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Controllable Music Loops Generation with MIDI and Text via
Multi-Stage Cross Attention and Instrument-Aware

Reinforcement Learning
Anonymous Authors

ABSTRACT
The burgeoning field of text-to-music generation models has shown
great promise in their ability to generate high-quality music aligned
with users’ textual descriptions. These models effectively capture
abstract/global musical features such as style and mood. However,
they often inadequately produce the precise rendering of critical mu-
sic loop attributes, including melody, rhythms, and instrumentation,
which are essential for modern music loop production. To over-
come this limitation, this paper proposed a Loops Transformer and
a Multi-Stage Cross Attention mechanism that enable a cohesive
integration of textual and MIDI input specifications. Additionally,
a novel Instrument-Aware Reinforcement Learning technique was
introduced to ensure the correct adoption of instrumentation. We
demonstrated that the proposed model can generate music loops
that simultaneously satisfy the conditions specified by both nat-
ural language texts and MIDI input, ensuring coherence between
the two modalities. We also showed that our model outperformed
the state-of-the-art baseline model, MusicGen, in both objective
metrics (by lowering the FAD score by 1.3, indicating superior qual-
ity with lower scores, and by improving the Normalized Dynamic
TimeWarping Distance with given melodies by 12%) and subjective
metrics (by +2.56% in OVL, +5.42% in REL, and +7.74% in Loop
Consistency). These improvements highlight our model’s capabil-
ity to produce musically coherent loops that satisfy the complex
requirements of contemporary music production, representing a
notable advancement in the field. Generated music loop samples
can be explored at: https://loopstransformer.netlify.app/.

CCS CONCEPTS
• Computing methodologies → Neural networks; Learning
latent representations; Artificial intelligence.

KEYWORDS
Text-to-Music Generation, Controllable Music Generation, Residual
Vector Quantization, Loop Generation, Reinforcement Learning,
Transformer
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1 INTRODUCTION
Loops play a critical role in modern music production, enabling cre-
ators to construct complex and layered compositions by repeatedly
using sound loops. These loops can include melodies, rhythms, or
textures, and are particularly popular among DJs, electronic music
producers, and contemporary musicians. In the process of music
creation, loops often act as the foundation for musical accompani-
ment, with the final musical piece enriched through the layering of
various elements. Essential to this process is the precise manipula-
tion of melody, rhythm, BPM, key, and instrumentation within the
loops.

This study explores the generation of musical loops from text
and MIDI inputs, which is particularly relevant during the music
creation process. Creators commonly employ Digital Audio Work-
stations (DAWs) to translate their creative requirements—such as
melody, rhythm, BPM, key, and velocity—into MIDI format. By
integrating textual prompts with specific MIDI settings, it becomes
possible to produce tailored loops. This approach not only accel-
erates the experimental and exploratory phases of music creation
but also enhances its interactivity, offering composers a richer and
more malleable creative landscape.

The current text-to-music generationmodels, such as those based
on Diffusion Models [26, 29], including Noise2Music [12], Audi-
oLDM 2 [19], JEN-1 [18], and MusicLDM [2]; as well as text-to-
music models based on Vector Quantization (VQ) [31] and Residual
Vector Quantization (RVQ) [4, 38], such as Jukebox [5], MusicLM
[1], and MusicGen [3], can generate music that aligns with the
user’s textual input. While these models effectively capture ab-
stract/global musical features like style and mood, they often in-
adequately address the precise rendering of critical music loop
attributes, including melody, rhythms, and instrumentation, which
are essential for modern music loops production.

To overcome the aforementioned challenges, we introduce Loops
Transformer (model architecture shown in Figure 1), a controllable
music loops generation model capable of generating high-quality
loops given both textual descriptions and MIDI inputs. To better
integrate text and MIDI, we propose a novel Multi-Stage Cross
Attention mechanism that combines text embeddings (from the T5
model [24] and our Text-to-MIDI Transformer) and MIDI embed-
dings (from our MIDI Transformer).

The model’s training objective is to generate high-quality 32
kHz music loops by modeling multiple parallel streams of discrete
audio tokens, which are obtained through the Encodec [4] using
Residual Vector Quantization (RVQ). To enhance the quality and
usability of the generated loops (making them more suitable for the
characteristics of loopable music), we improve upon the Codebook
Interleaving Pattern [1, 3] (illustrated in Figure 2). Based on the
Delay Pattern [3], we introduce 𝑠 and 𝑒 tokens in the Codebook

https://loopstransformer.netlify.app/
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: The Overview of The Loops Transformer Architecture for Training.

Interleaving Pattern to enable the model to explicitly learn the
start and end of a loop segment and generate results that can be
seamlessly looped.

Furthermore, during the pre-training stage, we introduce a Loop
Shift mechanism for data augmentation, i.e., sampling the 𝑠1 and 𝑠2
as two randomly sampled integer values that determine the number
of time steps to be added before the start token 𝑠 and after the end
token 𝑒 , respectively. The Loop Shift data augmentation mechanism
is designed based on the characteristics of loops, as an ideal loop
should have content generated after the start token 𝑠 that can form
a continuous playback loop with the content before the end token
𝑒 .

