different tokenizers in medical image interpretation by
integrating each as the image encoder in the LLaVA-Med (Li et al., 2023) framework, yielding
three models: LLaVA-Medyitok, LLaVA-Medpedrtok-s1, and LLaVA-Medyeartok. We initialize the
language backbone using the released weights of LLaVA-Med, train these models on the PubMed-
Vision (Chen et al., 2024c) dataset, and evaluate their accuracy on two widely used medical VQA
benchmarks: VQA-RAD (Lau et al., 2018) and SLAKE (Liu et al., 2021a).
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Table 5: Ablation studies of MedITok. “#Img”: number of images used in the first training stage,
“#Img-txt”: number of image-text pairs used in the second training stage.

Idx. Vision Target Repr. Text Target Repr. Objective #Img #Img-txt|PSNR SSIM mAP AUC

CLIP-V - Contrast 800k - 30.99 86.67 70.80 89.01
BiomedCLIP-V - Contrast 800k - 30.00 83.85 78.35 92.23
BiomedCLIP-V  BiomedCLIP-T Contrast 800k IM  |30.03 84.32 80.09 92.64
BiomedCLIP-V - Contrast 1.8M - 31.38 84.36 78.49 92.25

BiomedCLIP-V  BiomedCLIP-T Contrast 800k 2.4M |29.74 84.14 80.28 92.72
BiomedCLIP-V  BiomedCLIP-T Contrast 2M  24M |30.20 85.50 82.23 93.61
BiomedCLIP-V ~ BiomedCLIP-T Contrast 33.4M 24M |31.74 88.25 82.27 94.07

As shown in Table 4, LLaVA-Med equipped with our final MedITok consistently outperforms other
variants across all benchmarks. We observe a similar improvement from MedITok-S1 to MedITok as
in Table 2, indicating the necessity of the textual semantic alignment stage. The underperformance of
general-domain tokenizer, UniTok, highlights the importance of domain-specific semantic encoding.
These results confirm that MedITok provides effective representations to develop powerful AR models
for downstream medical image interpretation tasks.

4.6 ABLATION STUDIES

Choice of Pre-trained Encoder. Ideally, the pretrained encoders in the proposed training framework
are designed to be flexible, provided they offer rich semantic representations, e.g., CLIP-family (Rad-
ford et al., 2021; Zhang et al., 2023b). We experiment with two options: the general-domain
CLIP (Radford et al., 2021) and the biomedical-domain BiomedCLIP (Zhang et al., 2023b). Re-
sults in Rows (i) and of Table 5 show that, by aligning to the representations produced from
BiomedCLIP, MedITok achieves significant improvement in the medical image classification tasks
while maintaining competitive image reconstruction performance, indicating that domain-specific
pre-trained encoders can provide clinically-relevant semantics that benefit downstream medical tasks.

Two-Stage Training. We further validate the importance of the textual semantic alignment stage by
comparing our full two-stage framework, shown in Row of Table 5, against a single-stage variant
with the same number of training images, shown in Row (iv). Our two-stage approach boosts image
classification without degrading reconstruction quality, highlighting that the textual representation
alignment stage helps the model capture richer cross-modal semantics.

Image Data Scaling. One notable benefit of our proposed training framework is that it allows
effective use of unpaired medical image datasets, which are typically more accessible than image-text
data. Rows (v), (vi), and of Table 5 illustrate the impact of scaling up the number of unpaired
image corpus in the first training stage. Notably, expanding the image data from 800k to 33.4M yields
consistent improvements across all metrics, demonstrating the scalability of our proposed approach,
allowing it to fully exploit medical image data to enhance both structural fidelity and downstream
diagnostic performance. More experimental results can be found in Appendix D.

5 CONCLUSION

In this paper, we propose MedITok, a unified medical image tokenizer that encodes both low-level
structural details and high-level clinical semantics. Leveraging a novel two-stage training framework
which involves visual representation alignment on large-scale unpaired images and textual semantic
alignment on high-quality image-caption pairs, MedITok learns a unified token space that facilitates
medical image reconstruction, classification, synthesis, and VQA, outperforming existing general-
domain and medical-domain models across multiple imaging modalities. By providing a unified
token space, we believe MedITok will serve as a foundational building block for next-generation
multimodal models in medical applications. Please refer to Appendix E for more discussion.



Under review as a conference paper at ICLR 2026

Ethics Statement. We affirm adherence to the ICLR Code of Ethics. This work uses only publicly
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discuss potential societal risks in Appendix E.4, including bias, misuse of generative models, and the
need for oversight. Large language models were used only to aid and polish wording, improving the
flow and clarity of the presentation; they did NOT generate analyses, experiments, figures, or results,
and all technical content was authored by the authors.

Reproducibility Statement. We provide anonymized code and access to model weights in our sup-
plementary material. Training data sources, preprocessing, and statistics are detailed in Appendix A
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Figure S1: Overview of the training data for MedITok. Left: exemplar images used in the first
training stage. Right: word cloud generated from the captions used in the second training stage.
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A TRAINING DATASET

In this section, we provide a comprehensive overview of the training dataset used in this work,
including the collection (Appendix A.1), preprocessing (Appendix A.2), and statistics (Appendix A.3)
of image-only datasets and image-text paired datasets. The construction of this training dataset is
pivotal to the success of our proposed MedITok, as it ensures a diverse and high-quality representation
of medical images and text descriptions across multiple modalities, anatomical regions, and clinical
contexts.

A.1 DATA COLLECTION

We begin by identifying and collecting medical imaging datasets from over 300 publicly available
sources, ensuring broad coverage of imaging modalities and clinical scenarios. Our selection criteria
include: (1) Appropriate Licensing: We only select datasets with clear licensing, ensuring compliance
with data usage policies; (2) Clinical Relevance: Only datasets that provide diagnostic-quality images
or clinically annotated images were included; and (3) Diversity in Imaging Modalities and Anatomies:
We prioritize datasets that collectively cover a wide range of anatomical regions and pathologies.

A.2 DATA PREPROCESSING

A.2.1 EXTRACTING 2D IMAGES FROM 3D VOLUMES

A significant portion of our dataset comprises volumetric medical images (CT and MRI). To fully
utilize these data to train our 2D visual tokenizer, we carefully convert them into 2D image slices
using a modality-specific preprocessing strategy.

CT images extracted from volumes. FEach 3D CT volume is first converted to Hounsfield Units
(HU) using the rescaling slope and intercept recorded in the metadata, and is then clipped to the range
of [-1000, 2000]. To obtain 2D slices from the 3D volume, we extract slices along three orthogonal
planes (axial, coronal, and sagittal), and select every fifth slice along each plane. We then perform an
initial quality filtering by retaining CT slices that met all the following criteria: (1) a background
ratio (the proportion of pixels with HU values < —1000) < 0.6, (2) a valid body ratio (the proportion
of pixels with HU values > —300) > 0.1, and (3) a pixel intensity standard deviation < 100. These
criteria ensure the removal of largely empty slices with minimal anatomical content.

Note that, we save the CT images extracted from 3D volumes in their original HU values without
scaling them to the [0, 255] range. By doing so, we can apply various CT window settings on the CT
images during model training as a form of data augmentation, as detailed in Appendix C.1.
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MRI images extracted from volumes. We process each MRI volume by clipping voxel values
to the [0.5",99.5%] percentile range, followed by min-max normalization to [—1, 1]. The 2D slices
are extracted using the same way as CT preprocessing. The initial quality filtering for MRI excludes

those slices with mean pixel values < —0.9 or standard deviation < 0.2.

Figure S2: Low-quality images filtered by our quality control pipeline.

A.2.2 QUALITY CONTROL

Once we obtain all the 2D images, we implement the following process to ensure that only high-
quality, clinically relevant images are included in the training dataset:

* Dynamic Range Check: Images with pixel intensity ranges below 50 were filtered out to
ensure adequate contrast.

* Resolution Filtering: Images with a minimum dimension below 128 pixels were excluded to
maintain structural integrity.

* Information Content Validation: Images with low standard deviation (below 10) in pixel
values were discarded.

* Palette Limitation Removal: Images with three or fewer unique pixel values were removed.

* Relevance Verification: Non-clinical images, such as tables, plots, or irrelevant illustrations,
were manually screened and excluded.

