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Abstract

Key objectives in conditional molecular gener-
ation include ensuring chemical validity, align-
ing generated molecules with target properties,
and promoting diversity and novelty. Recent ad-
vances in computer vision introduce a range of
new guidance strategies that can be adapted for
these goals. In this work, we integrate state-of-the-
art guidance methods—including classifier-free
guidance, autoguidance, and model guidance—in
a leading molecule generation framework built
on an SE(3)-equivariant flow matching process.
We propose a hybrid guidance strategy that sepa-
rately guides continuous and discrete molecular
modalities—operating on velocity fields and pre-
dicted probabilities, respectively—while jointly
optimizing their guidance scales via Bayesian op-
timization. Our implementation, benchmarked on
the QM9 dataset, achieves a new state-of-the-art
performance in property alignment for de novo
molecular generation. The generated molecules
also exhibit high structural validity. Furthermore,
we systematically compare the strengths and lim-
itations of various guidance methods, offering
insights into their broader applicability.

1. Introduction

The generation of novel molecular structures with desired
chemical and biological properties is crucial for drug de-
sign. Deep learning-based generative models have shown
immense promise in accelerating the quality and rate of
materials and chemical discovery (Du et al., 2024; Sanchez-
Lengeling & Aspuru-Guzik, 2018; Gémez-Bombarelli et al.,
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2018; Zeng et al., 2024; Zeni et al., 2025). These mod-
els learn a probabilistic representation of the vast chemical
space and then directly sample molecules with desired prop-
erties. A key challenge in this domain is to effectively
guide the generation process towards molecules that are
valid, novel, and in satisfactory alignment with property
constraints, such as therapeutic efficacy, synthetic acces-
sibility, or desired quantum chemical attributes (Du et al.,
2024; Gao & Coley, 2020).

Various guidance mechanisms have been proposed to steer
generative models. Vanilla conditional generation takes
the property/condition and molecule representation (e.g.,
a molecular graph) as a joint input, and it learns a shared
representation for properties and molecular structures that
drives the sampling (Hoogeboom et al., 2022; Xu et al.,
2023). While the vanilla conditional generation proves to be
simple and effective, more advanced guidance techniques
have been proposed to improve the generation quality in
multiple dimensions. Seminal guidance methods include
classifier guidance (Dhariwal & Nichol, 2021), to classifier-
free methods (Ho & Salimans, 2022; Zeni et al., 2025),
and more recent autoguidance (Karras et al., 2024a) and
model guidance (Tang et al., 2025) that seek to balance
property adherence with sample diversity and computational
efficiency.

Given the proliferation of these guidance strategies, a sys-
tematic comparison is crucial for researchers and practi-
tioners to understand their relative strengths, weaknesses,
and suitability for conditional molecule generation. In a
first kind of implementation, we adopted advanced prop-
erty guidance methods in the context of de novo molecular
generation using flow matching. We aim to evaluate and
benchmark four methods for conditional generation — in-
cluding the vanilla conditional generation, classifier-free
guidance, autoguidance, and model guidance — focusing
on their ability to generate molecules that meet target prop-
erty profiles, exhibit high structural validity and diversity,
and require less computational overhead. Through this com-
parative study, we demonstrate the pros and cons of each
guidance method and provide insights into the current land-
scape of guidance techniques for molecule generation. Our
specific contributions are summarized below:



1. We present the first implementation of different guid-
ance methods for de novo conditional molecule gener-
ation in 3D using an SE(3) flow matching process.

2. We introduced a hybrid guidance strategy that sep-
arately handles continuous and discrete molecular
modalities within classifier-free guidance and autogu-
idance frameworks.

3. To achieve optimal property alignment, we employed
Bayesian optimization to jointly tune their guidance
weights.

4. Our guidance methods achieved the new state-of-the-
art performance for property alignment and structure
validity metrics.

2. Background
2.1. Vanilla Conditional Generation

Conditional generation allows users to generate samples
aligned with specific requirements. This is typically
achieved with generative processes parameterized by neural
networks that take the target property as an input. Specif-
ically, we control the outcome by choosing a property
and generating a sample from the conditional distribution
p(z¢|c) where c is the condition, e.g., the property, label or
text prompt, and z; is the noisy data. In practice, this can be
achieved by training a denoiser network €y (x, t, ¢) for dif-
fusion models or a conditional velocity field ug(z¢, t, ¢) for
a flow matching generative process. Taking flow matching
as an example, the learning objective can be written as:

‘C(e) = Et,ptu(xtlz,c),pz [Hue(xtat7c) - Utm (1)

where u; is the target conditional velocity field at time ¢,
and z is a conditioning variable that is normally chosen as
z = (xg, x1) representing both the initial and final states
from a base and target distribution, respectively. This type of
conditional generation is often termed as Vanilla conditional
generation without explicit guidance.

2.2. Classifier-free Guidance

In computer vision, vanilla conditional generation trained on
complex visual datasets often struggle to reproduce training
images due to the finite capacity of neural nets (Karras et al.,
2024a). To improve sample quality, classifier guidance was
introduced by (Dhariwal & Nichol, 2021). This approach
employs an auxiliary classifier py(c|z;) to perform low-
temperature sampling by amplifying data points for which
the classifier assigns a high likelihood to the target label. It
approximates a modified distribution:

Po(welc) = po(xile) - polc|a) ™! (2)

Assigning w > 1 serves as a guidance scale that steers the
sampling process toward regions of high classifier confi-
dence. While effective at increasing alignment with the
desired class, classifier guidance requires training an addi-
tional classifier on noisy intermediate data, and relies on
classifier’s gradient, V, log pp(y|z+), to direct samples to-
ward high-likelihood regions, often at the expense of sample
diversity.

Classifier-free guidance (CFG) is an alternative to classifier
guidance with the same effect but does not rely on gradients
from a classifier (Ho & Salimans, 2022). In a CFG approach
for flow matching, we train a velocity field ug (¢, t, &) with-
out property conditioning and a velocity field with property
conditioning ug (x4, t, ¢). During training, a portion of prop-
erty labels—typically puncond = 0.1 (Ho & Salimans, 2022;
Tang et al., 2025)—are dropped and replaced with empty la-
bels to allow both conditional and unconditional objectives
to be learned within a single framework. During sampling,
CFG requires two forward passes—one pass with condi-
tioning and another without conditioning—to generate sam-
ples, thereby nearly doubling the computational overhead
at sampling compared to a vanilla conditional model. The
inference linearly interpolates between these two velocity
fields with a weight w:

Gg(xe, t, c;w) = (1—w)-ug(as, t, @) +w-up(zt, t,c) (3)

where w is the guidance weight controlling the strength of
conditioning. w = 0 recovers unconditional generation, and
w = 1 corresponds to vanilla conditional generation. Values
of w > 1 are often used to further amplify the conditioning
signal, which typically leads to stronger adherence to the
condition ¢, but also potentially at the cost of even lower
sample diversity and validity. This reduced validity and
diversity have been attributed to the failure of the uncondi-
tional model, ug (¢, t, @), which faces a more difficult task
compared to the conditional model because it only takes
a small portion of training budget given by pyncond While
attempting to generate all classes at once (Karras et al.,
2024a).