Moreover, to improve the model’s instrumentation capabilities
and performance, i.e., ensuring that the instruments used in the
generated loops match the textual prompts, we draw inspiration
from the Reinforcement Learning from Human Feedback (RLHF)
[22, 30] approach that has flourished in the development of large
language models (LLMs). We propose a novel Instrument-Aware
Reinforcement Learning training strategy, introducing a scoring
model for instrumentation evaluation. We feed the loops generated
by the Loops Transformer into this scoring model for multi-label
instrument classification to obtain the reward to update the Loops
Transformer’s model parameters.

We conduct the extensive evaluation, and the experimental re-
sults demonstrate that, compared to the state-of-the-art baseline
model (MusicGen [3]), our approach significantly improves melody
matching by 12% in Normalized DTW Distance and shows notable
gains in both objective and subjective evaluations. Notably, in the
human evaluation conducted by evaluators with experience in using
or creating loops, our model achieves significant improvements in

subjective ratings, such as overall quality (OVL): +2.56%, relevance
to the text input (REL): +5.42%, and Loop Consistency: +7.74%. This
demonstrates our model’s ability to produce musically consistent
loops that meet the detailed requirements of contemporary music
production.

To summarize our contributions:
(1) We introduce Loops Transformer, a novel controllable music

loops generation model that integrates text and MIDI inputs using
a Multi-Stage Cross Attention mechanism and an improved Code-
book Interleaving Pattern with Loop Shift data augmentation for
seamless and musically consistent loops generation.

(2)We propose an Instrument-Aware Reinforcement Learning
training strategy to enhance the model’s ability to generate loops
with instruments matching the textual prompts.

(3) We demonstrate the effectiveness of our proposed meth-
ods through extensive experiments, significantly outperforming
state-of-the-art baselines in generating high-quality, relevant, and
consistent music loops, as validated by objective and subjective
metrics. Furthermore, we conduct comprehensive ablation studies
to analyze the impact of each key component and their individual
contributions to the overall performance of our model.

2 RELATEDWORK
In this section, we review the relevant literature in the key areas
of loop music generation. We discuss the various approaches and
studies in relation to our proposed Loops Transformer model.

2.1 MIDI Representation
The Transformer based models [32] has inspired various tokeniza-
tion methods for effectively modeling the sequences of MIDI data.
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Figure 2: The Codebook Interleaving Pattern of Loops Transformer.

REMI [14] encodes notes as a combination of Pitch, Velocity, Du-
ration, Bar, and Position tokens, enabling Transformers to better
understand music structure. MIDI-Like [21] directly converts MIDI
messages into tokens, a method employed by models like Music
Transformer [11] and MT3 [9]. CPWord [10] builds upon REMI,
reducing sequence length by combining embeddings.

Our work focuses on diverse MIDI data, including single-track
and multi-track compositions with various instruments. We lever-
age REMI+ [33], an extension of REMI designed for general multi-
track, multi-signature symbolic music sequences, introducing Pro-
gram tokens for efficient representation of multiple instruments.
We employ REMI+ as the tokenizer of our models.

2.2 Loop Generation
There are a few studies that have explored the topic of loop genera-
tion. [37] proposes an unconditional loop generation model based
on StyleGAN2 [15] to create 2-second loops, while [39] presents
a system that integrates ChatGPT with music generation models
[3, 8] to enable interactive and iterative music creation through a
multi-round dialogue interface.

However, these works do not fully address the fundamental as-
pects of loops, which are essential building blocks in modern music
production. Loops allow creators to construct intricate composi-
tions by repeatedly using melodic, rhythmic, or textural elements,
with precise control over melody, rhythm, and instrumentation
being crucial to the creative process.

Our work focuses on generating musical loops from text and
MIDI inputs. By combining textual prompts with specific MIDI
settings, our approach facilitates the creation of customized loops,
expediting the experimentation and exploration phases of music
production while providing composers with a more interactive and
adaptable creative environment.

2.3 Text to Music Generation
Text-to-music generation models have made significant progress
in recent years, with approaches based on Diffusion Models [26,
29], such as Noise2Music [12], AudioLDM 2 [19], JEN-1 [18], and
MusicLDM [2], as well as those utilizing Vector Quantization (VQ)
[31] and Residual Vector Quantization (RVQ) [4, 38], like Jukebox
[5], MusicLM [1], and MusicGen [3]. While these models excel at
capturing global musical features such as style and mood, they
often struggle to precisely render critical attributes for music loop
generation, including melody, rhythm, and instrumentation.

Recent works have aimed to enhance the controllability of gener-
atedmusic by incorporating additional features. [3] exploresmelody
conditioning using chromagrams, while [34] proposes Music Con-
trolNet, a diffusion-based model with time-varying controls over
melody, dynamics, and rhythm.