For instance, the “Relevance Verification” is mainly applied on the BIOMEDICA (Lozano et al.,
2025) dataset, which originally contains approximately 24,050,423 image-text pairs extracted from
biomedical publications. Each image-text pair is tagged with primary and secondary labels. We
retain only those pairs with a primary label of “Clinical Imaging” and a secondary label matching
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one of the following: “computerized tomography”, “clinical imaging”, “light microscopy”, “immuno-

9% 9 9%

histochemistry”, “endoscopy”, “eye”, “X-ray radiography”, “ultrasound”, “magnetic resonance”,

ELIY3

“brain”, “skin lesion”, and “mammography”. Image-text pairs tagged with irrelevant secondary labels
(e.g., “scientific illustration”, “ambiguous”, “plot”, “diagram”, etc.) are all excluded. Such filtering
significantly reduces the BIOMEDICA dataset from 24,050,423 to 1,216,529 image-text pairs for use

in our experiments.

Following the automated checks described above, we perform a manual quality assessment by
randomly sampling 10 images from each dataset for manual visual inspection. If any low-quality
outliers are identified, we further examine other images from the corresponding dataset to evaluate
overall quality. Finally, we try our best to remove the images that share the same sources with data in
our benchmarking datasets in Appendix B.

Fig. S2 displays some low-quality images detected by the dynamic range check, information content
validation, and palette limitation removal. For another example, Fig. S3 shows images that are not
tagged as “clinical imaging” in the original BIOMEDICA (Lozano et al., 2025) dataset.

A.3 DATA STATISTICS
After the collection and the preprocessing, we present detailed sources and image counts of our

“image-only” dataset, which is used in the first training stage of MedITok, in Tables S5-S8. The
details of the “image-caption” dataset, used in the second training stage, are presented in Table S9.
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Figure S3: Irrelevant images filtered out by our quality control pipeline.
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B BENCHMARKING DATASETS

This section outlines the datasets used for evaluating the performance of MedITok across four
core tasks: medical image reconstruction (Appendix B.1), classification (Appendix B.2), modality-
conditioned image synthesis (Appendix B.3), and visual question answering (Appendix B.4). We
tried our best to avoid any overlap or data leakage between the training data of MedITok and these
benchmark datasets.

B.1 IMAGE RECONSTRUCTION

To assess the reconstruction capabilities of MedITok, we curated a high-quality evaluation set of
35,736 images spanning 8 imaging modalities. These images are collected from 23 publicly available
datasets, as detailed in Table S10. Importantly, all images used for evaluation are strictly excluded
from the training corpus to prevent any overlap. This evaluation set reflects a diverse distribution
of anatomical structures, imaging protocols, and clinical contexts, enabling robust testing of image
fidelity and structural preservation.

B.2 IMAGE CLASSIFICATION

We adopt five subsets from the latest version’ of MedMNIST (Yang et al., 2023) benchmark to
evaluate the semantic encoding quality of the visual tokens produced by different tokenizers. These
include:

* BreastMNIST (Al-Dhabyani et al., 2020) (ultrasound): binary classification of benign vs.
malignant tumors.

¢ DermaMNIST (Tschandl et al., 2018; Codella et al., 2019) (dermoscopy): 7-way classifica-
tion of skin lesions.

» PathMNIST (Kather et al., 2019) (pathology): 9-class colorectal cancer tissue types.

* PneumoniaMNIST (Kermany et al., 2018) (X-ray): pneumonia detection in chest radio-
graphs.

* RetinaMNIST (Liu et al., 2022) (fundus): diabetic retinopathy grading.

The original images in each benchmark are of a resolution of 224 x 224, and are resized to 256 x 256
resolution for consistency with the tokenizer input. These tasks collectively test the extent to which
the visual tokenizer encodes discriminative, clinically meaningful semantics. Detailed training and
test split can be found in Table S11.

B.3 IMAGE SYNTHESIS

To evaluate the generative capability of downstream autoregressive models built on top of MedITok,
we conduct experiments on modality-conditioned image synthesis. Specifically, we use six subsets
from the latest MedMNIST collection (Yang et al., 2023), including BloodMNIST (Acevedo et al.,
2020) for microscopy, BreastMNIST (Al-Dhabyani et al., 2020) for ultrasound, ChestMNIST (Wang
et al., 2017b) for chest x-ray, DermaMNIST (Tschandl et al., 2018; Codella et al., 2019) for der-
moscopy, PathMNIST (Kather et al., 2019) for pathology images, and RetinaMNIST (Liu et al., 2022)
for fundus photography. We gather the training partition of these subsets with their imaging modality
labels to construct the training data for the downstream medical image synthesis models, which are
trained to generate images conditioned on modality labels.

B.4 VISUAL QUESTION ANSWERING

To test the utility of different visual tokenizers for medical image interpretation in multimodal
settings, we benchmark on two widely adopted datasets for visual question answering (VQA) task:

https://doi.org/10.5281/zenodo.10519652
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(1) VQA-RAD (Lau et al., 2018): A radiology-specific VQA dataset with natural language questions
and answers grounded in diagnostic images. We use its test set containing 451 question-answer pairs
for evaluation. (2) SLAKE (Liu et al., 2021a): A multi-modal, bilingual medical VQA benchmark
with more diverse imaging modalities and question types. The validation set (SLAKE-val) with 2,094
questions and test set (SLAKE-test) with 2,099 questions are adopted in our experiments.

To train vision-language model for medical image interpretation (i.e., LLaVA-Med (Li et al., 2023)
variants with different visual tokenizers as the image encoder), we use the PubMedVision (Chen et al.,
2024c) dataset, which consists of high-quality image-question-answer triplets derived from medical
publications. All VQA benchmarks are held out from the training set to ensure fair and unbiased
evaluation.

Return to: Introduction | Experiments | Appendix Contents

C EXPERIMENTAL SETUPS

In this section, we first describe the detailed implementation and training setup of MedITok (Ap-
pendix C.1) and its downstream applications (Appendix C.2) on four core tasks: image reconstruction,
image classification, image synthesis, and visual question answering.

C.1 IMPLEMENTATION DETAILS

Architecture. MedITok consists of a ViTamin-based (Chen et al., 2024b) image encoder and
decoder, with a multi-codebook vector quantizer (Ma et al., 2025b) in the bottleneck. The encoder
produces a 2D grid of latent representations, which are discretized using 8 parallel codebooks, each
with 4,096 eight-dimensional vectors, resulting in a total vocabulary size of 32,768. The decoder
reconstructs the image from quantized latent vectors.

Training of MedITok. Both training stages (i.e., visual representation alignment, and textual
semantic alignment) share the same reconstruction loss defined as follows:

['recon((i:a T, Zq, z) = »Cimage (iv iL’) + Acommﬁcomm (Zq, Z)7 (Sl)
ﬁimagc(ia w) = ”:f3 - 33”3 + )\advﬁadv(ia 113) + Apc1rcACpcrc(aA3a (I}), (Sz)
Leomm(2q; 2) = |2 — sg[z]”% + Bllsg[zq] — z”%a (S3)

where L,q. denotes the adversarial loss (Esser et al., 2021), Ly¢rc the perceptual loss (Johnson et al.,
2016), and L¢omm the commitment loss (Van Den Oord et al., 2017). “sg[-]” denotes the stop-gradient
operation. We follow the default setting of VQGAN (Esser et al., 2021) to set \,qv as an adaptive
weight and fix 8§ = 0.25, Apere = 1, and Acomm = 1. The discriminator involved in computing
L4y adopts the DINOvV2 (Oquab et al., 2023) architecture. We use the AdamW (Loshchilov &
Hutter, 2019) optimizers for both MedITok and the discriminator, with betas of (0.9,0.95) and a
weight decay of 0.02 for MedITok, and (0.5, 0.9) and 0.2 for the discriminator. The learning rate is
initialized at 5 x 10~% and decayed to 5 x 10~ via cosine annealing; for the discriminator, it starts
at 2 x 1075 and decays to 2 x 1076, The two-stage full-data training took approximately 4 days on
8 NVIDIA H100 GPUs.

We employ random resized cropping, random image flipping, random image rotation for data
augmentation in the first training stage. For CT image input in HU values, we further introduce CT
windowing augmentation, which randomly applies the following windows on the HU values: full
window ([—1000, 2000] HU, probability p = 0.2), common window ([—1000, 1000] HU, p = 0.3),
soft tissue window ([—150, 250] HU, p = 0.3), lung window ([—1400, 200] HU, p = 0.15), and bone
window ([—500, 1300] HU, p = 0.05).