2.3. Autoguidance

Autoguidance (AG), introduced by (Karras et al., 2024a),
uses a high-quality main model D,,, along with a poor guide
model D, trained on the same task, conditioning, and data
splits, but D, is intentionally degraded, for instance, by
having lower model capacity or shorter training. This ap-
proach is termed Autoguidance because it uses a bad version
of itself to guide the generation. The guide model D, is
expected to make similar errors in the same regions as the
main model D,,, and by subtracting the predictions of the
guide model from that of the main model and amplifying the
differences by a guidance weight, it pushes the generation
away from the weaker model and toward better samples. In



a flow-matching setting, if we denote the main and guide
model as u, (x4, t, ¢) and ug (x4, ¢, ), respectively, the in-
terpolated velocity field at a given weight w reads as:

ﬁ(mt,t,c;w) = w'um(xtvtac)+(1_w) 'Ug((L't,t,C) (4)

In practice, the main and guide models should be carefully
selected to ensure an appropriate quality gap. The two
models should carry similar degradations to remain compat-
ible, while ensuring that the differences are large enough
to outweigh random effects such as random initialization
of neural networks and random shuffling of training data
(Karras et al., 2024b).

2.4. Model Guidance

Model Guidance (MG) (Tang et al., 2025) offers an alterna-
tive to CFG by directly modifying the training objective to
include an implicit guidance signal. Instead of training two
separate conditional and unconditional models, MG plugs
the guidance weight into the model’s training target. The
model guidance loss then becomes:

‘CMG(Q) = Et,pm(xt\z,C),pz [||ue(xt,t, C) - ﬂt”] 5
Uy = ug + w - sg (Ug(xy, t,c) — tg(xy,t,0)) 6)

where u; is the ground-truth velocity filed and 4 is the mod-
ified target. A stopping gradient operation (‘sg’) is applied
to avoid model collapse (Grill et al., 2020). An Exponential
Moving Average (EMA) counterpart of the online velocity
field, @ig(-), is normally used to smooth training and provide
more stable model predictions. In addition, the guidance
scale/weight w can be fed into neural networks as an addi-
tional conditioning input. The model then learns different
guidance weights which offer sampling flexibility to bal-
ance sample quality and sample diversity, and it has high
sampling efficiency since only one forward for sampling is
needed. How guidance weights are designed for different
proportions of data is provided in the subsequent Section 3.4.
However, it also creates a difficulty for the models to as-
similate the complex interaction between guidance weight
embeddings, property embeddings, and molecular graphs.

Table 1: Comparison of Guidance Approaches

Method Extra Model? Sampling Cost  Flexible Weights?
Vanilla Conditional Generation No 1 forward N/A
Classifier-Free Guidance Nof 2 (cond + uncond) Yes
Autoguidance Guide model 2 (main + guide) Yes
Model Guidance No 1 forward Optional

TUnconditional pass uses same network.

To summarize, we present the key features of each guidance
method in Table 1. All methods are implemented within a
flow matching generative framework for molecular genera-
tion. While most existing techniques are designed to guide
continuous-state generative processes, recent advances have

extended guidance to discrete-state spaces (Nisonoff et al.,
2025), exploring guidance schemes without special training
procedures (Sadat et al., 2025), and investigated how di-
mensionality impacts the guidance effects (Pavasovic et al.,
2025).

2.5. Flow Matching

Flow matching is the state-of-the-art generative process that
learns a velocity field connecting a base distribution to a
target distribution (Liu et al., 2022; Albergo et al., 2023;
Lipman et al., 2023; Gagneux et al., 2025). By conditioning
on samples from the base and target distributions, the condi-
tional velocity field parameterized by a neural network aims
to reconstruct the probability path bridging the two distribu-
tions. The generation process proceeds by first sampling a
noisy state from the base distributions and then propagating
the state forward in time by solving a neural ODE (Chen
et al., 2019). Flow matching offers multiple levels of design
flexibility, such as base distributions, probability paths (viz.,
interpolants) and ODE solvers. It has proved to be more
robust than diffusion models in various applications, from
image generation (Lipman et al., 2023; Ma et al., 2024) to
crystal materials generation (Miller et al., 2024; Hoellmer
et al., 2025), molecule generation (Song et al., 2023; Dunn
& Koes, 2024b; Zeng et al., 2025b) and protein structure
prediction (Campbell et al., 2024).

3. Method

Our approach integrates a hybrid guidance approach with a
flow matching framework for conditional molecular genera-
tion in 3D (Figure 1). For the vanilla property-conditioned
generation we adopt PropMolFlow (Zeng et al., 2025b).
This flow matching framework work utilizes a concatena-
tion and sum operation to describe the interaction between a
property embedding and node features (Figure 1(b)). Since
molecules consist of both continuous and discrete modali-
ties, a hybrid guidance approach is employed (Figure 1(c)),
and guidance weights are optimized via Bayesian optimiza-
tion targeting property mean absolute errors (MAESs); Figure
1(d).

3.1. Molecular Representation

Molecules are represented by fully-connected graphs G.
Graph nodes encode the atomic types A?, charges C* and
positions X* of a molecule,' and edges are the bond or-
ders between two atoms £ which are found to enhance
structure validity and stability for generated molecules (Vi-
gnac et al., 2023; Dunn & Koes, 2024b; Le et al., 2023).
Therefore, a molecule can be denoted as G = (X, A, C, E),

'We denote the atom index using a superscript; e.g., position
of atom ¢ is denoted X*
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Figure 1: Conditional molecular generation with flow matching and Bayesian optimized guidance scales. (a) Molecular generation is
achieved through a flow matching generative process by learning a velocity field. (b) Property conditioning is achieved by a concatenation
operation followed by a summation. (c) A hybrid guidance scheme where guidance on atomic positions and discrete variables (e.g., atom
types and bond orders) are imposed on the velocity fields and predicted log-probability, respectively. Here CFG is used as the example.
(d) A schematic for Bayesian optimization of guidance scale to minimize property MAEs.

where X = {X}N,, A = {A4}N,, C = {C'}} ;| and
E ={EYi # j,i,j € {1,2,---, N}} are the atomic po-
sitions, atom types, charges and bond orders, respectively.
Note that atom types, charges and bond orders are discrete
categorical variables, while atomic positions are continuous
variables.

3.2. Joint Flow Matching for Molecule Generation

Each molecular modality and the molecular graph is learned
through a joint flow matching process parameterized by an
SE(3) equivariant graph neural network. Equivariance is
critical to improve the model expressivity to describe equiv-
ariant properties, as molecules are geometric objects whose
properties, such as atomic forces or hyper-polarizability, are
subject to equivariance (Satorras et al., 2022; Batzner et al.,
2022; Thomas et al., 2018; Xu et al., 2025). The SE(3) equiv-
ariant framework implemented in FlowMol (Dunn & Koes,
2024a;b) is used as opposed to E(3) frameworks (Hooge-
boom et al., 2022; Xu et al., 2023) because breaking the
reflection symmetry can generate different molecules due
to chirality (Jing et al., 2021; Schneuing et al., 2024). Prop-
MolFlow used here for vanilla conditional generation, is the
property-conditioned implementation of FlowMol. (Zeng
et al., 2025b). A linear interpolant is used for all molecular
modalities. Vanilla flow matching is adopted for continu-

ous variables, such as atomic positions, whereas discrete
modalities, like atom types, bond order, and charges are
evolved by discrete flow matching using a Continuous Time
Markov Chain (CTMC) process, proposed by (Campbell
et al., 2024) and (Gat et al., 2024). Interaction between
each molecular modality is achieved by a sequence of node
feature, node position, and edge feature updates. Interpolant
and loss function details can be found in Appendix A, and
Model details can be found in Appendix B.

