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ABSTRACT

Pre-trained language models have achieved impressive performances on dialogue
generation tasks. However, when generating responses for a conversation that
requires factual knowledge, they are far from perfect, due to the absence of mech-
anisms to retrieve, encode, and reflect the knowledge in the generated responses.
Some knowledge-grounded dialogue generation methods tackle this problem by
leveraging the structured knowledge from Knowledge Graphs (KGs). However,
existing methods do not guarantee that the model utilizes a relevant piece of knowl-
edge from the KG before generating knowledge-consistent dialogues. To overcome
this limitation, we propose SUbgraph Retrieval-augmented GEneration (SURGE),
a framework for generating context-relevant and knowledge-consistent dialogues
with a KG. Specifically, our method first retrieves the relevant subgraph from the
KG, and then enforces consistency across facts by perturbing their word embed-
dings conditioned on the retrieved subgraph. Then, it learns a latent representation
space using contrastive learning which ensures that the generated texts have high
similarity to the retrieved subgraphs. We validate the performance of our SURGE
framework on the OpendialKG and KOMODIS datasets and show that our method
generates high-quality dialogues that faithfully reflect the knowledge from the KG.

1 INTRODUCTION

Dialogue systems aim at conversing with humans by generating human-like responses, given the
dialogue context. While pre-trained language models (PLMs) (Radford et al., 2019; Raffel et al.,
2020) are capable of generating fluent responses, they often generate factually incorrect responses due
to a lack of explicit knowledge (Shuster et al., 2021). To overcome such limitations, recent methods
access the external knowledge sources, such as Wikipedia (Dinan et al., 2019) or Web (Komeili
et al., 2021), and then retrieve the relevant knowledge for ongoing conversations. In addition to such
document-based retrieval approaches, there also exists a variety of works (Tuan et al., 2019; Wu et al.,
2020; Zhang et al., 2020a; Cui et al., 2021; Zhou et al., 2021; Galetzka et al., 2021; Li et al., 2022),
which focus on the use of the Knowledge Graphs (KGs) (Bollacker et al., 2008; Vrandecic & Krötzsch,
2014) – a different form of the knowledge source which succinctly encodes the knowledge in the
most compact and effective form – in dialogue generation. Specifically, KGs consist of symbolic facts
which represent entities as nodes and their relations as edges, in the triplet, e.g., (Pride & Prejudice,
written by, Jane Austen) (See Figure 1), which can help generate a knowledge-grounded response.

Most of the dialogue generation models with KGs (Galetzka et al., 2021; Li et al., 2022) utilize all the
triplets associated with the entity in the dialogue context. However, not all of the facts are relevant to
the ongoing conversation (e.g., Jane Austen was born in Steventon in Figure 1), which could mislead
the models from generating factually incorrect responses. We found that about 87% of facts from
1-hop KG are irrelevant to the context in the OpendialKG dataset (Moon et al., 2019). Moreover,
encoding all the facts including the unnecessary ones is computationally inefficient (Galetzka et al.,
2021; Rony et al., 2022). On the other hand, even after correctly retrieving the relevant facts, it is not
straightforward to combine two heterogeneous modalities: the dialogue context is represented as a text,
meanwhile, the knowledge is represented as a graph. In other words, since PLMs already have tons
of pre-trained parameters trained on the unstructured texts, properly conditioning the structured graph
to PLMs is highly important. Otherwise, PLMs may generate inconsistent responses disregarding the
knowledge from the retrieved subgraph, which is a phenomenon known as hallucination (Rohrbach
et al., 2018), where they generate responses with their own memorized yet incorrect knowledge.
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Figure 1: Motivation. Existing knowledge-grounded dialogue generation models with KG utilize the multi-hop
subgraph for entities in the dialogue context (Jane Austen). However, they suffer from the following two
problems: (1) irrelevant knowledge where only 12.6% of facts from 1-hop KG are useful to generate the target
responses given a dialogue context, and (2) inconsistent generation including the factually wrong statement.

In this work, we tackle such challenging and fundamental issues of knowledge-consistent dialogue
generation with the KG. We propose an end-to-end dialogue generation framework that considers
all aspects from knowledge retrieval, encoding, and reflection along the generation process. As a
first step, we propose a context-relevant subgraph retriever that retrieves only the relevant triplets
from the KG to prevent the model from generating context-irrelevant responses. Notably, our
subgraph retrieval method embeds the KG considering the relational structure with the Graph Neural
Network (GNN) (Kipf & Welling, 2017) instead of using PLMs as in previous work (Li et al., 2022).
Furthermore, it is end-to-end trainable jointly with the generation objective by marginalizing the
likelihood of the generated sentences over the latent retrieved subgraph (Guu et al., 2020; Lewis et al.,
2020b). Then, to encode the retrieved subgraph along with the input text sequence, we propose a
graph encoding that is permutation and relation inversion invariant yet efficient. Specifically, we
devise the graph encoding method that reflects the graph structure onto the representation space of
PLMs, instead of prepending them in front of the text sequence to avoid the computational burden.
Furthermore, to ensure that the model does make use of the encoded knowledge when generating
responses, we propose a multi-modal contrastive learning objective between two different graph-text
modalities to enforce the consistency across the retrieved facts and the generated texts. We call our
framework SUbgraph Retrieval-augmented GEneration (SURGE).

We validate our framework on the OpendialKG (Moon et al., 2019) and KOMODIS (Galetzka et al.,
2020) datasets against relevant baselines. Note that, when evaluating the generated responses from
dialogue models, conventional metrics (e.g., BLEU (Papineni et al., 2002), Rouge (Lin, 2004)) can
not measure how faithfully the generated responses reflect the related knowledge in KGs. Thus, in
evaluation, we further introduce an additional performance metric, referred to as Knowledge-verifying
Question Answering (KQA), which evaluates whether the generated responses contain the correct
knowledge with an additional extractive question answering scheme. The experimental results show
that SURGE generates responses that not only agree with the gold knowledge but are also consistent
with the retrieved knowledge from KGs.

Our main contributions can be summarized as follows:
• We propose a GNN-based context-relevant subgraph retrieval method for KG-augmented dialogue

generation, to extract only the relevant piece of the knowledge for the dialogue context from the
entire knowledge graph, for generating more appropriate responses to the ongoing conversation.

• We propose an invariant yet efficient graph encoder and a graph-text contrastive learning objective
to ensure that the generated responses faithfully reflect the retrieved knowledge.

• We validate SURGE against relevant baselines, demonstrating its efficacy in generating responses
that are more informative by retrieving and reflecting the relevant knowledge from the KG.

2 RELATED WORK

Language Models Pre-trained Language Models (PLMs) (Radford et al., 2019; Lewis et al., 2020a;
Raffel et al., 2020) that use a Transformers-based (Vaswani et al., 2017) encoder-decoder architecture
have achieved great successes on language generation tasks. As they can accurately contextualize the
given context and then generate human-like sentences, they are often used as the base architecture
for neural dialogue systems (Zhang et al., 2020b; Hosseini-Asl et al., 2020). Moreover, when
PLMs become larger, dialogue models have shown to generate high-quality responses (Adiwardana
et al., 2020), suggesting that pre-trained parameters do contain certain knowledge (Petroni et al.,
2019). Despite the fluency of such PLM-based dialogue agents, they often generate factually incorrect
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responses that are unfaithful to the context but look plausible – widely known as hallucination (Maynez
et al., 2020). Thus, generating responses requiring specific and valid factual knowledge is still
challenging. To tackle this, recent studies propose to retrieve knowledge from external sources, and
then use it to augment dialogue models (Roller et al., 2021; Shuster et al., 2021).

Dialogue Generation with KGs The sources of external knowledge can be categorized into two
types: documents from unstructured corpora (e.g., Wikipedia (Dinan et al., 2019), Web (Nakano
et al., 2021)), and symbolic facts from Knowledge Graphs (KGs) (e.g., Freebase (Bollacker et al.,
2008), Wikidata (Vrandecic & Krötzsch, 2014)). Regarding dialogue generation tasks with KGs that
we target, Moon et al. (2019) introduce a knowledge-grounded dialogue dataset where each dialogue
comes with facts from the large-scale KG. Several works (Tuan et al., 2019; Wu et al., 2020; Zhang
et al., 2020a; Cui et al., 2021; Zhou et al., 2021) suggest sequence-to-sequence models trained from
scratch, which focus on generating dialogue by conditioning the output word distribution with the
entities from the KG. Further, Galetzka et al. (2021) propose an efficient way to encode all of the
facts in the k-hop neighbors of the entities that appear in the dialogue history in the given KG, in
order to reduce the number of input tokens used in PLMs. On the other hand, Rony et al. (2022)
propose to mask out weights for irrelevant facts in PLMs. However, all of these methods simply
match and retrieve all facts for entities that appear in the dialogue context, which either may mislead
the agent to generate out-of-context responses from irrelevant facts or can increase the computational
overheads for prepending tokens for all facts in PLMs. Our work differs from those existing works,
since we aim at retrieving only a context-relevant subgraph among all associated facts with a novel
GNN-based subgraph retriever, which is end-to-end trainable along with a dialogue generation model.

3 METHOD

In this section, we first discuss the basic ingredients: Transformer and Graph Neural Network. We then
formalize the dialogue generation problem and describe key components for our SUbgraph Retrieval-
augmented GEneration (SURGE) framework: context-relevant subgraph retrieval, invariant graph
encoding, and graph-text contrastive learning. Figure 2 illustrates the overview of our framework.

3.1 PRELIMINARIES

As we use two different modalities, namely text and graph, we first define them, and then describe
the neural networks to encode them. In particular, a text is defined as a sequence of tokens x =
[x1, ..., xN ],∀xi ∈ V , where xi is a token and V is a pre-defined vocabulary formed with specific
tokenization algorithms (Sennrich et al., 2016). On the other hand, a knowledge graph (KG) is a type
of multi-relational graphs G = {(eh,r,et)} ∈ E ×R×E , where eh and et are head and tail entities
(nodes) along with their relation (edge) r; and E and R are sets of entities and relations, respectively.

