
Under review as a conference paper at ICLR 2023

CAUSAL DISCOVERY FROM CONDITIONALLY
STATIONARY TIME SERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Causal discovery, i.e., inferring underlying causal relationships from observational
data, has been shown to be highly challenging for AI systems. In time series mod-
eling context, traditional causal discovery methods mainly consider constrained
scenarios with fully observed variables and/or data from stationary time-series.
We develop a causal discovery approach to handle a wide class of non-stationary
time-series that are conditionally stationary, where the non-stationary behaviour
is modeled as stationarity conditioned on a set of (possibly hidden) state variables.
Named State-Dependent Causal Inference (SDCI), our approach is able to recover
the underlying causal dependencies, provably with fully-observed states and em-
pirically with hidden states. The latter is confirmed by experiments on synthetic
linear system and nonlinear particle interaction data, where SDCI achieves supe-
rior performance over baseline causal discovery methods. Improved results over
non-causal RNNs on modeling NBA player movements demonstrate the potential
of our method and motivate the use causality-driven methods for forecasting.

1 INTRODUCTION

Deep learning has achieved profound success in vision and language modelling tasks (Brown et al.,
2020; Nichol et al., 2021). Still, it remains a grand challenge and a prominent research direction
to enable deep neural networks to perform causal discovery and reasoning (Yi et al., 2020; Gird-
har & Ramanan, 2020; Sauer & Geiger, 2021), which is an inherent mechanism in human cognition
(Spelke & Kinzler, 2007). Specifically for analysing time series data, causal discovery involves iden-
tifying the underlying temporal causal structure of the observed sequences. Many existing causal
discovery approaches for time series assume stationarity (Granger, 1969; Peters et al., 2017; Löwe
et al., 2020; Li et al., 2020; Tank et al., 2021), which is restrictive as sequence data from real-world
scenarios are often non-stationary with potential hidden confounders. Recent works introduce a
number of different assumptions to tackle causal discovery for non-stationary time series (Zhang
et al., 2017; Ghassami et al., 2018; Huang et al., 2019), but in general, causal discovery on non-
stationary time series under mild and realistic assumptions is an open problem.

This work aims at addressing this open challenge by proposing a causal discovery algorithm for
condionally stationary time series, for which the dynamics of the observed system change depend-
ing on a set of “state” variables. This assumption holds for many real-world scenarios, e.g., with
people who behave differently and take different decisions depending on underlying factors such
as mood, previous experience, and the actions of other agents. The causal discovery task for such
conditionally stationary time series poses different challenges depending on the observability of the
states, which is classified into 4 different scenarios:

1. Scenario class 1 concerns the simplest case, where the states are observed and their dynamics
are independent on other observed time series data (Figure 1a).

2. In Scenario class 2, the states are unobserved and directly dependent on observed variables.
Figure 1b shows an example, where the states of the variables change according to their po-
sitions (pink vs purple regions). Another example is to consider an agent moving in a room
where different behaviors are observed depending on their location.

3. Scenario class 3 is more challenging: the state depends on earlier events, and thus cannot be
directly inferred from observations. E.g., in Figure 1c, particles that change state upon collision.
Also in a football game a player acts differently depending on earlier actions of the others.

1

Under review as a conference paper at ICLR 2023

1 1 2 2 0 0 0 0

s0 sT

1 1 1 1 2 2 0 0
2 2 0 0 1 1 2 2

2 0 2 1 1 0 0 2
0 1 0 0 2 2 1 1

1 1 2
1 1 1
2 2 0
0 1 0
2 0 2

(a) scenario class 1 (b) scenario class 2 (c) scenario class 3

?? ??

(d) other scenarios

Figure 1: Graphical representations of the data generation processes considered in this work. xt
represents the observations of a time series sequence, and st denotes the state variables. The state
affects the future observations by changing the causal structure (denoted as f t) for different state
values. The representations are examples of (a) scenario class 1, (b) scenario class 2, (c) scenario
class 3, and (d) other scenarios (image adapted from Oh et al. (2011)).