3.3. Property-conditioned Molecule Generation

Property-conditioned generation is achieved by the inter-
action between the node features of a randomly sampled
noisy molecular graph and a property embedding. The prop-
erty embedding is generated by projecting scalar molecular
properties (e.g., dipole moment p) to a high-dimensional la-
tent space through a shallow multi-layer perceptron (MLP).
Specifically, for AG and CFG, we employ a ‘concate-
nate_sum’ operation: the property embedding is concate-
nated to the node features, then projected to a latent space
via a MLP to match the dimension of node features, fol-
lowed by a summation operation. In prior work we have
shown that this choice of operation works well across all
properties (Zeng et al., 2025b). Following the original MG
work (Tang et al., 2025), a ‘sum’ operation is used for MG.



Starting from the property-conditioned node feature, the
molecular graph is iteratively updated through the joint flow
matching process to generate the final molecule.

3.4. Guidance Implementation

We implemented and compared four variants of guidance
in the PropMolFlow framework: vanilla conditional gen-
eration, classifier-free guidance, autoguidance, and model
guidance.

CFG uses puncondo = 0.1, which denotes the probability of
training on unconditional generation during joint training
of the conditional and unconditional flow matching models.
During sampling, we applied separate guidance weights for
continuous atomic positions and discrete variables (atom
types, charges and bond orders) to accommodate the hybrid
joint flow matching. Following Eq. (2), we implemented
guidance in the logarithmic domain for discrete variables as
shown in Figure 1(c). We show in Appendix Section C that
when there is no stochasticity in the CTMC process, our
approach is equivalent to the guidance on the rate matrix as
proved in (Nisonoff et al., 2025).

AG uses two types of guide models, ug (x4, 1, c), with re-
duced training time and/or decreased model complexity. For
under-training, we saved model checkpoints every 20,000
training steps (around every 51 epochs with a batch size of
128). For model parameter reduction, we decreased both the
hidden dimension size and the number of message-passing
layers in the GNN vector field model, reducing the parame-
ter count from 7.1M to 313K.

For MG, we incorporated the guidance weight as an ad-
ditional input condition, allowing the model to adapt to
flexible guidance weights during sampling. We maintained
Puncond = 0.1 for which guidance weights are set as zeros,
and set the proportion of training examples with model guid-
ance to 0.2 and their guidance weights are randomly chosen
between 1 and 2, and the remaining data is treated as the
vanilla conditional model for which the guidance weights
are ones. The model guidance is introduced after 10,000
training steps. To obtain the modified target velocity field in
Eq. (5), EMA uses a decay rate of 0.9999.

3.5. Bayesian Optimization of Guidance Weights

To identify the optimal guidance weights that offer the best
alignment of generated molecules with target properties, we
employed Bayesian optimization over the joint guidance
weights for atomic positions (w;) and discrete variables
(w2). The MAEs between target properties and properties
of generated molecules are modeled as the optimization ob-
jective. This Bayesian optimization was performed on top
of a Gaussian process via the Scikit-Optimize library (Head
et al., 2018). We initialized the search with 10 randomly

sampled guidance weights to bootstrap the surrogate model,
followed by 40 acquisition-function evaluations using the
expected improvement (EI) criterion. To ensure a relatively
high structural validity, for AG, w; and wo are optimized
in the range of [1,4.3] and [1, 1.8], respectively, whereas
for CFG both weights are optimized in the range of [1,4].
The Bayesian optimization for AG is performed on two
guide models, and the guide model with the lowest MAE
for each property is reported hereafter. A scale-aware MG
is utilized and the same guidance weights are employed for
both atomic positions and discrete variables. Bayesian opti-
mization for the single MG guidance weight starts with 5
initial points, followed by 10 function evaluations. For each
guidance weight candidate, 1000 molecules were sampled
and the objective MAEs were calculated on these molecules.
This procedure was repeated independently for each molec-
ular property.

4. Experiments

In this work, we systematically investigate how different
guidance methods affect small-molecule generation on the
QMO dataset (Ramakrishnan et al., 2014; Wu et al., 2018).
We evaluate each method’s conditional generation perfor-
mance across four evaluation dimensions: property align-
ment, structural stability/validity, structural diversity and
computational efficiency.

4.1. Setup

Dataset. We used the QM9 SDF dataset, which provides
explicit bond orders and atomic charges (Wu et al., 2018).
The original SDF data was found to carry a significant num-
ber of charge and bond errors; so instead we use the cor-
rected rQM9 SDF dataset (Zeng et al., 2025b;a). After
RDK:it sanitization, 133k molecules remained and were fur-
ther partitioned into 100k training, 20k validation and 13k
test samples. The 100k training set was then split evenly
following previous work (Hoogeboom et al., 2022): one
subset of 50k for training the PropMolFlow molecular gen-
eration models and a second subset of 50k for training the
property predictor. Conditional generation was evaluated
for six property labels, including polarizability (), HOMO-
LUMO gap, HOMO energy, LUMO energy, dipole moment
(u), and heat capacity (C,,). Details of the rQM9 SDF data
and computational settings for model training are provided
in Appendix G. The widely used large-size GEOM-Drug
conformer dataset (Axelrod & Gémez-Bombarelli, 2022)
was not considered in this study, as it does not provide the
quantum mechanical labels required for our analysis.

Baseline Models. We evaluate the conditional genera-
tion results against three diffusion-based baseline models:
GCDM (Morehead & Cheng, 2024), GeoLDM (Xu et al.,



2023) and JODO (Huang et al., 2024). For consistency,
we report only each baseline’s conditional generation per-
formance, and their unconditional results are available in
the original publications. GCDM and GeoLDM directly
operate on 3D point clouds without explicit bond orders, so
we assign bond orders post hoc using optimized cutoff dis-
tances from (Hoogeboom et al., 2022). In contrast, JODO
inherently models both bond orders and aromaticity. None
of the baselines’ conditional generation incorporate atomic
charges. We compare all guidance methods with baselines
on structural validity/stability and property alignment. In
addition, we compare different guidance strategies on struc-
tural diversity and computational efficiency.

Evaluation metrics. We evaluate guidance methods along
four complementary axes. Property alignment examines
how closely the generated molecules’ properties match the
target properties used during sampling. For structural valid-
ity/stability, molecule stability checks the charge—valency
consistency. In addition, we also report model performance
on PoseBusters validity (Buttenschoen et al., 2024) and RD-
Kit sanitization validity (RDKit, 2024). Structural diversity
is quantified in terms of ratios of molecules that are RDKit
valid and unique which is also denoted as ‘uniqueness’ in
following discussions, as well as bond-order entropy. Com-
putational efficiency accounts for the training duration and
sampling efficiency. During sampling, PropMolFlow inte-
grates the learned/interpolated velocity fields via Euler’s
method over 100 evenly spaced time steps. Each molecule’s
atom count (n) is first drawn from the distribution of QM9
training data, and its property values (c) is then conditioned
on n to respect the joint distribution on p(n, ¢). Precise defi-
nitions of all evaluation metrics are included in Appendix E.

4.2. Model performance

Bayesian Optimized Guidance Weights. Figure 2 illus-
trates Bayesian optimization of CFG weights for the HOMO
property. Across the search space, the MAEs vary narrowly
between around 200 and 280 meV, with far greater sensitiv-
ity to the discrete-modality weight (w2) than to the atomic-
position weight (w;). Optimal performance (MAE=202
meV) occurs at w (wy,wz) = (2.71,1.91), and lower
MAE:s tend to cluster near wo = 2.