C.2 DOWNSTREAM TASKS
Medical image classification.  For classification tasks, we evaluate the discriminative power of

the learned visual tokens through a linear probing protocol (Alain & Bengio, 2016). Specifically,
for a pretrained visual tokenizer (e.g., MedITok), we only use its image encoder and quantizer, keep
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them frozen, and append a single linear layer on top of the quantizer. Given an image, the image
encoder produces the continuous feature maps, which are then discretized to a grid of visual tokens
and are flattened to feed the linear layer for image classification. The linear layer is trained using
the Adam (Kingma, 2014) optimizer with a learning rate of 10~* and a batch size of 128. Since the
tokens produced by different tokenizers lead to different convergence speed for the linear layer, we
train each linear layer until convergence and report the peak performance for a fair comparison.

Medical image synthesis. For image synthesis, we integrate the visual tokenizer with LlamaGen-
B (Sun et al., 2024), an autoregressive model designed for image generation, with 12 transformer
layers, 12 heads, and 768 token dimension. We first tokenize each training image, producing a
discrete token sequence. Then, LlamaGen is trained to autoregressively predict the token sequence
conditioned on a modality label token. LlamaGen models are optimized using AdamW (Loshchilov
& Hutter, 2019) with betas of (0.9,0.95), a weight decay of 0.05, and a learning rate of 10~%. The
models are trained for 200 epochs with a batch size of 128. We do not employ advanced strategy for
sampling (e.g., classifier-free guidance) and synthesize images with a temperature parameter of 1.

Medical visual question answering. For VQA, we adapt LLaVA-Med (Li et al., 2023) by replacing
its image encoder with different visual tokenizers, followed by a projector to produce visual embed-
dings compatible with the pretrained language backbone®. We follow the staged training procedure of
original LLaVA-Med, which includes a pretraining stage for the projector (with all other components
frozen) and a fine-tuning stage for the language model using LoRA (Hu et al., 2022). The pretraining
is conducted on 500k image-caption pairs in PubmedVision (Chen et al., 2024c) dataset for one epoch
with batch size 32, while the fine-tuning takes two epochs on the 100k visual question-answer pairs.

Return to: Introduction | Experiments | Appendix Contents

D ADDITIONAL RESULTS

This section compiles extended evidence to complement the main results, including additional
ablation studies (Appendix D.1), adaptation to 3D medical volumes (Appendix D.2), additional
visual Turing test for medical image synthesis (Appendix D.3), analyses of the differences between
codebooks across training stages (Appendix D.4) and representative failure cases (Appendix D.5),
comparison of data scale and inference efficiency (Appendix D.6), and additional visualizations
for reconstruction, synthesis, and VQA (Appendix D.7), including qualitative generative and VQA
examples that illustrate behavior beyond aggregate metrics.

D.1 ADDITIONAL ABLATION STUDIES

We present additional ablation studies in Table S1 to further investigate the effectiveness of our data
quality control and the proposed training framework.

Separating Rather Than Combining Two Stages. In contrast to previous works, we propose
incorporating an extra training stage (e.g., visual represenation alignment) in the training of unified
visual tokenizer. A natural idea question comes: can we combine this stage and the subsequent textual
semantic alignment stage together in one stage? That is, in each iteration, we optimize the following
loss function: .
L= ['recon(wa T, Zq, Z)
+ Avisionﬁvision (zq ) fvision (gvision ((l?) ) ) (S4)
+ Atext Ltext (an frext (Etext (1)),

In Rows (i) and (i1) of Table S1, we empirically compare combined single-stage and our two-stage
training under the same setting. The combined-stage training only slightly improves semantic metrics
but significantly degrades reconstruction quality. This may be attributed to the dominance of semantic
alignment objectives, which in turn escalates the inherent conflicts between reconstruction (low-level)
and semantic (high-level) alignment objectives. In contrast, we use the visual representation learning

3https ://huggingface.co/microsoft/llava-med-vl.5-mistral-"7b
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Table S1: More ablation studies of MedITok. “#Img”: number of images used in the first training
stage, “#Img-txt”: number of image-text pairs used in the second training stage. “BiomedCLIP-T
(combined)”: textual semantic alignment is combined with the visual representation alignment as one
single stage. “BiomedCLIP-TT”: the BiomedCLIP (Zhang et al., 2023b) text encoder is activated
during training.

Idx. Vision Target Repr. Text Target Repr. Avision  #Img #Img-txt ‘PSNR SSIM mAP AUC
BiomedCLIP-V  BiomedCLIP-T (combined) 0.1 800k M 29.20 83.22 81.10 91.97
BiomedCLIP-V BiomedCLIP-T 0.1 800k IM 30.03 84.32 80.09 92.64

- BiomedCLIP-T 0 800k  24M (all BIOMEDICA) |32.23 89.36 57.97 76.98
- BiomedCLIP-T 0 800k 1M (filtered BIOMEDICA) | 32.55 89.49 63.29 81.68
BiomedCLIP-V BiomedCLIP-T 0.1 800k IM 30.03 84.32 80.09 92.64
BiomedCLIP-V BiomedCLIP-T 1 800k IM 29.99 83.02 82.00 91.81
- BiomedCLIP-T 0 - 2.4M 29.06 79.61 80.29 91.25
- BiomedCLIP-T 0 - 2.4M (+800k)" 30.05 82.12 80.06 91.18
BiomedCLIP-V BiomedCLIP-T 0.1 800k 2.4M 29.74 84.14 80.28 92.72
BiomedCLIP-V BiomedCLIP-T 0.1 2M 2.4M 30.20 85.50 82.23 93.61
BiomedCLIP-V BiomedCLIP-T' 0.1 334M 2.4M 34.03 91.05 51.41 69.84
BiomedCLIP-V BiomedCLIP-T 0.1 334M 2.4M 31.74 88.25 82.27 94.07
BiomedCLIP-V - Cos. sim 800k - 30.18 84.01 66.19 85.77
BiomedCLIP-V - Contrast 800k - 30.00 83.85 78.35 92.23

" we convert 800k pure images to pseudo image-text pairs by tagging each image with a short caption “This is a ${modality } image.”

as a cold-start to transit from a reconstruction-based tokenizer to a unified tokenizer more smoothly,
improving joint optimization of these competing objectives.

We also note that separating two stages provides more flexibility, particularly when training with
significantly imbalanced data collections in the medical domain, where unlabeled images are far more
abundant than image-text pairs (14x in our final training set). A staged design allows us to exploit
such imbalanced data effectively and provides engineering flexibility for making modifications to
the pretrained encoders (e.g., adding trainable parameters), while avoiding potential gradient issues
caused by heterogeneous batches.

Data Quality Control. Rows and of Table S1 presents the result from our pilot study
to evaluate the effectiveness of our data quality control pipeline. We pretrain MedITok with pure
reconstruction objective in the first training stage, and continue the second training stage on the
BIOMEDICA (Lozano et al., 2025) dataset.

Specifically, in Row , we adopt all 24M image-text pairs in this dataset, while in Row (iv), we use
a much smaller subset with approximately 1M pairs, as described in Appendix A.2.2. Surprisingly,
despite the significant reduction in the training dataset size, the tokenizer in Row exhibits much
stronger medical image reconstruction and classification capabilities, compared to the one in Row

This highlights the importance of data quality control in training a powerful visual tokenizer*.

Avision Balancing Reconstruction and Contrastive Learning. In Rows and , we explores
the effect of different magnitude for the visual representation alignment in the first training stage
by varying Ayision in Eq. 2. By setting a light semantic constraint (Ayision = 0.1), we observe an
improvement across three metrics (PSNR, SSIM, and AUC) while maintaining competitive mAP, and
we fix this factor in other experiments.

Cold-Starting with Visual Representation Alignment. In Rows and , we bypass the
visual representation alignment stage and train MedITok solely using the textual semantic alignment
objective. While this configuration yields reasonable semantic performance, it exhibits a significant
degradation in SSIM, compared with other configurations like Row of Table S1, showing the
necessity of the visual pretraining stage for cold-starting MedITok by learning structural coherent
representations with a light semantic constraint.