To easily access different modalities in the same framework, we define the tokenization (mapping)
function that maps entities and relations to the tokens used in Pre-trained Language Models (PLMs),
represented as follows: q : E ∪R → V l where l is an arbitrary length varying across different entities
and relations. In other words, any entity e ∈ E and relation r ∈ R consisting of l tokens can be
tokenized to a sequence of l tokens x ∈ V l: q(e) = xe and q(r) = xr. For instance, an entity New
York (i.e., e), is tokenized into two tokens ‘New’ and ‘York’, i.e., xe = [‘New’, ‘York’].

Transformer A Transformer (Vaswani et al., 2017) is a neural architecture that embeds a sequence
of tokens while taking their relationships into account, which is the most basic building block
of recent PLMs (Devlin et al., 2019; Radford et al., 2019). Formally, given a sequence of input
tokens x = [x1, ..., xN ],∀xi ∈ V , a goal of generative transformers is to generate a sequence of
tokens y1:t−1 = [y1, ..., yt−1],∀yi ∈ V , with encoder Enc, decoder Dec, and tokens’ embedding
function f . Thus, a hidden state at time t for generating yt is ht = Dec(Enc(X),Y1:t−1), where
X = f(x) = [f(x1), ..., f(xN )] and Y1:t−1 = f(y1:t−1) = [f(y1), ..., f(yt−1)]. We note that both
Enc and Dec functions are permutation sensitive with positional embedding (Vaswani et al., 2017).

Graph Neural Network A Graph Neural Network (GNN) represents a node with its neighboring
nodes over the graph structure (Hamilton, 2020), which is formalized as follows:

GNN(et;G) = UPD(et,AGG({eh | ∀eh ∈ N (et;G)})), (1)
where N (et;G) = {eh | (eh,r,et) ∈ G} is a set of neighboring entities of et; et and eh
are embeddings of entities (nodes) et and eh; AGG is a function that aggregates embeddings of
neighboring entities; and UPD is a function that updates et with the aggregated messages from AGG.
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Figure 2: Framework Overview. Our framework, SURGE, consists of three parts. First, a context-relevant
subgraph retriever pϕ(Z|x) retrieves the subgraph Z relevant to the given dialogue history x from a knowledge
graph G (e.g., 1-hop KG from entity Jane Austen; a). Specifically, we measure the similarity of a context and
triplet embedding to compose the retrieval distribution pϕ(z|x) (§ 3.3). Then, we encode the retrieved subgraph
Z into the input of the generator, using the graph encoding function ψ(x,Z) (§ 3.4). Finally, we use contrastive
learning to enforce the model to generate a consistent response with the retrieved subgraph (§ 3.5).

3.2 PROBLEM STATEMENT

Here we formalize the problem of context-relevant subgraph retrieval for knowledge-grounded
dialogue generation. Given a dialogue history x = [x1, . . . , xN ], a model with generative PLMs first
encodes the input tokens, and then models a conditional distribution p(y|x) to generate an output
response y = [y1, . . . , yT ]. This problem requires a piece of specific knowledge for a conversation.

To that end, given a dialogue history x, we aim at retrieving a subgraph Z ⊆ G consisting of a set of
triplets z ∈ Z where z = (eh,r,et), which encodes relevant knowledge for ongoing conversation.
Thus, the distribution of the context-relevant facts Z is p(Z|x), and our final likelihood of generating
responses then becomes p(y|x,Z). Then, to jointly optimize the objective of graph retrieval with
response generation, we treat Z as a latent variable and then marginalize the likelihood of the
generative model over all possible latent variables for retrieved subgraphs Z , formalized as follows:

p(y|x) =
∑
Z⊆G

pϕ(Z|x) pθ(y|x,Z) =
∑
Z⊆G

pϕ(Z|x)
T∏

t=1

pθ(yt|x,Z,y0:t−1), (2)

where y0 is the start token for the generation, pϕ(Z|x) is an output distribution of the context-relevant
subgraph retriever, and pθ(y|x,Z) is the target distribution of the knowledge-augmented generator,
parameterized as ϕ and θ, respectively, which we specify in next few subsections.

3.3 GNN-BASED CONTEXT-RELEVANT SUBGRAPH RETRIEVER

We now provide a concrete description of our context-relevant subgraph retriever, i.e., p(Z|x),
formalized in Equation 2. Given the dialogue history x, we assume that a retrieval of each triplet
in Z = {z1, . . . , zn} is independent. Then, for simplicity, we decompose the retrieval of a set of
triplets p(Z|x) into the product of individual triplet retrieval, represented as follows: p(Z|x) =
p(z1|x)p(z2|x) · · · p(zn|x), for n retrieved triples.

From the above decomposition, it is sufficient to focus on a single triplet retrieval. We define the
score for the single triplet triplet with inner product between the embedding of dialogue history x
and the embedding of candidate triplet z (Guu et al., 2020), as follows:

pϕ(z|x) ∝ exp(d(z)⊤q(x)), (3)

where d is a triplet embedding function and q is a dialogue context embedding function. For
implementing q, we can use any off-the-shelf PLMs, but for d, we need another effective approach
that captures the property of the graph. Therefore, we utilize the Graph Neural Networks (GNNs) for
the triplet embedding function d to consider the relational structure between entities in the KG.

More specifically, we consider a set of triplets associated to the entities that appear in the given
dialogue context: {(e,r,et) or (eh,r,e) | q(e) ⊆ x}, as the retrieval candidates. Then, to
effectively represent triplets consisting of entities and their relations as items, we use GNNs described
in section 3.1. In our triplet retriever, utilizing both nodes and edges, which are equally essential
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components for the multi-relational graph, is worthwhile to represent an entire triplet. To do so, we
adopt the existing edge message passing framework (Jo et al., 2021) that transforms edges of the
original graph to nodes of the dual hypergraph (Scheinerman & Ullman, 2011) (i.e., transforming G
to G∗), which allows us to use existing node-level GNNs for representing edges of the original graph
(See Appendix D.1 for more details). Formally, our triplet embedding function is denoted as follows:

d(z;G) = MLP([eh ∥ r ∥ et]), eh = GNN(e0h;G), r = GNN(r0;G∗), et = GNN(e0t ;G), (4)

e0 =

{∑end
i=start Enc(X)i/(end− start+ 1), if q(e) ⊆ x

0, otherwise

where z = (eh,r,et), q(e) = [xi, . . . ,xj ], 0 is a zero vector, and ∥ is the concatenation operator.
If the entity e exists in a dialogue history x, its node embedding (i.e., e0) becomes the mean of
corresponding token representations on the PLM encoder Enc. Otherwise, a zero vector is assigned
to the initial node embedding. For relation embedding r0, we use the trainable relation embedding
matrix. For more justifications on this function, please refer to Appendix D. Also, we experimentally
verify that the use of GNN as the triplet embedding yields the better retrieval performance compared
to previous PLM-based methods (Humeau et al., 2020; Li et al., 2022), in Table 1 and Figure 4.

3.4 INVARIANT GRAPH ENCODING

We then now specify the remaining operation of graph encoding, which determines how to condition
the structural graph Z along with the sequential text sequence x to generate y, with regard to
the Pre-trained Language Models (PLMs). Let ψ(x,Z) be a graph encoding function, and there
are mapping functions qe and qr, which map the entity and relation in a graph Z into the natural
languages, respectively. Then, the simplest way to encode the graph along the text is to concatenate
the mapped tokens of entities and relations in front of the given text input x, as in previous works for
triplet-conditioned text generation with PLMs (Li et al., 2022; Ma et al., 2022). For instance, given a
text x = [x1, . . . , xN ] and a graph Z = {(a,d,b), (b,e,a), (a,d,c)}, this naı̈ve graph encoding
function is defined as follows: ψ(x,Z) = f([a, d, b, b, e, a, a, d, c, x1, ..., xN ]) where a = q(a),
d = q(d), and so on. Also, f is a token embedding function of the PLM. However, this naı̈ve
encoding function violates two important invariance properties for encoding a multi-relational graph
into the text sequence: permutation invariance (Zaheer et al., 2017) and relation-inversion invariance,
where the order of elements matters, which are formalized in Definition 3.1 and 3.2 as follows:
Definition 3.1. (Permutation Invariance) For any permutation π ∈ Sn, ψ(x,Z) = ψ(x, π · Z),
i.e., an order of elements in a subgraph does not affect a representational output.

Definition 3.2. (Relation Inversion Invariance) Let ¬d be an inverse relation to d, if (a,d,b) =
(b,¬d,a) ∀a,b ∈ E . Then, ψ(x,Z ∪ {(a,d,b)}) = ψ(x,Z ∪ {(b,¬d,a)}) for any graph Z .

Invariant Graph Encoding To satisfy both properties, we consider two additional operations on a
set of triplets up to the naı̈ve encoding. We first define a SORT operator that returns the same output
regardless of the order of input set elements, as follows:

SORT(π · Z) = SORT(π′ · Z), ∀π, π′ ∈ Sn, (5)

where Sn is a set of all possible permutations for n elements. Moreover, we define a INV operator
that adds the inverse triplet of each triplet in the graph Z , as follows:

INV(Z) = Z ∪ {(et,¬r,eh) | (eh,r,et) ∈ Z}. (6)

Based on the above SORT and INV operations, we can now define a more solid graph encoding
function: ψ(x,SORT(INV(Z))), which satisfies both permutation and relation inversion invariance.