Unlike previous works [3, 34] that rely on chromagrams for
melody conditioning, our approach harnesses MIDI as a more com-
prehensive conditional input, encompassing pitch, velocity, dura-
tion, bar, position, multi-tracks, and multi-instruments information.
We introduce Loops Transformer, a controllable music loops gener-
ation model that integrates text and MIDI using a novel Multi-Stage
Cross Attention mechanism, improves upon the Codebook Inter-
leaving Pattern [1, 3] for seamless looping, and employs a Loop
Shift data augmentation mechanism and an Instrument-Aware Rein-
forcement Learning strategy to generate high-quality, relevant, and
consistent music loops that match textual prompts and MIDI condi-
tions. Extensive evaluations demonstrate our model’s superiority
compared to state-of-the-art baselines.
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3 METHODOLOGY
The overview of the Loops Transformer architecture is shown in
Figure 1. The following subsections will provide explanations for
each component.

3.1 Textual Representation and Embeddings
In the proposed architecture, the conversion of text into an em-
bedding representation marks the commencement of the process.
We denote a text sequence by 𝑠 , which is input into a transformer-
based encoder, specifically Ttext. This encoder maps the input text
into a high-dimensional vector space, yielding the primary text
embeddings T𝑠 = Ttext (𝑠).

In this context, T𝑠 materializes as a sequence of vectors in R𝑙×𝑑𝑡 ,
where 𝑙 characterizes the sequence length and 𝑑𝑡 defines the dimen-
sionality of the embedding space. The encoding procedure adheres
to the approach by [3], utilizing the T5 [24] encoder as Ttext.

Advancing to integrate text with MIDI data, we introduce a sec-
ondary encoding step using the Text-to-MIDI Transformer encoder
Tt2m, which has been pre-trained on our MIDI Loops Dataset (with
text and MIDI paired data). This step is designed to refine the text
embeddings by incorporating musical context. Thus, the secondary
text embeddings, denoted as T𝑠′ = Tt2m (𝑠), are generated.

The secondary embeddings T𝑠′ not only retain the encapsu-
lated textual information but also incorporate a musical context,
resulting in a sequence of vectors in R𝑙×𝑑𝑡 ′ . The dimension 𝑑𝑡 ′ is
representative of the embedding space.

In this work, the Text-to-MIDI Transformer leverages the same
encoder architecture and tokenizer as utilized by the T5-base model
[24]. We employ REMI+ for MIDI tokenization, as detailed in [33].
To address the inherently longer sequence lengths of MIDI tokens
relative to text, we adopt the Light Decoder architecture described
by [36], modifying the T5 decoder to accommodate these differences.
This approach reduces the computational and memory consump-
tion, thus enhancing our model’s capability to process extended
sequences.

3.2 MIDI Representation and Embeddings
Concurrently, the MIDI input 𝑚, consisting of the sequence of
tokens with their corresponding attributes such as pitch, velocity,
and duration, are processed by a MIDI Transformer TMIDI with the
REMI+ [33] tokenizer. This results in a series of MIDI embeddings
M, which are represented asM = TMIDI (𝑚).

with each M ∈ R𝑙𝑚×𝑑𝑚 , where 𝑙𝑚 is the length of MIDI repre-
sentation sequence and 𝑑𝑚 is the MIDI embedding size.

3.3 Multi-Stage Cross-Attention Mechanism
The foundational principle of the proposed Multi-Stage Cross-
Attention Mechanism involves leveraging the embeddings gen-
erated by the Text-to-MIDI Transformer as intermediaries. This
mechanism encompasses two distinct stages of cross-attention[32]
operations followed by a final integration stage:

Textual Embeddings Cross-Attention: In the initial stage,
cross-attention is applied between the primary text embeddings
T𝑠 and the secondary text embeddings T𝑠′ , resulting in a new se-
quence of embeddings, denoted byCtxt, which integrates the textual
content with the encoded musical context as:

Ctxt = CrossAttention(T𝑠 ,T𝑠′ ).
MIDI Embeddings Cross-Attention: Subsequently, a cross-

attention operation is performed between the MIDI embeddings
M and the secondary text embeddings T𝑠′ . This generates another
new sequence of embeddings, CMIDI, that merges the musical in-
formation with the contextual data from the text as:

CMIDI = CrossAttention(M,T𝑠′ ).
Final Cross-Attention Stage: The final stage involves a cross-

attention operation between the newly generated embeddings se-
quences Ctxt and CMIDI, producing the ultimate embedding se-
quence Cfinal that encapsulates both textual and musical contexts
comprehensively as:

Cfinal = CrossAttention(Ctxt,CMIDI).
The cross-attention operation is mathematically defined as:

CrossAttention(Q,K,V) = Softmax

(
QK𝑇√︁
𝑑𝑘

)
V

whereQ represents the querymatrix from one set of embeddings,
K and V represent the key and value matrices from another set of
embeddings, and 𝑑𝑘 is the dimensionality of the key vectors, which
is used for scaling.