*We would like to note that this filtering was tailored to downstream tasks that mainly involve clinical images,
and that other image types (e.g., tables, plots, and non-clinical images) in BIOMEDICA remain highly valuable
for applications that require table understanding or scientific figure interpretation.
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Freezing the Pretrained Text Encoder. In Row (xi), we investigate the impact of unfreezing the
BiomedCLIP text encoder during the second stage. Although this introduces learnable capacity into
the text encoder, it disrupts the stability and alignment of the token space, leading to a trade-oft:
improved reconstruction metrics but severely degraded downstream classification, compared to the
results in Row . This suggests that freezing the pretrained textual backbone acts as an anchor,
preserving the semantic information necessary for clinical interpretation.

Visual Representation Alignment Objective. We explore two alignment objectives for training
MedITok: contrastive learning and cosine similarity (inspired by Yao et al. (2025)). Comparing
Rows and , we observe that using cosine-similarity loss yields only marginal gains in PSNR
but substantially degrads downstream classification, whereas the contrastive objective produces a more
discriminative token space, improving both fine-grained classification and maintaining reconstruction
quality.

D.2 ADAPTATION TO 3D MEDICAL VOLUMES

Three-dimensional data are vital in the medical domain. Our initial milestone targeted a 2D im-
age tokenizer, considering that (1) 2D images cover more medical imaging domains (e.g. fundus
photography, histopathology, efc.), (2) 2D models provide more flexibility, and (3) computational
costs.

However, we note that MedITok can also be applied in 3D medical data. We compare MedITok,
UniTok, and MedVAE on two 3D datasets: SLIVERO7 (Heimann et al., 2009) for volume reconstruc-
tion and OrganMNIST3D (Bilic et al., 2023; Xu et al., 2019) for multi-class volume classification of
11 body organs. To adapt these 2D tokenizers to 3D volumes, we employed a slice-based strategy:
processing individual slices independently and then aggregating either reconstructed slices (for
reconstruction) or per-slice features (for classification). The results are summarized in Table S2.

Table S2: Additional evaluation on 3D datasets.

Models rFID PSNR SSIM mAP AUC
MedVAE 20.38 34.21 89.98 76.04 94.77
UniTok 6.89 31.08 86.16 83.25 96.15
MedITok 4.94 33.56 89.54 84.00 97.71

Despite not being trained explicitly on 3D radiology data, MedITok still achieves reconstruction
quality comparable to MedVAE which is a radiology-specialized visual tokenizer, with notably
lower rFID for better visual fidelity and competitive PSNR/SSIM indicating reconstruction accuracy.
UniTok encodes visual semantics, yet failing to preserve critical structural details with a significant
drop in PSNR and SSIM. More importantly, MedITok significantly outperforms MedVAE on 3D
volume classification tasks, proving superior transferable representations in 3D settings. Visualization
of 3D reconstruction results are shown in Fig. S4.

D.3 VISUAL TURING TEST

We conducted a Visual Turing Test on the downstream medical image synthesis task, as a proxy
evaluation of the quality of latent space encoded by different tokenizers. Specifically, we compare
two autoregressive medical image synthesis models as in Sec. 4.4: (1) LlamaGen-MedITok, using
MedITok as its visual tokenizer; and (2) LlamaGen-UniTok, using UniTok instead, a state-of-the-art
unified visual tokenizer.

We randomly mixed 75 chest X-rays: 25 real, 25 synthesized by LlamaGen-MedITok, and 25 by
LlamaGen-UniTok, and asked a board-certified radiologist with over 10 years’ experience to score
the “realness” of each image on a continuous 0-1 scale. From these scores, we computed (i) AUC for
classifying real versus synthetic images and (ii) “fooling rate” or “over-confidence”, the proportion
of synthetic images scored higher than 0.5. As shown in Table S3, the radiologist had more difficulty
distinguishing MedITok-synthesized images from real ones, indicating that MedITok enables a more
clinically plausible latent space.
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MedVAE

Figure S4: Visualization of 3D reconstruction results.

Table S3: Visual Turing test on downstream medical image synthesis. We report area under the ROC
curve (AUC) for real vs. synthetic discrimination and the fooling rate.

Model AUC Fooling rate

LlamaGen-UniTok 0.602 (95% CI 0.430-0.772) 56.0% (CI 37.1-73.3%)
LlamaGen-MedITok 0.462 (95% CI 0.307-0.622) 72.0% (CI 52.4-85.7%)

D.4 DIFFERENCE BETWEEN STAGES

We compare the two stages through both performance behavior and the geometry of their learned
codebooks. In Tables 3 and 4, models built upon the Stage-2 MedITok (4th row) significantly
outperform those using the Stage-1 tokenizer (3rd row) in both image synthesis and interpretation,
confirming that Stage 2 enhances semantic capacity without sacrificing reconstruction quality.

Empirically, Fig. S5 shows the test performance curve. In Stage 1, rFID steadily decreases while
mAP remains flat or drifts slightly downward, consistent with a phase that emphasizes reconstructive
accuracy over discriminative semantics. When training continues into Stage 2, mAP rises sharply,
showing a strong boost in classification performance as semantic constraints are reinforced. rFID
exhibits a transient increase at the first epoch in Stage 2 but then returns to a level close to the endpoint
of Stage 1, indicating that reconstruction quality is largely preserved. Overall, these dynamics support
the design of the two-stage schedule: Stage 1 secures a high-fidelity codebook with light semantic
constraint, and Stage 2 further enhances clinical semantics in the latent vectors while retaining
structural information encoding.

To understand why, we visualize the codebook vectors with ¢-SNE. As shown in Fig. S6, after
Stage 2 (strong semantic alignment), the vectors spread more uniformly, pushing features to be
well-distributed on the hypersphere, whereas Stage 1 (light semantic constraint) produces visibly
clustered pockets.

The clustering in Stage 1 is also consistent with known VQ-VAE behavior: without additional
pressures, codebooks tend to exhibit codebook collapse (Roy et al., 2018), yielding concentrated
regions in latent space. The move toward a more uniform, semantically aligned latent in Stage 2
therefore explains both the stronger interpretive/synthesis performance. Notably, recent work (Yao
et al., 2025) in latent diffusion reaches a congruent conclusion: aligning VAE latents to semantic-rich
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features promotes generative quality by regularizing the latent geometry, with only limited impact on

reconstruction.
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Figure S5: Training dynamics of MedITok, where rFID on the
reconstruction test set and mAP on the classification test set are
reported for checkpoints from three Stage-1 (S1) epochs followed

(a) -SNE of Stage-1 Codebook Vectors

(b) t-SNE of Stage-2 Codebook Vectors

Figure S6: t-SNE visualiza-
tion of codebook vectors in
two training stages.

by two Stage-2 (S2) epochs.

D.5 FAILURE CASES

Despite the inspiring performance, MedITok may produce inferior reconstruction for histopathology
images due to their rich fine-grained textures and structural complexity. As shown in the ‘“Patho.”
column of Table 1, all tokenizers struggle with this modality, though MedITok still outperforms
existing baselines. This represents a common challenge in histopathology tokenization that warrants
future investigation. Qualitative examples for these failure cases are shown in Fig. S7.

D.6 EFFICIENCY COMPARISON

In Table S4, we provide details on the inference GPU memory consumption (GB), and frame-per-
second (FPS) throughput across different settings (e.g., B8: batch size 8, R256: resolution 256).
MedITok achieves comparable memory consumption and throughput to existing tokenizers while
delivering state-of-the-art reconstruction quality and latent representation (Tables 1 and 2), showing
both efficiency and effectiveness.

Table S4: Comparison of different models in terms of inference memory usage, and frames per
second (FPS).

Model Memory (B16, R256) Memory (B8, R512) FPS (B16, R256) FPS (B8, R512)
VQGAN 3.29 6.31 136.24 17.76
PUMIT 0.36 0.56 4440.09 1691.37
VAR-VQ 4.21 7.97 171.26 40.95
Emu3-VQ 41.12 OOM 12.68 OOM
VAR-VQ 4.21 7.98 171.26 40.95
TokenFlow 7.91 Not Supported 44.15 Not Supported
MedVAE 4.61 8.89 101.56 24.34
MedITok 4.69 6.75 92.81 20.63
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(b)

Input MedVAE PUMIT UniTok Ours

Figure S7: Two failure cases for image reconstruction. Due to the extremely rich details in histopathol-
ogy images, existing visual tokenizers may still produce lower-fidelity reconstructions.
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D.7 ADDITIONAL VISUALIZATION

Fig. S8 shows more examples for qualitative evaluation of medical image reconstruction, where Med-
ITok achieves the best visual quality with lowest errors. Fig. S9 compares the modality-conditioned
synthesized images produced by different LlamaGen models. Notably, the LlamaGen model that
adopts our MedITok as the visual tokenizer yields diverse and realistic medical images. Figs. S10-S12
presents the visual question answering results of LLaVA models that incoporate different visual
tokenizers as their respective image encoder.
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Figure S8: More reconstruction results across multiple imaging modalities. Each reconstructed image
is paired with an absolute error map against the input image. Regions of interest are highlighted via
yellow bounding boxes.
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E DIscussioN

This section synthesizes our design choices, positioning, limitations, and societal implications. We
first justify the choice of discrete codebooks (Appendix E.1). We then situate MedITok relative to
representative related works, clarifying differences in objectives, training, and latent space spaces

48



Under review as a conference paper at ICLR 2026

(Appendix E.2). Next, we discuss current limitations of MedITok, and outline concrete avenues for
future work (Appendix E.3). Finally, we reflect on broader impact and responsible use (Appendix E.4).

