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Abstract

Radiative transfer simulations of cosmic transients–the rapidly evolving termi-
nal events of stars–are computationally expensive, making Bayesian inference
infeasible on even a single events. Yet, astronomical surveys have discovered
tens-of-thousands of these events. In this work, we use symbolic regression to
derive an analytic expression for the luminosity of the most common core-collapse
supernova (the explosive death of a massive star) as a function of time and physical
parameters–an analytical expression for these events has eluded the literature for a
century. This expression is trained from a set of simulated bolometric light curves
(measured luminosity as a function of time) generated from six input physical
parameters. We find that a single analytic expression can reproduce ∼70% of light
curves in our dataset with less than ∼7.5% fractional error; we additionally present
a small set of analytical expressions to reproduce the full set of light curves. By
deriving an analytic relation between physical parameters and light curve luminosi-
ties, we create an interpretable parametric model and emulate the more expensive
simulator. This work demonstrates promising preliminary results for future efforts
to build interpretable emulators within time-domain astrophysics.

1 Introduction

Time-domain astrophysics is the study of cosmic events which evolve on hours to days timescales,
including the explosive deaths of stars known as supernovae (SNe). SNe provide us a unique high-
energy laboratory, the opportunity to study the creation of heavy elements in the universe, and direct
tests of stellar evolution models. The Vera C. Rubin observatory [6] is expected to detect ∼1,000,000
SNe every year, providing unprecendently large datasets as well as a need for computationally
efficient alternatives to radiative transfer models. In particular, we can use neural networks to map SN
observables to physical properties, which would sidestep direct physical modeling, but these “black
box" models are uninterpretable. Recent efforts have been made to develop physically interpretable
machine learning models in the astrophysical literature, including group-invariant neural networks
[4], physics-informed neural networks [1], and symbolic learning with inductive biases [3].

Core-collapse SNe are the explosive deaths of massive stars. We observe the light of these explosion
as multi-variate time series – tracking photon flux as a function of wavelength and time. This is
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Parameter Name Units Parameter Symbol Grid Values
Progenitor Mass M⊙ M 10, 12, 14, 16, 18

Explosion Energy ×1051 ergs E 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5
Nickel Mass ×10−2M⊙ MNi 0.1, 1, 2, 4, 6, 8, 10, 20, 30

Log Mass Loss Rate − log10[M⊙/yr] Ṁ 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5
Circumstellar Radius ×1014 cm R 1, 2, 4, 6, 8, 10

Circumstellar Structure unitless β 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5

Table 1: The physical parameters used to generate the Type IIP SN light curves in our dataset. Note
that we have adjusted units to yield an approximately uniform grid across each parameter, where each
value is close to unity. We aim to express light curve fits as a function of these values and time.

known as the “light curve." The shape of a SN’s light curve depends on the mechanism of explosion as
well as properties intrinsic to the progenitor star, such as its mass and the mass fraction of radioactive
material. In this work, we build an emulator for physical models of the light curves of Type II
SNe, which are core-collapse SNe from massive stars, from the physical parameters that impact the
explosion. Type IIP SNe (SNe IIP), a subset of Type II SNe, are particularly challenging when it
comes to simple analytical expressions. The light curves features a characteristic “plateau", caused
by the recombination of hydrogen in the outer envelope of the progenitor star. The hydrogen-rich
SN ejecta initially has a high opacity due to the ionized hydrogen. However, as the ejecta cools, the
opacity drops, allowing photons deeper within the ejecta to escape. Furthermore, recent observational
studies have revealed the ubiquitous nature of circumstellar material around the exploding star (see,
e.g., [5]). This material causes yet another “phase change" in the SN light curve: one region first
dominated by the interaction of circumstellar material and the SN ejecta, one dominated by the
hydrogen recombination, and one finally dominated by the radioactive decay of newly synthesized
elements. Despite years of study for simple scaling laws relating the light curve properties to the
SN properties for Type IIP SNe [11, 7], the astronomical community still lacks a simple analytical
expression for Type IIP light curves as a function of fundamental stellar properties and time.

Searching for an analytical representation of Type IIP light curves, we turn to symbolic learning.
Symbolic regression differs from other machine learning techniques in that it aims to optimize an
analytical relation between the inputs and outputs. Symbolic learning has increasingly been utilized
by the astronomical community to develop such expressions [8, 9, 13]; however, symbolic learning
has not yet been explored for SNe. Here, we utilize symbolic regression using a novel two-step
approach. First, we use symbolic regression to fit a single light curve solely as a function of time with
nonphysical constants. We then assume that form for all light curves, and fit the constants of that
form as functions of the physical parameters. This will allow us to directly generate approximate light
curves from a set of physical parameters without the need for computationally intense simulations or
integration. All code is made publicly available1.