Another example for the AG model conditioned on C,, (Fig-
ure 5, Appendix F), reveals a similar dependence on the two
guidance weights. Table 9 in Appendix lists the best weights
for CFG, AG and MG. Table 10 in Appendix shows the vari-
ation of property MAEs for Bayesian optimization. It is
crucial to identify the optimal guidances as the MAEs can
vary by more than ten times in certain situations (e.g., from
1.40 to 15.5 Bohr? for AG conditioned on «). The guide
model that yields the best performance under AG is pro-
vided in Appendix 11. As a general rule, greater differences
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Figure 2: Performance of Bayesian optimization over guidance
weights for CFG conditioning on HOMO energy. Hollow circles
denote sampled weight pairs, with the best candidate (lowest MAE)
highlighted by a red star; its guidance weights and MAE are indi-
cated. MAEs were computed over 1000 molecules sampled from
the joint distribution p(n, c).

between the guide and main models tend to produce lower
property MAEs. Notably, many optimal atomic-position
weights (w;) lie at the edges of the search range, suggesting
that expanding this range may offer minimal additional im-
provement given its weaker MAE dependence. An example
for the MG model is provided in Appendix Figure 6. All
subsequent performance metrics are computed using models
with the optimal guidance weights.

Property Alignment. We perform a quantitative com-
parison of conditional generation across different guidance
approaches and the three baseline models GeoLDM, GCDM
and JODO. Results are shown in Table 2. The “Random”
corresponds to MAEs between original molecular properties
and fully shuffled properties, removing any correlations be-
tween structures and properties, hence serving as an upper
bound. The “# Atoms” baseline uses atom counts as the
predictor for molecular properties. The “QM9” baseline
uses a separate predictor trained on a disjoint S0k molecules
to predict properties of the 50k molecules used to train the
generative model. The property predictor is trained on the
QM0 xyz data (Ramakrishnan et al., 2014), and provided by
Hoogeboom et al. (Hoogeboom et al., 2022), and the corre-
sponding MAE serves as a lower bound on achievable error.
Improvement over the “# Atoms” baseline suggests that the
generative model captures structural features beyond simple
atom count when generating new molecules. All PMF guid-
ance methods outperform the baseline models without bond
order (GeoLDM, GCDM) by a large margin. In particular,
PMF-CFG achieves the best alignment for four properties—
a, Ae, egomo and p—while remaining competitive on
ecumo and Cagainst the state-of-the-art JODO model.
PMF-AG surpasses PMF-Vanilla across all properties, and



Table 2: Mean Absolute Error for molecular property prediction (lower is better). PropMolFlow (PMF) results employ Bayesian-optimized
guidance weights. Top-ranked values are bold, second-best values are underlined. JODO results are from our own sampled molecules.

Property Ae

C

€EHOMO €ELUMO

« m v
Units Bohr® meV meV meV Debye cal/(mol-K)
QM9 (Lower-Bound) 0.10 64 39 36 0.043 0.040
Random (Upper-Bound) 9.01 1470 645 1457 1.616 6.857
# Atoms 3.86 866 426 813 1.053 1.971
GeoLDM 2.37 587 340 522 1.108 1.025
GCDM 1.97 602 344 479 0.844 0.689
JODO 1.44 333 231 260 0.620 0.580
PMF-Vanilla 1.49 390 266 325 0.667 0.702
PMF-CFG 1.27 322 220 265 0.580 0.581
PME-AG 143 344 242 274 0.631 0.638
PMF-MG 1.59 425 273 346 0.753 0.708

it outperforms JODO on «, matches its performance on
A€, egomo, eoumo  and p, and it falls slightly behind
on C,. The scale-aware PMF-MG models underperform
their vanilla counterparts across all properties, suggesting
that jointly learning property constraints and guidance scale
embeddings remains challenging for conditional molecule
generation.

Since the property predictor shares the same model archi-
tecture with the PropMolFlow generative model, it may
exhibit an inductive bias that favors good performance on
the kind of molecules generated by PropMolFlow. To fur-
ther confirm the quality of generated molecules using CFG,
we performed DFT calculations for 500 molecules selected
from the 10k molecules generated at the same level of the-
ory (B3LYP/6-31G(2df,p)) as the QM9 training data using
Gaussian (Frisch et al., 2016). Single-point DFT calcula-
tions were conducted on the directly generated molecules
for all properties except C,,, for which DFT properties of
the relaxed molecules were used because of the vibrational
frequency issues described in (Zeng et al., 2025b). DFT
results in Table 3 confirms the property alignment of gen-
erated molecules, despite a significant underestimation of
the DFT MAEs against input target property values for Ae,
enomo and eL,umo.

Table 3: Performance of property alignment for CFG, evaluated
using both DFT and a property predictor. Metrics are computed on
500 molecules selected from the 10k generated molecules reported
in Table 2, using the same property units. The 500 molecules
were furthered filtered by molecule stability, closed-shell valence
electron configuration, RDKit validity, PoseBusters validity, and
DFT convergence.

Property a Ae¢ €eHoMO €ELUMO 1 Cy
DFT vs Target 1.18 341 261 242 0.586 0.563
GVP vs Target 1.21 293 213 225 0.580 0.528

Molecule Stability. We also evaluate molecule stability
against three baselines for each guidance method. PMF-
Vanilla not only outperforms by a wide margin GeoLDM
and GCDM, which omit bond orders, but also edges out the

previous SOTA, JODO with bond orders. Although PMG-
CFG delivers the best property alignment, it incurs a 2-3.4
% decline in stability compared to Vanilla for Ae, e,unmo,
u, and Cy; results for o and egoyo remains essentially
unchanged. In contrast, the AG models boost molecule sta-
bility across all properties relative to PMF-Vanilla, likely
because amplifying the differences between main and guide
models steer samples away from poorly modeled regions
and towards well-learned ones. Despite their weaker prop-
erty alignment, MG models surpass their vanilla counter-
parts in molecule stability, achieving the highest molecule
stability for Ae and p. RDKit validity (Table 12) and Pose-
Busters validity (Table 13) results in Appendix F follow
similar trends among AG, CFG and MG, although the gains
against the vanilla conditional generation become less sig-
nificant.

Table 4: Performance of molecule stability (%). Higher numbers
indicate better performance. All results for baseline models are
based on our own sampling. The best results are in bold and the
second best results are underlined.

Property o Ae EHOMO ELUMO o) Ch
GeoLDM 814 83.1 84.0 84.0 855 81.3
GCDM 85.0 86.0 88.3 84.7 86.3 85.1
JODO 927  9%4.1 93.5 92.5 93.7 91.7

PMF

Vanilla 92.8 94.6 95.1 94.2 96.2 91.8
CFG 93.1 925 95.6 92.0 92.8 884
AG 958 957 972 9.9 966 93.9
MG 94.8 96.9 96.9 93.3 968 919

Structural Diversity. To quantify diversity, we calculated
the proportion of generated molecules that are both RD-
Kit valid and unique in their SMILES representation. The
results are summarized in Table 5.

Since SMILES has a one-to-one correspondence with 2D
molecular graphs, uniqueness serves as a proxy for the qual-
ity of guidance on discrete variables. Compared to the
vanilla model, CFG exhibits the most notable decline in
uniqueness on average, followed by AG and MG, probably
because CFG favors higher discrete guidance weights than



Table 5: Ratios of unique RDKit valid molecules (‘Uniqueness’)
across different guidance methods. All values are reported in unit
of ‘%’, and higher numbers indicate higher structural diversity.
The highest values are in bold, and the second highest values are
underlined.