4. Finally, many real-world scenarios (e.g., Figure 1d) are governed by underlying states that
are not fully identifiable from the observations over time. Here the states can be unknown
confounders to the observed time series, thus the causal discovery task is ill-defined.

Our approach, named State-Dependent Causal Inference (SDCI), is based on discovering the sum-
mary graphs (Peters et al., 2017) conditioned on states given observed sequences. It fits a graph
neural network based variational auto-encoder (Löwe et al., 2020) to the non-stationary time se-
ries data, which enables efficient amortization for causal discovery across multiple observation se-
quences. We prove identifiability results for cases with fully-observed states; empirically SDCI
also applies to cases with hidden states, which is confirmed by experiments on both synthetic linear
datasets and spring data (See Figures 1b & 1c), covering scenario classes 1-3. Compared to base-
lines including a non-causal RNN-based approach, SDCI achieves better accuracy in identifying
the underlying causal graph and forecasting future trajectories from historical observations, on both
simulated and real-world data such as particle interactions and player trajectories in NBA games.

2 RELATED WORK

Causal discovery aims to identify causal relationships over a set of variables from observational data
(Glymour et al., 2019). Constraint-based methods rely on conditional independence tests to recover
the underlying DAG structure of the data. Representative approaches include the PC algorithm
(Spirtes et al., 2000) and Fast Causal Inference (FCI) (Spirtes, 2001), and their extension to the time
series data (Entner & Hoyer, 2010; Runge, 2018).

Score-based methods, such as Greedy Equivalence Search (GES) (Chickering, 2002), define and
optimize score functions of causal graphs to identify the underlying causal structure. Regarding
time series data, these methods are reformulated as learning Dynamic Bayesian Networks (DBNs)
from data (Murphy et al., 2002). A recent approach in this line is DYNOTEARS (Pamfil et al.,
2020), which aims to estimate both instantaneous and time-lagged relationships between variables
in a time series without performing combinatorial search in the space of all possible graphs.

Functional causal model-based methods represent the effect as a function of its direct causes and
their independent immeasurable noise (Shimizu et al., 2006; Zhang & Hyvärinen, 2009; Peters et al.,
2014; Glymour et al., 2019). For time series, these approaches fit a dynamic model, often with
constrained functional forms and connection sparsity in favor of identifiability (Peters et al., 2013).

Our work is concerned in modelling non-stationary time series using state variables as entities re-
sponsible for changing the dynamics along the sequence. Most relevant to ours is Amortized Causal
Discovery (ACD) (Löwe et al., 2020), which assumes stationary time series and amortizes summary
graph extraction process from samples with different graphs but shared dynamics. Similar ideas are
also proposed in Li et al. (2020) for video applications. We extend ACD by allowing the underlying
causal structure to vary depending on some state variables. For other works, Huang et al. (2015) ex-
tended Gaussian Process regression to identify time-varying functional causal models; Zhang et al.
(2017) used kernel embeddings to detect distribution shifts in heterogeneous data, and Ghassami

2

Under review as a conference paper at ICLR 2023

et al. (2018) & Huang et al. (2019) estimated the time-varying causal effects. However, the latter
two methods are limited by their linear causal model assumptions and fixed causal structures. Sag-
gioro et al. (2020) considered causal discovery for regime-dependent dynamics. Our approach is
more generic as we allow each variable in the multi-variate time series to have its own states, while
regimes can be viewed as “global states” applied to all the variables.

3 STATE-DEPENDENT CAUSAL INFERENCE (SDCI)

We introduce SDCI to extract causal graphs from time series data where their dynamics are altered
by means of a set of categorical variables, referred to as their states.

3.1 PROBLEM FORMULATION

We consider a dataset D, where each sample X ∼ D consists of N non-stationary time series
X = {x1, . . . , xN} of length T . We denote element i at time-step t as xti ∈ Rd.