The Multi-Stage Cross-Attention Mechanism aims to seamlessly
fuse textual and musical data through successive layers.

3.4 Loops Transformer
The Loops Transformer serves as the core generative model of
our architecture, leveraging the rich contextual embeddings Cfinal
to guide the autoregressive generation of discrete audio tokens.
Following the approach of the MusicGen Transformer introduced
by [3], we employ the 32 kHz EnCodec [4] to convert audio into a
discrete representation.

The primary objective of the Loops Transformer is to model
the conditional probability distribution over a sequence of discrete
audio tokens A = (𝑎1, 𝑎2, . . . , 𝑎𝑀 ), conditioned on the fused textual
and musical representation Cfinal:

𝑝 (A|Cfinal) =
𝑀∏
𝑗=1

𝑝 (𝑎 𝑗 |𝑎< 𝑗 ,Cfinal) (1)

where 𝑎 𝑗 represents the audio token at index 𝑗 , and 𝑎< 𝑗 denotes
the sequence of all preceding audio tokens. The Loops Transformer
employs a transformer decoder architecture, tasked with predicting
the subsequent audio token based on the previously generated
tokens and the conditioning information embedded within Cfinal.

During the training phase, the objective is to maximize the log-
likelihood of the audio token sequence, conditioned on the fused
representation:

L =

𝑀∑︁
𝑗=1

log 𝑝 (𝑎 𝑗 |𝑎< 𝑗 ,Cfinal) (2)

The Codebook Interleaving Pattern of Loops Transformer (shown
in Figure 2) is a key component of the model, employed during
both pre-training and fine-tuning stages. In the pre-training phase,
the Codebook Interleaving Pattern with Loop Shift is used for data
augmentation, where randomly sampled time steps (𝑠1 and 𝑠2) are
added before the start token 𝑠 and after the end token 𝑒 . This Loop
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Shift mechanism ensures that the content generated after the start
token 𝑠 can seamlessly loop back to the content before the end
token 𝑒 , mimicking the characteristics of an ideal loop. During
fine-tuning, the standard Codebook Interleaving Pattern is applied,
incorporating the start token 𝑠 and end token 𝑒 for autoregressive
modeling, which maintains the sequence’s integrity while making
predictions.

To reconstruct the final generated musical audio, the discrete
audio tokens produced by the Loops Transformer are decoded back
into a continuous waveform representation using the decoder com-
ponent of the EnCodec model. By leveraging the high-fidelity audio
compression capabilities of EnCodec and the expressive power of
the transformer architecture, the Loops Transformer enables the
generation of high-quality and controllable music that aligns with
the given textual and musical conditions.

It is worth noting that, in order to enable the Loops Transformer
to generate music not only based on the integrated text and MIDI
conditions but also solely on the text description, we introduce a
training strategy that randomly replaces Cfinal with Ctxt during the
training process. Specifically, with a probability of 1/3 (as set in our
experiments), we substitute Cfinal with Ctxt, allowing the model to
learn how to generate music based only on the text condition, i.e.,
in the absence of MIDI information. This training strategy endows
the Loops Transformer with greater flexibility,

3.5 Instrument-Aware Reinforcement Learning
To further enhance the Loops Transformer’s ability to generate
music loops that align with the specified instruments in the textual
prompts, we propose an Instrument-Aware Reinforcement Learning
approach. This method leverages the Proximal Policy Optimization
(PPO) algorithm [28] and a novel reward function based on an
instrument classification model.

Let 𝜋𝜃 denote the policy of the Loops Transformer parameterized
by 𝜃 , and let 𝑅(A) represent the reward function for a generated dis-
crete audio sequenceA. The objective of the reinforcement learning
process is to maximize the expected reward:

𝐽 (𝜃 ) = EA∼𝜋𝜃 [𝑅(A)] (3)
To compute the reward, we introduce an instrument classifica-

tion model Φ𝜓 parameterized by𝜓 , which is trained to predict the
presence of various instruments in a given audio sequence. The
model is trained using the same architecture as the Loops Trans-
former but with a multi-label classification objective. Let y denote
the ground truth instrument labels for a discrete audio sequence,
and let ŷ = Φ𝜓 (A) represent the predicted instrument probabilities.
We define the reward function as :

𝑅(A) = 𝛽 · exp
(
1
𝑁

𝑁∑︁
𝑖=1

[𝑦𝑖 log(𝑦𝑖 ) + (1 − 𝑦𝑖 ) log(1 − 𝑦𝑖 )]
)

(4)

where 𝑁 is the number of instrument classes, 𝑦𝑖 is the ground
truth label for the presence of instrument 𝑖 , 𝑦𝑖 is the predicted
probability of instrument 𝑖 being present, and 𝛽 is a scaling factor.
This reward function is based on the binary cross-entropy loss,
which measures the discrepancy between the predicted probability
distribution and the true label distribution. This reward function

encourages themodel to generate music loops with instrumentation
that closely matches the given conditions.

