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ABSTRACT

Despite the recent advances in the field of computational Schrödinger Bridges
(SB), most existing SB solvers are still heavy-weighted and require complex op-
timization of several neural networks. It turns out that there is no principal solver
which plays the role of simple-yet-effective baseline for SB just like, e.g., k-
means method in clustering, logistic regression in classification or Sinkhorn al-
gorithm in discrete optimal transport. We address this issue and propose a novel
fast and simple SB solver. Our development is a smart combination of two ideas
which recently appeared in the field: (a) parameterization of the Schrödinger po-
tentials with sum-exp quadratic functions and (b) viewing the log-Schrödinger
potentials as the energy functions. We show that combined together these ideas
yield a lightweight, simulation-free and theoretically justified SB solver with a
simple straightforward optimization objective. As a result, it allows solving SB
in moderate dimensions in a matter of minutes on CPU without a painful hy-
perparameter selection. Our light solver resembles the Gaussian mixture model
which is widely used for density estimation. Inspired by this similarity, we
also prove an important theoretical result showing that our light solver is a uni-
versal approximator of SBs. Furthemore, we conduct the analysis of the gen-
eralization error of our light solver. The code for our solver can be found at
https://github.com/ngushchin/LightSB.

Figure 1: Unpaired male→ female translation by our LightSB solver applied in the latent space of
ALAE for 1024x1024 FFHQ images. Our LightSB converges on 4 cpu cores in less than 1 minute.

1 INTRODUCTION

Over the last several years, there has been a considerable progress in developing the computational
approaches for solving the Schrödinger Bridge problem (Schrödinger, 1931; 1932, SB), which is
also known as the dynamic version of the Entropic Optimal Transport (Cuturi, 2013, EOT) problem.
The SB problem requires finding the diffusion process between two given distributions that is max-
imally similar to some given prior process. In turn, EOT problem is a simplification in which a user
is interested only in the joint marginal distribution on the first and the last steps of the diffusion.

∗Equal contribution.
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Historically, the majority of studies in EOT/SB sub-field of machine learning are concentrated
around studying EOT between discrete probability distributions, see (Peyré et al., 2019) for a sur-
vey. Inspired by the recent developments in the field of generative modeling via diffusions (Ho
et al., 2020; Rombach et al., 2022) and the diffusion-related nature of SB, various researches started
developing solvers for a continuous setups of EOT/SB, see (Gushchin et al., 2023b) for a survey.
This implies that a learner has only a sample access to the (continuous) distributions and based on
it has to recover the entire SB process (e.g., its drift) between the entire distributions. Such solvers
are straightforwardly applicable to image generation (Wang et al., 2021; De Bortoli et al., 2021) and
image-to-image translation tasks (Gushchin et al., 2023a) as well as to important smaller scale data
transfer tasks, e.g., with the biological data (Vargas et al., 2021; Koshizuka & Sato, 2022).

Almost all existing EOT/SB solvers (see M4) have complex neural networks parameterization and
many hyper-parameters; they expectedly require time-consuming training/inference procedures. Al-
though this is unavoidable in large-scale generative modeling tasks, these techniques look too heavy-
weighted when a user just wants to learn EOT/SB between some moderate-dimensional data distri-
butions, e.g., those appearing in perspective biological applications of OT (Tong et al., 2020; Vargas
et al., 2021; Koshizuka & Sato, 2022; Bunne et al., 2022; 2023; Tong et al., 2023). In this paper, we
address this issue and present the following main contributions:

1. We propose a novel light solver for continuous SB with the Wiener prior, i.e., EOT with the
quadratic transport cost. Our solver has a straightforward non-minimax learning objective and
uses the Gaussian mixture parameterization for the EOT/SB (M3.1, 3.2). This development allows
us to solve EOT/SB between distributions in moderate dimensions in a matter of minutes thanks
to avoiding time-consuming max-min optimization, simulation of the full process trajectories,
iterative learning and MCMC techniques which are in use in existing continuous solvers (M4).

2. We show that our novel light solver provably satisfies the universal approximation property for
EOT/SB between the distributions supported on compact sets (M3.3).

3. We derive the finite sample learning guarantees for our solver. We show that the estimation error
vanishes at the standard parametric rate with the increase of the sample size (Appendix A).

4. We demonstrate the performance of our light solver in a series of synthetic and real-data experi-
ments (M5), including the ones with the real biological data (M5.3) considered in related works.

Our light solver exploits the recent advances in the field of EOT/SB, namely, using the log-sum-
exp quadratic functions to parameterize Schrödinger potentials for constructing EOT/SB benchmark
distributions (Gushchin et al., 2023b) and viewing EOT as the energy-based model (Mokrov et al.,
2024) which optimizes a certain Kullback-Leibler divergence. We discuss this in M3.1.

2 BACKGROUND: SCHRÖDINGER BRIDGES

In this section, we recall the main properties of the Schrödinger Bridge (SB) problem with the
Wiener prior. We begin with discussing the Entropic Optimal Transport (Cuturi, 2013; Genevay,
2019), which is known as the static SB formulation. Next, we recall the dynamic Schrödinger bridge
formulation and its relation to EOT (Léonard, 2013; Chen et al., 2016). Finally, we summarize the
aspects of the practical setup for learning EOT/SB which we consider throughout the paper.

We work in the D-dimensional Euclidean space (RD, ∥ · ∥). We use P2,ac(RD) to denote the set
of absolutely continuous Borel probability distributions on RD which have a finite second moment.
For any p ∈ P2,ac(RD), we write p(x) to denote its density at a point x ∈ RD. In what follows, KL
is a short notation for the well-celebrated Kullback-Leibler divergence, andN (x|r, S) is the density
at a point x ∈ RD of the normal distribution with mean r ∈ RD and covariance 0 ≺ S ∈ RD×D.

Entropic Optimal Transport (EOT) with the quadratic cost. Assume that p0 ∈ P2,ac(X ), p1 ∈
P2,ac(Y) have finite entropy. For ϵ > 0, the EOT problem between them is to find the minimizer of

min
π∈Π(p0,p1)

{ ∫
RD

∫
RD

1

2
∥x0 − x1∥2π(x0, x1)dx0dx1 + ϵKL (π∥p0 × p1)

}
, (1)

where Π(p0, p1) is the set of probability distributions (transport plans) on RD×RD whose marginals
are p0 and p1, respectively, and p0 × p1 is the product distribution. KL in (1) is assumed to be equal
to +∞ if π is not absolutely continuous. Therefore, one can consider only absolutely continuous π.
The minimizer π∗ of (1) exists; it is unique and called the EOT plan.
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(Dynamic) Schrödinger Bridge with the Wiener prior. We employ Ω as the space of RD-valued
functions of time t ∈ [0, 1] describing trajectories in RD which start at time t = 0 and end at t = 1.
In turn, we use P(Ω) to denote the set of probability distributions on Ω, i.e., stochastic processes.
We use dWt to denote the differential of the standard Wiener process. For a process T ∈ P(Ω), we
denote its joint distribution at t = 0, 1 by πT ∈ P(RD × RD). In turn, we use T|x0,x1

to denote the
distribution of T for t ∈ (0, 1) conditioned on T ’s values x0, x1 at t = 0, 1.

Let W ϵ ∈ P(Ω) denote the Wiener process with volatility ϵ > 0 which starts at p0 at t = 0. Its
differential satisfies the stochastic differential equation (SDE): dW ϵ

t =
√
ϵdWt. The SB problem

with the Wiener prior W ϵ between p0, p1 is to minimize the following objective:

min
T∈F(p0,p1)

KL (T∥W ϵ) , (2)

where F(p0, p1) ⊂ P(Ω) is the subset of stochastic processes which start at distribution p0 (at the
time t = 0) and end at p1 (at t = 1). This problem has the unique solution which is a diffusion
process T ∗ described by the SDE: dZt = g∗(Zt, t)dt + dW ϵ

t (Léonard, 2013, Prop. 2.3). The
process T ∗ is called the Schrödinger Bridge and g∗ : RD × [0, 1]→ RD is called the optimal drift.

Equivalence between EOT and SB. It is known that the solutions of EOT and SB are related to
each other: for the EOT plan π∗ and the SB process T ∗ it holds that π∗ = πT∗

. Hence, solution
π∗ to EOT (1) can be viewed as a part of the solution T ∗ to SB (2). What remains uncovered by
EOT in SB is the conditional process T|x0,x1

. Fortunately, it is known that T|x0,x1
=W ϵ

|x0,x1
, i.e., it

simply matches the ”inner part” of the Wiener prior W ϵ which is the well-studied Brownian Bridge
(Pinsky & Karlin, 2011, Sec. 8.3.3). Hence, one may treat EOT and SB as equivalent problems.

Characterization of solutions (Léonard, 2013). The EOT plan π∗ = πT∗
has a specific form

π∗(x0, x1) = ψ∗(x0) exp
(
− ∥x0 − x1∥2/2ϵ

)
ϕ∗(x1), (3)

where ψ∗, ϕ∗ : RD → R+ are two measurable functions called the Schrödinger potentials. They
are defined up to multiplicative constants. The optimal drift g∗ of SB can be derived from ϕ∗:

g∗(x, t) = ϵ∇x log

∫
RD

N (x′|x, (1− t)ϵID)ϕ∗(x′)dx′. (4)

To use (4), it sufficies to know ϕ∗ up to the multiplicative constant.

Computational Schrödinger Bridge setup. Even though SB/EOT have many useful theoretical
properties, solving the SB/EOT problems remains challenging in practice. Analytical solution is
available only for the Gaussian case (Chen et al., 2015; Janati et al., 2020; Mallasto et al., 2022;
Bunne et al., 2023) plus for some manually constructed benchmark pairs of distributions p0, p1
(Gushchin et al., 2023b). Moreover, in real world setting where SBs are applied (Vargas et al., 2021;
Bunne et al., 2023; Tong et al., 2023), distributions p0 and p1 are almost never available explicitly
but only through their empirical samples. For the rigor of the exposition, below we formalize the
typical EOT/SB learning setup which we consider in our paper.

We assume that the learner has access to empirical samples XN
0 = {x10, x20, . . . , xN0 } ∼ p0 and

XM
1 = {x11, x21, . . . , xM1 } ∼ p1 from the (unknown) data distributions p0, p1 ∈ P2,ac(RD). These

samples (train data) are assumed to be independent. The task of the learner is to recover the solution
(process T ∗ or plan π∗) to SB problem (2) between the entire underlying distributions p0, p1.

The setup above is the learning from empirical samples and is usually called the continuous OT. In
the continuous setup, it is essential to be able to do the out-of sample estimation, e.g., simulate the SB
process trajectories starting from new (test) points xnew0 ∼ p0 and ending at p1. In some practical
use cases of SB, e.g., generative modeling (De Bortoli et al., 2021) and data-to-data translation
(Gushchin et al., 2023a), a user is primarily interested only in the ends of these trajectories, i.e., new
synthetic data samples from p1. In the biological applications, it may be useful to study the entire
trajectory as well (Bunne et al., 2023; Pariset et al., 2023). Hence, finding the solution to SB usually
implies recovering the drift g∗ of SB or the conditional distributions π∗(x1|x0) of the EOT plan.