Stationary time series. We assume that the data generation process obeys a structural causal
model (SCM) (Pearl, 2009), where all the observed variables xti ∈ V1:T are its vertices, for each
time series i at each time-step t, and that there are no instantaneous effects and no hidden con-
founders. Moreover, same as the definitions of Granger causality (Granger, 1969), we assume that
edges of a causal graph cannot go back in time. For the sake of clarity, the underlying causal struc-
ture satisfies the first-order Markov property in this work; however, one could directly extend it to
the higher order. When considering causality in time series, the corresponding causal graph of a
SCM is called full time graph (Peters et al., 2017), G1:T . Note that our treatment of stationarity
refers to the structure of the causal mechanisms, i.e., edges are invariant in time.

Assumptions similar to the previous ones have been introduced in the past for the analysis of causal-
ity considering stationary time series data (Löwe et al., 2020; Li et al., 2020), where the task is to
extract the summary graph, G = {V, E}, where V = {x1, . . . , xN} and an edge from xi to xj is
included in E if there exists 1 ≤ t < t′ ≤ T such that there is an edge from xti to xt

′

j in the full
time graph. Both full time graph and summary graph are identifiable from observational data as
shown by Peters et al. (2013) if the generative process satisfies Time Series Models with Indepen-
dent Noise (TiMINo). We further assume first-order Markov property and an additive noise model
(ANM) without instantaneous effects for the generative process:

xtj = fj
(
(PA1

j)
t−1

)
+ ϵtj (1)

where PA1
j ⊆ V denotes the parents of xj and ϵtj denotes independent noise. The direct causes of

xtj are PA(xtj) = (PA1
j)
t−1 ⊂ V1:T . As here the time series is stationary, we can regard this as

first querying the summary graph G to extract the parents, and then using the correct temporal index
(t− 1) as a superscript of each parent (PA1

j).

Conditionally stationary time series. For non-stationary time series considered in this work,
we assume that at each time-step t we have access to state variables st = {st1, . . . , stN}, where
sti ∈ {1, ...,K} controls the causal effects of xti to future variables xt+1

1:N . In other words, when the
state sti changes, so do the causal effects for xti. We further assume that the time series is stationary
if the states are held constant along the sequence, i.e., s1 = · · · = sT . For the general case where
st changes through time, even though the time series is non-stationary, it is conditionally stationary
given the state variables S = {s1, . . . , sT }.

Figure 2a illustrates the full time graph of a conditionally stationary time series example following
our assumptions. In this case a variable affects different sets of future variables depending its state,
and the time series is non-stationary as s1 ̸= s2 ̸= s3. Note that the states are not included explicitly
in the SCM of the generative process (otherwise the SCM requires additional variables with their
own vertices for S). This is a valid simplification since we assume access to the states at all times.
Our theoretical results presented below do not apply when considering hidden states, since one must
then explicitly model its causal structure in the SCM.

Conditional summary graph. Our goal for causal discovery is to recover the full time graph,
where for stationary time series this can be achieved by identifying the summary graph under the
first-order Markov assumption. However, for conditionally stationary time series, the summary

3

Under review as a conference paper at ICLR 2023

t=1 t=2 t=3 t=4

(a) Full time graph (b) Conditional summary graph (c) Summary graph

Figure 2: (a) Full time graph G1:T of a sample considering our problem setting, (b) conditional
summary graph G1:K , and (c) summary graph G of the corresponding sample. Different colors (red
and blue) denote effects caused by different states.

graph can be non-informative (probably close to a fully connected graph), due to different causal
effects induced by variables in different states. As an example, Figure 2c shows the summary graph
extracted from the full time graph of Figure 2a. Being dense, the summary graph as defined for
stationary time series is less useful in non-stationary settings. To address this issue, for conditionally
stationary time series we define the conditional summary graph.
Definition 1 (Conditional summary graph, first-order Markov setting). Given a full time graph G1:T ,
its conditional summary graph is a set of K summary graphs, G1:K = {Gk : 1 ≤ k ≤ K}, where
K is the number of possible state values. Each summary graph Gk = {V, Ek} has the same vertices
V = {x1, . . . , xN}, and an edge from xi to xj is added to Ek if there exists a time-step 1 ≤ t ≤ T

such that sti = k and in G1:T , xti is connected to xt+1
j .