E.1 CHOICE OF DISCRETE CODEBOOKS

Our choice of discrete tokenization is driven by the goal of building a unified latent space that can
power AR models across both image synthesis and interpretation tasks in the medical domain.

To that end, discrete tokens offer the following key advantages:

¢ Leveraging advances in AR modeling: Discrete tokenization allows the medical com-
munity to directly benefit from the broader ecosystem of discrete-sequence modeling, e.g.,
unified training objectives, any-to-any modality transfer (Zhan et al., 2024; Chen et al.,
2025b), and efficient decoding and infrastructure, which are not easily transferable to
continuous tokenizers.

¢ Unified latent space for visual synthesis and interpretation: Discrete tokens act as a
shared representational “language” across modalities. They support AR models that can both
synthesize medical images and interpret them using a single AR backbone (Lin et al., 2025).
In contrast, continuous representations (e.g., VAEs, CLIP) typically lack this versatility,
either being hard to decode (CLIP) or poorly aligned with semantic embeddings (VAE).

* Seamless integration with different modalities. Discrete visual tokens are natively com-
patible with discrete textual tokens, enabling direct multimodal fusion in AR models without
additional heads or diffusion modules. This compatibility is critical for scaling medical AR
models in the style of GPT-40, where all modalities are treated as token sequences.

E.2 COMPARISON WITH RELATED WORKS

We situate MedITok alongside two related works: MedVAE (Varma et al., 2025) and VF-VAE (Yao
et al., 2025).

MedVAE is an effective continuous variational autoencoder (VAE) designed for efficient medical
image interpretation. Our primary departure from MedVAE lies in where and how semantics are
bound to the latent space. Before detailing the differences, we briefly describe the training stage of
interest for MedVAE and MedITok:

e MedVAE first trains a continuous VAE, then freezes the VAE encoder and decoder and
learns a lightweight projector whose output is optimized so that the BiomedCLIP image
embedding of the projected latent matches the embedding of the input image via an ¢ loss,
i.e., Lo (Evision (f(2)), Evision (), Where Eyision denotes the pretrained BiomedCLIP vision
encoder, f is the projector, x is the input image, and z is the corresponding latent.

* MedITok utilizes Econtrastive(f(z)7 Etext (t)) (or Econtrastive(f(z)a 5vision(-73)), as in the
first stage), where Lcontrastive 18 the contrastive loss, and ¢ denotes the caption. In either
stage, the encoder and decoder of MedITok are trainable.

This clearly shows the following main differences:

1. MedVAE enforces the latent z to be perceptually close to the input image  under Biomed-
CLIP, which focuses more on improving the reconstruction fidelity, while MedITok aligns z
to the embedding space of BiomedCLIP so the MedITok encodes more clinical semantics.

2. MedVAE keeps the VAE encoder and decoder frozen in the second stage, which can be
viewed as treating semantics as post-hoc extraction from a fixed latent. In contrast, MedITok
injects semantics into a discrete token space since the encoder and decoder of the tokenizer
is both trainable.

3. Since MedVAE focuses more on preserving structural details in radiological images, it did
not utilize caption data for training and did not provide unified latent space for a wide range
of downstream modalities and tasks. In contrast, by aligning latent tokens to BiomedCLIP
embedding space, MedITok provides richer, fine-grained clinical semantics, which can be
reflected in Table 2, where MedITok shows significantly better performance than MedVAE
on image classification tasks.
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Another related work is VF-VAE (Yao et al., 2025), which targets the reconstruction-generation
trade-off in continuous VAE tokenizers for natural-image latent diffusion, proposing a single-stage
joint reconstruction and alignment objective that aligns latents to a frozen vision foundation model to
improve generative quality and training efficiency. The differences are as follows:

1. Primary task. VF-VAE focuses on improved visual generation using semantic constraint
in latent diffusion, whereas our work targets unified generation and interpretation (e.g.,
classification/VQA) across diverse medical modalities. This dual-use requirement drives
our design choices.

2. Methodology design. VF-VAE employs a single-stage objective to refine the latent space
for better visual generation. In contrast, we use a two-stage curriculum to reach the unified
goal while exploiting abundant unlabeled medical data. Moreover, VF-VAE uses cosine
similarity as the alignment objective. However, as shown in Rows (x) and of Table S1,
such objective significantly degrades the medical image classification performance.

3. Architecture. VF-VAE operates in a continuous VAE/diffusion setting; MedITok produces
discrete, AR-ready tokens. Architecture is not the crux here, but this helps explain down-
stream usage differences.

4. Community. VF-VAE contributes greatly to the field of general visual generation at de-
signing effective VAEs. Our goal, however, is to democratize a foundation visual tokenizer
for medical images to serve downstream applications, with effectiveness, scalability, and
general usability for the medical image community.

E.3 LIMITATION AND FUTURE DIRECTIONS

While MedITok demonstrates strong performance across multiple medical vision tasks, there remain
important considerations and limitations that motivate future work.

First, our two-stage training framework effectively balances structural fidelity and semantic alignment.
However, optimizing simultaneously for both properties remains non-trivial. It is interesting and
valuable to explore disentangling structural and semantic objectives during training (Qu et al., 2024)
or jointly optimizing the tokenizer with a downstream model that unifies visual generation and
interpretation (Wang et al., 2025). We opt for the current two-stage design for its simplicity and
effectiveness.

Second, although the current version of MedITok is designed mainly for 2D medical images across
multiple imaging modalities, we have also shown that MedITok can be easily adapted to 3D medical
tasks that require volume processing (Table S2). Nonetheless, MedITok could benefit from future
advancement such as 3D native training or mixed training using 2D images and 3D volumes, as well
as evaluation on more sophisticated tasks.

Third, due to resource constraints, our current experiments utilize 2.4 million image-caption pairs —
modest in scale compared to billion-scale training regimes in the general domain (Ma et al., 2025b).
We believe that the proposed framework is scalable and can benefit significantly from larger and more
diverse image-text corpora. Future efforts may explore combining public data with institution-curated
pairs.

In summary, while MedITok sets a strong foundation for unified medical visual tokenization, ongoing
work is needed to address the above limitations. We envision that MedITok’s flexible and expressive
design can be extended to diverse downstream tasks. More broadly, we hope this work paves the
way toward building scalable, general-purpose generative models that can advance medical Al and
ultimately contribute to improving human health.

E.4 BROADER IMPACT

This work presents a unified visual tokenizer tailored for medical images, offering a flexible and
generalizable foundation for a wide range of medical Al applications. MedITok has the potential
to accelerate the development of general-purpose medical Al systems and reduce task-specific
engineering efforts. Its modular and pretrained nature also lowers the barrier for medical researchers
to develop high-performance models with limited data and compute.
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However, this progress also raises societal considerations. Insufficient training data may lead to
biased models that underperform in underrepresented populations or clinical contexts. Additionally,
the deployment of powerful downstream generative models in medicine, based on our MedITok,
must be guided by strict ethical oversight to prevent misuse, misinformation, or over-reliance without
clinical validation. We advocate for responsible development and interdisciplinary collaboration to
ensure that such technologies benefit patients and healthcare systems.
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Figure S9: Qualitative comparison of medical images generated by LlamaGen models based on
different visual tokenizers.

Question: What structures are located near the hemorrhage shown?
Golden Answer: Left thalamus and basal ganglia.

LLaVA-Med: The hemorrhage is located near the left thalamus and
the left internal capsule.