Property « Ae €HOMO  €LUMO n Cy

Vanilla 96.0 96.6 96.5 95.6 96.5 95.6
CFG 94.3 95.3 95.4 94.5 95.0 923
AG 95.7 93.5 95.6 94.8 947 95.2
MG 959 96.2 96.6 95.0 96.4 95.6

AG and MG (Table 9 in Appendix). We also assessed the
bond-order entropy of generated molecules and the results
are provided in Appendix Table 14.

Training and Sampling Efficiency. Table 6 reports the
training and sampling wall-clock time for each guidance
method. Because AG uses the PMF-vanilla’s model as its
main model, its total training time is unchanged. In practice,
one needs to either save a checkpoint model as the guide
model or to train a lightweight guide model for AG, which
only takes a negligible additional 2 hours. CFG slightly
reduces training time by skipping the property-embedding
MLP operations on 10% of the data for the unconditional
model. MG incurs a modest training overhead relative to
PMF-Vanilla because it maintains an EMA copy of the
online model. The MG model using EMA requires two for-
wards to obtain its unconditional and conditional predictions
(Eq. 5) without gradient computation, and is updated every
training step.

During sampling, both MG and PMF-Vanilla require only a
single forward pass, making them the fastest. CFG and AG
perform two forward passes—conditional and unconditional
passes for CFG, main’s and guide’s passes for AG—so they
take more time for sampling. AG is faster than CFG in
sampling because its guide network is much smaller than
CFG’s unconditional model.

Table 6: Training and sampling times. Training is for 2000 epochs
and sampling is for 10 k molecules. Values are reported as mean
= standard deviation across the six properties.

Model Training [h] | Sampling [min] |
Vanilla 554 +0.7 9.6 £0.5
CFG 549 +0.5 16.8 £ 0.4
AG 574 +0.7 124+13
MG 90.3 £3.2 9.1 +£0.5
4.3. Ablations

Guidance weights. Figure 3 shows how molecule stability
varies with guidance weights. For both AG and CFG, in-
creasing the weight on atomic positions (w;) while decreas-
ing the weight on discrete variables (w2) enhances molecule

stability. However, AG is far more sensitive to changes in
wy than CFG: AG’s molecule stability plummets from over
0.9 at we = 1 to about 0.1 at wy = 3, whereas CFG expe-
riences a much smaller drop (< 0.15). This suggests that
CFG models are more robust to choices of discrete-variable
weights, likely because CFG uses a single network with
alternate property embeddings for unconditional and con-
ditional generation, while AG relies on two more loosely
coupled networks whose logits of discrete-variable predic-
tions may not be compatible when interpolated with large
weights.

The guidance-weight variation for property alignment
closely mirror the trends observed in our Bayesian optimiza-
tion experiments (see Appendix Figure 9). Nevertheless,
MG models exhibit almost no dependence of molecule sta-
bility, bond entropy and property alignment on guidance
weights (Appendix Table 17), suggesting that MG struggles
to leverage the guidance scaling effects—a phenomenon
that merits further investigation.
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Figure 3: Dependence of molecule stability on guidance weights
for CFG (Left) and AG (Right). Values are reported by averaging
across six properties.

Inference timesteps for CFG. For a good balance be-
tween sampling efficiency and accuracy, we use 100 inte-
gration timesteps to generate molecules. Table 7 reports the
property MAEs for CFG inference with varying numbers of
time steps (ns). Raising ns to 200 causes all MAEs to be
lower than those of JODO (Table 2). Further increasing ns
improves the alignment for Ae, egomo, and er,umo, but
has negligible impact on other properties.

Table 7: MAEs for CFG with optimized guidance weights across
varying integration timesteps (ns). Best results are bolded.

N« A€ €EHOMO €LUMO [ Cy

100 1.27 322 220 265 0.580 0.581
200 1.24 317 222 252  0.552 0.568
300 1.22 313 219 248 0.559 0.573
400 1.22 311 219 253  0.564 0.575
500 1.23 309 215 246 0.559 0.574

Guidance on all four molecular modalities. The joint
flow matching process enables independent control the guid-
ance weight for each individual molecular modality (po-



sitions, atom types, atom charges and bond orders). Ta-
ble 8 compares the property MAEs for CFG using Bayesian-
optimized guidance weights across all four modalities . The
results show that using four separate guidance weights yields
performance comparable to using just two: one for positions
and one shared across all discrete variables. Similar results
are observed for AG (Appendix Table 18).

Table 8: Comparison of property MAEs with four guidance
weights against two guidance weights for CFG.

CFG o A€ emomMo €LUMO [ Cy
Two weights 1.27 322 220 265 0.580 0.581
Four weights 1.25 343 219 270  0.571 0.591

5. Discussion and Conclusions

Figure 4 compares all guidance methods across four
dimensions—property alignment, structural validity, unique-
ness, and sampling efficiency. For visualization clarity, each
metric has been min-max scaled to the range of [0, 1] (see
Appendix G for definitions and scaling ranges). All three
guidance strategies outperform the vanilla model in at least
one dimension. The model guidance (MG) approach re-
mains closest to the vanilla model in every dimension, likely
because it applies identical weights to both atomic posi-
tions and discrete variables, which limits its capability to
leverage guidance-weight effects. Classifier-free guidance
(CFG) delivers the best property-alignment, outperforming
the vanilla models by at least 10 % across six properties,
though at the cost of a modest drop in structural validity and
uniqueness. Autoguidnace (AG) models also improves prop-
erty alignment—albeit slightly less than CFG—and boosts
structure validity over the vanilla baseline. Both AG and
CFG models incur higher computational costs for inference
due to two forward passes during sampling.

Unigueness

Vanilla
CFG

AG
— MG

Structure Validity
Juawubly Auadoud

Sampling Efficiency

Figure 4: Comparison of guidance methods across four dimensions:
property alignment, structure validity, uniqueness and sampling
efficiency. For clarity, these metrics are min-max scaled.

In summary, our SE(3) flow-matching framework achieves

state-of-the-art results in conditional molecule generation,
outperforming prior methods on both structural validity and
property alignment. We systematically evaluate three guid-
ance strategies—CFG, AG and scale-aware MG—and high-
light their respective strengths and weaknesses against pre-
vious models and the vanilla conditional generation. CFG
provides the most accurate property matching, whereas
AG offers a favorable trade-off between structure validity,
uniqueness, and sampling efficiency, although AG models’
performance hinges on the guide-model quality and can
become unstable at higher guidance weights for discrete
variables. While MG has proved to excel in computer vision
tasks (Tang et al., 2025), our adaptation to a multi-modal
molecular setting has shown that it struggles to incorpo-
rate varied guidance scales, underscoring domain-specific
challenges.