Note that both summary and conditional summary graphs do not include auto-regressive connections
xti → xt+1

i . Figure 2b shows the conditional summary graph extracted from the full time graph of
Figure 2a. For k = 1 we have s13 = 1 and there is a “red edge” connecting x13 and x2

2, therefore
for G1 there is a “red edge” in the edge set E1. Similar reasoning applies for G2. Compared to the
summary graph 2c, the conditional summary graph contains a compact, yet valid representation of
the causal structure, and thus being more informative. Conditional summary graph is more widely
applicable beyond regime-dependent dynamics (see e.g., (Saggioro et al., 2020)): we do not restrict
the entire time series to be in one of the K states, but allow each variable have its own states.

State-dependent TiMINo. We extend TiMINo to conditionally stationary time series with ob-
served states and show the identifiability of both full time graph and conditional summary graph.
Consider the update on xtj as in Eq. 1. First for non-stationary time series the direct causes of xtj ,
PA(xtj), are no longer constant in time. However, for conditionally stationary time series satisfying
first-order Markov property and our assumptions specified above, PA(xtj) is determined by the states
at the previous time-step t−1. Thus we can write PA(xtj) = (PA1

j |st−1)t−1 and the state-dependent
TiMINo as (with first-order Markov assumption, an ANM model and no instantaneous effect):

xtj = f st−1

j

(
(PA1

j |st−1)t−1
)
+ ϵtj , PA1

j |st−1 = {xi : xj ∈ Ci(s
t−1
i), 1 ≤ i ≤ N}, (2)

where st−1
i ∈ {1, . . . ,K} and Ci(k) ⊆ V denotes the children of variable xi when its associated

state equals to k. To illustrate, in Figure 2a we have that PA(x22) = {x1
1, x12, x13} because x2 ∈ C1(s

1
1)

and x2 ∈ C3(s
1
3); however PA(x32) = {x2

1, x22} because now x2 ∈ C1(s
2
1) but x2 /∈ C3(s

2
3).

Identifiability of state-dependent TiMINo. As we assume access to the state variables at all
times, the original properties of Markov assumption and causal minimality are maintained, which
are satisfied by TiMINo. Consequently, the conditional summary graph becomes identifiable by
extending the indentifiability proof of Peters et al. (2013) to our setting and further assuming that
all the states are visited at least once. Notice that failing to observe data corresponding to a par-
ticular state of one variable makes it practically impossible to capture the underlying effect of that
variable conditioned on the unvisited state. More details for the preservation of causal minimality
and Markov condition in the state-dependent TiMINo, the identifiability of both the full time graph
and conditional summary graph, and extensions to incorporate other time-lagged or instantaneous
effects can be found in Appendix A and B.

Considering the previous results, one could directly extend TiMINo causality (Peters et al., 2013)
to conditionally stationary time series. The algorithm uses a fitting method (to estimate fj in Eq.1)

4

Under review as a conference paper at ICLR 2023

and tests for independence using residuals. We notice that in our setting, the direct causes of xtj
depend on the state values st−1, which represent KN models in total (f st−1

j). This renders such
extension impractical for efficient causal discovery in such scenarios. However, our key observation
is that in real-world non-stationary data, many of the underlying function components are shared
not only across data but also across variables, i.e., fk

i = f l
j for some variables i, j and state sets k, l.

This benefits the use of deep learning as effectively more data is available to identify the individual
effects (where the total number of them is significantly less than KN). Therefore, we propose a
deep learning-based approach in a similar spirit as Löwe et al. (2020), to amortise the discovery of
causal relationships across data samples within the same dataset. We leave the proof of our method
regarding consistent parameter estimates (Geffner et al., 2022) to future work.