To optimize the policy using PPO, we define the advantage func-
tion 𝐴𝑡 at time step 𝑡 as:

𝐴𝑡 =

𝐾−1∑︁
𝑘=0

𝛾𝑘𝑅(A𝑡+𝑘 ) −𝑉𝜙 (s𝑡 ) (5)

where𝛾 is the discount factor,𝐾 is the number of steps in the roll-
out, and𝑉𝜙 is a value function parameterized by 𝜙 , which estimates
the expected cumulative reward from state s𝑡 .

The PPO objective function, L𝑃𝑃𝑂 (𝜃 ), is constructed from two
primary components: the probability ratio, 𝑟𝑡 (𝜃 ), and the advan-
tage estimate, 𝐴𝑡 . Specifically, 𝑟𝑡 (𝜃 ) quantifies the ratio of the new
policy’s probability of taking action a𝑡 given state s𝑡 to that of the
old policy, mathematically represented as:

𝑟𝑡 (𝜃 ) =
𝜋𝜃 (a𝑡 |s𝑡 )
𝜋𝜃old (a𝑡 |s𝑡 )

(6)

With these definitions, the PPO objective simplifies to:

L𝑃𝑃𝑂 (𝜃 ) = Ê𝑡
[
min

(
𝑟𝑡 (𝜃 )𝐴𝑡 , clip (𝑟𝑡 (𝜃 ), 1 − 𝜖, 1 + 𝜖)𝐴𝑡

)]
(7)

where the clip function limits 𝑟𝑡 (𝜃 ) to the range [1−𝜖, 1+𝜖], with
𝜖 being a hyperparameter that controls the extent of clipping. This
ensures modest updates to the policy, avoiding drastic deviations
from the previous policy. The expectation Ê𝑡 averages over a batch
of samples, calculating the expected value of the minimum between
the unclipped and clipped objectives.

Finally, we integrate the reinforcement learning objective with
the original Loops Transformer training objective to obtain the
final objective function:

Lfinal = L + 𝛽L𝑃𝑃𝑂 (𝜃 ) (8)
where 𝛽 is a hyperparameter that balances the importance of

the reinforcement learning objective.
By optimizing this combined objective, the Loops Transformer

learns to generate music loops that not only adhere to the provided
textual and musical conditions but also incorporate the desired
instruments as specified in the prompts.

4 EXPERIMENTAL SETUP
4.1 Model and Hyperparameter Settings
For the text encoder Ttext, we employ the pretrained T5-base model
[24] from the implementation1. The Text-to-MIDI Transformer en-
coder Tt2m follows the same architecture as the T5-base model
but is pre-trained on our MIDI Loops Dataset (with text and MIDI
paired data). We modify the T5 decoder to accommodate the longer
sequence lengths of MIDI inputs, adopting the light decoder archi-
tecture as ByT5-base [36]. The Tt2m is trained for 1,000,000 steps
with a batch size of 128 and a learning rate of 1e-4 using the AdamW
optimizer [20] (𝛽1 = 0.9, 𝛽2 = 0.95, and a weight decay of 0.1).

The MIDI Transformer TMIDI adopts MidiTok [7]2 to implement
the REMI+ Tokenization. It also follows the ByT5-base light decoder
1https://github.com/facebookresearch/audiocraft
2https://miditok.readthedocs.io/en/v3.0.2/
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architecture [36] and is pretrained with our MIDI Loops Dataset
(using MIDI data only) via an autoregressive manner, trained for
1,000,000 steps with a batch size of 128 and a learning rate of 1e-4
using the AdamW optimizer (𝛽1 = 0.9, 𝛽2 = 0.95, and a weight
decay of 0.1).

For the Loops Transformer, we follow the transformer decoder
architecture of MusicGen-melody (1.5B)3, as presented in [3], and
utilize its pretrained weights. The Loops Transformer is first pre-
trained on our Audio Loops Dataset using the Codebook Interleav-
ing Pattern with Loop Shift for data augmentation, with 1,000,000
training steps using the AdamW optimizer (𝛽1 = 0.9, 𝛽2 = 0.95,
and a weight decay of 0.1) and a batch size of 128, employing a
cosine learning rate schedule with a warmup of 2,500 steps. The
fine-tuning process spans 500,000 steps with a batch size of 128
using the AdamW optimizer (𝛽1 = 0.9, 𝛽2 = 0.95, and a weight de-
cay of 0.1). During fine-tuning, the standard Codebook Interleaving
Pattern is applied. To enable the Loops Transformer to generate
music based solely on text descriptions, we incorporate a training
strategy that randomly replaces Cfinal with Ctxt with a probability
of 1/3. During the sampling process, we apply top-k sampling[6],
retaining the top 250 tokens at a temperature of 1.0, as suggested
by [3].

In the Instrument-Aware Reinforcement Learning setup, the
instrument classification model Φ𝜓 follows the same architecture
as the Loops Transformer. The model is trained using the binary
cross-entropy loss with a learning rate of 1e-4 and a batch size of
64 for 200,000 steps, utilizing our Audio Loops Dataset for training.
For the PPO algorithm, we set the discount factor 𝛾 to 0.99 and
the clipping parameter 𝜖 to 0.2. The coefficient 𝛽 for balancing the
reinforcement learning objective is set to 0.1. We train the Loops
Transformer with the PPO objective for an additional 350,000 steps.