3 LIGHT SCHRÖDINGER BRIDGE SOLVER

In M3.1, we derive the learning objective for our light SB solver. In M3.2, we present its training and
inference procedures. In M3.3, we prove that our solver is a universal approximator of SBs.
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3.1 DERIVING THE LEARNING OBJECTIVE

The main idea of our solver is to recover a parametric approximation πθ ≈ π∗ of the EOT plan.
Then this learned plan πθ will be used to construct an approximation Tθ ≈ T ∗ to the entire SB
process (M3.2). To learn πθ, we want to directly minimize the KL divergence between π∗ and πθ:

KL (π∗∥πθ)→ min
θ∈Θ

. (5)

This objective is straightforward but there is an obvious obstacle: we do not know the EOT plan
π∗. The magic is that optimization (5) can still be performed despite not knowing π∗. To be-
gin with, recall that we already know that the EOT plan π∗ has a specific form (3). We define
u∗(x0)

def
= exp(−∥x0∥2

2ϵ )ψ∗(x0) and v∗(x1)
def
= exp(−∥x1∥2

2ϵ )ϕ∗(x1). These two are measurable
functions RD → R+, and we call them the adjusted Schrödinger potentials. Now (3) reads as

π∗(x0, x1) = u∗(x0) exp
(
⟨x0, x1⟩/ϵ

)
v∗(x1) ⇒ π∗(x1|x0) ∝ exp

(
⟨x0, x1⟩/ϵ

)
v∗(x1). (6)

Our idea is to exploit this knowledge to parameterize πθ. We define

πθ(x0, x1) = p0(x0)πθ(x1|x0) = p0(x0)
exp

(
⟨x0, x1⟩/ϵ

)
vθ(x1)

cθ(x0)
, (7)

i.e., we parameterize v∗ as vθ. In turn, cθ(x0)
def
=

∫
RD exp

(
⟨x0, x1⟩/ϵ

)
vθ(x1)dx1 is the normalization.

Our parameterization guarantees that
∫
RD πθ(x0, x1)dx1 = p0(x0). This is reasonable as in practice

a learner is interested in the conditional distributions π∗(x1|x0) rather than the density π∗(x0, x1)
of the plan. To be precise, we parameterize all the conditional distributions πθ(x1|x0) via a common
potential vθ. Below we will see that it is sufficient for both training and inference. In Appendix E, we
show that within our framework it is easy to also parameterize the density of p0 in (7). Surprisingly,
this approach naturally coincides with just fitting a separate density model for p0.

Now we show that optimization (5) can be performed without the knowledge of π∗.
Proposition 3.1 (Feasible reformulation of the KL minimization). For parameterization (7), it holds
that the main KL objective (5) admits the representation KL

(
π∗∥πθ

)
= L(θ)− L∗, where

L(θ) def
=

∫
RD

log cθ(x0)p0(x0)dx0 −
∫
RD

log vθ(x1)p1(x1)dx1, (8)

and L∗ ∈ R is a constant depending on distributions p0, p1 and value ϵ > 0 but not on θ.

We see that minimizing KL equals to the minimization of the difference in expectations of log cθ(x0)
and log vθ(x1) w.r.t. p0, p1, respectively. This means that the objective value (8) admits Monte-Carlo
estimation from random samples and (8) can be optimized by using the stochastic gradient descent
w.r.t. θ. Yet there is still an obstacle that cθ may be hard to compute analytically. We fix this below.

We recall (6) with x0 = 0 and see that π∗(x1|x0 = 0) ∝ v∗(x1), i.e., v∗ can be viewed as an
unnormalized density of a distribution. Inspired by this observation, we employ the (unnormalized)
Gaussian mixture parameterization for the adjusted potential vθ:

vθ(x1)
def
=

K∑
k=1

αkN (x1|rk, ϵSk), (9)

where θ def
= {αk, rk, Sk}Kk=1 are the parameters: αk ≥ 0, rk ∈ RD and symmetric 0 ≺ Sk ∈ RD×D.

Note that we multiply Sk in (9) by ϵ just to simplify the further derivations. For parameterization
(9), conditional distributions πθ(x1|x0) and normalization constants cθ(x0) are tractable.
Proposition 3.2 (Tractable form of plan’s components). For the Gaussian Mixture parameterization
(9) of the adjusted Schrödinger potential vθ in (7), it holds that

πθ(x1|x0) =
1

cθ(x0)

K∑
k=1

α̃k(x0)N (x1|rk(x0), ϵSk) where rk(x0)
def
= rk + Skx0,

α̃k(x0)
def
= αk exp

(xT0 Skx0 + 2rTk x0
2ϵ

)
, cθ(x0)

def
=

K∑
k=1

α̃k(x0).
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The proposition provides the closed-form expression for cθ(x0) which is needed to optimize (8).
Relation to prior work. Optimizing objective (8) and using the Gaussian mixture parameterization
(9) for the Schrödinger potentials are two ideas that appeared separately in (Mokrov et al., 2024)
and (Gushchin et al., 2023b), respectively, and in different contexts. Our contribution is to combine
these ideas together to get an efficient and light solver to SB, see the details below.

(a) Energy-based view on EOT. In (Mokrov et al., 2024), the authors aim to solve the continuous
EOT problem. Using the duality for weak OT, the authors derive the objective which matches our
(8) up to some change of variables, see their eq. (17) and Theorem 2. The lack of closed form for the
normalization constant forces the authors to use the complex energy-based modeling (LeCun et al.,
2006; Song & Kingma, 2021, EBM) techniques to perform the optimization. This is computationally
heavy due to using the MCMC both during training and inference of the solver. Compared to their
work, we employ a special parameterization of the Schrödinger potential, which allows to obtain the
closed form expression for the normalizing constant. In turn, this allows us to optimize (8) directly
with the minibatch gradient descent and removes the burden of using MCMC at any point. Besides,
our solver yields the closed form expression for SB (see M3.2) while their approach does not.

(b) Parameterization of Schrödinger potentials with Gaussian mixtures. In (Gushchin et al.,
2023a), the authors are interested in manually constructing pairs of continuous probability distribu-
tions for which the ground truth EOT/SB solution is available analytically. They propose a generic
method to do this (Theorem 3.2) and construct several pairs to be used as a benchmark for EOT/SB
solvers. The key building block in their methodology is to use a kind of the Gaussian mixture param-
eterization for Schrödinger potentials, which allows to obtain the closed form EOT and SB solutions
for the constructed pairs (Proposition 3.3, Corollary 3.5). Our parameterization (9) coincides with
theirs up to some change of variables. The important difference is that we use it to learn the EOT/SB
solution (via learning parameters θ by optimizing (8) for a given pair of distributions p0, p1. At the
same time, the authors pick the parameters θ at random to simply set up some potential and use it to
build some pairs of distributions with the EOT plan between them available by their construction.

To summarize, our contribution is to unite these two separate ideas (a) and (b) from the field of
EOT/SB. We obtain a straightforward minimization objective (8) which can be easily approached
by standard gradient descent (M3.2). This makes the process of solving EOT/SB easier and faster.

3.2 TRAINING AND INFERENCE PROCEDURES

TRAINING. As the distributions p0, p1 are accessible only via samples X0 = {x10, . . . , xN0 } ∼ p0
and X1={x11, . . . , xM1 }∼p1 (recall the setup in M2), we optimize the empirical counterpart of (8):1

L̂(θ) def
=

1

N

N∑
n=1

log cθ(x
n
0 )−

1

M

M∑
m=1

log vθ(x
m
1 ) ≈ L(θ). (10)

We use the (minibatch) gradient descent w.r.t. parameters θ. To further simplify the optimization, we
consider diagonal matrices Sk in our parameterization (9) of vθ. Not only does it help to drastically
reduce the number of learnable parameters in θ but it also allows to quickly compute S−1

k in O(D)
time. This simplification strategy works reasonably well in practice, see M5 below. Importantly, it is
theoretically justified: in fact, it suffices to even use scalar covariance matrices Sk = λkID ≻ 0 in
vθ, see our Theorem 3.4. The other details are in Appendix D.

INFERENCE. The conditional distributions πθ(x1|x0) are mixtures of Gaussians whose parame-
ters are given explicitly in Propostion 3.2. Hence, sampling x1 given x0 is straightforward and
lightspeed. So far we have discussed EOT-related training and inference aspects and skipped the
question how to use πθ to set-up some process Tθ ≈ T ∗ approximating SB. We fix it below.

With each distribution πθ defined by (7) via formula (7), we associate the specific process T = Tθ
whose joint distribution at t = 0, 1 matches πθ and conditionals satisfy Tθ|x0,x1

= W ϵ
|0,1. Infor-

mally, this means that we ”insert” the Brownian Bridge ”inside” the joint distribution πθ at t = 0, 1.
Below we show that this process admits the closed-form drift gθ and the quality of approximation
of T ∗ by Tθ is the same as that of approximation of π∗ by πθ.
Proposition 3.3 (Properties of Tθ). Let vθ be an unnormalized Gaussian mixture given by (9) and
πθ given by (7). Then Tθ introduced above is a diffusion process governed by the following SDE:

Tθ : dXt = gθ(Xt, t)dt+
√
ϵdWt, X0 ∼ p0, (11)

1We discuss the generalization properties of our light SB solver in Appendix A.

5



Published as a conference paper at ICLR 2024

gθ(x, t)
def
= ϵ∇x log

(
N (x|0, ϵ(1− t)ID)

K∑
k=1

{
αkN (rk|0, ϵSk)N (h(x, t)|0, At

k)
})

with At
k

def
= t

ϵ(1−t)ID +
S−1
k

ϵ and hk(x, t)
def
= 1

ϵ(1−t)x+ 1
ϵS

−1
k rk. Moreover, it holds that

KL (T ∗∥Tθ) = KL (π∗∥πθ) . (12)

The proposition provides a closed form for the drift gθ of Tθ for all (x, t) ∈ RD × [0, 1]. Now that
we know what the process looks like, it is straightforward to sample its random trajectories starting
at given input points x0. We describe two ways for it based on the well-known schemes.

Euler-Maryama simulation. This is the well-celebrated time-discretized scheme to solve SDEs.
Let ∆t = 1

S be the time discretization step for an integer S > 0. Consider the following iteratively
constructed (for s ∈ {0, 1, S − 1}) sequence starting at x0:

x(s+1)∆t ← xs∆t + gθ(xs∆t, s∆t)∆t+
√
ϵ∆tξs with ξs ∼ N (0, I), (13)

where ξs are i.i.d. random Gaussian variables. Then the sequence {xs∆t}Ss=1 is a time-discretized
approximation of some true trajectory of Tθ starting from x0. Since our solver provides closed form
gθ (Proposition 3.3) for all t ∈ [0, 1], one may employ any arbitrary small discretization step ∆t.

Brownian Bridge simulation. Given a start point x0, one can sample an endpoint x1 ∼ πθ(x1|x0)
from the respective Gaussian mixture (Proposition 3.2). What remains is to sample the trajectory
from the conditional process Tθ|x0,x1

which matches the Brownian Bridge W ϵ
|x0,x1

. Suppose that
we already have some trajectory x0, xt1 , . . . , xtL , x1 with 0 < t1 < · · · < tL < 1 (initially L = 0,
we have only x0, x1), and we want to refine the trajectory by inserting a point at tl < t < tl+1.
Following the properties of the Brownian bridge, it suffices to sample

xt ∼ N
(
xt|xtl +

t′ − tl
tl+1 − tl

(xtl+1
− xtl), ϵ

(t′ − tl)(tl+1 − t′)
tl+1 − tl

)
. (14)

Using this approach, one may sample arbitrarily precise trajectories of Tθ without any discretization
errors. Unlike (13), this sampling technique does not use the drift gθ and to get a random sample at
any time t one does not need to sequentially unroll the entire prior trajectory at [0, t).