State-dependent causal inference. We mainly focus on non-stationary causal graphs which may
have different edge-types at different times. Based on our assumptions, the interaction (i.e., edge-
type) xi −→ xj can change according to the state of the variable xi. Following Kipf et al. (2018); Li
et al. (2020); Löwe et al. (2020), we consider this edge-type for xi −→ xj at time t as a categorical
variable ztij ∈ {0, . . . , nϵ − 1} which can represent nϵ interaction types between pairs of variables.
Specifically we use edge-type 0 to denote “no causal effect” between two variables. Notice that the
edge-type differs from the state: the former controls the functional form of the causal effect and the
latter allows the variables to affect others differently along time. For example, one can have xi → xj
whenever ztij ̸= 0, but the functional form of the causal relationship can differ.

Our method focuses on extracting a conditional summary graph G1:K (assuming K states). Previous
approaches aiming for this task assume stationary time series data for which G1 = · · · = GK .
For conditionally stationary time series, we extract the k-th summary graph including edge-types,
G̃k = {V, Ẽk}, where Ẽk and Ẽk′ can differ for k ̸= k′. We further define Ẽk = {wijk ∈ {0, . . . , nϵ−
1} : xi, xj ∈ V} as the collection of edge types for variable pairs in V . Note here that an edge is
visualised in the conditional summary graph visualisation only when wijk ̸= 0 (see Figure 2b).
Then the edge-type interaction xi → xj can be queried at each time-step t as follows:

ztij =
(
Ẽsti

)
ij
,

(
Ẽsti

)
ij
= wijk if sti = k. (3)

Therefore, causal discovery for conditionally stationary time series requires extracting the (un-
known) conditional summary graph given observations of X (and perhaps also S). It not only re-
quires to design a parametrizable function to infer the causal structure, but also to evaluate how this
inference fits to the input observations.

3.2 IMPLEMENTATION

We introduce a probabilistic approach which models the distribution of the edge-types {ztij} given
observed data. Following our assumptions for conditionally stationary time series, this task can be
solved by learning the distribution of W = {wijk : 1 ≤ i, j ≤ N, 1 ≤ k ≤ K} given data, as after
inferring W one can then query the edge-types ztij as in Eq. 3. Inspired by previous approaches
(Li et al., 2020; Löwe et al., 2020; Kipf et al., 2018), our implementation is based on a variational
auto-encoder (VAE) (Kingma & Welling, 2014) and graph neural networks. We first discuss our
approach for the case with fully observed states, then extend the method to the hidden state regime.
A diagram of the proposed approach is visualised in Figure 3.

State 1
State 2

Figure 3: SDCI extracts a conditional summary
graph that describes the edge-type interaction for
every pair of edges conditioned on the states.

Encoder. Similar to Löwe et al. (2020), we
use a factorized q distribution qϕ(W|X,S) =∏K
k=1

∏
ij qϕ(wijk|X,S). The encoder re-

ceives both X and S as the input, and extracts
an embedding that represents the causal inter-
action conditioning on the state for every pos-
sible edge xi → xj . We compute approximate
posterior qϕ(wijk|X,S) as follows,

ϕij = fϕ(X,S)ij ∈ RK×nϵ , (4)
qϕ(wijk|X,S) = Θ(ϕijk/τ), (5)

where fϕ(X,S) is a neural network that returns outputs {ϕij : 1 ≤ i, j ≤ N} given the input as X
concatenated with a one-hot representation of the state variable S. Θ(·) denotes a softmax activation

5

Under review as a conference paper at ICLR 2023

with temperature τ . Note here the softmax activation is taken over the k-th row vector ϕijk ∈ Rnϵ

in ϕij , which is the edge embedding for xi −→ xj at state k. As this returns a categorical distribution
for qϕ(wijk|X,S), we apply the Gumble-softmax trick (Maddison et al., 2017; Jang et al., 2016) to
enable direct differentiation for back-propagation during training.