LLaVA-Medy,;r,: The hemorrhage is located near the right cerebral peduncle, which is a
part of the brainstem. This area is crucial for motor and sensory pathways, as well as
autonomic functions. The presence of a hemorrhage in this region can potentially affect these

critical functions.

LLaVA-Medy;.qi1ox (0urs): The hemorrhage is located near the left thalamus and the left
basal ganglia. These are critical structures in the brain involved in various functions
including motor control, sensory perception, and cognitive processes. The proximity of the
hemorrhage to these areas could potentially impact these functions depending on the extent

kand severity of the bleeding. )

Figure S10: Visual question answering results on an MRI image.
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~

Question: In which lobe do you see an abnormal mass in the above
images?

Golden Answer: Right upper lobe.

LLaVA-Med: The abnormal mass is located in the right upper lobe of
the lung.

LLaVA-Med,;1,: The abnormal mass is located in the right lower lobe of the lung.

LLaVA-Medy;.qrox (0urs): The abnormal mass is located in the right upper lobe of the

lung, as seen in the provided chest radiographs. This mass is characterized by its irregular
shape and increased density compared to the surrounding lung tissue. The presence of such

a mass could indicate a variety of conditions, ranging from benign tumors to malignant
growths, necessitating further diagnostic evaluation such as a CT scan or biopsy to
\determine the exact nature and extent of the pathology. )

Figure S11: Visual question answering results on a chest X-ray image.

Question: & 5 H AR KIS B & 4°
Golden Answer: fFFJIE.

LLaVA-Med: The body with the largest volume in the image is the
liver.

LLaVA-Med gy IRAEFEHEMICTIHE ER, A ECR ISR B R IRAE. BRI, BT
TRARZI 110022 K AL T AR, 3 KT HAbES B AR o TR A AR T g5 RE L8R
TR B EAROUA 5%, QA OAE T 9 RE B BEE PR 55 o e, PELBOA S 7s FUE
B AR AT A B I 07 S5 At 2 B AR AR AN 25

LLaVA-Medy; qrro (ours): MR 45 EG, R KIS E 2. FREXKCTHR 2
\fﬂtﬂf&?ﬂi’ﬂ”ﬁ )5 FE, 3R B FL N BB A A A X 350 o

J

Figure S12: Visual question answering results on a CT image.
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Table S5: Medical Image Datasets in Stage 1 (Part 1 of 4).

Dataset Name Count \ Dataset Name Count
Rsna-Str-Pulmonary-Embolism- 5,604,627 | Bcnb-TaskS (Xu et al., 2021) 76,559
Detection (Anouk Stein et al., 2020)
Endovis2023-Surgtoolloc (Zia et al., 2025) 3,710,685 | Benb-Task1-0 (Xu et al., 2021) 76,558
Panda (Bulten et al., 2022) 1,616,913 | Bcnb-Task6 (Xu et al., 2021) 76,558
Mela (Song et al., 2022a;b;c;d) 1,403,843 | Msd-Liver (Antonelli et al., 2022) 76,395
Ixi (IXT) 924,870 | Ct-Org (Rister et al., 2020) 76,195
Ribfrac2020 (Jin et al., 2020) 810,265 | Endovis-2021-Petraw (Huaulmé et al., 2023) 75,718
Radimagenet (Mei et al., 2022) 779,768 | Head-Neck-Pet-Ct (Vallieres et al., 2017) 75,109
Autopet (Gatidis et al., 2022) 590,785 | Ctspine1K (Deng et al., 2021) 72,835
Brats2023-Gli (Bakas et al., 2017c¢) 513,263 | Benb-Task1-2 (Xu et al., 2021) 71,991
Atm?2022 (Zhang et al., 2023a) 501,147 |Lndb (Pedrosa et al., 2019) 70,292
Lidc-Idri-All-Ct (Armato IIT et al., 2011) 474,076 | Cptac-Hnscc (National Cancer Institute Clin- 69,731
ical Proteomic Tumor Analysis Consortium
(CPTAC), 2018)
Lunal6 (Setio et al., 2017) 431,694 | Lung-Pet-Ct-Dx (Li et al., 2020) 66,564
Brats2023-Men (LaBella et al., 2023) 384,425 | Anti-Pd-1-Melanoma (Patnana et al., 2019) 65,411
Mimic-Cxr (Johnson et al., 2019) 377,110| Nsclc-Cetuximab (Movsas et al., 2016) 64,730
Qin-Headneck (Beichel et al., 2015) 307,946 | Anode09 (Van Ginneken et al., 2010) 63,250
Biomedica (Lozano et al., 2025) 291,155 | Opc-Radiomics 62,726
Flare22 (Ma et al., 2024) 280,531 | Acrin-Nscle-Fdg-Pet (Kinahan et al., 2019) 62,701
Braintumour (Bakas et al., 2018) 263,310 | Sln-Breast (Campanella et al., 2019) 61,968
Chexpertplus (Chambon et al., 2024) 223,460 |Bcnb-Task2 (Xu et al., 2021) 61,828
Totalsegmentator-Dataset (Wasserthal et al., 218,477 | Msd-Lung (Antonelli et al., 2022) 61,117
2023)
Pediatric-Ct-Seg (Jordan et al., 2022; 2021) 204,602 | Benb-Task1-3 (Xu et al., 2021) 59,521
Acrin6668 (Machtay et al., 2013) 188,098 | Midrc-Ricord-1B (Tsai et al., 2021) 59,247
Covid-19-Ny-Sbu (Saltz et al., 2021) 185,668 | Bcnb-Task1-4 (Xu et al., 2021) 59,091
Bracs (Brancati et al., 2022) 177,712 | Learn2Reg2022-L.2R-Task1-Oasis (Hering 57,984
et al., 2022b)
Abdomenct1K (Ma et al., 2021a) 172,963 | Amos2022 (Ji et al., 2022) 56,217
Bone-Marrow-Cytomorphology ~ (Matek 171,378 |Learn2Reg22-L.2R-Oasis (Hering et al., 52,992
etal., 2021) 2022b)
CtpelviclK (Liu et al., 2021b) 127,315 | Cataract101 (Schoeffmann et al., 2018) 52,676
Parse22 (Luo et al., 2023a) 122,629 | Brats2023-Ped (Kazerooni et al., 2023) 51,769
Nih-Chest-X-Rays (Wang et al., 2017a) 112,115 Vestibular-Schwannoma-Seg (Shapey et al., 51,575
2021)
Lits (Bilic et al., 2023) 107,056 | Midrc-Ricord-1A (Tsai et al., 2021) 50,913
Hnscce (Grossberg et al., 2018; 2020) 101,861 | Lc25000 (Borkowski et al., 2019) 50,000
Airogs (de Vente et al., 2024) 101,280 | Cptac-Luad (National Cancer Institute Clin- 48,952
ical Proteomic Tumor Analysis Consortium
(CPTAC), 2018)
Head-Neck-Cetuximab (Bosch et al., 2015) 100,356 | Ct-Covid-19-August2020 (Harmon et al., 48,791
2020)
Brats2023-Met (Moawad et al., 2023) 93,775 | Fastpet-Ld (Green et al., 2019) 48,097
Acrin-Flt-Breast (Kinahan et al., 2017) 91,948 | Oasis2 (Marcus et al., 2010) 47,744
Benb-Task4 (Xu et al., 2021) 89,894 | Osic-Pul-Fib-Pro (Shahin et al., 2020) 46,014
Covidx-Cxr-4 (Wu et al., 2023b) 84,802 | Anti-Pd-1-Lung (Madhavi et al., 2019) 45,497
Nist (Team, 2011) 79,194 | Tcga-Luad (Albertina et al., 2016) 45,049
Cad-Pe (Gonzalez et al., 2020) 78,583 |Isic2020 (Rotemberg et al., 2021) 44,106
Bcenb-Task3 (Xu et al., 2021) 76,559 | Longitudinal-multiple-sclerosis-lesion- 41,984

segmentation (Carass et al., 2017)
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Table S6: Medical Image Datasets in Stage 1 (Part 2 of 4).