2 Data and Methodology

Our SN IIP models are obtained from [10], and are generated from a set of six physical parameters
further detailed in Table 1 and Section 2.2. These physical parameters can be sorted into three
categories: (1) progenitor properties (progenitor mass, nickel-56 mass); (2) SN properties (explosion
energy); and (3) circumstellar material (CSM) properties (mass-loss rate, CSM radius and CSM
density structure). The complete dataset includes 228,016 light curves, uniformly sampled across this
grid.

We pre-process the models such that a single light curve consists of 2,000 luminosities, with even
spacing of 0.1 days (see Figure 1b). Given the extreme dynamic range of the luminosities, we model
the base-10 logarithm of these luminosity values. As shown in Figure 1a, the light curves include
three main regions: a pre-plateau luminosity peak (driven by the circumstellar material), a plateau
(driven by hydrogen recombination), and a post-plateau region (driven by radioactive 56Ni decay).
These regions are indicated in Figure 1a. A successful fit should properly model all three regions,
which each provide unique physical insights about the progenitor star and SN.

1https://github.com/kdesoto-astro/iip-symbolic
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(a) A single light curve versus the modeled curves us-
ing curve_fit (orange) and the physical-to-fit param-
eter relations (purple). The three distinct “regions” of
a IIP light curve are delineated by the vertical dashed
lines.
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(b) An overlay of all the bolometric light curves in
our dataset (purple), as well as the mean light curve
(orange).

Figure 1: The light curves we are trying to fit using analytic expressions. Note how there are three
main regions per light curve: an early peak, a plateau, and a post-plateau decline. The duration and
brightness of each region varies by light curve as functions of the physical parameters.

To perform the symbolic regression, we use the PySR2 Python package [2], which is built on a Julia
backend. PySR uses a genetic algorithm to explore symbolic expression trees to iteratively insert or
remove operators, variables, and constants from the analytic expression. The loss function of each
expression is the mean squared error obtained from all input and predicted log-luminosity values.
Each expression is also assigned a “complexity” value, which for our defined model is simply the
summation of the number of operations, variables, and constants in the expression. PySR keeps a
running list, called the “hall of fame”, of the one expression per complexity value complexityi with
the lowest loss value. Each of these most accurate expressions expri is then assigned a “score” given
by:

scorei = − log
MSEi

MSEi−1

[
complexityi − complexityi−1

]−1

(1)

In practice, this score measures how much the extra degree of complexity contributes to reducing the
mean squared error of the fit. The “best” expression is chosen as the expression within the highest
score among the hall of fame expressions with a loss within 1.5 times the lowest loss on the list. This
heuristic is the default used in PySR and ensures too much accuracy is not lost in search of a simple
analytic expression.

2.1 General Form Derivation

Before attempting to use our physical parameters to fit all light curves simultaneously, we first
establish a general form for each light curve as a function of time. We do this by choosing a
“characteristic” IIP light curve (with clear peak, plateau, and fall) and running symbolic regression
on that light curve with only the time steps as inputs. To enforce the three-part structure of the light
curve, we enforce the inclusion of two sigmoid "transitions". Following training with PySR, this
yielded the following best expression:

F (t) = C1 + C2C
t
3 + C4σ(C5 + Ct

6) + (C7 + C8t)
[
1− σ(C9t)

]
(2)

The first two terms (C1 through C3) represent the log-luminosity of the plateau region and thus
centers the light curve vertically. The next term and associated sigmoid (C4 through C6)determine
the plateau/post-plateau transition, and set the intensity of the post-plateau drop-off. The last term
and sigmoid (C7 through C9) represent the pre-plateau luminosity peak, with peaks close to time
zero. We demonstrate how each parameter impacts the light curve shape in Figure 2. In Figure 1a we
see that this expression captures the light curve shape quite well, and we thus we use this functional
form to fit the full grid.

2https://github.com/MilesCranmer/PySR
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Figure 2: Demonstration of how each fit parameter in Equation (2) impacts the shape of the light
curve. Note how the first parameter affects overall luminosity, C2 through C4 affect the post-plateau
slope and amplitude, respectively, and C5 and C6 adjust the plateau duration and rapid decline,
respectively, The remaining parameters affect the shape of the pre-plateau luminosity peak.
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(a) Mean squared error of light curve fits (using
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(b) Mean squared error over time of all the light curves
fitted using the optimized physical parameter relations
(in black). The MSE peaks pre-plateau, where the
luminosity rapidly increases, and where the plateau
ends around a phase of 80 days. The MSE values
using alternate equations of increasing complexity are
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Figure 3: Mean squared error (MSE) analyses of the light curves in our dataset using (a) direct curve
fitting to our functional form and (b) our fit-to-physical parameter relations.