Invariant and Efficient Graph Encoding However, above encoding is not efficient since it requires
O(n) space complexity for encoding a graph with n triplets. Thus, to make it efficient, we newly
define ψ̃ that only encodes the unique nodes (entities) along the sequence, formalized as follows:

ψ̃(x,SORT(ENT(Z))) = f([a, b, c, x1, . . . , xN ]),

where ENT(Z) returns the set of unique entities in Z . This encoding meets both invariance properties
but also efficient since it only costs O(k), for the k entity where k < n. However, as it does not
consider the relational information in Z , we further perturb the token embeddings for entities in
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PLMs with respect to their graph representations in Z . Specifically, for each entity a ∈ ENT(Z), we
apply a learnable affine transformation on the token embedding of a as follows:

β(f(a),Z) = (1 + γ) ∗ f(a) + δ, (7)
γ = MLP1(η), δ = MLP2(η), η = R-GNN(f(a);Z),

where MLP is a Multi-Layer Perceptron, β : Rd → Rd perturbs the embedding according to Z ,
R-GNN is the relation-aware GNN (Schlichtkrull et al., 2018; Vashishth et al., 2020), f(a) is a token
embedding of each entity which is used as node embedding for R-GNN. In sum, we denote a
relation-aware and invariant yet efficient encoding ψ∗, defined as follows:

ψ∗(x,Z) = β(ψ̃(x,SORT(ENT(Z))),INV(Z)),

where β can be applied to any sequence of representational inputs for texts and graphs. We conclude
that our graph encoding satisfies both properties, and for proofs, please see Appendix C. For better
understanding, we include comprehensive illustration of Equation 7 in Appendix Figure 8.

3.5 CONSISTENT GENERATION WITH GRAPH-TEXT CONTRASTIVE LEARNING

Although the previous schemes allow retrieving and encoding subgraphs that are relevant to the
input dialogue history, the consistent generation with the given subgraph is further required, when
generating responses with the factual knowledge. In other words, the model should be able to generate
different sequences when providing different subgraphs, for the same dialogue history.

However, we only access the single ground-truth response regardless of the retrieved knowledge,
while the generative model is trained with a teacher forcing. Thus, this setting can give rise to the
problem of exposure bias (Ranzato et al., 2016): the model is never exposed to other generated tokens
during training. To overcome such limitations, we introduce a novel graph-text contrastive learning
method motivated by multi-modal contrastive learning (Radford et al., 2021). Formally, for a single
pair of a graph and text, the contrastive learning objective is defined as follows:

Lcont =
1

2
log

exp(sim(ζ(z), ξ(h))/τ)∑
h′ exp(sim(ζ(z), ξ(h′))/τ)

+
1

2
log

exp(sim(ζ(z), ξ(h))/τ)∑
z′ exp(sim(ζ(z′), ξ(h))/τ)

, (8)

where z = 1
m

∑m
i=1 z̃i is the average encoder representations of the appended knowledge from

Enc(ψ∗(x,Z)) = [z̃1, . . . , z̃m, z1, . . . ,zN ], h = 1
T

∑T
t=1 ht is the mean of decoder representa-

tions, sim is the cosine similarity, ζ and ξ are learnable linear projection layers, and τ is a learnable
temperature parameter. Furthermore,

∑
h′ and

∑
z′ indicate the summation over negative samples,

which are other texts or graphs within a same mini-batch as in previous literature on contrastive
learning (Chen et al., 2020; Lee et al., 2021; Radford et al., 2021). With Equation 8, the model can
embed the correlated pairs closer together in order to generate a consistent response to a given graph,
i.e., given a different graph, the model would generate different tokens for the same text.

3.6 TRAINING

We train the entire model, named as SUbgraph Retrieval-augmented GEneration (SURGE), by
maximizing the log-likelihood log p(y|x) defined in Equation 2 with respect to parameters of both
the retriever ϕ and the generator θ.

Since computing the marginal probability over entire subgraphs is infeasible, we approximate it by
summing over k sampled subgraphs (Guu et al., 2020; Lewis et al., 2020b). Our end-to-end training
objective for retrieval-augmented generation is then defined as follows:

Lret = log
∑
Z⊆Π

pϕ(Z|x)pθ(y|x,Z), (9)

where Π = samplek(pϕ(·|x)) denotes sampling k subgraphs over the subgraph distribution and
each subgraph sampling is decomposed into sampling n triplets from pϕ(zi|x)∀i ∈ [1, n] as in sub-
section 3.3. We further assume that the gold subgraph is partially available in training. Thus, we can
utilize the supervised retrieval loss to introduce a semi-supervised retriever learning as follows:

Lsup = log pϕ(Z∗|x), (10)

where Z∗ is the available ground-truth subgraph. By combining all objectives in Equation 8, 9,
and 10, our final training objective is then defined as follows: L = Lret + Lsup + Lcont.
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4 A NOVEL METRIC: KNOWLEDGE-VERIFYING QA
Existing automatic evaluation metrics, namely BLEU and ROUGE (Papineni et al., 2002; Lin, 2004),
are limited in that they only consider the lexical overlaps of words without measuring the factual
correctness of the generated responses. As shown in Figure 3 (a), there could be multiple correct
responses, but existing metrics score them lower due to the lexical mismatch. To solve this issue,
we propose Knowledge-verifying Question Answering (KQA) which measures whether generated
responses contain factually correct knowledge given the dialogue history. We formulate extractive QA
task (Rajpurkar et al., 2016) by automatically derive QA pairs from the dialogue and the large-scale
KG in each dataset (See Figure 3). Then, we fine-tune BERT (Devlin et al., 2019) on synthetic
KQA pairs to build QA model. To evaluate generated responses from dialogue generation model,
we concatenate the dialogue history and the generated response then forward it into the trained QA
model. If the QA model yields the correct answer, we regard this case as the generated response
contains accurate knowledge. For more details, see Appendix D.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

We conduct experiments on the OpendialKG dataset (Moon et al., 2019), which contains 15K
dialogues with 91K utterances associated with a large-scale Knowledge Graph (KG), namely Free-
base (Bollacker et al., 2008) with 100k entities and 1M facts. Among them, 49% of the utterances
come with the gold knowledge, whereas others are not. We randomly split the dataset into train
(70%), validation (15%), and test sets (15%). We also examine KOMODIS dataset (Galetzka et al.,
2020), which contains 7.5K dialogues associated with much smaller KG with 88k facts. As retrieval
candidates, we use 1-hop KG for OpendialKG and 2-hop KG for KOMODIS. Except Figure 2,
most of the experiments are on OpendialKG dataset. We use T5-small (Raffel et al., 2020) for all
experiments for the fair comparison. For more details, see Appendix D.

5.2 BASELINES AND OUR MODELS

We compare different variants of our SURGE framework against various KG-augmented dialogue
generation models. No Knowledge. This model is only provided with the dialog history, thus no
external knowledge is used. All Knowledge. This model is provided with entire facts within a
k-hop subgraph of entities associated with the dialog history. Gold Knowledge. This model is
provided with the exact gold knowledge, even in the test time if the gold knowledge exists. Space
Efficient Encoding. This model takes all facts from the k-hop subgraph of the entities as input. We
use two different encoding methods introduced in (Galetzka et al., 2021), namely Space Efficient
(series) and Space Efficient (parallel). EARL. The latest RNN-based model, where the entities
are conditioned in response generation (Zhou et al., 2021). DiffKG. Dialogue generative model
with differentiable path traversal (Tuan et al., 2022). Random/Sparse Retrieval. These models
are provided with selected facts from a 1-hop subgraph, via the random sampling or the sparse
retrieval – BM25 (Robertson & Zaragoza, 2009). Dense Retrieval. This model is a variant of our
framework where T5 encoder (Raffel et al., 2020) is used for d in Eq. 4 instead of GNNs similar to
Bi-encoder and Poly-encoder (Humeau et al., 2020). SURGE (unsupervised). Ours with retrieved
context-relevant facts from k-hop subgraph, where the retrieval is trained without any supervision.
SURGE (semi-supervised). Ours but the retriever is trained with supervision if it exists. SURGE
(contrastive). Ours with both semi-supervised retriever learning and contrastive learning term.
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Table 1: Experimental results on OpendialKG dataset with T5-small model. † indicates the model under the
incomparable oracle setting, which uses the gold facts even in the test time.

KQA BLEU ROUGE Unigram
Method EM F1 B-1 B-2 B-3 B-4 R-1 R-2 R-L F1

Baselines

No Knowledge 12.25 20.69 15.79 9.19 5.61 3.43 19.67 7.13 19.02 22.21
All Knowledge 43.58 50.60 15.95 9.98 6.72 4.65 20.96 8.50 20.21 24.34
Space Efficient (series) 36.60 42.64 16.15 10.03 6.66 4.50 21.15 8.56 20.44 24.55
Space Efficient (parallel) 38.54 44.34 16.33 10.22 6.81 4.64 21.42 8.85 20.68 24.87
EARL 32.47 35.88 11.49 6.34 4.06 2.75 15.36 4.37 14.61 16.88
DiffKG 12.25 20.99 15.68 9.13 5.60 3.46 19.50 7.07 18.84 22.26

Retrieval
variants

Random Retrieval 31.72 38.95 15.70 9.52 6.12 3.99 20.21 7.88 19.55 23.28
Sparse Retrieval (BM25) 29.50 36.96 15.63 9.44 6.05 3.96 20.05 7.67 19.37 23.10
Dense Retrieval (Bi-encoder) 46.17 52.52 16.67 10.44 7.05 4.91 20.41 8.38 19.66 23.85
Dense Retrieval (Poly-encoder) 46.05 52.57 17.56 11.01 7.45 5.18 20.66 8.46 19.87 24.24

Ours
SURGE (unsupervised) 48.49 55.77 17.77 11.30 7.69 5.36 21.64 9.14 20.75 25.24
SURGE (semi-supervised) 51.00 57.63 17.70 11.21 7.61 5.28 21.43 8.85 20.57 25.07
SURGE (contrastive) 50.45 57.70 17.29 11.04 7.54 5.28 21.35 8.98 20.48 25.10

Oracle Gold Knowledge† 63.32 67.90 18.47 12.79 9.32 6.92 24.93 11.97 24.03 28.82
Gold Response 93.30 95.21 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 2: Experimental results on KO-
MODIS dataset with T5-small model. For
full experimental results, see Appendix E.

KQA BLEU
EM F1 B-1 B-2 F1

Random 12.41 14.17 7.74 4.02 16.29
SE (series) 12.41 14.70 8.34 5.13 17.37
SE (parallel) 16.46 18.70 9.33 5.66 17.72

SURGE (Ours) 17.30 19.50 11.51 7.18 19.51

Table 3: Knowledge-consistent response
generation results under the condition
where we use the modified gold subgraph
instead of retrieved one, to solely evaluate
the efficacy of contrastive learning.