Dataset Name Count|Dataset Name Count
Covid-19-Ar (Desai et al., 2020) 41,664 | Lysto (Jiao et al., 2024) 19,990
Glis-Rt (Shusharina & Bortfeld, 2021) 41,143 |Cas2023 (Chen et al., 2023) 19,200
Mura (Rajpurkar et al., 2017) 39,939 | Tcga-Ov (Holback et al., 2016) 19,077
Spie-Aapm (Armato III et al., 2015) 39,670 Sicapv2 (Silva-Rodriguez et al., 2020) 18,783
Tcga-Lusc (Kirk et al., 2016b) 38,998 | Vin-Big-Data (Nguyen et al., 2020) 17,999
Atlas-2 (Liew et al., 2022) 38,400 | Wmh (Kuijf et al., 2019) 16,896
Spie-Aapm-Lung-Ct-Challenge (Armato III 38,373 |Fizpatrickl17K (Groh et al., 2021; 2022) 16,577
et al., 2015)
M2Cail6-Tool (Jin et al., 2018) 37,314 | Chest-Image-Pneum (Zawacki et al., 2019) 15,251
Hyperkvasir (Borgli et al., 2020) 36,329 | C-Nmc-2019 (Mourya et al., 2019) 15,105
Brats-Tcga-Gbm (Bakas et al., 2017b) 35,770 | Covid-19-20 (Roth et al., 2022) 15,045
L1d-Mmri2023 (Lou et al., 2023) 35,751|Aod-14800 (Abuev, 2021) 14,805
Diabetic (Platform, 2023) 35,059 | Aapm-Rt-Mac (Cardenas et al., 2019) 14,080
Eyepacs (Dugas et al., 2015) 35,059 | Mindboggle (Klein et al., 2017) 12,575
Ranzer-Clip (Seah et al., 2020) 33,664 | Siim-Acr-Pneumothorax (Zawacki et al., 2019) 12,053
Isic2019 (Codella et al., 2018a) 33,541 | Chest-X-Ray-Images-With-Pneumothorax- 12,047
Masks (Zawacki et al., 2019)
Verse20 (Sekuboyina et al., 2021b) 32,944 | Han-Seg (Podobnik et al., 2023) 11,939
Covidxcxr-2 (Wang et al., 2020) 31,238 | Valdo-Task1 (Sudre et al., 2024) 11,915
Lolall (van Ginneken, 2021) 30,207 | Valdo-Task3 (Sudre et al., 2024) 11,915
Rsna-Pdc (Anouk Stein et al., 2018) 29,684 | Cptac-Ucec (National Cancer Institute Clinical 11,595
Proteomic Tumor Analysis Consortium (CP-
TAC), 2019a)
C4Kc-Kits (Heller et al., 2019) 28,843 | Tcga-Stad (Lucchesi & Aredes, 2016) 11,204
Word (Luo et al., 2022) 27,154 | Ultrasound-Nerve-Segmentation  (Montoya 11,143
et al., 2016)
Acrin-Hnscc-Fdg-Pet-Ct (Kinahan et al., 2020) 27,117 | Msseg08 (Styner et al., 2008) 10,965
Kits2021 (Heller et al., 2020) 26,503 | Wsss4Luad (Han et al., 2022) 10,091
Exact09 (Lo et al., 2012) 25,560 | Medfm-Colon-2023 (Wang et al., 2023) 10,009
Benb-Task1-1 (Xu et al., 2021) 25,370 | Knee-Osteoarthritis-Dataset (Chen, 2018) 9,766
Surgvisdom (Zia et al., 2021) 24,360 | Segthor (Lambert et al., 2020) 9,661
Brats-Tcga-Lgg (Bakas et al., 2017a) 23,336 |Brain-Ptm (Avital et al., 2019; Nelkenbaum 9,600
et al., 2020)
Tcga-Ucec (Erickson et al., 2016) 22,946 | Msd-Colon (Antonelli et al., 2022) 9,191
Tcga-Kirc (Akin et al., 2016) 22,644 | Covid19Ctscans (Jun et al., 2020) 9,119
Cptac-Sar (National Cancer Institute Clinical 22,432 |Cholect50 (Nwoye et al., 2023) 8,919
Proteomic Tumor Analysis Consortium (CP-
TAC), 2019b)
Crossmoda2023 (Dorent et al., 2023) 21,981 | Msd-Pancreas (Antonelli et al., 2022) 8,666
Cptac-Cm (National Cancer Institute Clinical 21,867 | Fumpe (Masoudi et al., 2018) 8,402
Proteomic Tumor Analysis Consortium (CP-
TAC), 2018b)
Brats2023-Ssa (Adewole et al., 2023) 20,910 | Letsc (Yang et al., 2017) 8,300
Pancreas-Ct (Roth et al., 2015) 20,709 | Ct-Vs-Pet-Ventilation-Imaging (Eslick et al., 8,252
2018)
Vessel2012 (Rudyanto et al., 2014) 20,442 | Head-Neck-Radiomics-Hnl (Aerts et al., 2014) 8,161
Yangxi (Liu et al., 2019) 20,394 | Qin-Breast (Li et al., 2015) 8,051
Msseg2016 (Commowick et al., 2018) 20,352 | Chaos-Task-4 (Kavur et al., 2021) 7,977
Oia-Odir (Peking University International Com- 19,992 | Pannuke (Gamper et al., 2019; 2020) 7,810

petition on Ocular Disease Intelligent Recogni-
tion (ODIR-2019), 2019)
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Table S7: Medical Image Datasets in Stage 1 (Part 3 of 4).

Dataset Name Count \ Dataset Name Count
Sppin2023 (Buser et al., 2025) 7,616 | Pad-Ufes-20 (Pacheco et al., 2020) 2,298
Atlas2023 (Quinton et al., 2023) 7,364 | Msd-Spleen (Antonelli et al., 2022) 2,169
Msd-Hepaticvessel (Antonelli et al., 2022) 6,859 | Breakhis-100X (Spanhol et al., 2015) 2,081
Mmwhs (Zhuang, 2018) 6,400 | Breakhis-200X (Spanhol et al., 2015) 2,011
Hsa-Nrl (Zhu et al., 2021) 6,160 | Breakhis-40X (Spanhol et al., 2015) 1,991
Coronahack (Praveen Govi, 2019) 5,933 | Breakhis-400X (Spanhol et al., 2015) 1,820
Rus-Chn (Baidu Al Studio, 2021) 5,921 | Cptac-Pda (Consortium et al., 2018) 1,792
Dhrf (Derbi Hackathon Organizers, 2022) 5,680 | Tiger-Wsirois-Roi-Level-Tissue-Cells (van Ri- 1,775
jthoven et al., 2022)
Aptos2019-Blindness-Detection (apt) 5,590 | Breast-Diagnosis (Wolberg et al., 1995) 1,656
Curious2019 (Xiao et al., 2019) 5,376 | Cmb-Gec (Biobank, 2022a) 1,625
Cmb-Mel (Biobank, 2022b) 5,289 |Riga-Dataset (Almazroa et al., 2018) 1,617
Clust15-2D (Luca et al., 2018) 5,255 |Refuge2-Cls (Fang et al., 2022) 1,600
Cmmd (Cui et al., 2021) 5,202 | Harvardglaucoma-1547 (Kim, 2018) 1,544
Tcga-Hnsc (Zuley et al., 2016) 5,172 | Tcga-Kich (Linehan et al., 2016) 1,484
Continuous-Registration-Task3 (Baheti et al., 5,120 |Papilledema (pap, 2020) 1,369
2021)
Messeg (Commowick et al., 2018) 5,120 | Continuous-Registration-Task6 (Hering et al., 1,280
2022a)
Node21 (Sogancioglu et al., 2024) 4,882 |Isbi2016-Part3 (Gutman et al., 2016) 1,279
Conic2022 (et al., 2021) 4,870 |1sic2016-Task1 (Gutman et al., 2016) 1,279
Lag-4854 (Lietal.,2019) 4,854 | Fusc2021 (Wang et al., 2024a) 1,210
Medfm-Chestdr-2023 (OpenMEDLab, 2023) 4,848 |Hvsmr-2016 (Pace et al., 2015) 1,152
Stageii-Colorectal-Ct (Tong & Li, 2022) 4,672 | Osteosarcoma-Tumor-Assessment  (Leavey 1,143
et al., 2019)
Naf-Prostate (Kurdziel, 2015) 4,664 |Isic2016-Task2B-Globules (Gutman et al., 1,142
2016)
Chest-X-Ray-Pa (Asraf & Islam, 2021) 4,574 |1sic2016-Task2B-Streaks (Gutman et al., 2016) 1,142
Lungct-Diagnosis (Grove et al., 2015) 4,155 |Jsiec (Cen et al., 2021) 997
Covid19-Radio-Data (Chowdhury et al., 2020) 3,886 |Isles2022 (Hernandez Petzsche et al., 2022) 938
Structseg2019-Subtask1 (Organizers, 2019) 3,634 | Covid-19-Ct-Cxr-Det (Peng et al., 2020) 929
Structseg2019-Subtask4 (Organizers, 2019) 3,634 | Covid-19-Ct-Cxr (Peng et al., 2020) 918
Structseg2019-Subtask2 (Organizers, 2019) 3,413 |E-Ophta (Decenciere et al., 2013) 905
Qin-Lung-Ct (Kalpathy-Cramer et al., 2015) 3,586 | Dao-Slocpasa (Chiu et al., 2013) 840
Structseg2019-Subtask3 (Organizers, 2019) 3,413 | Continuous-Registration-Task5 (Klein et al., 813
2009)
Tcga-Coad (Network et al., 2012) 3,093 | Fives (Jin et al., 2022) 800
Tcga-Prad (Abeshouse et al., 2015) 3,007 | Segpc2021 (Gupta et al., 2023) 773
Bidr-2838 (Islam et al., 2021) 2,838 | Paraguay-757 (Benitez et al., 2021) 757
Refuge2 (Fang et al., 2022) 2,800 Mudi2019 (Pizzolato et al., 2020) 695
Cptac-Ccrec (National Cancer Institute Clinical 2,798 | Pulmonary-Chest-X-Ray-China (Jaeger et al., 662
Proteomic Tumor Analysis Consortium (CP- 2014a; Candemir et al., 2014b)
TAC), 2018a)
Isic2017 (Codella et al., 2018b) 2,748 | Glaucoma-Detection (Shikamaru, 2021) 650
Versel9 (Sekuboyina et al., 2021a) 2,650|Beh-634 (Islam et al., 2022) 634
Palm19 (Fang et al., 2024) 2,379
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Table S8: Medical Image Datasets in Stage 1 (Part 4 of 4).