3.3 UNIVERSAL APPROXIMATION PROPERTY

Considering plans πθ with the Gaussian mixture parameterization (9), it is natural to wonder whether
this parameterization is universal. Namely, we aim to understand whether Tθ can approximate any
Schrödinger bridge arbitrarily well if given a sufficient amount of components in the mixture vθ. We
provide a positive answer assuming that p0, p1 are supported on compact sets. This assumption is
not restrictive as in practice many real-world distributions are compactly supported anyway.
Theorem 3.4 (Gaussian mixture parameterization for the adjusted potential provides the universal
approximation of Schrödinger bridges). Assume that p0 and p1 are compactly supported. Then for
all δ > 0 there exists a Gaussian mixture vθ (9) with scalar covariances Sk = λkID ≻ 0 of its
components that satisfies the inequality KL (T ∗∥Tθ) = KL (π∗∥πθ) < δ.

Although this result looks concise and simple, its proof is quite challenging. The main cornerstone
in proving the result is that the key object to be approximated, i.e., the adjusted potential v∗, is just a
measurable function without any nice properties such as the continuity. To overcome this issue, we
employ non-trivial facts from the duality theory for weak OT (Gozlan et al., 2017).

We also highlight the fact that our result provides an approximation of T ∗ on the non-compact set.
Indeed, while p0 and p1 are compactly supported, Tθ’s marginals at all the time steps t ∈ (0, 1)
are always supported on the entire RD which is not compact, recall, e.g., (14). This aspect adds
additional value to our result as usually the approximation is studied in the compact sets. To our
knowledge, our Theorem 3.4 is the first ever result about the universal approximation of SBs.

4 RELATED WORK
Over several recent years, there has been a notable progress in developing neural SB/EOT solvers.
For a review and a benchmark of them, we refer to (Gushchin et al., 2023b). The dominant majority
of them have rather non-trivial training or inference procedures, which complicates the usage of
them in practical problems. Below we summarize their main principles.
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Solver
Property

Allows to
sample from

π∗(·|x)

Non-
minimax
objective

Non-
iterative
objective

Non-
simulation

based training

Recovers
the drift
g∗(x, t)

Recovers the
density of

π∗(·|x)

Does not
use simulation

inference

Satisfies
the universal

approximation

Works for
reasonably

small ϵ

(Seguy et al., 2018) ✗ ✓ ✓ ✓ ✗ ✗ ✓ ? ✗

(Daniels et al., 2021) ✓ ✓ ✓ ✓ ✗ ✗ ✗ ? ✗

(Mokrov et al., 2024) ✓ ✓ ✓ ✗ ✗ ✗ ✗ ? ✓

(Gushchin et al., 2023a) ✓ ✗ ✓ ✗ ✓ ✗ ✗ ? ✓

(Vargas et al., 2021) ✓ ✓ ✗ ✗ ✓ ✗ ✗ ? ✓

(De Bortoli et al., 2021) ✓ ✓ ✗ ✗ ✓ ✗ ✗ ? ✓

(Chen et al., 2021a) ✓ ✓ ✗ ✗ ✓ ✗ ✗ ? ✓

(Shi et al., 2023) ✓ ✓ ✗ ✗ ✓ ✗ ✗ ? ✓

(Kim et al., 2024) ✓ ✗ ✓ ✗ ✓ ✗ ✗ ? ✓

(Tong et al., 2023) ✓ ✓ ✓ ✓ ✓ ✗ ✗ ? ✓

LightSB (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of features of existing EOT/SB solvers and our proposed light solver.
Dual form solvers for EOT. The works (Genevay et al., 2016; Seguy et al., 2018; Daniels et al.,
2021) aim to solve EOT (1), i.e., the static version of SB. The authors approach the classic dual EOT
problem (Genevay, 2019, M3.1) with neural networks. They recover the conditional distributions
π∗(x1|x0) or only the barycentric projections x0 7→

∫
RD x1π

∗(x1|x0)dx1 without learning the ac-
tual SB process T ∗. Unfortunately, both solvers do not work for small ϵ due to numerical instabilities
(Gushchin et al., 2023b, Table 2). At the same time, large ϵ is of limited practical interest as the EOT
plan is nearly independent, i.e., π∗(x0, x1) ≈ p0(x0)p1(x1) and π∗(x1|x0) ≈ p1(x1). In this case, it
becomes reasonable just to learn the unconditional generative model for p1. This issue is addressed
in the work (Mokrov et al., 2024) which we discussed in M3.1. There the authors consider the weak
OT dual form (Backhoff-Veraguas et al., 2019, Theorem 1.3) for EOT and demonstrate that it can
be approached with energy-based modeling techniques (LeCun et al., 2006, EBM). Their solver as
well as (Daniels et al., 2021) still heavily rely on using time-consuming MCMC techniques.

The above-mentioned solvers can be also adapted to sample trajectories from SB by using the Brow-
nian Bridge just as we do in M3.2. However, unlike our light solver, these solvers do not provide
an access to the optimal drift g∗. Recently, (Gushchin et al., 2023a) demonstrated that one may
reformulate the weak EOT dual problem so that one can get the SB’s drift g∗ from its solution as
well. However, their solver requires dealing with a challenging max-min optimization problem and
requires simulating the full trajectories of the learned process, which complicates training.

Iterative proportional fitting (IPF) solvers for SB. Most SB solvers (Vargas et al., 2021; De Bor-
toli et al., 2021; Chen et al., 2021a; 2023) directly aim to recover the optimal drift g∗ as it can be later
used to simulate the SB trajectories as we discussed in M3.2. Such solvers are mostly based on the
iterative proportional fitting procedure (Fortet, 1940; Kullback, 1968; Ruschendorf, 1995), which is
also known as the Sinkhorn algorithm (Cuturi, 2013) and, in fact, coincides with the well-known
expectation-maximization algorithm (Dempster et al., 1977, EM), see (Vargas & Nüsken, 2023,
Proposition 4.1) for discussion. That is, the above-mentioned solvers learn two SDEs (forward and
inverse processes) and iteratively update them one after the other (IPF steps). The first two solvers
do this via the mean-matching regression while the others optimize a divergence-based objective,
see (Chen et al., 2021a, M1), (Chen et al., 2023, M5). All these solvers require performing multiple
IPF steps. At each of the steps, they simulate the full trajectories of the learned process which in-
troduces considerable computational overhead since these processes are represented via large neural
networks. In particular, due to the error accumulation as IPF proceeds, it is known that such solvers
may forget the Wiener prior, see (Vargas & Nüsken, 2023, M4.1.2) and references therein.

Other solvers for EOT/SB. In (Shi et al., 2023), a new approach to SB based on alternative Marko-
vian and Reciprocal projections is introduced. In (Tong et al., 2023), the authors exploit the property
that SB solution T ∗ consists of entropic OT plan π∗ and Brownian bridge W ϵ

|x0,x1
. They propose a

(a) x ∼ p0, y ∼ p1. (b) ϵ = 2 · 10−3. (c) ϵ = 0.01. (d) ϵ = 0.1.

Figure 2: The process Tθ learned with LightSB (ours) in Gaussian→Swiss roll example.
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ϵ=0.1 ϵ=1 ϵ=10

D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128

Best solver 1.94 13.67 11.74 11.4 1.04 9.08 18.05 15.23 1.40 1.27 2.36 1.31
⌊LightSB⌉ 0.03 0.08 0.28 0.60 0.05 0.09 0.24 0.62 0.07 0.11 0.21 0.37

±std ±0.01 ±0.04 ±0.02 ±0.02 ±0.003 ±0.006 ±0.007 ±0.007 ±0.02 ±0.01 ±0.01 ±0.01

Table 2: Comparisons of cBW2
2-UVP ↓ (%) between the optimal plan π∗ and the learned plan πθ .

new objective to learn T ∗ in the form of SDE if the EOT plan π∗ is known. Since π∗ is not actu-
ally known, the authors use the minibatch OT to approximate it. In (Kim et al., 2024), the authors
propose exploiting the self-similarity of the SB problem and consider the family of SB problems
on intervals {[ti, 1]}Ni=1 to sequentially learn T ∗ as a series of conditional distributions xti+1

|xti .
However, they add an empirical regularization which may bias the solution. Besides, there exist SB
solvers for specific setups with the paired train data available (Somnath et al., 2023; Liu et al., 2023).

Summary. We provide a Table 1 with the summary of the features of the discussed EOT/SB solvers.
Additionally, in Appendix F, we mention other OT solvers which are related but not closely relevant
to our paper because of considering non EOT/SB formulations or non-continuous settings.

5 EXPERIMENTAL ILLUSTRATIONS
Below we evaluate our light solver on setups with both synthetic (M5.1, M5.2) and real data dis-
tributions (M5.3, M5.4). The code for our solver is written in PyTorch available at https:
//github.com/ngushchin/LightSB. The experiments are issued in the form of convenient
*.ipynb notebooks. Reproducing each experiment requires a few minutes on CPU with 4
cores. The implementation and experimental details are given in Appendix D.

5.1 TWO-DIMENSIONAL EXAMPLES

To show the effect of ϵ on the learned process Tθ, we give a toy example of mapping 2D Gaus-
sian→Swiss Roll with our light solver for ϵ = 2 · 10−3, 10−2, 10−1, see Fig. 2. As expected, for
small ϵ the trajectories are almost straight, and the process Tθ is nearly deterministic. The volatility
of trajectories increases with ϵ, and the conditional distributions πθ(x1|x0) become more disperse.

5.2 EVALUATION ON THE EOT/SB BENCHMARK

To empirically verify that our light solver correctly recovers the EOT/SB, we evaluate it on a recent
EOT/SB benchmark by (Gushchin et al., 2023b, M5). The authors provide high-dimensional contin-
uous distributions (p0, p1) for which the ground truth conditional EOT plan π∗(·|x0) and SB process
T ∗ are known by the construction. Moreover, they use these pairs to evaluate many solvers from M4.

We use their mixtures benchmark pairs (see their M4) with various dimensions and ϵ, and use the same
conditional BW2

2-UVP metric (see their M5) to compare our recovered plan πθ with the ground truth
plan π∗. In Table 2, we report the results of our solver vs. the best solver in each setup according to
their evaluation. As clearly seen, our solver outperforms the best solver by a considerable margin.
This is reasonable as the benchmark distributions are constructed using the similar principles which
our solver exploits, namely, the sum-exp (Gaussian mixture) parameterization of the Schrödinger
potential. Therefore, our light solver has a considerable inductive bias for solving the benchmark.