The construction of fϕ(X,S) is based on graph neural networks and MLPs. See Appendix C.2 for
more details.
Decoder for X. The decoder for the observations X given edge-types W (e.g., sampled as wijk ∼
qϕ(wijk|X,S)) and the states S are defined following the first-order Markov assumption (with x0, s0
as dummy variables):

pψ(X|W,S) =
T−1∏
t=0

N∏
j=1

pψ(xt+1
j |xt, st,W) =

T−1∏
t=0

N∏
j=1

N (x̃t+1
j , σ2I). (6)

The mean x̃t+1
j is defined as follows. Given sampled edge-types W = {wijk}, the decoder first

queries the edge-type for element j at time t + 1 as ztij = wijk′ for sti = k′ (also see Eq. 3). Then
the information along the predicted edge-type interactions is retrieved and aggregated as follows 1

htij =
∑
e>0

1(ztij=e)
fe(xti, xtj), x̃t+1

j = xtj + fp

(∑
i̸=j

htij , xtj
)
, (7)

where {fe}nϵ−1
e=1 is a set of parametrizable functions, one defined for each edge type excluding the

no-edge interaction. fp is a neural network that aggregates the information from the previous time-
step, and models the dynamics for each variable xt+1

j .

Objective. The encoder qϕ(W|X,S) and the decoder & state dynamic model pψ(X,S|W) are
trained using a modified VAE objective:

L =

T−1∑
t=0

Eqϕ(W|X,S)
[
log pψ(xt+1|xt, st,W)

]
−KL

(
qϕ(W|X,S)||p(W)

)
(8)

where we use λ to balance the accuracy in learning the decoder for X and the state dynamics. Here
we used a factorised prior p(W) =

∏K
k=1

∏
ij pk(wijk) which acts as a regularizer over the inferred

edge-type distribution q. In our experiments we set this prior to be Uniform({0, . . . , nϵ − 1}),
although in certain applications it may be useful to use different pk to encourage different sparsity
levels for Gk.

Hidden state regime. Often in practice only observations of X are available, i.e., the states S are
hidden variables. In this case we make a factorised approximation qϕ(W,S|X) = qϕ(W|X)qϕ(S|X),
where qϕ(W|X) is defined in a similar way as in the fully-observed case (see above) except for using
network fϕ(X) for the softmax logits. For the states, we consider qϕ(S|X) =

∏T
t=1

∏N
i=1 qϕ(s

t
i|xti),

with each qϕ(s
t
i|xti) defined as

qϕ(s
t
i|xti) = Θ(ŝti/γ), ŝti = f̂s(xti), (9)

with γ < 1 as a temperature factor and f̂s as a neural network. For the decoding process given W ∼
qϕ(W|X), we also sample states S ∼ qϕ(S|X) using the categorical reparameterization (Maddison
et al., 2017; Jang et al., 2016). Therefore, the decoding step can be performed as in Eq. 7 and
resulting message passing operation becomes

htij =
K∑
k=1

1(sti=k)

∑
e>0

1(wijk=e)fe(x
t
i, xtj), (10)

and we apply similar Gumbel-softmax tricks as in the fully-observed state case to replace 1(sti=k)

and 1(wijk=e) during training. The VAE training objective in this case is as follows

L =

T−1∑
t=0

Eqϕ(W,S|X)

[
log pψ(xt+1|xt, st,W)

]
−KL

(
qϕ(W|X)||p(W)

)
(11)

where we set qϕ(S|X) = p(S|X), and thus KL
(
qϕ(S|X)||p(S|X)

)
= 0. Note that the objective is

still a valid lower bound of p(X). See Appendix C.1 for an alternate formulation. In this hidden state
regime the previous theoretical guarantees on identifiability no longer hold due to violations of our
assumptions. However, this setting can still be useful as a showcase for analysis of non-stationary
time series and possible directions of future work.

1In training, 1(ztij=e) is replaced by the e-th dimension of wijk′ which is sampled from qϕ with Gumbel-
softmax relaxation.

6

Under review as a conference paper at ICLR 2023

4 EXPERIMENTS

We evaluate SDCI on two synthetic non-stationary time series datasets, and realistic data based on
NBA in-game player movements. Our results are compared to ACD (Löwe et al., 2020), TdCM
Huang et al. (2015), CD-NOD (Zhang et al., 2017), SAEM (Huang et al., 2019), and a non-causal
deep learning method called variational RNN (VRNN) (Chung et al., 2015).