Method F1 KF1

SURGE (unsupervised) 27.78 24.09
SURGE (semi-supervised) 28.30 26.38
SURGE (contrastive) 28.17 27.58

MRR Hits@3
5

15

25

35
Random
Sparse (BM25)
Dense (Bi-encoder)

SURGE (Uns.)
SURGE (Contra.)

Retrieval Results

Figure 4: Knowledge
retrieval results on the
OpendialKG dataset,
with metrics of MRR
and Hits@3.

5.3 EVALUATION METRICS

We evaluate the generated responses using BLEU (Papineni et al., 2002), ROUGE (Lin, 2004) and F1
score with the gold response. Along with these conventional text evaluation metrics, we also evaluate
the results with our new metric, KQA (§ 4), which measures whether the generated responses contain
proper knowledge. Lastly, we compute the Knowledge F1 (KF1) (Shuster et al., 2021) to measure the
unigram overlap between the retrieved knowledge and generated response.

5.4 EXPERIMENTAL RESULTS AND ANALYSIS

In Table 1, we report the knowledge-grounded response generation performances of baselines and our
SURGE on OpendialKG dataset. As shown in Table 1, our models significantly outperform all the
baseline models, excluding oracles, in all evaluation metrics. The high BLEU, ROUGE, and F1 refer
that ours sufficiently learns the syntactic and semantic structure of the responses. Our models also
achieve high F1 and EM scores in KQA. The high KQA scores indicate that the generated responses
are formed with the correct facts, which are relevant to the dialog context. Even the baseline models
such as All Knowledge, Space Efficient Encoding (Galetzka et al., 2021), EARL (Zhou et al., 2021), and
DiffKG (Tuan et al., 2022), which are provided with all of k-hop facts, underperform than ours. The
result demonstrates that selecting relevant knowledge is critical in knowledge-augmented response
generation. In Figure 2, we additionally report the experimental results on KOMODIS dataset to
show applicability of our method to other dataset. Our SURGE (contrastive) also outperforms other
baselines in KOMODIS dataset. For results with all metrics, please see Table 8 in Appendix E.

Knowledge Retrieval Figure 4 shows performances of retrievers, for which we measure the
performance on 45% of test dialogues containing the gold knowledge, with Mean Reciprocal Rank
(MRR) and Hits@k as metrics. Our models outperform all baselines by large margins since ours has
a learnable retriever unlike others. Further, a contrastive learning version of ours, including semi-
supervised retriever training, outperforms an unsupervised version. See Appendix G for examples.

Knowledge-Consistent Generation We conduct an ablation study on our models to validate the
knowledge consistency performance of the response generation by computing the Knowledge F1
(KF1) score (Shuster et al., 2021). To focus solely on the case where a given knowledge is consistently
reflected in the generated responses, we use the gold knowledge rather than the retrieved one. We
randomly modify the tail entity of each gold knowledge to ensure that responses are generated
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Context Baseline response SURGE response
(a) Moby Dick is a sailor. 

Do you like her work?
Moby Dick was written by Herman 
Melville. He also wrote The Whale.

I loved Moby Dick.  Can 
you recommend something 
similar?

(a) Retrieved Subgraph from SURGE
(Moby Dick; or, The Whale, written_by, Herman Melville)
(Moby Dick, written_by, Norman Corwin)
(Moby Dick, written_by, Ray Bradbury)

Gold response
It was written by Herman 
Melville in 1851. It's 
sometimes called The Whale.

(b) Adam Brown starred in 
King Kong. Have you 
seen it?

Adam Brown starred in The Hobbit: 
The Desolation of Smaug and The 
Hobbit: The Battle of the Five Armies.

Do you know anything 
the actor Adam Brown?

Yes, he was in the movie 
The Hobbit: An Unexpected 
Journey.

(b) Retrieved Subgraph from SURGE
(The Hobbit: The Battle of the Five Armies, starred_actors, Adam Brown)
(The Hobbit: An Unexpected Journey, starred_actors, Adam Brown)
(The Hobbit: The Desolation of Smaug, starred_actors, Adam Brown)

Figure 5: Examples of responses from the baseline (Space Efficient, parallel) and responses from SURGE.

Table 4: Performance comparisons of
variants of graph encodings, described
in Section 3.4.

KQA Knowledge
Method EM F1 Length
Naı̈ve 49.27 55.23 68.21
Invariant 51.55 56.78 121.82
Efficient (entity only) 40.99 49.99 15.42
Invariant & Efficient 51.00 57.63 15.42

Table 5: Human evaluation
on Consistency, Informativeness,
and Fluency. (p < 0.05)

Method Consis. Info. Fluency

All Knowledge 2.52 1.99 2.62
Space Efficient 2.47 1.75 2.46

SURGE (ours) 2.71 2.39 2.92

Figure 6: Visualization of the em-
bedding space from our graph(star)-
text(circle) contrastive learning.

from the given knowledge rather than the trained knowledge. Figure 3 shows that our model with a
contrastive learning term outperforms all others in the KF1, implying that the generated responses
accurately reflect the encoded knowledge.

Sensitive Analysis on Graph Encoding We further conduct an analysis on graph encoding variants
introduced in subsection 3.4. The knowledge length in Figure 4 indicates the average token length
used for graph encoding. Our Invariant & Efficient ψ∗ performs the best against other variants, while
using the lesser space at the graph encoding phase. Notably, simple Invariant achieves a comparable
performance against Invariant & Efficient, but yields a longer sequence.

Retrieval and Generation Examples Figure 5 shows the examples of generated responses along
with the retrieved knowledge. We compare our SURGE against Space Efficient (parallel) baseline. In
example (a), the baseline response contains an incorrect fact distracted by the contextually irrelevant
entity ‘sailor’. Contrarily, SURGE successfully retrieves relevant facts from the KG then generates
the factually correct response. In example (b), similarly, the baseline generates the response with a
wrong fact, meanwhile SURGE retrieves context-relevant facts and generates a informative response.

Human Evaluation We sample 30 responses of SURGE, All Knowledge, and Space Efficient on
the OpendialKG test dataset, then conduct a human study of them. We recruit 46 annotators, and ask
them to evaluate the quality of the generated responses by the 3 models given in a random order, with
3 criteria – consistency, informativeness, and fluency – using a 3 point Likert-like scale. As shown
in Figure 5, ours obtains significantly (p-value < 0.05) higher scores than others in all criteria, which
is another evidence that our framework generates consistent, informative, and fluent responses. We
also note that the informativeness score and KQA F1 score have a 0.42 Pearson correlation coefficient.
This allows us to confirm that our KQA metric positively correlates with the human evaluation results.

Embedding Space Visualization We further visualize the multi-modal graph-text latent space
in Figure 6. The visualization shows that, for the same dialogue with different subgraphs, our SURGE
with graph-text contrastive learning (right) generates distinct response embeddings pertraining to
different subgraphs, unlike the one without graph-text contrastive learning which shows less variety
over responses for the same dialogue (left). We include zoomed Figure 6 in the Appendix.

6 CONCLUSION

We proposed a novel end-to-end framework for knowledge-consistent dialogue generation which
retrieves context-relevant subgraph, encodes a subgraph with the text, and generates knowledge-
consistent responses, called as SUbgraph Retrieval-augmented GEneration (SURGE). Our results
demonstrate the effectiveness of our framework in both quantitative and qualitative experiments in
knowledge retrieval and response generation tasks. The analysis shows the contribution of each
proposed component: retrieval, encoding, and graph-text representation learning. Our work suggests
a new direction to generate informative responses for knowledge graph-based dialogue task by
empirically showing the importance of retrieving the more relevant subgraph knowledge rather than
using all the relevant knowledge graphs when generating knowledge-grounded responses.
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REPRODUCIBILITY STATEMENT

We attach the source code of our SURGE framework in the supplementary file to facilitate the
reproducibility of our work. For experimental setups, we provide every details in Appendix D.
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Douwe Kiela. Retrieval-augmented generation for knowledge-intensive NLP tasks. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.),
Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020b.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. A diversity-promoting
objective function for neural conversation models. In Kevin Knight, Ani Nenkova, and Owen
Rambow (eds.), NAACL HLT 2016, The 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, San Diego California,
USA, June 12-17, 2016, pp. 110–119. The Association for Computational Linguistics, 2016. URL
https://doi.org/10.18653/v1/n16-1014.

Yu Li, Baolin Peng, Yelong Shen, Yi Mao, Lars Liden, Zhou Yu, and Jianfeng Gao. Knowledge-
grounded dialogue generation with a unified knowledge representation. In Marine Carpuat,
Marie-Catherine de Marneffe, and Iván Vladimir Meza Ruı́z (eds.), Proceedings of the 2022
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL 2022, Seattle, WA, United States, July 10-15, 2022, pp.
206–218. Association for Computational Linguistics, 2022. URL https://aclanthology.
org/2022.naacl-main.15.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics.
URL https://aclanthology.org/W04-1013.

11

https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=Wga_hrCa3P3
https://doi.org/10.18653/v1/n16-1014
https://aclanthology.org/2022.naacl-main.15
https://aclanthology.org/2022.naacl-main.15
https://aclanthology.org/W04-1013


Under review as a conference paper at ICLR 2023

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019,
2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Kaixin Ma, Hao Cheng, Xiaodong Liu, Eric Nyberg, and Jianfeng Gao. Open domain question
answering with A unified knowledge interface. In Smaranda Muresan, Preslav Nakov, and Aline
Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, pp. 1605–1620.
Association for Computational Linguistics, 2022. URL https://doi.org/10.18653/v1/
2022.acl-long.113.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan T. McDonald. On faithfulness and
factuality in abstractive summarization. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R.
Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, ACL 2020, Online, July 5-10, 2020, pp. 1906–1919. Association for Computational
Linguistics, 2020.