Looking ahead, extending scale-aware MG to handle dis-
tinct guidance weights for different molecular modalities
may unlock its full potential. A deeper investigation into
the interplay of guidance-scale embeddings, property en-
coding, and molecular graphs may further bolster MG’s
performance. For AG, exploring alternative guide models
and EMA schedules may improve consistency between the
main and guide models. In addition, extending the current
approach to a larger dataset, such as PCQM4Mv2 (Hu et al.,
2021; Nakata & Shimazaki, 2017), would provide a rig-
orous evaluation of the scalability and generalizability of
current implementations. Finally, the methods introduced
here are readily transferrable to other scientific domains,
including crystal structure prediction and protein design,
thereby broadening the impact of robust conditional genera-
tion across chemistry, materials science, and beyond.
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A. Interpolants, Priors and Loss Functions

Flow for atomic positions takes a linear interpolant:
X;=(1-t)Xo+tXy @

where X and X are initial and final states. The base distribution (prior) for atomic positions use a centered standard
normal distribution po(X) = Hf\;l N (X(|0,13). The optimization of the conditional velocity field for atomic positions
can be reparameterized into the optimization of a denoiser network with an mean squared error (MSE) objective:

Lx =Esp,(X,1X0,X1),7(X0,X1) {Hths - XlH} 3

Where the joint distribution 7(X(, X;) defines the optimal transport coupling between (Xo, X7). X f‘ , represents the
predicted atomic position given the state at time ¢. Details of the optimal transport formulation are provided in Appendix D.

Discrete variables such as atom types and charges are modeled through the CTMC flows (Campbell et al., 2024). The prior
distribution is the state in which all atoms are in a masked state, and the generation process is essentially a demasking
process. We refer the readers to the FlowMol work for more details of the CTMC flows (Dunn & Koes, 2024b). The
objective for these discrete variables takes the cross-entropy format:

Log = Et,pm(wt\Z),pz - logp?“(xﬂxt) 9)
The total loss for the molecule graph is a weighted linear summation of losses for each molecular modality:
L=nxLx +nala+nclc+nelr (10)

Empirically, it is preferential to determin atomic positions first, followed by bonds, charges and atom types. In view of this,
the loss weights are chosen to be (nx,74,1c,nE) = (3.0,0.4,1.0,2.0).

B. Model Architecture

In FlowMol’s implementation (Dunn & Koes, 2024a), molecule updates are achieved through layers comprising of Geometric
Vector Perceptrons (GVPs). Within each GVP, the molecule graph passes through a sequential steps of Node Feature Update
(NFU), Node Position Update (NPU) and Edge Feature Update (EFU). Each node i consists of a position z; € R3, scalar
features s; € R%, and vector features v; € R°*3. Non-zero vector features are involved a cross-product vector operation,
which is crucial to break the reflection symmetry, making it an SE(3) equivariant architecture. The scalar feature is a
concatenation of atom type and charge vectors; that is, s; = [a; ® ¢;| where ‘®’ defines a concatenation operation. Each
edge feature corresponds to the bond order, and the permutation invariance of bond orders is realized through taking the sum
of bond features from i — j and j — i;that is, € = MLP(e;; + €j;).

(s)

i—j°

) (11

Where dz(-? is the distance between nodes 7 and j at the update layer [. To enrich the neighboring environment, the distance
d;; is expanded with a radial basis function (RBF) embedding before fed into the next GVPs or MLPs. A message passing
procedure is conducted to update node scalar and vector features by aggregation:

Node Feature Update. The node feature takes two steps for its update: the first step generates scalar messages m and

vector messages mfl) ; by a function 1y which corresponds to a sequential two GVPs:

. xz('l) _ x;z)
Vi —— @y
dW

ij

s v ! l l
) ), — <[sg ol o],

1 S v
008 N (1600 o e 3] [ a2
JEN(4)

Where LN stands for s LayerNormalization operation (Ba et al., 2016), ¢ is a chain of three GVPs.
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Node Position Update. Node-wise operations are used on the updated node scalar and vector features to update node
position features:

20D xz(_l) +p (sglﬂ),v(lﬂ)) (13)

A 7

Where ¥ p is a sequencial three GVPs in which the final output has 1 vector and O scalar features.

Edge Feature Update. Edge features are updated by edge-wise operations that takes the updated node scalar features and
node distance as the inputs:

e — LayerNorm (e%) + MLP (sz(»H_l)

j

S(l+1) d(l+1)>> (14)

i) ) g

C. Guidance applied to the probability distribution is functionally equivalent to guidance applied
to the rate matrix

The work by (Nisonoff et al., 2025) proves that in the setting of classifier guidance (or predictor guidance) for a CTMC
process, the probability of jumping from a state x at time ¢ to the next state = at time ¢ + At is given by:

P(Xiyar = Tlzy = ,y) = 0p 5 + PyIZ. 8. Ri(z,%) - At + O(AtT9) (15)
p(ylz,t)
where At defines an infinitesimal time step in the continuous time space. y is the desired property to contion on. p(y|x;)
indicates a predictor/classifier that relates a noisy state sampled at time ¢ to the property, which can be obtained by
minimizing a cross-entropy loss. ¢, 7 is the Kronecker function, which can be also denoted as §(z, 7). R;(z, z) indicates
the unconditional rate matrix, or it can be written as R;(x, Z|@). O(At' 7€) is used to denote terms that decay to zero faster
when ¢ — 0.

Introducing an inverse guidance temperature w = 1/7, which is normally termed guidance strength, Eq. (15) can be
converted to:

_ z,t)1" _ .

P (@prar = Tz = 2,y) = 6,5 + [p(y )} “Ri(z,7) - At + O(AE) (16)
p(ylz, t)

w > 1 corresponds to a low-temperature sampling, pushing the samples more toward the conditional generation. Then we

can also write:

R (2, 7ly) = [m} Ru(2,3) a”

Reformulating Eq. (17) using Bayes’s theorem, and simplifying it with Taylor expansion (see the Appendix in (Nisonoff
et al., 2025)), one can obtain the corresponding classifier-free guidance on rate matrix:

R (2,7|y) = Re(x,|y)"” - Ry(z,7]2) ™" (18)

Using a linear interpolant, the rate matrix in the formulation of (Campbell et al., 2024) can be also written as:
1+nt
11—t
where 7 is the stochasticity parameter, which allows unmasked states to transit back to an masked state. Eq. (19) holds for
both conditional and unconditional generation. If n = 0, the above equation can be reduced:

R(z,7) = -pf‘t(xl =Zlzy=2) - 0(z, M)+n-(1—0(z,M))-6(z, M) (19)

0 ~
e =R =)
Rl ) = =

<O (a, M) o< pf, (20)

Hence it can be readily shown:

B = Fay = a,y)

R’ (a, 7y) —

- 0(x, M) 21

where ng) (x,Z|y) is defined in Eq. (18) and pgﬁ) (x1 = Z|zy = x,y) refers to the definition in Figure 1(c) for guidance on
discrete variables.
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D. Equivariant Optimal Transport

To smooth the probability path, we used the equivariant optimal transport to align the initially sampled noisy molecules with
the target molecules, as used in previous works (Tong et al., 2024; Song et al., 2023; Klein et al., 2023). This is achieved by
optimal permutation of atom node indices and rigid body alignment between base molecules and target molecules, for both
of which their center-of-masses are removed to respect the translational invariance (Klein et al., 2023; Hoogeboom et al.,
2022).

E. Details of Evaluation Metrics.

Property metrics evaluate the alignment of the properties of generated molecules with the input target properties. We sampled
jointly the number of atoms and the property values from the QM9 training data. The target properties and the number of
atoms are used to generate molecules. The properties of molecules are calculated by property prediction molecules trained
on a disjoint set of QM9 data to ensure there is no data leakage between the property prediction models and molecule
generation models.