5.3 SINGLE CELL DATA

One of the important applications of SB is the analysis of biological single cell data (Koshizuka
& Sato, 2022; Bunne et al., 2021; 2022). In Appendix C, we evaluate our algorithm on the popu-
lar embryonic stem cell differentiation dataset which has been used in many previous works (Tong
et al., 2020; Vargas et al., 2021; Bunne et al., 2023; Tong et al., 2023); here we consider the more
high-dimensional dataset from the Kaggle completion ”Open Problems - Multimodal Single-Cell
Integration” (MSCI) which was first used in (Tong et al., 2023). The MSCI dataset consists of
single-cell data from four human donors at 4 time points (days 2, 3, 4, and 7). We solve the SB/EOT
problem between distribution pairs at days 2 and 4, 3 and 7, and evaluate how well the solvers re-
cover the intermediate distributions at days 3 and 4 correspondingly. We work with PCA projections

Setup Solver type Solver
DIM 50 100 1000

Discrete EOT Sinkhorn (Cuturi, 2013) [1 GPU V100] 2.34 (90 s) 2.24 (2.5 m) 1.864 (9 m)
Continuous EOT Langevin-based (Mokrov et al., 2024) [1 GPU V100] 2.39 ± 0.06 (19 m) 2.32 ± 0.15 (19 m) 1.46 ± 0.20 (15 m)
Continuous EOT Minimax (Gushchin et al., 2023a) [1 GPU V100] 2.44 ± 0.13 (43 m) 2.24 ± 0.13 (45 m) 1.32 ± 0.06 (71 m)
Continuous EOT IPF (Vargas et al., 2021) [1 GPU V100] 3.14 ± 0.27 (8 m) 2.86 ± 0.26 (8 m) 2.05 ± 0.19 (11 m)
Continuous EOT KL minimization LightSB (ours) [4 CPU cores] 2.31 ± 0.27 (65 s) 2.16 ± 0.26 (66 s) 1.27 ± 0.19 (146 s)

Table 3: Energy distance (averaged for two setups and 5 random seeds) on the MSCI dataset along with
95%-confidence interval (± intervals) and average training times (s - seconds, m - minutes).
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(a) Male → Female. (b) Female → Male. (c) Adult → Child. (d) Child → Adult.

Figure 3: Unpaired translation by our LightSB solver applied in the latent space of ALAE for
1024x1024 FFHQ images. Our LightSB converges on 4 cpu cores in less than 1 minute.

with DIM = 50, 100, 1000 components. We use the energy distance (Rizzo & Székely, 2016, ED) as
a metric and present the results for different classes of SB solvers in Table 3 along with the training
time. We see that LightSB achieves similar quality to other EOT/SB solvers but faster and without
GPU. The details of used preprocessing, hyperparameter and baselines are in Appendix D.4

5.4 UNPAIRED IMAGE-TO-IMAGE TRANSLATION

One application which is frequently considered in EOT/SB papers (Daniels et al., 2021; Chen et al.,
2021b) is the unpaired image-to-image translation (Zhu et al., 2017). Our solver may be hard to
apply to learning SB directly in the image space. To be precise, it is not designed to be used in
image spaces just like the conventional Gaussian mixture model is not used for image synthesis.

Still we show that our solver might be handy for working in the latent spaces of generative mod-
els. We consider the task of male→female translation. We pick pre-trained ALAE autoencoder
(Pidhorskyi et al., 2020) for entire 1024 × 1024 FFHQ dataset (Karras et al., 2019) of 70K human
faces. We split first 60K faces (train) into male and female subsets and use the encoder to extract
512-dimensional latent codes {zn0 }Nn=1 and {zm1 }Mm=1 from the images in each subset.
Training. We learn the latent EOT plan πθ(z1|z0) by using the above-mentioned unpaired samples
from the latent distributions. The training process takes less than 1 minute on 4 CPU cores.
Inference. To perform male→female translation for a new male face xnew0 (from 10K test faces),
we (1) encode it via znew0 = Enc(xnew0 ), (2) sample z1 ∼ πθ(z1|znew0 ) and then (3) decode x1 =
Dec(z1) and return it. Note that here (unlike M5.3) the process Tθ is not needed, only πθ is used.
Results. The qualitative results are given in Fig. 1 and Fig. 3a. Furthermore, in Fig. 3, we provide
additional examples for other setups: female→male and child↔adult. For brevity, we show only 1
translated images per an input image. In Appendix H, we give extra examples and study the effect of
ϵ. Our experiments qualitatively confirm that our LightSB can solve distribution translation tasks in
high dimensions (D=512), and it can be used to easily convert auto-encoders to translation models.

6 DISCUSSION
Potential impact. Compared to the existing EOT/SB solvers, our light solver provides many ad-
vantages (Table 1). It is one-step (no IPF steps), does not require max-min optimization, does not
require the simulation of the process during the training, provides the closed form of the learned
drift gθ of the process Tθ ≈ T ∗ and of the conditional distributions πθ(x1|x0) ≈ π∗(x1|x0) of the
plan. Moreover, our solver is provably a universal approximator of SBs. Still the key benefit of our
light solver is its simplicity and ease to use: it has a straightforward optimization objective and does
not use heavy-weighted neural parameterization. These facts help our light solver to converge in a
matter of minutes without spending a lot of user/researcher’s time on setting up dozens of hyperpa-
rameters, e.g., neural network architectures, and waiting hours for the solver to converge on GPUs.
We believe that these properties could help our solver to become the standard easy-to-use baseline
EOT/SB solver with potential applications to data analysis tasks.

Limitations and broader impact are discussed in Appendix G.
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7 REPRODUCIBILITY

The code for our solver is available at

https://github.com/ngushchin/LightSB.

1. To reproduce experiments from M5.1 it is enough to train LightSB model by running notebook
notebooks/LightSB swiss roll.ipynb with hyperparameters described in MD.2 and
then run notebook notebooks/swiss roll plot.ipynb to plot Fig. 2.

2. To reproduce experiments from M5.2 it is needed to install Entropic OT benchmark from github
https://github.com/ngushchin/EntropicOTBenchmark and then run notebook
LightSB EOT benchmark.ipynb with hyperparameters described in MD.3 to reproduce re-
ported metrics in Table 2.

3. To reproduce experiments from Appendix C it is needed to install library from
https://github.com/KrishnaswamyLab/TrajectoryNet and then to run note-
book notebooks/LightSB single cell.ipynb. All required data is already prepro-
cessed and located in data folder.

4. To reproduce experiments from M5.3 it is needed to download data from https:
//www.kaggle.com/competitions/open-problems-multimodal/ and
then to run notebook data/data preprocessing.ipynb to preprocess data.
The experiments with LightSB solver can be reproduced by running the notebook
notebooks/LightSB MSCI.ipynb. The experiments with Sinkhorn solver can be
reproduced by running the notebook notebooks/Sinkhorn MSCI.ipynb

5. The code for ALAE is already included in our code and to reproduce experi-
ments from M5.4 it is first necessary to load the ALAE model by running the
script ALAE/training artifacts/download all.py. We have already coded the
FFHQ dataset from ALAE and these data can be downloaded directly using notebook
notebooks/LightSB alae.ipynb. To train the LightSB model it is necessary to run the
notebook notebooks/LightSB alae.ipynb. The same notebook also contains code for
plotting the results of trained models.
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tique. In Annales de l’institut Henri Poincaré, volume 2, pp. 269–310, 1932.
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A GENERALIZATION PROPERTIES OF OUR LIGHT SOLVER

In theory, to recover the optimal plan π∗ one can solve L(θ) → minθ which is equivalent to the
direct minimization of KL (π∗∥πθ) w.r.t. θ (Proposition 3.1). According to (8), L(θ) consists of the
difference of integrals of log cθ(x0) and log vθ(x1) over the distributions p0 and p1, respectively. In
practice, there are several sources of errors which do not allow to perfectly optimize the objective.

1. Statistical (estimation) error. Since distributions p0, p1 are accessible only via empirical sam-
ples X0 = {x10, . . . , xN0 } ∼ p0 and X1 = {x11, . . . , xN1 } ∼ p1, one is forced to optimize the
empirical counterpart L̂(θ) of L(θ). In this objective, the integrals over p0, p1 are replaced with
their estimates using samples X0, X1, recall (10). For given samples X0, X1, we denote

θ̂ = θ̂(X0, X1) = argmin
θ
L̂(θ). (15)

Usually, L̂(θ) is called the empirical risk and θ̂ is the empirical risk minimizer.
2. Approximation error. The parametric class for vθ over which one optimizes the objective is

restricted. For example, we consider (unnormalized) Gaussian mixtures vθ with K components
(parametrized with θ = {αk, rk, Sk}Kk=1). This may lead to irreducible error in approximation
of the OT plan π∗ with πθ due to parametric restrictions. In our setup, the quantity

L(θ∗)− L∗ = min
θ
L(θ)− L∗ (16)

is the approximation error. Here θ∗ = argminθ L(θ) is the best approximator (in a given class).

3. Optimization error. In practice, we solve L̂(θ) → minθ with the gradient descent. The opti-
mization w.r.t. is non-convex and there are no general guarantees of convergence to the global
empirical risk minimizer θ̂. This may introduce an additional optimization error. Analysing this
quantity is a too general question of the non-convex optimization and goes far beyond the scope
of our paper. Therefore, for further analysis we assume this error to be zero.

Given the gap between the theoretical objective L(θ) and its empirical counterpart L̂(θ), it is natural
to wonder how close is the recovered πθ̂ to π∗. We aim to obtain the bound for the expected KL
between π∗ and πθ̂ (or, equivalently, T ∗ and Tθ), i.e., EKL

(
π∗∥πθ̂

)
= EKL

(
T ∗∥Tθ̂

)
, where the

expectation is taken w.r.t. the random realization of the train data X0, X1. This quantity is the
natural definition of the generalization error in our setting. Note that

EKL
(
T ∗∥Tθ̂

) Prop. 3.3
= EKL

(
π∗∥πθ̂

) Prop. 3.1
= E

[
L(θ̂)− L∗] =

E
[
L(θ̂)− L(θ∗)

]
+ E

[
L(θ∗)− L∗] = E

[
L(θ̂)− L(θ∗)

]︸ ︷︷ ︸
Statistical error

+
[
L(θ∗)− L∗]︸ ︷︷ ︸

Approximation error (16)

. (17)

Thanks to our Theorem 3.4, we already known that the second term (the approximation error) can
be made arbitrarily small if we pick a Gaussian mixture with sufficiently large amount of compo-
nents. Hence, our analysis below focuses on bounding the statistical error and understanding the
rate of its convergence to zero as a function of available sample sizes N,M . Our following theorem
demonstrates that the statistical error decreases at the usual parametric rate.
Theorem A.1 (Bound for the statistical error). Assume that p0, p1 are compactly supported. Assume
that the considered parametric class Θ (∋ θ) consists of (unnormalized) Gaussian mixtures with K
components with bounded means ∥rk∥ ≤ R (for some R > 0), covariances sI ⪯ Sk ⪯ SI (for
some 0 < s ≤ S) and weights a ≤ αk ≤ A (for some 0 < a ≤ A). Then the following holds:

E
[
L(θ̂)− L(θ∗)

]
≤ C0√

N
+

C1√
M
,

where constants C0, C1 depend only on K,R, s, S, a,A, p0, p1, ϵ but not on sample sizes M,N .