All models are implemented using the PyTorch library [23] and
trained on 8 NVIDIA A100 GPUs with 80GB memory each.

4.2 Datasets
We train, validate, and test our model using licensed music loops
(including MIDI and wav files) created by professional musicians.
These loops are accompanied by relevant musical information (e.g.,
BPM, key, instruments). We generate corresponding textual de-
scriptions using ChatGPT4 and Claude5, taking into account the
descriptions of loop sample packs or loop bundles and the provided
musical information. Human annotators verify and modify each
description with its corresponding loop as necessary to ensure
quality. The following is an example of a textual prompt of a loop:
“A heartfelt piano loop in A minor at 140 BPM, weaving a narrative
of delicate emotions and tender moments, ideal for storytelling and
introspective journeys.”.

We organize these loop data into three datasets for different
stages of use. The MIDI Loops Dataset, consisting of 16,432 MIDI
format loops (including single-track and multi-track data), is used
to pre-train our MIDI Transformer and Text-to-MIDI Transformer.
The Audio Loops Dataset, comprising 18,182 wav format loops
(95.9 hours), is used for pre-training the Loops Transformer model.

3https://github.com/facebookresearch/audiocraft/blob/main/docs/MUSICGEN.md
4https://chat.openai.com/
5https://claude.ai/

The MIDI-Audio Paired Loops Dataset contains 10,018 loops
(Train: 8,129, Validation: 932, Test: 957), with MIDI and wav pair
data for each loop, along with corresponding textual descriptions.
We use this dataset to fine-tune the proposed model. To ensure the
correctness and evaluability of the experiments, we carefully con-
firm that the test dataset comes from different sources (i.e., different
packs, bundles, and producers) than the training and validation
data of these three datasets (i.e. the MIDI, the Audio, and the MIDI-
Audio Paired Loops Dataset), ensuring no artist overlap between
the test set and the training and validation sets. This guarantees
that the test data and the data used for pre-training and fine-tuning
are from completely different sources, without any overlap.

We use the test set of the MIDI-Audio Paired Loops Dataset for
objective metric evaluation and randomly sample 150 test samples
from the test set for subjective metric and the Instrumentation
Score (IS) evaluation.

4.3 Evaluation
Baseline Models. In this work, we primarily compare the pro-
posed model with MusicGen [3]6, a state-of-the-art text-to-music
model capable of generating music conditioned on both text and
melody. MusicGen serves as a strong baseline for our evaluation,
as it represents the current best-performing model in the field of
text-to-music generation. Since MusicGen can leverage the given
audio for melody conditioning, we convert our MIDI input to audio
using FluidSynth7 to provide the melody condition for MusicGen.

Objective Evaluation Metrics.We evaluate the performance
of the generated audio using three objective metrics: Fréchet Audio
Distance (FAD) [16], CLAP score [13, 35], and Normalized Dynamic
Time Warping Distance (Norm. DTW Distance) [27].

FAD measures the distance between the distributions of the
generated audio and real audio in the feature space of a pre-trained
VGGish model. We compute FAD using the official TensorFlow
implementation8. A lower FAD score indicates that the generated
audio is closer to real audio in terms of its distribution, suggesting
better perceptual quality.

The CLAP score, calculated using the official pre-trained CLAP
model9, measures the semantic alignment between the generated
audio and the corresponding text description. A higher CLAP score
suggests that the generated audio effectively captures the semantic
content of the input text.

To quantify the similarity between the given MIDI melody and
the generated audio, we introduce the Norm. DTW Distance. First,
we convert the ground truth MIDI to audio using FluidSynth, em-
ploying the same process as we did for generating the melody
condition for MusicGen. We then convert the ground truth audio
and the generated audio into chromagrams. We apply an argmax
operation to the chromagram, preserving only the most prominent
pitch class in each frame, creating a frame-wise one-hot repre-
sentation of the 12 semitones. We then compute the Normalized
Dynamic Time Warping Distance between the two chromagram
sequences. For each sample, we calculate the Norm. DTW Distance
using a 10-second segment of the ground truth and generated audio,
6https://huggingface.co/facebook/musicgen-melody
7https://www.fluidsynth.org/
8https://github.com/google-research/google-research/tree/master/frechet_audio_distance
9https://github.com/LAION-AI/CLAP
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Table 1: Evaluation results demonstrating the performance of the Loops Transformer in comparison to MusicGen, a leading
state-of-the-art baseline model, across various configurations. The evaluation is based on objective metrics such as Fréchet
Audio Distance (FAD𝑣𝑔𝑔), CLAP score, and Normalized Dynamic Time Warping Distance (Norm. DTW Distance), with optimal
performance indicated by lower FAD and Norm. DTW Distance, and higher CLAP scores. Subjective assessments are made
through metrics including Overall Quality (OVL.), Relevance to Text Input (REL.), and Loop Consistency, on a scale of 1 to 100,
where higher scores signify superior outcomes.