Exact definitions of each metric are summarized below:
e Molecular stability: Proportions of molecules that all atoms are stable and the the net charge of the molecules are zero

if charges are included in the molecular graphs. An atom is stable if it has the correct valency given the formal charge
it carries. For instance, a C atom is stable if it has a valency of 4 without charge but a valency of 3 with a -1 charge.

e RDK:it validity: Proportions of molecules that pass the RDkit sanitization (RDKit, 2024).

e PoseBusters validity: Proportions of molecules that pass de novo chemical and structural validity tests, including
sanitization, all atoms connected, valid bond lengths, valid bond angles, no internal steric clashes, and flat aromatic
rings.

e Uniqueness: Proportions of molecules that are both RDKit valid and unique in their SMILES representation.

e Bond-order entropy: Base-2 Shannon entropy measure of how diverse the bond-type distribution is across a set of
generated molecules. Here, four types of bonds—single, double, triple and aromatic bonds—are considered. We
first counter the global total of each bond type n;, and use the counts to generate probability distribution p; where
pi = n;/ Y, n;. The Shannon entropy is then given by:

H == pilog,(p:)

e Computational efficiency includes training time and sampling efficiency. Training time is evaluated using the same
hardware settings (see more details in G). Sampling efficiency is evaluated by the sampling time for 10k molecules and
averaged across conditional models for all six molecule properties.

F. Additional results
F.1. Bayesian optimized guidance weights for AG, MG and CFG.

Table 9: Bayesian optimized guidance weights (w1, w2) for each method. For MG, identical weights apply to both positional and discrete
variables. All weights are dimensionless.

Property o Ae €HOMO €ELUMO m Cl
PMF-CFG (4.00, 1.77) (4.00, 2.16) 2.71,1.9D (3.97,2.29) (4.00,2.31) (4.00, 2.00)
PMF-AG (2.34. 1.00) (4.26. 1.34) (2.79. 1.11) (3.15. 1.17) (4.29. 1.50) (2.75. 1.14)
PMF-MG 1.34 1.68 1.89 2.23 2.21 2.14

F.2. Bayesian optimization for examples of AG and MG models.

Ranges of MAEs for Bayesian optimization can be found in Table 10.
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Table 10: Ranges of MAEs for Bayesian optimization for different guidance methods. Results are evaluated on 1000 sampled molecules.
AG uses the guide model trained with 40000 steps and reduced numbers of node and edge features.

Property «@ Ae €EHOMO €ELUMO I Cy
Units Bohr? meV meV meV Debye cal/(mol-K)
CFG, Minimum MAE 1.20 317 202 249 0.549 0.556
CFG, Maximum MAE 2.68 603 282 757 0.746 1.684
AG, Minimum MAE 1.40 328 231 256 0.591 0.616
AG, Maximum MAE 15.5 425 360 466 0.926 1.023
MG, Minimum MAE 1.53 406 261 333 0.714 0.689
MG, Maximum MAE 1.67 457 280 358 0.778 0.759
1.8
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Figure 5: An example of Bayesian optimization for guidance weights for the AG model conditioned in C,,. Samples are shown as hollow
circles while the best MAE is marked by a red star and the corresponding weights and MAE are indicated by texts. MAEs are evaluated
on 1000 molecules sampled from the joint distribution p(n, c).
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Bayesian optimization for the AG model conditioned on C,, is show in Figure 5.

The best guide model for each property is summarized in Table 11. The first guide model (u4,1) is trained with 40000 steps

and has a reduced-by-half numbers of hidden node features and edge features, and the second guide mode (u4,2) is the same
architecture of the main model but trained with only 51 epochs.

Table 11: Bayesian optimized guidance weights and the best MAEs for two different guide models in AG. Numbers in bracket correspond

to (w1, w2 ), which are dimensionless, and values after the weights are corresponding best MAEs. This evaluation is based on 1000
sampled molecules, and the model chosen for further analysis in the main text are bold.

Property o Ae €EHOMO ELUMO I Cy
Units Bohr? meV meV meV Debye cal/(mol-K)
Ug,1 (2.09, 1.21),1.40  (4.26,1.34),328 (2.79,1.11),231 (3.15,1.17),256 (4.29,1.50),0.591 (2.75,1.14), 0.616

Ug,2 (2.34,1.00),1.39  (2.47,1.42),330 (1.93,1.28),234 (3.63,1.15),272  (4.29, 1.20),0.631  (1.00, 1.35), 0.672

Bayesian optimization for the MG model conditioned on Ae¢ is show in Figure 6. MAEs for the MG models vary in a

smaller range, suggesting the difficulty in leveraging the guidance weight effects for MG. Also, there are high fluctuations

for MAE when guidnace weights changes from around 1.6 to 1.7, indicating the instability of the MG model for describing
the guidance weight effect.

o) &
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\ .
\ [ |
[ ?
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% “,‘ | [ O
€ \ \
—_— \ | \
w 430+ ‘ o
s Q \ \ o AR
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o} \ W
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Figure 6: An example of Bayesian optimization for guidance weights for the MG model conditioned in Ae. Samples are shown as hollow

circles while the best MAE is marked by a red star and the corresponding weights and MAE are indicated by texts. MAEs are evaluated
on 1000 molecules sampled from the joint distribution p(n, c).

F.3. Structural Validity

F.3.1. RDKIT VALIDITY OF GENERATED MOLECULES CONDITIONED ON SIX PROPERTIES

Table 12 shows the RDKit validity of generated molecules conditioning on six properties for baseline models and different
guidance methods.

F.3.2. POSEBUSTERS VALIDITY OF GENERATED MOLECULES CONDITIONED ON SIX PROPERTIES

Table 13 shows the PoseBuster validity of generated molecules conditioning on six properties for baseline models and
different guidance methods.

F.4. Structural Diversity
Table 14 shows that all guidance methods increase bond entropy for most properties compared to the vanilla models. Among
guidance approaches, CFG achieves the highest bond entropy for Ae¢, eyomo and p, whereas AG has the highest bond

entropy for « and C',. This elevated bond entropy under CFG and AG can likely be attributed to its relatively high guidance
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Table 12: RDK:it validity (%) for generated molecules conditioned on six properties. All results for baseline models are based on our
own sampling and using retrained or publicly available checkpoint models. The best results are in bond and the second best results are
underlined.

Property « Ae EHOMO ELUMO I [N
GeoLDM 91.6 91.8 92.2 92.2 93.0 89.6
GCDM 94.4 94.7 95.4 94 .4 94.9 94.4
JODO 96.4 97.0 95.9 95.6 96.4 95.6
PMF
Vanilla 97.6 98.4 98.3 97.8 98.7 97.0
CFG 96.8 97.4 97.9 96.6 96.5 94.0
AG 98.2 97.3 98.5 98.0 98.0 97.6
MG 97.6 98.2 98.9 96.3 98.6 96.8

Table 13: PoseBuster validity (%) for generated molecules conditioned on six properties. All results for baseline models are based on our
own sampling and using retrained or publicly available checkpoint models. The best results are in bond and the second best results are
underlined.

Property « Ae EHOMO ELUMO n Ch
GeoLDM 89.1 89.2 90.3 89.9 90.3 87.3
GCDM 91.6 92.0 92.9 92.0 92.4 914
JODO 95.2 95.7 94.7 94.5 95.3 94.1
PMF
Vanilla 95.7 97.3 96.6 96.5 97.1 95.5
CFG 954 95.3 96.5 94.1 92.9 90.7
AG 96.7 94.6 97.3 97.5 94.0 96.2
MG 95.9 97.1 97.5 95.2 97.5 95.5

weights on atomic positions (Table 9), which stretch the bond length distributions (Appendix Figure 7, Table 15 and Table
16). By allowing greater variability in bond distances, these settings increase bond entropy.