The proof is given in the next Appendix section. In the future, it would be interesting to study
the trade-off between the statistical error and approximation error rather than study these instances
separately as we do in our paper. However, providing such an analysis will probably require making
stronger assumptions (e.g., smoothness) on the distributions p0, p1 and the true optimal adjusted
Schrödinger potential v∗. We leave this interesting question for the future work.
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B PROOFS

B.1 PROOFS FOR THE RESULTS IN THE MAIN TEXT

Proof of Proposition 3.1. In the derivations below, we useH(·) to denote the entropy, i.e., the minus
KL divergence with the Legesgue measure. We obtain

KL (π∗∥πθ) =
∫
RD×RD

π∗(x0, x1) log
π∗(x0, x1)

πθ(x0, x1)
dx0dx1 =

−H(π∗)−
∫
RD×RD

π∗(x0, x1) log
(
p0(x0)πθ(x1|x0)︸ ︷︷ ︸

=πθ(x0,x1)

)
dx0dx1 =

−H(π∗)−
∫
RD×RD

π∗(x0, x1) log p0(x0)dx0dx1 −
∫
RD×RD

π∗(x0, x1) log πθ(x1|x0)dx0dx1 =

−H(π∗)−
∫
RD

=p0(x0)︷ ︸︸ ︷
π∗(x0) log p0(x0)dx0︸ ︷︷ ︸

=−H(p0)

−
∫
RD×RD

π∗(x0, x1) log
exp

(
⟨x0, x1⟩/ϵ

)
vθ(x1)

cθ(x0)
dx0dx1 =

−H(π∗) +H(p0)− ϵ−1

∫
RD×RD

⟨x0, x1⟩π∗(x0, x1)dx0dx1︸ ︷︷ ︸
def
=−L∗

+ (18)

∫
RD×RD

π∗(x0, x1) log cθ(x0)dx0dx1 −
∫
RD×RD

π∗(x0, x1) log vθ(x1)dx0dx1 =

−L∗ +

∫
RD

p0(x0) log cθ(x0)dx0 −
∫
RD

p1(x1) log vθ(x1)dx1 = L(θ)− L∗, (19)

which is exactly what we need.

Proof of Proposition 3.2. We use equation (7) for πθ(x0, x1) and equation (9) for vθ(x1) to derive:

πθ(x1|x0) =
exp

(
⟨x0, x1⟩/ϵ

)
vθ(x1)

cθ(x0)
=

1

cθ(x0)
exp

(
⟨x0, x1⟩/ϵ

) K∑
k=1

αkN (x1|rk, ϵSk) =

1

cθ(x0)

K∑
k=1

αk exp
(
⟨x0, x1⟩/ϵ

)
N (x1|rk, ϵSk) =

1

cθ(x0)

K∑
k=1

αk(2π)
−D/2|ϵSk|−1/2 exp

(
⟨x0, x1⟩/ϵ

)
exp(−1

2
(x1 − rk)T

S−1
k

ϵ
(x1 − rk)) =

1

cθ(x0)

K∑
k=1

αk(2π)
−D/2|ϵSk|−1/2 exp

(
1

2ϵ

(
2xT0 x1 − (x1 − rk)TS−1

k (x1 − rk)
))

=

1

cθ(x0)

K∑
k=1

αk(2π)
−D/2|ϵSk|−1/2 exp

( 1

2ϵ
(2xT0 x1 − xT1 S−1

k xT1 + 2rTk S
−1
k x1 − rTk S−1

k rk)
)
=

1

cθ(x0)

K∑
k=1

αk(2π)
−D/2|ϵSk|−1/2 exp

( 1

2ϵ
(−xT1 S−1

k xT1 + 2 (Skx0 + rk)
T︸ ︷︷ ︸

=rk(x0)

S−1
k x1 − rTk S−1

k rk)
)
=

1

cθ(x0)

K∑
k=1

αk(2π)
−D/2|ϵSk|−1/2 exp

(
− 1

2ϵ
(x1 − rk(x0))TS−1

k (x1 − rk(x0)
)

exp
( 1

2ϵ
(−rTk S−1

k rk + rTk (x0)S
−1
k rTk (x0))

)
=

17
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1

cθ(x0)

K∑
k=1

αk exp
(−rTk S−1

k rk + rTk (x0)S
−1
k rTk (x0)

2ϵ

)
N (x1|rk(x0), ϵSk) =

1

cθ(x0)

K∑
k=1

αk exp
(rTk S−1

k rk + (Skx0 + rk)
T (x0)S

−1
k (Skx0 + rk)(x0)

2ϵ

)
N (x1|rk(x0), ϵSk) =

1

cθ(x0)

K∑
k=1

αk exp
(xT0 Skx0 + 2rTk x0

2ϵ

)
︸ ︷︷ ︸

=α̃k(x0)

N (x1|rk(x0), ϵSk) =

1

cθ(x0)

K∑
k=1

α̃k(x0)N (x1|rk(x0), ϵSk).

Since
∫
RD πθ(x1|x0)dx1 = 1, we see that cθ =

∑K
k=1 α̃k(x0) and conclude the proof.

Proof of Proposition 3.3. Define pθ =
∫
RD πθ(x0, x1)dx0 as the density of the second marginal of

πθ. From the OT benchmark constructor (Gushchin et al., 2023b, Theorem 3.2), it follows that
constructed πθ is the unique EOT plan between p0 and pθ: just set f∗(x1)

def
= ∥x1∥2/2 + ϵ log vθ(x1)

in the mentioned theorem. Thus Tθ is the Schrödinger bridge between p0 and pθ by its construction.
Then the fact that Tθ is given by SDE (11) follows from the direct integration of (4) using ϕθ(x1)

def
=

exp(∥x1∥2

2ϵ )vθ(x1) as the Schrödinger potential:

gθ(x, t) = ϵ∇x log

∫
RD

N (x′|x, (1− t)ϵID)ϕθ(x
′)dx′ =

ϵ∇x log

∫
RD

N (x′|x, (1− t)ϵID) exp(
∥x′∥2

2ϵ
)vθ(x

′)dx′ =

ϵ∇x log

∫
RD

N (x′|x, (1− t)ϵID) exp(
∥x′∥2

2ϵ
)

K∑
k=1

αkN (x′|rk, ϵSk)dx
′ =

ϵ∇x log

K∑
k=1

{
αk

∫
RD

N (x′|x, (1− t)ϵID)N (x′|rk, ϵSk) exp(
∥x′∥2

2ϵ
)dx′

}
=

ϵ∇x log
(
(2π)−

D
2 |(1− t)ϵID|−

1
2︸ ︷︷ ︸

∇x log of it=0

K∑
k=1

{
αk|ϵSk|−

1
2

∫
RD

exp(− (x′ − x)T (x′ − x)
2ϵ(1− t)

−
(x′ − rk)S−1

k (x′ − rk)
2ϵ

+
x′Tx′

2ϵ
)dx′

})
=

ϵ∇x log
(
exp(− xTx

2ϵ(1− t)
)

K∑
k=1

{
αk|ϵSk|−

1
2 exp(−

rTk S
−1
k rk
2ϵ

)

∫
RD

exp(−1

2
[x′T (

t

ϵ(1− t)
ID +

S−1
k

ϵ
)︸ ︷︷ ︸

def
=At

k

x′] + [
1

ϵ(1− t)
x+

1

ϵ
S−1
k rk]

T︸ ︷︷ ︸
def
=hk(x,t)

x′)dx′
})

= (20)

ϵ∇x log
(
exp(− xTx

2ϵ(1− t)
)

K∑
k=1

{
αk|ϵSk|−

1
2 exp(−

rTk S
−1
k rk
2ϵ

)

|At
k|−

1
2 (2π)

D
2 exp(

1

2
hTk (x, t)(A

t
k)

−1hk(x, t))
})

= (21)
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ϵ∇x log
(
(2π)−

D
2 exp(− xTx

2ϵ(1− t)
)︸ ︷︷ ︸

N (x|0,ϵ(1−t)ID

K∑
k=1

{
αk (2π)

−D
2 |ϵSk|−

1
2 exp(−

rTk S
−1
k rk
2ϵ

)︸ ︷︷ ︸
N (rk|0,ϵSk)

(2π)−
D
2 |At

k|−
1
2 exp(

1

2
hTk (x, t)(A

t
k)

−1hk(x, t))︸ ︷︷ ︸
N (h(x,t)|0,At

k)

})
= (22)

ϵ∇x log
(
N (x|0, ϵ(1− t)ID)

K∑
k=1

{
αkN (rk|0, ϵSk)N (h(x, t)|0, At

k)
})

In the transition from (20) to (21) we use the integral formula from (Petersen et al., 2008, Sec 8.1.1).
In the transition from (21) to (22), we simply multiply the expression under ∇x log by (2π)−2D, as
this does not change the expression.

Finally, with the measure disintegration theorem (Vargas et al., 2021, Appendix C), we obtain

KL (T ∗∥Tθ) = KL (π∗∥πθ) +
∫

RD×RD

((((((((((
KL

(
T ∗
|x0,x1

∥Tθ|x0,x1

)
πθ(x0, x1)dx0dx1 = KL (π∗∥πθ) .

where we cancel out the KL term as it coincides with KL
(
W ϵ

|x0,x1
∥W ϵ

|x0,x1

)
≡ 0.

Proof of Theorem 3.4. It is intuitively clear that if we are able to approximate v∗ arbitrarily well (in
some sense) via vθ, then we also achieve small KL (π∗∥πθ) as πθ explicitly depends on vθ. The
challenge here is that v∗ is just a measurable function without any prior known properties, e.g.,
continuity. Hence, approximating it with a continuous mixture in some reasonable norm, e.g., the
uniform norm ∥·∥∞, may be even impossible. This emphasizes the challenge of deriving the desired
universal approximation result and points to necessity to use more tricky strategies.

Recall that for all δ > 0 we need to find an unnormalized Gaussian mixture vθ = vθ(δ) such that
KL (π∗∥πθ) < δ. To begin with, pick any such δ > 0 and fix it until the end of the proof.