Dataset Name Count \ Dataset Name Count
Retina-Cataract-Dataset (yiweichen04, 2016) 601 |Orvs (Sarhan et al., 2021) 202
Idrid (Porwal et al., 2020) 597 | Gamma3 (Wu et al., 2023a) 200
Sz-Cxr (Stirenko et al., 2018) 566 |Fund-179 (Yin et al., 2013) 179
Cmb-Pca (Fedorov et al., 2023) 532 | Drac2022-Taska2 (Qian et al., 2023) 174
Crass (Hogeweg et al., 2012) 518 | Drac2022-Taska3 (Qian et al., 2023) 174
Herlev (Jantzen et al., 2005) 504 | Tcga-Read (Kirk et al., 2016a) 168
Papila (Kovalyk et al., 2022) 488 | Glas (Sirinukunwattana et al., 2017) 165
Rimonedl (Batista et al., 2020) 485 | Drac2022-Taskal (Qian et al., 2023) 151
Fetoscopy-Placenta-Dataset (Bano et al., 2020) 482 | Tiger-Wsirois-Roi-Level-Tissue-Bcss (Amgad 151
etal., 2019)
Tcga-Blca (Kirk et al., 2016a) 439 |Tcga-Lgg (Kirk et al., 2016a) 145
Drimdb (Prentasic et al., 2013) 428 | Pulmonary-Chest-X-Ray-Montgomery (Jaecger 138
et al., 2014b; Candemir et al., 2014a)
Toxofundus (Cardozo et al., 2023; Alam et al., 411 |Bcss (Amgad et al., 2019) 121
2023)
Adam (Timmins et al., 2021) 400 | Drishti-Gs-Cup (Sivaswamy et al., 2014) 101
Ph2 (Mendonga et al., 2015) 400 | Drishti-Gs-Od (Sivaswamy et al., 2014) 101
Crown (Vos et al., 2024) 384 | Avn (Nguyen et al., 2013) 90
Rose (Ma et al., 2021b) 348 |Jsrt-Lung (Shiraishi et al., 2000) 60
Mias (Pisano & Yaffe, 2005) 322 | Breast-Cancer-Cell-Seg (Gelasca et al., 2008) 58
Covid-19-Image-Dataset (Sohan, 2020) 317 | Monuseg (Kumar et al., 2020) 51
Gamma (Wu et al., 2023a) 300 |Hrf (Budai et al., 2013) 45
Monusac20 (Verma et al., 2021) 283 | Drhagis (Holm et al., 2017) 40
Rod (Grace Maria Binu, 2023) 281 | Drive (Staal et al., 2004) 40
Jsrt (Shiraishi et al., 2000) 247 |Rite (Hu et al., 2013) 40
Jsrt-Gender-Cls (Shiraishi et al., 2000) 247 | Hrf-Quality-Cls (Budai et al., 2013) 36
Tcga-Sarc (Kirk et al., 2016a) 241 |Retinacheck (Dashtbozorg et al., 2016) 30
Crag (Graham et al., 2019a) 213 | Olives-Fundus-Photography (Prabhushankar 14
et al., 2022)
Panda-Radboud (Nir et al., 2018a) 206 | Occmepv (Chen et al., 2024a) 8
Table S9: Medical Image Datasets in Stage 2.
Dataset Name Count \ Dataset Name Count
Biomedica (Lozano et al., 2025) 1,216,529 | Mimic-Cxr (Johnson et al., 2019) 107,684
Gmai-VI-5.5M (Li et al., 2024) 671,824 |Rocov2 (Riickert et al., 2024) 59,212
Medicat (Subramanian et al., 2020) 204,772 |Pmc-Oa (Lin et al., 2023) 36,386
Llava-Med-Instruct-Fig-Captions (Li et al., 122,843 | Mm-Retinal (Wu et al., 2024) 3,577

2023)
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Table S10: Medical Image Datasets for Image Reconstruction Evaluation.

Dataset Name Count \ Dataset Name Count
Ivygap-Radiomics (Pati et al., 2020) 8,456 | Monkeypox (Ali et al., 2022) 802
Chestx-Det (Lian et al., 2021) 3,578 | Breast-Ultrasound-Images-Dataset (Al- 647
Dhabyani et al., 2020)
Aapm-lowdose-ct (McCollough et al., 2017) 3,413 |Ddti (Pedraza et al., 2015) 637
Btcv-Cervix (Landman et al., 2015) 3,039|Hie2023 (Bao et al., 2025) 554
Surgt (Cartucho et al., 2024) 2,933 | Digestpath19-Cls (Da et al., 2022) 455
Silver07 (Heimann et al., 2009) 2,291 | EndoCV2020-EDD (Ali et al., 2020) 386
Derm7Pt (Kawahara et al., 2018) 2,013 | Mednode (Giotis et al., 2015) 170
Messidor (Decenciere et al., 2014) 1,748 | Gleason (Nir et al., 2018b) 103
Rsna-Bone-Age (Halabi et al., 2019) 1,596 | Consep (Graham et al., 2019b) 41
Hmc-Qu (Kiranyaz et al., 2020) 1,269 | Chase (Fraz et al., 2012) 28
Covidgr (Tabik et al., 2020) 852 | Stare (Hoover et al., 2000) 20

Table S11: Downstream Medical Vision Tasks Datasets. “CLS”: classification. “M2I”: modality-to-
image synthesis. “VQA”: visual question answering.

Dataset Train Test Modality Task Type Classes
PneumoniaMNIST (Kermany et al., 2018) 4,708 1,148 X-ray CLS 2
PathMNIST (Kather et al., 2019) 89,996 500 pathology CLS; M2I 9
ChestMNIST (Wang et al., 2017b) 78,468 500 X-ray M2I 14
BloodMNIST (Acevedo et al., 2020) 11,959 500 microscopy M21 8
DermaMNIST (Tschandl et al., 2018; Codella et al., 2019) 7,007 500 dermoscopy CLS; M21 7
RetinaMNIST (Liu et al., 2022) 1,080 500 fundus photography CLS; M2I 5
BreastMNIST (Al-Dhabyani et al., 2020) 546 234 ultrasound CLS; M21 2
Pubmed-Vision-Caption (Chen et al., 2024c) 555,103 0 Unknown VQA -
Pubmed-Vision-VQA (Chen et al., 2024c) 100,000 0 Unknown VQA -
VQARAD-Test (Lau et al., 2018) 0 451 Unknown VQA -
Slake-Test (Liu et al., 2021a) 0 2,094 Unknown VQA -
Slake-Val (Liu et al., 2021a) 0 2,099 Unknown VQA -
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