Seungwhan Moon, Pararth Shah, Anuj Kumar, and Rajen Subba. Opendialkg: Explainable con-
versational reasoning with attention-based walks over knowledge graphs. In Anna Korhonen,
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A DISCUSSION ON LIMITATION AND POTENTIAL IMPACT

Limitation As briefly discussed in Appendix G, our work is limited in multiple dimensions
primarily in terms of dataset, retrieval, and generation. First, the benchmark dataset is limited. Despite
the fact that there are several public Knowledge Graph (KG) available (Vrandecic & Krötzsch, 2014;
Bollacker et al., 2008), only one dataset (Moon et al., 2019) provides both the diverse set of dialogue
and the corresponding large-scale KG. This circumstance may limit the rigorous evaluation of our
framework’s adaptability in various settings. Future work may study applying our approach for a
wider range of dialogue datasets based on Wikipedia (Dinan et al., 2019) by leveraging existing
public large-scale KG such as Wikidata (Vrandecic & Krötzsch, 2014). Second, the search space for
retrieving context-relevant subgraphs can be expanded. Our SURGE framework now runs on a 1-hop
KG that is rooted to entities in the given dialogue history. Finding the entity within the text, on the
other hand, necessitates precise named entity extraction and entity linking. Therefore, future work
may investigate extending our approach to a framework that can retrieve the context-relevant subgraph
among entire KG instead of 1-hop KG. Third, there is still room for improvement in generation
quality since we generate knowledge-enhanced responses with a small-scale Pre-trained Language
Model (PLM) for efficiency. Such PLMs occasionally fail to generate natural sentences with a high
quality (Raffel et al., 2020). Future work could aim to improve generation quality using a small-scale
PLM.

Broader Impact Our proposed knowledge-grounded dialogue generation model is essential for
designing user-friendly real-world AI systems. Among various types of dialogue generation models,
knowledge-grounded dialogue models are trained to interact with users and convey factual information
to users in natural languages. Their conversational features can be adapted to any user interfaces that
connect the bilateral interaction between human and computer. We believe that the conversational
interfaces can enhance the users’ experiences and reduce the users’ efforts in learning how to use
the systems. However, knowledge-grounded dialogue models can become vulnerable to generating
offensive, harmful contents or responses with misinformation depending on the users or data. When
deploying the models in the real world, in addition to generating realistic responses, they also need to
be robust to adversarial feedback from malicious users and biases inherited in pre-training or training
corpus, or else they could malfunction. Along with the quantitative and qualitative evaluations on
generated responses, it is worthwhile to examine robustness of the dialogue models.
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B NOTATIONS

We organize the notations we used for formally describing our method in Table 6.

Table 6: A list of notations that we used for defining our method.

V pre-defined vocabulary of tokens for pre-trained language models (text)
E pre-defined vocabulary of entities (symbol)
R pre-defined vocabulary of relations (symbol)

a, . . .z knowledge graph symbols written in typewrite font
x input sequence (vector)

x1, . . . , xN input tokens (scalar)
y = [y1, . . . , yT ] output sequence and tokens

G multi-relational graph, such as knowledge graph
Z retrieved subgraph: Z ⊂ G
z triplet (edge): z ∈ Z
q tokenization (mapping) function of KG symbol to sequence of tokens

q(·) text representation function for retrieval
d(·) triplet representation function for retrieval
Enc Transformer Encoder
Dec Transformer Decoder

f token (word) embedding function
θ generator parameter
ϕ retriever parameter
ψ set encoding function
β perturbation function
π set permutation
n the number of triplets in a retrieved subgraph Z
k the number of samples in a marginalization term
z encoder hidden state (single token)
Z encoder hidden states (sequence of tokens)
h decoder hidden state (single token)
H decoder hidden states (sequence of tokens)
X input embeddings after token embedding function (sequence)
Y output embeddings after token embedding function (sequence)

C PROOFS

In this section, we first show that a naı̈ve encoding function ψ in Section 3.4 is neither permutation
invariant nor relation inversion invariant, formalized in Proposition C.1. After that, we prove that our
invariant and efficient encoding function ψ∗ with graph-conditioned token embedding perturbation is
both permutation invariant and relation inversion invariant, formalized in Proposition C.2.
Proposition C.1. A naı̈ve encoding functionψ is neither permutation invariant nor relation inversion
invariant.

Proof. We prove this by contradiction.

Suppose x = [x1, . . . , xn] and Z = {(a,d,b), (b,e,a), (a,d,c)}. Moreover, let Z ′ =
{(b,e,a), (a,d,b), (a,d,c)} be one of permutations of Z with the permutation order π = (2, 1, 3).

From the definition of naı̈ve encoding, ψ(x,Z) = [a,d, b, b, e,a,a,d, c,x1, . . . ,xn] and
ψ(x,Z ′) = [b, e,a,a,d, b,a,d, c,x1, ...,xn]. Therefore, it is easy to notice that ψ(x,Z) ̸=
ψ(x,Z ′), thus the naı̈ve encoding is not permutation invariant.

We then show naı̈ve encoding is not relation inversion invariant. Suppose Z ′′ =
{(a,d,b), (b,e,a), (c,¬d,a)}, where (a,d,c) ∈ Z is changed to its inverse relation (c,¬d,a).
Then, ψ(x,Z ′′) = [a,d, b, b, e,a, c,¬d,a,x1, . . . ,xn] that is different against ψ(x,Z):
ψ(x,Z) ̸= ψ(x,Z ′′). Therefore, the naı̈ve encoding function is not relation inversion invariant.
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In conclusion, from the above two counterexamples, we prove that a naı̈ve encoding function ψ is
neither permutation invariant nor relation inversion invariant.

We now provide proof of the permutation invariance and the relation inversion invariance of our
invariant and effective graph encoding ψ∗, described in Section 3.4. Before starting the proof, we
first revisit the permutation invariant property of graph neural networks that sum, mean and max
operators are permutation invariant for the input set of AGGR. Thus, if we use sum, mean, or max
for AGGR, then the token embedding perturbation function β naturally satisfies the permutation
invariance property. In other words, β(X,Z) = β(X, π · Z), whereX = ψ̃(x,SORT(ENT(Z)))
for any permutation π.

Proposition C.2. Invariant and efficient encoding ψ∗ is both permutation invariant and relation
inversion invariant.

Proof. Suppose x = [x1, . . . , xn] and Z = {(a,d,b), (b,e,a), (a,d,c)}. We first consider the
permutation invariance for any permuted set Z ′ = π · Z . While Z and Z ′ can have different orders
of elements thus the outputs of ENT(Z) and ENT(Z ′) could be different, we always obtain the
same output with the usage of the SORT operator for encoding. In other words, SORT(ENT(Z)) =
SORT(ENT(Z ′)) holds due to the definition of the SORT operation in Eq. 5 of the main paper.
Therefore, ψ̃(x,SORT(ENT(Z))) = ψ̃(x,SORT(ENT(Z ′))) holds.

Further, since the token embedding perturbation function β(·,Z) along with sum, max, or mean in
AGGR is also permutation invariant with regards to any permutation on Z , we conclude our invariant
and efficient encoding ψ∗ is permutation invariant.

We finally prove the relation inversion invariance property of ψ∗. Suppose Z ′′ = (Z ∪ t′) \ t
where t ∈ Z is any triplet in a set and t′ is inverse of t. Then, ENT(Z) = ENT(Z ′′) that is
trivial as ENT(Z) returns the set of only unique nodes in Z . Therefore, ψ̃(x,SORT(ENT(Z))) =

ψ̃(x,SORT(ENT(Z ′′))) correspondingly holds.

The remaining step to conclude the proof is to show the following equality:
β(·,INV(Z)) = β(·,INV(Z ′′)), to conclude that ψ∗(x,Z) = ψ∗(x,Z ′′) from
β(ψ̃(x,SORT(ENT(Z))),INV(Z)) = β(ψ̃(x,SORT(ENT(Z ′′))),INV(Z ′′)). We note that
INV(Z) = INV(Z ′′), as INV makes any graph as bidirectional one by the definition in Eq. 6 of the
main paper. Therefore, β(·,INV(Z)) = β(·,INV(Z ′′)) holds, and the relation inversion invariance
property of ψ∗ holds.

D EXPERIMENTAL SETUP

In this section, we introduce the detailed experimental setups for our models and baselines. Specif-
ically, we describe the details on implementation, dataset, training and model in the following
subsections of D.1, D.2, D.3 and D.4, one by one.

D.1 IMPLEMENTATION DETAILS

We use the T5-small (Raffel et al., 2020) as the base Pre-trained Language Model (PLM) for all
experiments. For the pre-trained checkpoint, we use the version that the authors released. For all
implementations, we use Pytorch (Paszke et al., 2019). To easily implement the language model, we
use the huggingface transformers library (Wolf et al., 2020).

Retriever Details In this paragraph, we describe the implementation details of our context-relevant
subgraph retriever, including the triplet embedding and dialogue context embedding for the retriever.

For the dialogue history embedding function q, we use the existing pre-trained language model
(PLM). Specifically, we use the encoder part of the T5-small model (Raffel et al., 2020) and freeze
the parameters of it not to be trained. We then instead add a Multi-Layer Perceptron (MLP) on top of
it, to give a point-wise attention (Bahdanau et al., 2015) to each token, whereby all tokens are not
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Figure 7: GNN-based Triplet Representation for Retrieval. To represent each triplet with regards to its graph
structure, we use the message passing on both nodes and edges. (a) Node-level Message Passing. To represent
the entity Sense and Sensibility, the message from its neighbors – the entity Jane Austen – is aggregated. (b)
Edge-level Message Passing. To represent the relation written by, the messages from relations associated to
a green hyperedge are aggregated. We do not draw self-loops and inverse edges for simplicity.

equally considered in the sentence encoding. Formally,

q(x) =

n∑
i=1

αi ∗ zi, Z = [z1, . . . ,zn] = Enc(X), αi =
exp(MLP(zi))∑n
j=1 exp(MLP(zj))

∀i

where αi is a scalar, and MLP is a Multi-Layer Perceptron consisting of two linear layers and ReLU
nonlinearity.