Stage 1. This stage is about employing certain known facts from the EOT duality. Let us use

Cost(π∗)
def
=

∫
RD×RD

1/2∥x0 − x1∥2dπ∗(x0, x1) + ϵKL (π∗∥p0 × p1) (23)

to denote the optimal value of (1). We start from considering the equivalent reformulation of (1):

Cost(π∗) =

min
π∈Π(p0,p1)

{ ∫
RD

∫
RD

1

2
∥x0 − x1∥2π(x0, x1)dx0dx1 + ϵKL (π∥p0 × p1)

}
=

ϵH(p1) + min
π∈Π(p0,p1)

∫
RD

{∫
RD

1

2
∥x0 − x1∥2π(x1|x0)dx1 − ϵH

(
π(·|x0)

)}
p0(x0)dx0︸ ︷︷ ︸

def
=J∗

, (24)

where π(·|x0) denotes conditional distribution of x1 given x0. Term J∗ in (24) is known as the
weak representation of EOT, see (Gushchin et al., 2023b, Eq. (3) and (5)) for an extra discussion,
and admits a dual form (Backhoff-Veraguas et al., 2019, Eq. (1.3)):

J∗ = sup
f∈C2,b(RD)

J(f)
def
= sup

f∈C2,b(RD)

{∫
RD

fC(x0)p0(x0)dx0 +

∫
RD

f(x1)p1(x1)dx1
}
, (25)

where C2,b(RD)
def
= {f : RD → R continuous s.t. ∃α, β, γ ∈ R : α∥ · ∥2 + β ≤ f(·) ≤ γ} and fC

is the so-called weak (entropic) C-transform of f which is defined by

fC(x0)
def
= inf

q∈P2(RD)
{
∫
RD

1

2
∥x0 − x1∥2q(x1)dx1 − ϵH

(
q
)
−

∫
Y
f(x1)q(x1)dx1}. (26)
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Here q ∈ P2(RD) are all the probability distributions whose second moment is finite. We slightly
abuse the notation as we write q(x1) although q here is not necessarily absolutely continuous. How-
ever, if q does not have density, then −ϵH(q) = +∞, which is a bad option for the minimization
problem (26). Therefore, one may consider q ∈ P2,ac(RD) ⊂ P2(RD) in (26). The advantage of
EOT compared to many other OT formulations is that the minimizer of (26) is available explicitly:

qfx0
(x1)

def
=

1

Zf (x0)
exp

(
f(x1)− 1/2∥x0 − x1∥2

ϵ

)
, (27)

see (Mokrov et al., 2024, Proof of Theorem 1). The mentioned paper considers the compact subsets
of RD but their derivation is generic and works for our non-compact case as well. Here

Zf (x0)
def
=

∫
RD

exp
(f(x1)− 1

2∥x0 − x1∥
2

ϵ

)
dx1 (28)

is the normalizing constant. It is finite thanks to the upper boundness of f due to belonging to
C2,b(RD). Due to the same reason, it is not hard to check that qfx has a finite second moment. If we
further follow the mentioned work and plug qfx0

in (26), we get fC(x0) = −ϵ logZf (x0).

From (25) and the definition of the supremum, it follows that for all δ′ > 0 there exists some function
f̂ ∈ C2,b(RD) for which the following inequality holds:

J(f̂) = −ϵ
∫
RD

logZ f̂ (x0)p0(x0)dx0 +

∫
RD

f̂(x1)p1(x1)dx1 > Cost(π∗)− ϵH(p1)︸ ︷︷ ︸
=J∗

−δ′.

For our needs, we pick δ′ def
= δϵ

2 and suitable f̂ for it and move on to the next stage.

Stage 2. Let γ̂ ∈ R be an upper bound for f̂ , i.e., f̂(x1) ≤ γ̂ for all x1 ∈ RD. It exists thanks to
f̂ ∈ C2,b(RD). Recall that p1 is compactly supported by the assumption of the theorem. Let R > 0
be some radius such that the zero-centered ball of this radius contains the support of p1. We define

f̃(x1)
def
= f̂(x1)−max{0, ∥x1∥2 −R2} ≤ f̂(x1) ≤ γ̂.

We see that

f̃ ≤ f̂ =⇒ Z f̃ ≤ Z f̂ =⇒ f̃C ≥ f̂C =⇒
∫
RD

f̃C(x0)p0(x0)dx0 ≥
∫
RD

f̂C(x0)p0(x0)dx0. (29)

By the construction of f̃ , it holds that f̃(x1) = f̂(x1) when x1 is in the support of p1. Thus,∫
RD

f̃(x1)p1(x1)dx1 =

∫
RD

f̂(x1)p1(x1)dx1. (30)

We combine (29) with (30) and see that J(f̃) ≥ J(f̂) > J∗ − δ′ = Cost(π∗)− ϵH(p1)− δ′.

We note that p0 is compactly supported, and Z f̃ is continuous (w.r.t. x0) and non-negative. There-
fore, there exists a constant zmin > 0 such that Z f̃ (x0) ≥ zmin when x0 belongs to the support of p0.
Analogously, since p1 is compactly supported, we may find a positive constant emin > 0 such that
1
2 exp(f̃(x1)/ϵ) ≥ emin for all x1 in the support of p1. We fix constants zmin, emin for next steps.

Right now we derive

exp
(
f̃(x1)/ϵ

)
≤ exp

(
γ̂ −max{0, ∥x1∥2 −R2}

ϵ

)
≤ exp

( γ̂ +R2

ϵ

)
· exp(−∥x1∥2/ϵ).

This means that x1 7→ exp
(
f̃(x1)/ϵ

)
is a normalizable density (

∫
RD exp

(
f̃(x1)/ϵ

)
dx1 <∞) because

its density is bounded by an unnormalized Gaussian density. Additionally, we see that exp
(
f̃(x1)/ϵ

)
vanishes at infinity. Thus, for every δ′′ > 0 there exists an unnormalized2 Gaussian mixture vθ̃ =

vθ̃(δ′′) (Nguyen et al., 2020, Theorem 5a) which is δ′′-close to exp(f̃/ϵ) in the uniform norm on RD:

∥vθ̃ − exp(f̃/ϵ)∥∞ = sup
x1∈RD

|vθ̃(x1)− exp(f̃(x1)/ϵ)| < δ′′. (31)

2The result of (Nguyen et al., 2020) considers the approximation of normalized mixtures. This detail is
not important and the result straightforwardly extends to unnormalized mixtures. One can first normalize the
mixture, approximate it and then re-scale both the target and the approximator back to the original scale.
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From the statement of the mentioned theorem it also follows that one may pick all the covariances
in the mixture vθ̃ to be scalar, i.e., vθ̃(x1) =

∑K
k=1 βkN (x1|µk, ϵσ

2
kI) for some K and µk ∈ RD,

σk ∈ R+ (k ∈ {1, . . . ,K}). Indeed, just recall the definition ofMg
m in (Nguyen et al., 2020) and

put g to be a standard D-dimensional normal distribution. For further derivations, we pick

δ′′
def
= min

{
δ/2

( 1

emin
+

(2πϵ)
D/2

zmin

)−1
, emin

}
, (32)

and its respective mixture vθ̃ with scalar components’ covariances. We define vθ(x1)
def
=

vθ̃(x1) exp(−
∥x1∥2

2ϵ ). It is again an unnormalized Gaussian mixture because it is a product of two
unnomalized Gaussian mixtures. Besides, it also has scalar covariances of its components because
multiplier exp(−∥x1∥2

2ϵ )’s covariance is scalar itself. More precisely, we have

vθ(x1)
def
= vθ̃(x1) exp(−

∥x1∥2

2ϵ
) =

K∑
k=1

βkN (x1|µk, ϵσ
2
kI) exp(−

∥x1∥2

2ϵ
) =

(
√
2πϵ)D

K∑
k=1

βkN (x1|µk, ϵσ
2
kI)N (x1|0, ϵI) =

K∑
k=1

(
√
2πϵ)DβkN (0|µk, ϵ(1 + σ2

k)I)︸ ︷︷ ︸
def
=αk

N (x1|
µk

1 + σ2
k︸ ︷︷ ︸

def
=rk

, ϵ
σ2
k

σ2
k + 1︸ ︷︷ ︸
def
=λk

I) =

K∑
k=1

αkN (x1|rk, ϵλkI). (33)

Here in transition to (33) we use the formulas from (Petersen et al., 2008, M8.1.8). We derive that

Z f̃ (x0) =

∫
RD

exp
(
f̃(x1)/ϵ

)
exp

(−1/2∥x0 − x1∥2

ϵ

)
dx1 >∫

RD

(
vθ̃(x1)− δ

′′) exp (−1/2∥x0 − x1∥2

ϵ

)
dx1 =∫

RD

vθ̃(x1) exp
(−1/2∥x0 − x1∥2

ϵ

)
dx1 − δ′′

∫
RD

exp
(−1/2∥x0 − x1∥2

ϵ

)
dx1︸ ︷︷ ︸

=(2πϵ)D/2

=

exp(−∥x0∥
2

2ϵ
)

∫
RD

vθ(x1) exp
(
⟨x0, x1⟩/ϵ

)
dx1 − δ′′(2πϵ)

D/2,

or, equivalently,

Z f̃ (x0) + δ′′(2πϵ)
D/2 > exp(−∥x0∥

2

2ϵ
)

∫
RD

vθ(x1) exp
(
⟨x0, x1⟩/ϵ

)
dx1︸ ︷︷ ︸

=cθ(x0)

= exp(−∥x0∥
2

2ϵ
)cθ(x0).

(34)
Since z 7→ log z is a 1

zmin
-Lipschitz function on [zmin,+∞) and Z f̃ (x0) ≥ zmin for all x0 in the

support of p0, we may write

δ′′(2πϵ)
D/2

zmin
≥ log

(
Z f̃ (x0) + δ′′(2πϵ)

D/2
)
− log

(
Z f̃ (x0)

)
.

We use this inequality with (34) to derive

log
(
Z f̃ (x0)

)
+
δ′′(2πϵ)

D/2

zmin
≥ log

(
Z f̃ (x0) + δ′′(2πϵ)

D/2
)
> −∥x0∥

2

2ϵ
+ log cθ(x)

for all x0 in the support of p0. We integrate this expression for x0 ∼ p0 and obtain∫
RD

logZ f̃ (x0)p0(x0)dx0 +
δ′′(2πϵ)

D/2

zmin
> −

∫
RD

∥x0∥2

2ϵ
p0(x0)dx0 +

∫
RD

log cθ(x0)p0(x0)dx0.
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After regrouping the terms, we get∫
RD

∥x0∥2

2ϵ
p0(x0)dx0 −

∫
RD

log cθ(x0)p0(x0)dx0 +
δ′′(2πϵ)

D/2

zmin
> −

∫
RD

logZ f̃ (x0)p0(x0)dx0.

(35)
Now we study another expression. Recalling that z 7→ log(z) is 1

emin
-Lipschitz for z ≥ emin, we get

δ′′

emin
≥ log exp(f̃(x1)/ϵ)− log

[
exp(f̃(x1)/ϵ)− δ′′

]
= f̃(x1)/ϵ− log

[
exp(f̃(x1)/ϵ)− δ′′

]
(36)

for all x1 in the support of p1. Here we also use the fact that

exp(f̃(x1)/ϵ)− δ′′ ≥ exp(f̃(x1)/ϵ)− emin ≥ 2emin − emin ≥ emin

by the choice of δ′′, recall the definition of emin and see (32). We recall (31) to get

log vθ̃(x1)
(31)
> log

[
exp(f̃(x1)/ϵ)− δ′′

] (36)

≥ f̃(x1)/ϵ−
δ′′

emin
.