Model FAD𝑣𝑔𝑔 ↓ CLAP ↑ Norm. DTW Distance ↓ OVL. ↑ REL. ↑ Loop Consistency ↑
MusicGen (text) 4.1 0.30 - 84.44±1.17 81.12±1.42 77.41±1.62
MusicGen (text + melody) 3.8 0.27 0.23 85.69±1.09 80.54±1.33 80.23±1.51
MusicGen (text + half melody) 3.8 0.27 0.31 85.66±1.11 80.32±1.36 81.05±1.45
Loops Transformer (text) 2.8 0.22 - 86.32±1.15 84.28±1.27 86.98±1.29
Loops Transformer (text + midi) 2.6 0.22 0.11 88.25±0.96 85.96±1.08 88.79±1.11
Loops Transformer (text + half midi) 2.5 0.22 0.13 87.79±1.02 85.66±1.19 88.21±1.23

normalizing the distance by the sequence length. A lower Norm.
DTW Distance indicates a higher degree of similarity between the
generated audio and the given melody condition.

To further enhance our ablation studies, we have incorporated
an additional objective metric: the Instrumentation Score (IS). This
score is derived from multi-label instrument classification using
F1 micro and F1 macro scores. The IS is crucial for assessing the
models’ capability to generate music that accurately represents the
instruments specified in the textual descriptions. To obtain the IS,
annotators, as described below, were tasked with listening to each
sample generated by the model and annotating which instruments
were audibly present in the loop.

Subjective Evaluation Metrics. Following the experimental
setup in [17] and [3], we evaluate two subjective metrics: Overall
Quality (OVL) and Relevance to Text Input (REL). Additionally, we
introduce a new metric, Loop Consistency, to assess the seamless-
ness of the generated audio when played in a loop. Raters (annota-
tors), recruited through Amazon Mechanical Turk, are required to
have experience creating music with Digital Audio Workstations
(DAWs) and experience in using or creating loops.

OVL assesses the perceptual quality of the audio samples, while
REL measures how well the generated audio matches the given text
input. Loop Consistency evaluates the smoothness of transitions
when the audio is played in a continuous loop. All metrics are
rated on a scale from 1 to 100, with higher scores indicating better
performance.

We evaluate randomly sampled files, each assessed by a mini-
mum of five raters to ensure reliable results. The CrowdMOS pack-
age is employed to identify and remove noisy annotations and
outliers, following the guidelines provided in [25] and adopted by
[3].

5 RESULTS
We present the evaluation results of our proposed Loops Trans-
former model in comparison with the state-of-the-art baseline, Mu-
sicGen [3]. Table 1 summarizes the performance of both models
across various objective and subjective metrics. We consider three
different settings for each model: (1) text-only conditioning, (2) text
and full melody/MIDI conditioning, and (3) text and half length
melody/MIDI conditioning.

In terms of objective metrics, the Loops Transformer achieves
lower FAD scores, indicating that the generated audio is closer to
real audio in terms of its distribution. When conditioned on both
text and MIDI, the Loops Transformer obtains the lowest Normal-
ized DTW Distance of 0.11, demonstrating its ability to generate
audio that closely matches the given MIDI melody. Interestingly,
the Loops Transformer achieves the best FAD score of 2.5 when con-
ditioned on text and half length MIDI, suggesting that partial MIDI
information can be sufficient for generating high-quality loops
audio.

For the CLAP score, assessing the semantic alignment between
generated audio and the corresponding text description, Music-
Gen exhibits a marginal advantage over the Loops Transformer.
This discrepancy can likely be ascribed to the training data each
model was exposed to: while MusicGen was trained on a vast and
diverse dataset encompassing a wide array of musical pieces, the
Loops Transformer was specifically trained on loop-based data.
This specialized focus on loops, although advantageous for gen-
erating cohesive and loopable segments, may not encompass the
broader musical context to the same extent as MusicGen’s training,
influencing its performance on text-audio semantic alignment.

In the subjective assessments, the Loops Transformer markedly
outperforms MusicGen in all dimensions. Notably, with conditions
involving both text and MIDI, it achieves top marks in OVL (88.25),
REL (85.96), and Loop Consistency (88.79). These results highlight
the Loops Transformer’s capacity for generating audibly superior
loops that more accurately embody the specified textual descrip-
tions and musical conditions and demonstrate improved loop co-
herence compared to MusicGen.