For obtaining triplet representations, we need to embed the entity (node) and relation (edge) into
the latent space. Similar to the token embedding matrix used in PLMs, we can introduce the
entity and relation embedding matrices. However, since the number of entities used in Freebase of
OpendialKG (Moon et al., 2019) is too large compared to the number of tokens in T5 (100,814 vs
32,000) (Raffel et al., 2020), it is inefficient to introduce the trainable entity embedding matrix for the
retriever. Furthermore, the use of standalone entity embedding matrix might be sub-optimal in terms
of generalization since there is no evidence that all entities in a large-scale KG emerge in training
dataset.

Thus, we instead reuse the contextualized representation from the PLM encoder, to embed each
node if the corresponding entity exists in the dialogue context. Formally, suppose that there is a
triplet {(eh,r,et)} in the 1-hop subgraph G, which satisfies the following condition: q(eh) ⊆ x
or q(et) ⊆ x. If so, we can know the position of the mapped entity within the dialogue history:
[xstart, ..., xend] = q(eh) from q(eh) ⊆ x. Therefore, the node embedding for the entity eh is
obtained by EntEmb(eh) =

1
|q(eh)|

∑end
i=start Enc(X)i iff q(eh) ⊆ x. If the entity mention does

not exist in the dialogue history, we use the zero vector as the node embedding. For edge embedding,
we use the trainable relation embedding matrixR ∈ R|R|×128 to represent the edge, since the number
of relations is relatively small (1,357).

With our node and edge representations, we now focus on representing the triplet in Eq. 4 of the main
paper for its retrieval. In particular, we use the Graph Neural Networks (GNNs) for encoding triplets,
where we obtain the node representations from the Graph Convolutional Network (GCN) (Kipf &
Welling, 2017) that is a widely used architecture for representing the nodes with respect to their graph
structures. However, for representing the edges, we use the Edge Hypergraph Graph Neural Network
(EHGNN) used in Jo et al. (2021), due to its simplicity but effectiveness for edge representations. We
summarize our triplet representation in Figure 7.

Graph Encoding Details In this paragraph, we describe the implementation details of the token
embedding perturbation function β used in our Invariant and Efficient graph encoding introduced
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Figure 8: Comprehensive diagram for Invariant and Efficient graph encoding. Our proposed graph
encoding first concats the sorted list of entities in front of the dialogue history. Then, we form the learnable
affine transformation γ, δ for each entity using relation-aware GNN such as CompGCN (Vashishth et al., 2020).

in Section 3.4. To be aware of the relation of the graph over GNNs, we use the simplified version
of CompGCN (Vashishth et al., 2020). For architectural details, instead of using the different linear
layers to distinguish the inverse relation from its opposite relation, we use the same linear layer. Also,
we use subtraction as the specific composition operator for reflecting relations in CompGCN.

Then, we form the learnable affine transformation based on the aggregated representation from GNN
layers, to perturb the token embeddings with respect to their graph information as in Equation 7 of
the main paper. In particular,

η = R-GNN(f(a);Z) = UPD(f(a),AGGR({f(b),r | ∀b ∈ N (a;Z)})),
γ = MLP1(η), δ = MLP2(η), β(f(a),Z) = (1+ γ) ∗ f(a) + δ,

where MLP1 and MLP2 are learnable MLPs consisting of two linear layers with ReLU nonlinearity.
In Figure 8, we illustrate comprehensive diagram of Equation 7, which enables our Invariant and
Efficient graph encoding to understand the structure of the retrieved subgraph Z .

Contrastive Learning Details For contrastive learning, we initialize τ in Equation 8 as 0.01.

KQA Details In this paragraph, we describe the implementation details for our Knowledge-
verifying Question Answering (KQA) introduced in section 4. For building the QA dataset, we first
gather the dialogue sessions where the gold response contains the entity from the whole OpendialKG
dataset. Then, we extract the triplet from the given whole KG where the head entity is placed within
the dialogue history and the tail entity is placed within the gold response. We build a QA training
dataset based on the extracted triplets and a corresponding dialogue session. To diversify the training
data, we replace the tail entity of each triplet with plausible candidate entities within KG and change
the entity in the response following the changed entity on the triplet. As a result, we obtain the QA
dataset size of 200k. We train the BERT-base (Devlin et al., 2019) with the constructed QA dataset.
We hold out 10% of data for validation and obtain the fine-tuned BERT model with 88.89 F1 score
on the hold-out validation set. When we apply the fine-tuned QA model on the evaluation of the
generated responses, we rebuild the QA evaluation set with the generated response instead of a gold
response as illustrated in Figure 3 of the main paper.

D.2 DATASET DETAILS

We mainly conduct experiments on OpendialKG (Moon et al., 2019), which provides the parallel
dialogue corpus corresponding to the existing large-scale Knowledge Graph (KG) named Free-
base (Bollacker et al., 2008). The provided large-scale KG consists of total 1,190,658 fact triplets
over 100,813 entities and 1,358 relations. This dataset is collected from 15K human-to-human
role-playing dialogues, having multi-turns, from which we pre-process that each assistance response
is the label and its corresponding dialogue history is the input. Although some of the data contain
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the gold knowledge that is useful for generating the response on the ongoing conversation, we found
that 51% of data has no gold knowledge. To overcome this limitation, we additionally find entities
from the dialogue history using the Named Entity Recognition module in spaCy1, and then include
the extracted entities’ corresponding triplets in the KG to the dataset. For entity linking, we use
the exact match. Since the dataset does not provide the pre-defined data split, we randomly split
sessions into train (70%), validation (15%), and test sets (15%). We also conduct experiments on
KOMOIDS (Galetzka et al., 2020) dataset and follows the same preprocessing as in OpendialKG
dataset.

D.3 TRAINING DETAILS

All experiments are constrained to be done with a single 48GB Quadro 8000 GPU. SURGE training
needs 12 GPU hours. For all experiments, we select the best checkpoint on the validation set. We
fine-tune the SURGE for 30 epochs on the training set, where we set the learning rate as 1e-4, weight
decay as 0.01, learning rate decay warmup rate as 0.06, maximum sequence length for dialogue history
as 256, maximum sequence length for knowledge as 128, and batch size as 24. For retrieval, we use
the subgraph size n as 3, and sample size k for marginalization as 4. We use the AdamW (Loshchilov
& Hutter, 2019) optimizer for training. For fair evaluation, we apply the same training setting to all
baselines if applicable.

D.4 MODEL DETAILS

In this subsection, we describe the details of baselines and our models used in our experiments, as
follows:
1. No Knowledge: This model is provided with only the dialog history. No knowledge is used to

generate responses.
2. Gold Knowledge: This model is provided with the dialogue history along with its exact gold

knowledge for the gold response. Thus, since this model uses such gold knowledge, we expect the
results of it as the upper bound of the task.

3. Space Efficient (series): This model is provided with all the knowledge which are related to the
entities that appeared in the dialogue history (Galetzka et al., 2021), by matching the entities in
the dialogue history and the entities in the KG. In particular, this model encodes the entities and
their relations explicitly in the words in the encoder part.

4. Space Efficient (parallel): This model is mostly the same as the above model – space Efficient
(series) – except the knowledge encoding part. Specifically, it encodes the entities in the words
like the above, whereas, encoding the relation between entities in the segmentation block of the
entities Galetzka et al. (2021).

5. EARL: This model uses the RNN-based encoder-decoder architecture with the entity-agnostic
representation learning (Zhou et al., 2021), with all the provided knowledge associated with the
entities in the dialogue history. Specifically, this model first calculates the probability of words
obtained by encoding the entities in the KG, and then uses such probabilities to generate a word in
the decoding phase.

6. DiffKG: This model (Tuan et al., 2022) uses a differentiable path reasoning, which is jointly
trainable along with the dialogue generation. After the path reasoning, the entities in the reasoning
path are naively appended in front of the dialogue history, then concatenated input is forwarded to
the pre-trained language model.

7. Random Retrieval: This model is provided with entire facts from k-hop subgraphs of entities
that appeared in the dialogue history. However, instead of encoding all the knowledge in one-hop
subgraph as in Space Efficient, this model randomly samples them, which are then used for
generating responses.

8. Sparse Retrieval (BM25): This model is also provided with entire facts from k-hop subgraphs of
entities. To sample relevant facts to the dialogue history among the entire facts, this model uses
BM25 (Robertson & Zaragoza, 2009) that is a sparse retrieval model. To be specific, let assume
we have a dialogue history and its corresponding facts from k-hop subgraphs of matched entities.
Then, to run BM25, we first concatenate components of each fact consisting of two entities and

1https://spacy.io/
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Method MRR Hits@1 Hits@3 Hits@5 Hits@10 Hits@100

Random Retrieval 8.67 3.11 7.89 10.86 17.84 66.22

Sparse Retrieval (BM25) 7.76 2.61 6.72 9.89 16.67 61.21

Dense Retrieval (Bi-encoder) 20.89 11.99 23.79 30.34 39.26 67.26

Dense Retrieval (Poly-encoder) 21.47 12.13 24.12 31.51 41.43 68.03

SURGE (unsupervised) 21.24 10.46 24.06 31.97 44.17 74.74

SURGE (semi-supervised) 22.53 13.40 24.79 31.84 42.37 69.33

SURGE (contrastive) 25.98 16.67 28.50 35.72 46.11 74.31

Figure 9: (Left:) Performances of our SURGE by varying the number of facts for retrieving the subgraph
(i.e., varying the number of triplets in the subgraph) from three, to five, to ten, with the length of sequence for
knowledge (knowledge length) and F1 scores of KQA as evaluation metrics. (Right:) We additionally report the
knowledge retrieval performances, with MRR and Hits@K as evaluation metrics.

Table 7: Experimental results on OpendialKG dataset with BART-base.