We exploit this observation to derive∫
RD

∥x1∥2

2ϵ
p1(x1)dx1 +

∫
RD

log vθ(x1)p1(x1)dx1 =

∫
RD

log vθ̃(x1)p1(x1)dx1 >∫
RD

( f̃(x1)
ϵ
− δ′′

emin

)
p1(x1)dx1 =

∫
RD

f̃(x1)

ϵ
p1(x1)dx1 −

δ′′

emin
. (37)

We sum (37) with (35) and get

=−L(θ)︷ ︸︸ ︷∫
RD

log vθ(x1)p1(x1)dx1 −
∫
RD

log cθ(x)p0(x0)dx0 >

−
∫
RD

logZ f̃ (x0)p0(x0)dx0 +

∫
RD

f̃(x1)

ϵ
p1(x1)dx1︸ ︷︷ ︸

=ϵ−1J(f̃)

− δ′′

emin
− δ′′(2πϵ)

D/2

zmin
−

∫
RD

∥x0∥2

2ϵ
p0(x0)dx0 −

∫
RD

∥x1∥2

2ϵ
p1(x1)dx1 =

ϵ−1J(f̃)− δ′′

emin
− δ′′(2πϵ)

D/2

zmin
−

∫
RD

∥x0∥2

2ϵ
p0(x0)dx0 −

∫
RD

∥x1∥2

2ϵ
p1(x1)dx1 >

ϵ−1
[
Cost(π∗)− ϵH(p1)−

δϵ

2

]
− δ′′

emin
− δ′′(2πϵ)

D/2

zmin
−

∫
RD

∥x0∥2

2ϵ
p0(x0)dx0 −

∫
RD

∥x1∥2

2ϵ
p1(x1)dx1 =

ϵ−1

[
Cost(π∗)− ϵH(p1)−

∫
RD

∥x0∥2

2
p0(x0)dx0 −

∫
RD

∥x1∥2

2
p1(x1)dx1

]
︸ ︷︷ ︸

=−L∗ in (18)

−δ
2
− δ′′

emin
− δ′′(2πϵ)

D/2

zmin
=

−L∗ − δ

2
− δ′′

emin
− δ′′(2πϵ)

D/2

zmin
, (38)

where L∗ matches the constant defined in (18). Indeed,

−L∗ = −H(π∗) +H(p0)︸ ︷︷ ︸
=KL(π∗∥p0×p1)−H(p1)

−ϵ−1

∫
RD×RD

⟨x0, x1⟩π∗(x0, x1)dx0dx1 =

−H(p1) + KL(π∗∥p0 × p1)− ϵ−1

∫
RD×RD

⟨x0, x1⟩π∗(x0, x1)dx0dx1︸ ︷︷ ︸
=ϵ−1

(
Cost(π∗)+1/2

∫
RD ∥x0∥2p0(x0)dx0+1/2

∫
RD ∥x1∥2p1(x1)dx1

)
=

ϵ−1

[
Cost(π∗)− ϵH(p1)−

∫
RD

∥x0∥2

2
p0(x0)dx0 −

∫
RD

∥x1∥2

2
p1(x1)dx1

]
.
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At the same time, from (19) and (38) we derive that

KL (π∗∥πθ) = L(θ)− L∗ <
δ

2
+ δ′′

{ 1

emin
+

(2πϵ)
D/2

zmin

}
≤ δ

2
+
δ

2
= δ.

Thus, Gaussian mixture vθ is a one that we seek for. This finishes the proof.

B.2 PROOF OF THEOREM A.1 IN APPENDIX A

The proof follows from combining the two auxiliary facts below.
Proposition B.1 (Rademacher bound on the statistical error). It holds that

E
[
L(θ̂)− L(θ∗)

]
≤ 4RN (V0, p0) + 4RM (V1, p1),

where V0 = {log cθ|θ ∈ Θ}, V1 = {log vθ|θ ∈ Θ} and RN (V, p) denotes the well-celebrated
Rademacher complexity (Shalev-Shwartz & Ben-David, 2014, M26) of the functional class V w.r.t.
to the sample size N of distribution p.

Proof of Proposition B.1. This result can be derived exactly the same way as (Mokrov et al., 2024,
Theorem 4) or (Taghvaei & Jalali, 2019, Theorem 3.4).

Proposition B.2 (Rademacher complexity bound for constrained log-sum-exp quadratic functions).
Let 0 < a ≤ A, let 0 < u ≤ U , let 0 < w ≤W and V > 0. Consider the class of functions

V =
{
x 7→ log

K∑
k=1

αk exp
(
xTUkx+ vTk x+ wk) with (39)

uI ⪯ Uk = UT
k ⪯ UI; ∥vk∥ ≤ V ;w ≤ wk ≤W ; a ≤ αk ≤ A

}
.

We say that such class is the class of constrained log-sum-exp quadratic functions. Assume that p is
compactly supported and the support lies in a zero-centered ball of a radius P > 0. Then

RN (V, p) ≤ C√
N
,

where the constant C depends only on K,u, U, a,A, V, w,W,P but not on the sample size N .

Proof of Proposition B.2. The Rademacher complexity of linear constrained functions x 7→ vTk x+
wk is well known and is bounded by O( 1√

N
), see (Shalev-Shwartz & Ben-David, 2014, M26.2).

The complexity of the constrained quadratic functions x 7→ xTUkx is also O( 1√
N
) which follows

from their representation using the Reproducing Kernel Hilbert spaces (RKHS), see (Latorre et al.,
2021, Lemma 5 & Eq. 24) and additionally (Mohri et al., 2018, Theorem 6.12). Hence, by the well-
known additivity of the Rademacher complexity it also follows that the complexity of constrained
forms x 7→ xTUkx + vTk x + wk is also bounded by O( 1√

N
). Since x, Uk, vk, wk are bounded, the

function x 7→ exp
(
xTUkx + vTk x + wk) is Lipschitz in x with the shared Lipschitz constant for

all admissible Uk, vk, wk. Therefore, the Rademacher complexity of such functions is also O( 1√
N
),

recall the Talagrand’s contraction principle (Mohri et al., 2018, Lemma 5.7). The same applies to

x 7→ αk exp
(
xTUkx+ vTk x+ wk) = exp

(
xTUkx+ vTk x+ [wk + logαk])

as these are also constrained exp-quadratic forms but with slightly adjusted constraints on the bias
parameter wk. Using the additivity of the Rademacher complexity again, we see that K-sums

x 7→
K∑

k=1

αk exp
(
xTUkx+ vTk x+ wk)

of such functions also have complexity bounded by O( 1√
N
). The remaining step is to note that

each such function is both lower and upper bounded (by some positive numbers depending on the
constraints), hence the logarithm of such functions is also a Lipschitz operation with some finite
Lipschitz constant. Thus, the complexity of x 7→ log

∑K
k=1 αk exp

(
xTUkx + vTk x + wk) is also

O( 1√
N
); the constant hidden in O(·) incapsulates the dependedce on K,u, U, a,A, V, w,W,P .

23



Published as a conference paper at ICLR 2024

Finally, we can prove the bound on the estimation error in Theorem A.1.

Proof of Theorem A.1. Just note that both V0 and V1 are the constrained classes of log-sum-exp
quadratic functions in the sense of Proposition B.2 and apply Proposition B.1. For V1 this directly
follows from the assumptions of the current Theorem. For V0 it follows from the the fact that cθ is
also a log-sum-exp quadratic function with constrained parameters (our Proposition 3.2).

C EMBRYONIC STEM CELL DIFFERENTIATION SINGLE CELL DATA

For the embryonic stem cell differentiation single cell setup we use code and data from

https://github.com/KrishnaswamyLab/TrajectoryNet

to work with the embryonic stem cell differentiation dataset and to evaluate our light solver.

Solver W1 metric
OT-CFM 0.79 ±0.068

[SF]2M-Exact 0.793 ±0.066
LightSB (ours) 0.823 ±0.017

Reg. CNF 0.825 ±
T. Net 0.848 ±
DSB 0.862 ±0.023

I-CFM 0.872 ±0.087

[SF]2M-Geo 0.879 ±0.148

[SF]2M-Sink 1.198 ±0.342
SB-CFM 1.221 ±0.380
DSBM 1.775 ±0.429

Table 4: The quality of intermediate
distribution restoration of single-cell data

by different methods.

The provided data shows the cell differentiation collected at five
different intervals (t0: day 0 to 3, t1: day 6 to 9, t2: day 12 to 15,
t3: day 18 to 21, t4: day 24 to 27). These collected cells were anal-
ysed by scRNAseq subjected to quality control filtering and then
represented as feature vectors using Principal Component Analysis
(PCA).

Following the above-mentioned works, we consider solving the
problem of transporting the cell distribution at time ti−1 to time
ti+1 for i ∈ [1, 2, 3]. Then we predict the cell distributions at the
intermediate time ti and compute the Wasserstein-1 (W1) distance
between the predicted distribution and the ground truth distribution.
We average over all 3 setups i ∈ [1, 2, 3] and present our results in
Table 4. To estimate the standard deviation, we run 5 experiments
with different seeds for each i ∈ [1, 2, 3]. For LightSB we use K = 100, lr = 10−2, ϵ = 0.1,
batch size 128 and do 2 · 103 gradient steps. We use results for other methods from (Tong et al.,
2023), whose authors were the first to consider this setup in (Tong et al., 2020). Our solver (ϵ=0.1)
performs at the level of the best other methods, while converging only in 1 minute on 4 CPU cores
and learning only ∼1000 parameters.

D DETAILS OF THE EXPERIMENTS

D.1 GENERAL IMPLEMENTATION DETAILS

To minimize (10), we parameterize αk, rk and Sk of vθ (9) and use the Adam optimiser (Kingma
& Ba, 2014). We parameterize αk as using the logarithm logαk; we parameterize rk directly as a
vector; we parameterise the matrix Sk in the diagonal form with the values log(Sk)i,i on its diagonal.

Initialization. We initialize logαk by log 1
K , rk by using random samples from p1 and log(Sk)i,i

by log 0.1 (it is can be tuned as a hyperparameter but even without any tuning it works well with this
initialisation on every considered experimental setup).

D.2 DETAILS OF TOY EXPERIMENTS

We useK = 500 in all the cases. For ϵ = 10−1 and ϵ = 10−2, we use lr = 10−3 and for ϵ = 2·10−3

we use lr = 10 and batchsize 128. We do 104 gradient steps.

D.3 DETAILS OF EVALUATION ON THE BENCHMARK

We use K = 50 in all the cases. For ϵ = 10−1, we use lr = 10−3. For ϵ = 2 · 10−3, we use Adam
with lr = 10 and batch size 128. We do 104 gradient steps.

In Table 5, we additionally present results of the non-conditional BW2
2-UVP metric. LightSB beats

other solvers or performs at the same level for all setups.
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ϵ=0.1 ϵ=1 ϵ=10

D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128

Best solver 0.016 0.05 0.25 0.22 0.005 0.09 0.56 0.12 0.01 0.02 0.15 0.23
⌊LightSB⌉ 0.005 0.017 0.037 0.069 0.004 0.01 0.03 0.07 0.03 0.04 0.17 0.30

± std ±0.002 ±0.007 ±0.007 ±0.008 ±0.002 ±0.004 ±0.006 ±0.007 ±0.01 ±0.01 ±0.01 ±0.02

Table 5: Comparisons of BW2
2-UVP ↓ (%) between the target P1 and learned right marginal of πθ.

D.4 DETAILS OF MULTIMODAL SINGLE-CELL INTEGRATION EXPERIMENTS

We use data from the Kaggle competition ”Open Problems - Multimodal Single-Cell Integration”:

https://www.kaggle.com/competitions/open-problems-multimodal

The data describes gene expression of cells at days 2, 3, 4 and 7 which containt
6071, 7643, 8485, 7195 data points, respectively. Analogously to Tong et al. (2023), we use only
CITEseq expression data; to remove the donor-dependent bias we select only one donor with ID
13176. To preprocess the data, we use PCA projections with 50, 100, 1000 components. Then for
each case we consider 2 setups: data from day 2 and day 4 as a distribution pair for the SB problem
with data from day 3 for evaluation, and data from day 3 and day 7 as a distribution pair for the SB
problem with data from day 4 for evaluation. In each setup, we normalize the data by scaling it to
the sum of each feature variance over the concatenated data from the start, end, and evaluation days
(after PCA projection). For the evaluation, we take the prediction for the evaluation day for all cells
from the start day and calculate the energy distance with the ground truth distribution.