Interestingly, despite the Loops Transformer’s lower perfor-
mance on the CLAP score, indicative of text-audio semantic con-
gruence, it achieves higher relevance ratings. This discrepancy may
be attributed to textual prompts frequently specifying instruments
(e.g., "A dynamic string loop set at 150 BPM in G minor..."), where
accurate instrument representation may influence subjective rele-
vance assessments. This contrasts with the CLAP metric potentially
limited capacity to evaluate instrumentation accuracy, highlight-
ing a discernible gap between algorithmic and human judgments
regarding musical authenticity and textual congruity.
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Model IS (f1 micro) IS (f1 macro)
MusicGen 55.61 53.28
Loops Transformer w.o. IARL 66.74 60.23
Loops Transformer w. IARL 74.39 71.26

Table 2: Evaluation of Instrumentation Score (IS) using f1 mi-
cro and f1macro scores, derived frommulti-label instrument
classification. This table methodically compares MusicGen,
Loops Transformer without Instrument-Aware Reinforce-
ment Learning (IARL), and Loops Transformer with IARL,
highlighting their performance in generating audio that pre-
cisely matches the instruments detailed in the input text.

Model FAD𝑣𝑔𝑔 ↓ CLAP ↑
Loops Transformer (Text Only: T5) 3.1 0.22
Loops Transformer (MSCA w.o. T-to-M) 2.8 0.22
Loops Transformer (MSCA) 2.6 0.22

Table 3: Performance comparison of Loops Transformer con-
figurations. The configurations include the model with text
input only using T5 embeddings (Text Only: T5), with Multi-
Stage Cross Attention (MSCA), and MSCA without the inte-
gration of the Text-to-MIDI model (MSCA w.o. T-to-M).

Model (1/8 data) FAD𝑣𝑔𝑔 ↓ Norm. DTW Distance ↓
w.o. loop shift 3.3 0.17
w. loop shift 3.1 0.16

Table 4: Comparison of Loops Transformer performance
with and without loop shift data augmentation on a reduced
dataset (1/8 of the original pre-training dataset).

Table 2 presents the evaluation results for the Instrument-Aware
Reinforcement Learning (IARL) approach. We compare the instru-
mentation scores (IS) of the Loops Transformer with and without
IARL, as well as MusicGen. The Loops Transformer with IARL
achieves the highest f1 micro and f1 macro scores, indicating its
superior performance in generating audio with instruments that
match the textual prompts. This highlights the effectiveness of the
proposed IARL training strategy in enhancing the model’s instru-
mentation capabilities.

To assess the impact of the Multi-Stage Cross Attention (MSCA)
mechanism and the Text-to-MIDI Transformer, we evaluate differ-
ent variations of the Loops Transformer using the FAD and CLAP
metrics, as shown in Table 3. The Loops Transformer with MSCA
achieves the best FAD score of 2.6, demonstrating the effectiveness
of the proposed attention mechanism in integrating text and MIDI
conditions. Removing the Text-to-MIDI Transformer component re-
sults in a degradation in performance, emphasizing its importance
in the overall architecture.

Finally, Table 4 presents the performance of the Loops Trans-
formerwith andwithout the loop shift data augmentation technique
on a reduced dataset (1/8 of the original pre-training data). The
model trained with loop shift achieves better FAD and Normalized
DTWDistance scores, highlighting the benefits of the proposed data

augmentation strategy in improving the quality and consistency of
the generated loops.

Overall, our experimental results demonstrate the superiority of
the proposed Loops Transformer model in generating high-quality,
relevant, and consistent music loops compared to the state-of-the-
art baseline. The effectiveness of the key components, such as the
Multi-Stage Cross Attention mechanism, Instrument-Aware Rein-
forcement Learning, and loop shift data augmentation, is validated
through comprehensive ablation studies.

6 CONCLUSION AND FUTUREWORK
In this work, we introduced Loops Transformer, a novel controllable
music loops generation model that integrates text and MIDI inputs
to generate high-quality, relevant, and consistent music loops. We
proposed a Multi-Stage Cross Attention mechanism to effectively
combine textual and musical information, an improved Codebook
Interleaving Patternwith Loop Shift data augmentation for seamless
looping, and an Instrument-Aware Reinforcement Learning strategy
to enhance the model’s instrumentation capabilities.

Extensive experiments demonstrated the superiority of the Loops
Transformer compared to the state-of-the-art baseline, MusicGen,
across various objective and subjectivemetrics. The proposedmodel
achieved significant improvements in generating music loops that
closely match the given text and MIDI conditions, exhibit better
perceptual quality, and maintain loop consistency. Ablation studies
validated the effectiveness of the key components in contributing
to the overall performance of the Loops Transformer.

Our work addresses the challenges in generating music loops
that align with the detailed requirements of contemporary mu-
sic production, offering a more interactive and adaptable creative
framework for composers and music producers. The Loops Trans-
former empowers users to create customized loops by combining
textual prompts with specific MIDI settings, accelerating the exper-
imentation and exploration phases of music creation.

Future research directions include incorporating audio input as
a conditioning signal, expanding the model’s capability to generate
longer musical sequences, and developing an interactive refine-
ment process for music loops generation. The Loops Transformer
represents a significant step towards bridging the gap between
the creative vision of composers and the technical requirements
of modern music production, offering a powerful and adaptable
solution for generating high-quality, relevant, and consistent music
loops.
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