KQA BLEU ROUGE Unigram
Method EM F1 B-1 B-2 B-3 B-4 R-1 R-2 R-L F1

No Knowledge (BART-base) 31.17 37.54 17.38 10.79 7.16 4.81 20.64 8.22 19.92 24.36
Space Efficient (BART-base, Series) 48.49 53.83 18.56 11.85 8.01 5.56 22.36 9.43 21.48 26.38
Space Efficient (BART-base, Parallel) 49.80 55.06 18.90 12.19 8.35 5.81 22.63 9.79 21.76 26.79
SURGE (BART-base, semi-supervised, n = 10) 50.84 57.35 17.80 11.12 7.48 5.18 18.64 7.27 17.77 22.07
SURGE (T5-small, semi-supervised, n = 3) 51.32 58.45 17.63 11.28 7.41 5.39 21.74 9.18 20.85 25.57
SURGE (T5-small, semi-supervised, n = 10) 54.50 61.65 17.70 11.37 7.81 5.50 21.55 9.09 20.65 25.44

one relation, and tokenize the dialogue history and the facts for obtaining corpus and queries,
respectively, for BM25. After that, BM25 calculates the lexical overlapping score between the
dialogue context (corpus) and the one-hop fact (query), from which we use the relevant facts
having top-k scores by BM25.

9. Dense Retrieval (Bi-encoder, Poly-encoder): This model uses a pre-trained language model for
the triplet embedding of the retriever instead of using GNN. Specifically, we consider each triplet
as a single sentence (e.g, (Jane Austen, write, Susan) → “Jane Austen write Susan”) and embed
them with the pre-trained language model. For scoring, we use both bi-encoder and poly-encoder
architectures (Humeau et al., 2020).

10. SURGE (unsupervised): Our basic subgraph retrieval-augmented generation framework that is
provided with entire facts from k-hop subgraphs of entities. In particular, this model trains the
structure-aware subgraph retriever without any guidance of the gold knowledge (i.e., ground truth
knowledge for the dialogue history is not given). In other words, for the given dialogue context,
this model implicitly learns to retrieve the context-relevant knowledge, and then generates the
response with the retrieved knowledge.

11. SURGE (semi-supervised): Our subgraph retrieval-augmented generation framework with semi-
supervised learning of graph retrieval, with provided entire facts from k-hop subgraphs of entities.
Unlike the unsupervised version of SURGE, this model trains the retriever to select the gold
knowledge if the dialogue context has such knowledge during training.

12. SURGE (contrastive): Our full subgraph retrieval-augmented generation framework with the con-
trastive learning of graph-text modalities as well as the semi-supervised learning of graph retrieval,
with provided entire facts from k-hop subgraphs of entities. Unlike aforementioned frameworks
of ours, this additionally enforces the model to faithfully reflect the retrieved knowledge in the
input, to the generated response with contrastive learning.

E ADDITIONAL EXPERIMENTS

E.1 VARYING THE NUMBER OF FACTS IN SUBGRAPHS

We experiment our SURGE framework with varying the number of facts in retrieval, which are
then used in our graph encoding function to condition the encoded graph information for response
generation. Specifically, in Figure 9, we report the length of sequence for knowledge (knowledge
length) and F1 scores measured by our KQA for our SURGE framework, with different numbers
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Table 8: Experimental results on KOMODIS dataset with T5-small.

KQA BLEU ROUGE Unigram
Method EM F1 B-1 B-2 B-3 B-4 R-1 R-2 R-L F1

Random 12.41 14.17 7.74 4.02 2.46 1.68 21.79 4.00 21.44 16.29
Space Efficient (Series) 12.41 14.70 8.34 5.13 3.77 3.05 22.36 4.85 22.06 17.37
Space Efficient (Parallel) 16.46 18.70 9.33 5.66 4.06 3.20 22.80 4.12 22.47 17.72

SURGE (unsupervised) 16.18 18.51 11.46 7.10 5.15 4.07 23.49 5.77 23.09 18.70
SURGE (semi-supervised) 16.62 19.48 11.28 6.98 5.05 3.98 23.58 5.79 23.21 18.68
SURGE (contrastive) 17.30 19.50 11.51 7.18 5.20 4.10 24.13 6.17 23.74 19.51

of facts within a retrieved subgraph: n = [3, 5, 10]. Note that, in this experiment, we only use
the semi-supervised model without the contrastive loss. We expect that the performance of our
SURGE will increase as we increase the number of facts within the retrieved subgraph, since the
model can leverage more numbers of knowledge for response generation. As shown in Figure 9, we
observe the significant performance improvements on using ten facts against using three and five
facts, while the performance difference between the three and five is marginal. We suggest that this
result should be interpreted with the retrieval results on the right side of Figure 9, where about 40%
of retrieved subgraphs including the ten different facts contain at least one necessary knowledge, thus
the generation performance is boosted according to the improvement in retrieval.

E.2 DISCUSSIONS ON USING LARGER PLMS

Notably, we observe that the use of larger Pre-trained Language Models (PLMs) – three times more
number of parameters compared to T5-small that we use – does not result in better performance for
the knowledge-grounded dialogue task. Specifically, in Table 7, we report the experimental results of
selected baselines and our SURGE semi-supervised model with BART-base (Lewis et al., 2020a) as
the base PLM. We want to clarify that the BART-base model has 220M parameters, which is about
three times larger than the number of parameters of the T5-small model (60M).

We first observe that BART-base shows decent performance without any knowledge (No Knowledge)
compared to the no-knowledge case of T5-small, verifying that the larger PLM generally contains
more factual knowledge within its pre-trained parameters. Moreover, BART-base obtains higher
scores in the simple word overlap metrics such as BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004), whose results further confirm that a larger PLM can generate more natural or syntactically
better sentences than the smaller one, thanks to its parameter size.

On the other hand, we find that BART-base is less suffered from the irrelevant knowledge issue (i.e.,
conditioning irrelevant knowledge for the given context when generating responses) than T5-small,
therefore, the performance of Space Efficient Encoding on KQA is quite high. However, the use of
BART-base does not result in significant improvement on the KQA metric for our SURGE framework.
Moreover, ours with T5-small shows better performance than ours with BART-base in terms of KQA
scores, when the number of facts within the retrieved subgraph is 10: n = 10. This result suggests
that the quality of the generated response – having relevant knowledge to the given context – might
depend on the performance of the subgraph retriever whose goal is to retrieve the context-relevant
knowledge, rather than the inherent performance of PLMs.

E.3 FULL EXPERIMENTAL RESULT ON KOMODIS

In the main paper, we mostly focus on OpendialKG dataset (Moon et al., 2019), since it is the
largest and most realistic public datasets that provides both dialogues across diverse domains and
corresponding large-scale Knowledge Graph (KG) (Bollacker et al., 2008). To verify the effectiveness
of our SURGE framework, the existence of the large-scale KG and the importance of relevant fact
searching is important since we focus on the real-world scenario where the response generation
requires the relevant fact acquirement from the large-scale KG.

However, one can raise the question regarding the versatility of our method on other datasets. To
alleviate the issue, we conduct additional experiments on another dataset named KOMODIS (Galetzka
et al., 2020), which is also KG-based dialogue dataset. Compared to OpendialKG, KOMODIS does
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Table 9: (Left:) Performance evaluation with the diversity metric named Distinct. (Right:) Ablation study
results on GNN variants in our modules.

Method Dist-1 Dist-2

No Knowledge 6.06 15.73

All Knowledge 9.67 24.45

SEE (Series) 8.49 21.77

SEE (Parallel) 8.78 22.70

EARL 5.15 16.46

Sparse Retrieval (BM25) 7.65 19.63

SURGE (semi-supervised) 10.18 27.85

KQA BLEU ROUGE Unigram

Method EM F1 B-1 B-2 B-3 B-4 R-1 R-2 R-L F1

Eq 4. GCN → GAT 49.16 56.10 17.42 10.96 7.39 5.17 21.10 8.65 20.25 24.79

Eq 7. CompGCN → GCN 48.61 55.53 17.48 10.97 7.34 5.05 21.23 8.73 20.37 24.77

SURGE (semi-supervised) 51.00 57.63 17.70 11.21 7.61 5.28 21.43 8.85 20.57 25.07

not provide the corresponding large-scale KG and most of responses do not require the knowledge.
Therefore, we only measure the automatic evaluation to evaluate the performance of each method
on KOMODIS dataset. In Table 8, we present the experimental results on the KOMODIS dataset.
Results obviously show that our SURGE framework shows superior performance against baselines on
the additional dataset. Therefore, we can conclude that our method can generalize to other datasets
beyond the opendialKG dataset.

E.4 DIVERSITY EVALUATION

In the main paper, we evaluate model generation performance primarily on its quality. We measure
the distinct metric (Li et al., 2016), which is one of the most popular metrics for evaluating the
diversity of the generative model, to evaluate the performance of each model in more diverse aspects.
In Figure 9 left, we report the performance of baselines and our models in distinct metric. Our
SURGE framework generates more diverse responses than all other baselines, according to the
results.

E.5 ABLATIONS STUDIES ON GNN DESIGN CHOICES

We use two different types of Graph Neural Networks (GNN) in our SURGE framework. One
is the Graph Convolutional Network (GCN) (Kipf & Welling, 2017), which is used to embed
each node entity on the entire 1-hop subgraph in the triplet embedding function d of the main
paper Equation 4. Another is Composition-Based Multi-Relational Graph Convolutional Networks
(CompGCN) (Vashishth et al., 2020), which is used to embed each entity by considering the relations
between entities in the token embedding perturbation function β of the main paper Equation 7. In
this subsection, we conduct ablation studies on both GNN design choices. First of all, we replace
the GCN in Equation 4 with Graph Attention Network (GAT) (Velickovic et al., 2018) to validate
the effect of the GNN design choices on the node embedding in the triplet embedding function.
Then, we run experiments by changing CompGCN in Equation 7 to GCN to see how important the
relationships are in the graph encoding. We present the results on Figure 9 right. Results indicate that
the use of GAT in Equation 4 does not have any impact on the performance a lot. However, the use of
relation-aware GNN is highly important in effective and efficient graph encoding, since removing the
relation awareness of GNN reduces the performance of our model a lot.