We then use Python’s curve_fit package [12] with 5,000 maximum iterations to fit a random set
of 1,000 light curves to the above general, yielding nine constants for each curve. We also save
the mean-squared error (EMSE) for each fit, in units of log ergs per second, squared. From visual
inspection, we determine that a MSE below 0.2 indicates an accurate fit, whereas a MSE below 0.5
indicates an adequate fit. These cutoffs correspond to absolute errors that are about 5% and 7.5% of
the light curve amplitude, respectively, as the average per-light-curve standard deviation is ∼ 3 log
ergs per second. Approximately 35% of our light curves are fit with MSE < 0.2, whereas another
35% are fit with MSE < 0.5. As can be seen in Figure 3a, there is a clear cut in explosion energy E
and circumstellar structure β that divides well fit and poorly fit light curves. In Figure 3 of [10], we
see that low energy explosions lack the sharp luminosity peak present in higher energy explosions.
Therefore, our functional form for IIP light curves is not ideal for these samples.

2.2 Relating Physical Parameters to Fit Constants

The SN IIP light curve models were generated from a set of six physical parameters: progenitor
mass (M ), explosion energy (E), 56Ni mass (MNi), mass loss rate (Ṁ ), circumstellar matter radius
(R), and circumstellar structure parameter (β). The final parameter, β, defines the geometry of the
circumstellar material such that the density of the material ρ(r) ∝ r−β , where r is the distance of the
material to the center of the progenitor star. These parameters were evenly sampled from a grid of
possible values, shown in Table 1. Using these physical parameters as inputs and the above nine fit
constants as outputs, we attempt to model a relation between the two sets of constants using symbolic
regression.

In theory, the peak, plateau, and post-plateau regions are impacted by distinct subsets of the physical
parameters. Therefore, in an attempt to limit each fit parameter to depend on fewer physical
parameters, we increase the complexity of each variable from 1 to 2. This makes incorporating
physical parameters twice as expensive as constants when optimizing best-fit equations, effectively
distilling the most impactful physical parameters in each fit parameter’s expression.
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The resulting optimized expressions for the fit constants are as follows:

C1 = 0.3948× ln(βM) + 41.3792

C2 = −2.2425× 10−3

Mβ
Ni + 0.0238

C3 = 0.0741×Mβ × (
MNi

β − 1.1595
+ 1.4456) + 1.0117

C4 = 0.8680− 0.4692 ln(M + βM−1
Ni )

C5 = β + ln(MNi + 0.0038)− 22.8507

ln(M)

C6 = 1.0374
ln(MNi)

M

0.0075

C7 = 0.6181(E − Ṁ + lnR)− 12.8878 +
0.8079

10.8300−M

C8 =
β(5.1353E −R) + 31.5319

M − 3.8763

C9 = M−1
[
(287.6550M−2.2044 + β)× (E − ln(Ṁ +R)) + 4.2604

]
(3)

We compare our results to physical intuition. In particular, we can cross-reference Equation 2 with
results from [10]. Starting with the post-plateau region, we see that C2, C3, and C4 are all heavily
impacted by the nickel-56 mass. This is expected: the light curve is primarily powered by nickel-56
decay following the recombination-powered plateau. On the other hand, we see from Figure 3 of [10]
that the circumstellar radius primarily affects the luminosity peak; this is consistent with the fact that
R only appears in C7, C8, and C9.

Note that inaccuracies in the curve_fit results propagate as inaccuracies in these expressions, so
we expect additional noise when compared to the non-physical analytical models. Longer training
time could potentially favor more accurate higher-order expressions, but we leave this exploration to
future work.

The mean squared error of the fits across all light curves is 0.052, which corresponds to a fractional
error of ∼ 7.5%. We plot the MSE as a function of time step averaged across all light curves in
Figure 3b, highlighting that our model performs less well when fitting the rapid luminosity rise
around phase zero, as well as the transition between plateau and drop-off. We also compare it to
the MSE over time for expressions from complexity zero to twenty (the approximate complexity of
our best expressions), indicating that we start seeing diminishing returns past complexity ∼ 7 per
expression.

3 Conclusions

In this work, we have shown that Type IIP SN light curves can be reasonably approximated by
analytical expressions of physical parameters, uniquely determined via symbolic regression. Such
an expression has eluded the literature for nearly a century. Here, our unique two-step approach
allows us to first constrain a generic light curve form, and then find this form as a function of light
curve parameters. Future work will focus on improving the maps between physical and fit parameters
through longer training, thus ideally reducing the MSE at both very early times and during the plateau
fall-off.

This simple analytical form allows us to build an interpretable emulator for Type IIP light curve
models, enabling studies of thousands of events without the need for expensive radiative transfer
simulations. Application of such a model to a large sample of observed Type IIP SNe will allows us
to constrain the progenitors of the most common type of core-collapse SN.
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