For all described setups we use ϵ = 0.1 in our and baseline solvers. For our LightSB solver we use
K = 10, lr = 10−2 and batchsize 128. We do 104 gradient steps.

Baselines. We compare LightSB with SB/EOT algorithms from three different classes: maximin
(Gushchin et al., 2023a), Langevin-based (Mokrov et al., 2024) and IPF-based (Vargas et al., 2021).
For completeness, we also add the popular discrete EOT Sinkhorn solver (Cuturi, 2013).

1. Maximin solver. For (Gushchin et al., 2023a) solver we use the official code from
https://github.com/ngushchin/EntropicNeuralOptimalTransport

We use the same hyperparameters for this setup as the authors (Gushchin et al., 2023a, Appendix
E) use in their high-dimensional Gaussian setup. The only exception is the number of discretiza-
tion steps N, which we set to 100 as well as for SB solver (Vargas et al., 2021) below.

2. IPF-based solver. For (Vargas et al., 2021) solver we use the official code from
https://github.com/franciscovargas/GP_Sinkhorn

Instead of Gaussian processes which the authors use, we use the same neural network as in
(Gushchin et al., 2023b) to get better scalability. We use N = 100 discretization steps, 50 IPF
iterations, 10 epochs on the each IPF-iteration and 128 samples from distributions p0 and p1 in
each of them. We use the Adam optimizer with lr = 10−4 for optimization.

3. Langevin-based solver. For (Mokrov et al., 2024) solver, we use the official code from
https://github.com/PetrMokrov/Energy-guided-Entropic-OT

We take the advantage of the author’s setup from their 2D Gaussian→Swissroll experiment. Fol-
lowing our experimental framework, we adapt the original code by increasing the dimensionality
of the learned fully-connected NN potentials. The chosen hidden directionalities for the poten-
tials are [256, 256, 256] for D = 50, 100 and [2048, 1024, 512] for D = 1000.
We choose all hyperparameters of the method in concordance with their code for ε = 0.1 EOT
regularization coefficient, except lr. We pick lr = 5 · 10−4 for training stability reasons. The
numbers of training iterations are N = 8K for D = 50, 100 and N = 4K for D = 1000. We get
predictions for intermediate distributions by using Brownian Bridge (analogous to (14)).

4. Discrete solver.3 To run the Sinkhorn algorithm (Cuturi, 2013), we use the ot.sinkhorn
with parameters method="sinkhorn log" and stop threshold=1e-8 procedure from
3Discrete OT neither can be straightforwardly used to infer trajectories for new (out-of-train-sample) input

cells, nor it provides the trajectories for existing cells. In our setup, the latter issue can be overcome by inserting

25

https://www.kaggle.com/competitions/open-problems-multimodal
https://github.com/ngushchin/EntropicNeuralOptimalTransport
https://github.com/franciscovargas/GP_Sinkhorn
https://github.com/PetrMokrov/Energy-guided-Entropic-OT


Published as a conference paper at ICLR 2024

Python OT Package (Flamary et al., 2021). Note the default threshold parameter is 10−9 but we
found that the algorithm stucks at tolerance ≈ 10−8; hence, we increased the tolerance.
Remark. We use the full-dataset (a.k.a. full-batch) discrete OT. We found that for ϵ = 0.1 (which
we use for all the solvers) it converges very slowly, even requiring more time to converge than
our light solver in dimension 1000. This is explainable the convergence of Sinkhorn algorithm
notably degrades when ϵ → 0; it empirically seems like this degradation is worse that in our
solver. We demonstrate the convergence plots of the Sinkhorn vs. our light solver in Figure 4.

Figure 4: Convergence speed comparison on MSCI dataset, starting day 3, ending day 7 and
evaluation day 4.

D.5 DETAILS OF IMAGE DATA EXPERIMENTS

We use the official ALAE code and model from

https://github.com/podgorskiy/ALAE

and neural network extracted attributes for the FFHQ dataset from

https://github.com/DCGM/ffhq-features-dataset

We use K = 10, lr = 10−3 and batchsize 128. We do 104 gradient steps.

E COMPLETE PARAMETERIZATION OF THE EOT PLAN

As we pointed in M3.1, our solver obtains an approximate density πθ(x1|x0) of conditional dis-
tributions π∗(x1|x0) but does not recover the density of the entire plan πθ(x0, x1) ≈ π∗(x0, x1).
However, in some practical applications it may be needed to recover this density. Fortunately, this
requires only a minor modification of our light solver. Indeed, consider the parameterization

πω,θ(x0, x1) = pω(x0)πθ(x1|x0) = pω(x0)
exp

(
⟨x0, x1⟩/ϵ

)
vθ(x1)

cθ(x0)
(40)

which is analogous to (7), but we also introduce a density model pω for the left marginal of the plan.
By repeating the derivations of the proof of Proposition 3.1, it is not hard to see that

KL (π∗∥πω,θ) = KL (p0∥pω) +
[
L(θ)− L∗], (41)

which means that learning of parameters ω turns to be a separate density estimation problem. It
can be solved, e.g., with the well-celebrated expectation-maximization algorithm (Dempster et al.,
1977) for Gaussian mixture models or with a normalizing flow (Rezende & Mohamed, 2015).

F RELATED WORK: OTHER OT SOLVERS

For completeness of the exposition, we mention OT solvers which are not directly relevant to our
EOT/SB setup because of considering non-entropic OT or discrete OT settings.

the Brownian Bridge (analogously to (14)) on top of pairs of samples from the recovered discrete EOT plan
(Stromme, 2023). Sampling from this bridge, one may construct an approximation of the distribution at the
intermediate time of interest.
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Discrete OT solvers. There exist many OT solvers (Cuturi, 2013; Dvurechensky et al., 2018),
(Nguyen et al., 2022; Xie et al., 2022) for the discrete OT setup (Peyré et al., 2019). This setup
requires finding a discrete matching between given train samples but does not require generalization
on the test data. Hence, discrete solvers are not relevant to our continuous EOT/SB setup (M2).
It is worth mentioning that there are several works studying the statistical properties of OT and
developing out-of-sample estimators based on the discrete/batched OT solutions (Hütter & Rigollet,
2021; Pooladian & Niles-Weed, 2021; Manole et al., 2021; Deb et al., 2021), Rigollet & Stromme
(2022); Fatras et al. (2020). Despite having good theoretical properties, they mostly estimate the
barycentric projection but not the entire plan π∗.

Other continuous OT solvers. Above in the work, we discuss the EOT/SB solvers but there ex-
ist many papers proposing neural solvers for other OT formulations: unregularized OT (Henry-
Labordere, 2019; Makkuva et al., 2020; Korotin et al., 2021a;b; 2022b;a; Fan et al., 2023; Liu et al.,
2022; Gazdieva et al., 2023; Rout et al., 2021; Amos, 2022), weak OT (Korotin et al., 2023b;a),
unbalanced OT (Choi et al., 2023; Yang & Uhler, 2018) general OT (Asadulaev et al., 2024). These
works are of limited relevance as they do not solve EOT/SB.

G LIMITATIONS AND BROADER IMPACT

Limitations. We summarize and list some limitations of our light solver.

1. Analogously to the well-celebrated Sinkhorn algorithm (Cuturi, 2013) for the discrete OT, our
solver may experience computational instabilities when applied to very small regularization coef-
ficients ϵ > 0. This is due to the necessity to compute the exponent of values which proportional
to ϵ−1 when computing cθ or vθ in (8). However, as our experiments show (M5), our light solver
actually works well for reasonably small ϵ.

2. Our main optimization objective (8) is not necessarily convex w.r.t. the parameters θ, i.e., the
gradient-based optimization methods may experience local minima. While we mention this issue,
we do not consider it serious enough: anyway, many existing machine learning algorithms have
non-convex objectives (k-means, Gaussian mixture models, deep neural networks, etc.) and do
not necessarily converge to the global optimum but still work well in downstream tasks. Note
that the existing alternative continuous EOT/SB solvers (M4) also have non-convex objectives.

3. Our solver uses a kind of a Gaussian mixture approximation (9) of EOT/SB which may be too
restrictive to apply our solver to large-scale generative modeling problems unlike the complex
neural EOT/SB solvers which we mention in M4. But this is very natural: default Gaussian mix-
ture model for density estimation is also not used for modeling complex real-data distributions,
e.g., images. At the same time, such models still play irreplaceable role in many smaller scale
problems due to its extremal simplicity and ease of use. Therefore, we hope that our solver will
play an analogous role in the field of computational continuous EOT/SB.

4. Our work considers SB with the Wiener prior W ϵ, which is equivalent to EOT with the quadratic
cost c(x, y) = 1

2∥x0−x1∥
2 and entropic regularization value ϵ. In this case, the Gaussian mixture

parameterization (9) is useful as it provides the closed-form expression for conditional distribu-
tions πθ(x1|x0) and drift gθ (Proposition 3.2). This is due to the fact that the product of the unnor-
malized Gaussian mixture density vθ with the unnormalized normal density exp(− 1

2∥x0−x1∥
2)

is again a Gaussian mixture. We do not know if our light solver can be easily generalized to more
general costs or priors. We leave this question open for future studies.

Broader Impact. Deep learning models become more complex, and it may negatively affect the
Earth’s ecology as the required computational clusters need increasing amounts of energy to work
and water to cool them. In fact, sometimes deep neural networks (DNNs) are applied when they may
be unnecessary, so they pointlessly burn resources. Our work investigates SB and its applications to
moderate-dimensional data, where DNNs are widely used. Our proposed light solver demonstrates
that SB can be well-learned without DNNs and in a few minutes even on CPU. This helps to avoid
time-consuming GPU-training of previous solvers and decrease the negative impact on nature.

Potential negative broader impact of our research is the same as that of most of the other ML re-
searches. Namely, the constant advances in the field of the AI and the implementation of ML models
in production pipelines may lead to transformation or replacement of some jobs in industry.
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H ADDITIONAL EXPERIMENTAL RESULTS

H.1 DEPENDENCE ON THE PARAMETER ϵ.

In Figure 5, we show how the solution learned by LightSB depends on the parameter ϵ in the
Adult→child experiment. As expected, the diversity increases with the increase of ϵ.

H.2 ADDITIONAL IMAGE GENERATION RESULTS.

In Figure 6 we show more samples from LightSB trained on every considered image setup.
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(a) LightSB Adult → Child, ϵ = 0.1. Almost no diversity.

(b) LightSB Adult → Child, ϵ = 0.5. Resonable diversity.

(c) LightSB Adult → Child, ϵ = 1.0. Moderate diversity.

(d) LightSB Adult → Child, ϵ = 10.0. High diversity.

Figure 5: LightSB Adult→ Child for different ϵ.
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(a) LightSB Male → Female, ϵ = 0.1 more samples.

(b) LightSB Female → Male, ϵ = 0.1 more samples.

(c) LightSB Adult → Child, ϵ = 0.1 more samples.

(d) LightSB Child → Adult more samples.

Figure 6: LightSB more samples for every considered setup.
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