F HUMAN EVALUATION

In this section, we describe the details of human evaluation used in section 5 of the main paper. We
request the annotators to evaluate the responses generated from two baselines (i.e., ALL Knowledge
and Space Efficient) and our SURGE framework in response to the given dialogue context, according
to three criteria – consistency, informativeness, and fluency. Figure 10 is the instructions provided to
each annotator. Specifically, regarding the consistency metric, we ask annotators to check whether
the generated response makes sense in the context of the conversation. For informativeness, we
ask annotators to check whether the response contains correct and enough information, whereby
experiment participants are recommended to use the internet search, to check whether the response
contains correct facts. In addition to this, we also provide the dialogue-related facts from Freebase
as a reference for fact checking for annotators. For fluency, we ask annotators to check whether the
response is grammatically correct and naturally sound.
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Figure 10: Human Evaluation Instructions. To measure the qualitative performances of the generated
responses, annotators are provided with the following instruction on three criteria – consistency, informativeness,
and fluency.

G RETRIEVAL AND GENERATION EXAMPLES

In this section, we provide the examples for knowledge retrieval and response generation, for the
given dialogue history.

Embeeding Space Visualization In Figure 11, we present a larger version of Figure 6 in the main
paper. Specifically, we embed the hidden representations before the projection layer for each graph
(star) and the embedding of the generated text (circle) through the dimensionality reduction using
t-SNE (van der Maaten & Hinton, 2008). As mentioned in the main paper, the visualization highlights
that our SURGE framework with graph-text contrastive learning generates more distinct responses to
different subgraphs, unlike the one without graph-text contrastive learning which shows less variety
over responses even with different graphs.

Retrieval Examples We provide the retrieval examples of various models, such as random retrieval,
sparse retrieval and our SURGE models. In particular, in the first (top) example of Figure 12, we are
given a dialogue context in regard to books for Richard Maxwell, and baselines including random and
BM25 retrievers select the facts associated to the entity Richard Maxwell, which are but irrelevant to
the ongoing conversion, for example, (Richard maxwell, is-a Theatre director). Also, as shown in the
second (bottom) example of Figure 12, we observe that the simple term-based matching model (i.e.,
BM25) cannot contextualize the current and previous dialogues, but retrieves the facts associated to
frequent words, for example, song, which are less meaningful for the user’s question. In contrast to
baselines, as our SURGE framework trains a retriever in an end-to-end fashion, it first contextualizes
the given dialogue context, and then accurately retrieves relevant knowledge.

Generation Examples We provide the generation examples from our model. To be specific, we
provide the dialogue context along with its corresponding retrieved subgraph and generated response
obtained from our SURGE framework. In Figure 13 and Figure 14, we provide the correct examples:
our model retrieves a context-relevant subgraph, but also generates a factual response from retrieved
knowledge. On the other hand, in Figure 15, we provide the failure cases. In particular, as shown in
the first row of Figure 15, the fact in the knowledge graph could be ambiguous or inaccurate, as it
defines the release year of the book – Wicked – as both 2008 and 2014. Moreover, we further provide
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Figure 11: Large version of Figure 6 in the main paper. Stars indicate the embedding of graph and circles
indicate the embedding of decoder hidden states (text), respectively.

the failure example on retrieval in the second row of Figure 15, where the user asks about the Bourne
Legacy, while the dialogue agents retrieve the irrelevant knowledge to the question. Finally, we show
the common problem in PLMs in the last row of Figure 15, where the generative model repeats the
meaningless words at the end, while the retriever correctly selects the relevant knowledge.
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Dialogue Context

A: Could you recommend any books written by Richard Maxwell?

Gold Knowledge

Richard maxwell, ~written_by, a tale of two cities

Random Knowledge

Richard maxwell, sibling, jan maxwell

Screenwriter, ~is-a, Richard maxwell

Theatre director, ~is-a, Richard maxwell

BM25 Knowledge

Richard maxwell, is-a, Theatre director

Screenwriter, ~is-a, Richard maxwell

Richard maxwell, organization founded, new york city players

Our Knowledge

Richard maxwell, ~written_by, a tale of two cities

Richard maxwell, sibling, Jan maxwell

Dialogue Context

A: I like Adam Levine.

B: OMG me too! I love that song Moves Like Jagger.

A: Yes, Love that too. It is really fun. Can you tell me more.

B: Did you know it's considered a power pop song?

A: No, I did'n. Do you know Love the way you Lie?

Gold Knowledge

Song, ~kind of composition, Love the way you lie

Random Knowledge

Blue monday, kind of composition, Song

The look of love, kind of composition, Song

Bad romance, kind of composition, Song

BM25 Knowledge

Song, ~kind of composition, This charming man

Behati prinsloo, ~spouse (or domestic partner), Adam levine

Song, ~kind of composition, safe & sound

Our Knowledge

g minor, ~key, Love the way you lie

Eminem, ~composer, Love the way you lie

Love the way you lie, composer, Eminem

Skylar grey, ~composer, Love the way you lie

Figure 12: Examples of the dialogue history with its corresponding gold knowledge as well as the retrieved
knowledge from random retrieval and sparse retrieval baselines and from our SURGE framework. The retrieved
fact is represented as the format of (head, relation, tail), where ∼symbol in the front of relation (i.e., ∼relation)
in the retrieved knowledge denotes the inverse relation.
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Dialogue Context

Generated Response

B: Yes, he wrote Pirates of the Caribbean: On Stranger Tides, Memoirs of a Geisha Nine and 
many others. Have you seen either of those?

A: Do you like Rob Marshall? My friends have recommend his films.

Retrieved Knowledge
Nine, has_genre, Drama
Pirates of the Caribbean: On Stranger Tides, directed_by, Rob Marshall

Memoirs of a Geisha, directed_by, Rob Marshall

Dialogue Context

Generated Response

B: It's Literary fiction, and was released in 2008.

A: Are there any works by Chris Cleave, which you can recommend me?
B: Certainly, wrote The Other Hand, Incendiary, and Old. Have you read them? 
A: No, I haven't read The Other Hand out of the ones you mentioned. What genre is it?

Retrieved Knowledge
The Other Hand, release_year, 2008
2008, ~release_year, The Other Hand

The Other Hand, has_genre, Literary fiction

Dialogue Context

Generated Response

B: Yes he also wrote Tortilla Flat

A: Who wrote Of Mice and Men?
B: It was written by John Steinbeck
A: Didn't he also write The Red Pony?
B: Yes He also wrote The Red Pony
A: Can you suggest other titles by him to read?

Retrieved Knowledge
Cannery Row, written_by, John Steinbeck
The Grapes of Wrath, written_by, John Steinbeck

Tortilla Flat, written_by, John Steinbeck

Figure 13: Examples of the dialogue history with its corresponding retrieved knowledge and generated response
from our SURGE framework. The fact is represented as the format of (head, relation, tail), where ∼symbol in
the front of relation (i.e., ∼relation) in the retrieved knowledge denotes the inverse relation. In this example, we
only provide the correct cases of both retrieval and generation.
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Dialogue Context

Generated Response

B: Simon Wood directed The One That Got Away. Have you seen that?

A: Could you recommend some movies by director Simon Wood?

Retrieved Knowledge
The One That Got Away, written_by, Simon Wood
Simon Wood, ~written_by, The One That Got Away

Author, ~is-a, Simon Wood

Dialogue Context

Generated Response

B: It was released in 2011. It's a great book.

A: I like David McCullough. Could you recommend any books of him?
B: Sure. He wrote The Greater Journey: Americans In Paris. Also, he wrote some documentary 
and Indie films. 
A: Thank you for the information. When was The Greater Journey: Americans In Paris released?

Retrieved Knowledge
The Greater Journey: Americans In Paris, release_year, 2011
2011, ~release_year, The Greater Journey: Americans In Paris

Paris, written_by, Edward Rutherfurd

Dialogue Context

Generated Response

B: I think he is a great actor. He starred in Sense and Sensibility and Mansfield Park.

A: I like Tony Tanner, what do you think?

Retrieved Knowledge
Sense and Sensibility, written_by, Tony Tanner
Tony Tanner, ~written_by, Mansfield Park

Mansfield Park, written_by, Tony Tanner

Figure 14: Examples of the dialogue history with its corresponding retrieved knowledge and generated response
from our SURGE framework. The fact is represented as the format of (head, relation, tail), where ∼symbol in
the front of relation (i.e., ∼relation) in the retrieved knowledge denotes the inverse relation. In this example, we
only provide the correct cases of both retrieval and generation.
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Dialogue Context

Generated Response

B: It is a play written by Jennifer L. Armentrout and released in 2008.

A: Do you know what books Jennifer L. Armentrout has written?
B: She wrote Wicked, White House Kiss and Wait For You. Are you interested in her other 
books as well?
A: No thanks. What genre is Wicked?
B: Wicked is a  Play that won the Pulitzer Prize for Drama. Would you like more information 
about it?
A: Sure, sounds interesting

Retrieved Knowledge
Wicked, release_year, 2008
2008, ~release_year, Wicked

Wicked, release_year, 2014

Dialogue Context

Generated Response

B: Yes, he did. He also wrote Michael Clayton.

A: I like the movie Armageddon.
B: Did you know Armageddon is written by Tony Gilroy?
A: Oh, didn't he also write The Bourne Legacy?

Retrieved Knowledge
Michael Clayton, starred_actors, Tony Gilroy
Michael Clayton, written_by, Tony Gilroy

Proof of Life, written_by, Tony Gilroy

Dialogue Context

Generated Response

B: Deadpool is a great movie. Stefan Kapicic starred in it. Stefan Kapicic also starred in The 
Last Man and The Last Man.

A: I like Deadpool or any movies like Deadpool. 

Retrieved Knowledge
Deadpool, starred_actors, Ryan Reynolds
Deadpool, starred_actors, Stefan Kapicic

Deadpool, starred_actors, Ed Skrein

Figure 15: Examples of the dialogue history with its corresponding retrieved knowledge and generated response
from our SURGE framework. The fact is represented as the format of (head, relation, tail), where ∼symbol in
the front of relation (i.e., ∼relation) in the retrieved knowledge denotes the inverse relation. In this example, we
only provide the failure cases due to the problem on data (first row), retrieval (second row), and generation (third
row).
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