F.4.1. BOND-ORDER ENTROPY

Table 14: Bond-order entropy of generated molecules under various guidance methods. The highest values are in bold, and the second
highest values are underlined.

Property a Ae €HOMO ELUMO ] Cy

Vanilla 0.593 0.560 0.543 0.495 0.480 0.490
CFG 0.65 0.569 0.532 0.562 0.536 0.617
AG 0.599 0.657 0.598 0.556 0.556 0.498
MG 0.524 0.570 0.578 0.567 0.463 0.510

F.4.2. BOND DISTANCE DISTRIBUTIONS FOR TOP-2 FREQUENT BONDS C-H AND C-C

The bond distance standard deviations for C-H bonds and for C-C bonds can be found in Table 15 and Table 15, respectively.

Table 15: Bond distance standard deviation of generated molecules for each guidance method on the most frequent C-H bonds. All values
are in the unit of mA. The QM9 C-H bond distance standard deviation is 6.8 mA. The highest values are in bold, and the second highest
values are underlined.

Property o Ae €EHOMO €ELUMO o Cy
Vanilla 14.2 12.9 11.2 10.9 11.6 12.8
CFG 14.4 16.3 11.7 16.8 17.5 17.2
AG 28.6 57.6 32.8 34.5 52.6 26.8
MG 12.7 14.6 12.1 11.6 9.6 13.8

F.5. Additional Ablations

Analysis of bond entropy (Appendix Figure 8) illustrates that AG consistently produces slightly higher bond entropy than
CFG across all weight settings. In both methods, raising either guidance weight increases entropy, with ws having a stronger
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Figure 7: Top-2 frequent bond distance distributions for different guidance methods and the QM9 training data for C-H bonds (Left) and
C-C bonds (Right). Molecules are generated by conditioning on the HOMO-LUMO gap (Ace).

Table 16: Standard deviation of generated molecules for each guidance method on bond distances of the second most frequent C-C bonds.
All values are in the unit of mA. The QM9 C-C bond distance standard deviation is 70.8 mA. The highest values are in bold, and the
second highest values are underlined.

C

Property a Ac EHOMO €LUMO M v

Vanilla 71.8 69.1 65.9 63.7 62.2 68.4
CFG 69.2 75.0 65.9 76.5 74.6 73.4
AG 86.1 106.9 86.5 86.1 93.4 82.7
MG 70.2 70.4 723 76.3 59.6 65.3

effect than wy.

Figure 8 shows the bond entropy versus different guidance weights w; and ws.
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Figure 8: Effects of guidance weights on the bond entropy. Results are averaged across six molecule properties.

Figure 9 shows the property alignment as a function of guidance weights w; and ws. The guidance weights for the lowest
MAE of CFG egomo are (wi,ws) = (4,2) with a property MAE of 216 meV, and the second lowest MAE comes with
(w1, wz) = (3,2) with a MAE of 221 meV, which confirms the findings of the Bayesian analysis. The guidance weights for
the lowest MAE of AG C,, are (wq, w2) = (3, 1) with an MAE of 0.654 cal/(mol-K), which is slightly worse than the result
(0.638 cal/(mol-K)) using the guidance weights (w1, ws) = (2.75,1.14).

Ablation study on the dependence of molecule stability on guidance weights for MG can be found in Table 17.

Results for guidance on four weights versus guidance on two weights for AG can be found in Table 18

G. Additional Details for the Methods
QM9 Properties and Data Details.
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Figure 9: Effects of guidance weights on the property alignment for CFG exomo (Left) and AG C(Right).

Table 17: Molecule Stability for MG versus guidance weights. This molecule stability and bond distance std is averaged across models
conditioned on six properties.

w Molecule Stability [%] Bond Entropy MAE, Ae[meV]
1 95.1 £2.1 0.536 + 0.044 429
2 95.0+2.1 0.535 £ 0.044 427
3 95.1 £2.3 0.533 + 0.044 429
4 95.1 £2.1 0.536 £ 0.048 429

Table 18: Comparison of property MAEs with four guidance weights against two guidance weights for AG.

AG o A€ emomo €LuMO  f Cy
Two weights 1.43 344 242 274  0.631 0.638
Four weights 1.46 341 247 265 0.620 0.640

* « (Polarizability): Tendency of a molecule to acquire an eletric dipole moment when subjected to an external electric
field.

e Ae: The energy gap between HOMO and LUMO.
* egomo: Highest occupied molecule orbital energy.
* c,umo: Lowest unoccupied molecule orbital energy.

* u: Dipole moment, which measures the separation of positive and negative charges within a molecule.

C,: Heat capacity at room temperature 298.15 K.

QMO is a 134k small molecule dataset that only contains of up to 9 heavy atoms (C, N, O, F). The atom sizes range from 3
to 29 with an average of 18 atoms, including explicit hydrogen. All molecules are optimized by density functional theory
(DFT) calculations and thus in their stable states. By design, all molecules in QM9 are charge neural and have a close
shell valence electron configuration. But one should note there are molecules that carry explicit atom formal charges and a
molecule graph carrying this information might be hence helpful—like we did in this work—to generate molecules with
valid charge—valency configuration.

rQM9 SDF data The original QM9 SDF data can be retrieved from DeepChem and has bond and charge issues. We
noticed this in our previous work and have corrected all invalid bond orders and charges. The procedure to correct the data
is provided in Appendix of (Zeng et al., 2025b). The data is now available at HuggingFace ColabFit (Zeng et al., 2025a).

Training details and hyperparamters. All guidance models on the QM9 dataset were trained with 8 molecule update
blocks. Atoms contain 256 hidden scalar features and 16 hidden vector features. Edges contain 128 hidden features. These
models were trained with 2000 epochs with a learning rate of 0.00025 together with an Adam optimizer (Kingma & Ba,
2017) is used for learning the neural networks. Training and inference for PropMolFlow models used a single NVIDIA
A100-SXM4 graphic card with 80GB memory with a batch size of 128. All models can be trained in about 2—4 days.
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GVP regressor details. To be self-consistent, we trained property regressors using Graph Neural Networks based on
GVPs. We appended an MLP layer that takes the final node scalar features as input to predict the target property. The
parameters of GVP regressors are optimized by minimizing an mean squared error loss function. Separate models were
trained for each of the six tested properties. The GVP training uses a different S0k QM9 data compared to the 50k used for
the PropMolFlow model training.

Definition of metrics in the radar plot. Below we elaborate the definition of each metric in the radar plot (Figure 4). If a
higher value is preferred (e.g., Bond Diversity, Structure Validity), the metric is transformed via the Eq. 22 .
L — Tmin

o = Tmin (22)

Tmax — Lmin

If a lower value (e.g., Sampling Efficiency by time, Property Alignment by MAEs) is preferred, the following linear
transformation is used.

X — T
pf = e (23)
Tmax — Lmin

Sampling efficiency follows the same definition and the min and max scaling factors are 8 and 20 minutes, respectively.

Structure validity is the average of molecule stability and RDkit validity, and the min and max scaling factors are 90% and
100%, respectively.

Uniqueness uses the same scaling min and max as that of structure validity.

Property alignment is quantified by the MAEs between the GVP-predicted property values for generated molecules and the
input target property values. Lower values are better. The min and max scaling factors are the QM9 lower bound and the
QMO bound given by the # Atoms shown in Table 2.
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