4.1 EXPERIMENTS ON LINEAR DATA

We start from linear message passing operations between different time series. Conditioned on
the states, the variables xti, xt+1

j ∈ R are connected by an edge of nϵ different types. Each edge-
type is captured by the linear coefficients {βk ∈ R}nϵ−1

k=0 with the convention that β0 = 0 (no
connection). Notice that the effect of xti on xt+1

j changes during time according to the state value
sti and the underlying conditional summary graph G1:K . We report experiments on scenario class 1
in Appendix F.1 and study scenario class 2 below. Details on data generation, training settings, and
additional experiments can be found in Appendices D.1, C.3, and F.1 respectively.

Table 1: Summary graph and conditional summary
graph accuracy for linear data in scenario class 2.

SG ACCURACY
METHOD 2-EDGE 3-EDGE

CONST FREE

TDCM (T=100) 65.17± 2.65 63.67± 1.61 63.50± 1.62
CD-NOD (T=100) 39.33± 2.59 35.25± 2.51 28.58± 2.66
SAEM (T=100) 47.75± 3.67 39.04± 2.38 51.44± 3.81
TDCM (T=1000) 68.25± 2.29 61.17± 2.28 62.00± 2.14
CD-NOD (T=1000) 50.08± 2.59 42.08± 2.17 41.58± 2.02
SAEM (T=1000) 47.38± 4.10 25.93± 2.82 28.49± 3.28
ACD (T=50) 60.45± 1.60 87.00± 2.56 49.25± 3.05
SDCI (T=50) 97.08± 1.05 90.17± 2.22 64.00± 2.93

CSG ACCURACY
2-EDGE 3-EDGE

CONST FREE

SDCI (T=50) 98.08± 0.64 76.04± 2.05 65.45± 1.99

Results for scenario class 2. Scenario
class 2 considers unobserved states (only
X is given, see Figure 1b), enabling com-
parisons with CD-NOD, SAEM and TdCM
which perform causal discovery based on X
only. As these baselines consider constant
causal connections (i.e., a single summary
graph), for a fair comparison we evaluate
the identification accuracy of the summary
graph such that it only considers the exis-
tence of an edge rather than capturing the
edge type. We simulate this setting with
2 edge-types (2-EDGE), 3 edge-types with
constant summary graphs (3-EDGE CONST)
and 3 edge-types with no constraints on the conditional summary graph (3-EDGE FREE).

We report the (conditional) summary graph identification accuracies in Table 1. It is clear that SDCI
performs the best in extracting both the summary graph and conditional summary graph. Since ACD
assumes stationary time series, it achieves comparable results when considering a constant causal
graph. On the other hand, TdCM, CD-NOD and SAEM perform significantly worse, as they are
designed for non-stationary time series with distribution shifts and smooth time-varying coefficients,
which are not suited for modeling discrete changes in dynamics. Furthermore, they conduct causal
discovery on each multivariate time series separately, while ACD and SCDI benefit from amortized
causal graph inference that utilises shared information across different time series.

4.2 EXPERIMENTS ON NONLINEAR SPRING DATA

We evaluate SCDI on spring data adapted from Kipf et al. (2018); Löwe et al. (2020), which consists
of particles (or balls) connected by springs with directed impact - meaning that e.g. particle i could
affect particle j with a force through a connecting spring, but leaving particle i unaffected by this
spring force. We consider 2 edge-types (presence/absence of directed spring) and scenario classes 1
and 2. We report results with scenario class 3 in Appendix F.2 Details of data generation and model
hyper-parameters can be found in Appendices D.2 and C.3 respectively.

Results for scenario class 1. In this experiment the states are known and independent from the
observations. For the ground truth dynamics, the state transitions incrementally into the next one
every 10 time-steps. We report edge identification accuracy, which regards the conditional summary
graph including edge-types (G̃1:K). Figure 4a shows results with increasing variables and increasing
states, where we compare with ACD (dashed lines) as a stationary baseline. Although performance
drops as K increases, SDCI is able to maintain reasonable accuracy in edge-type identification in
comparison to the stationary baseline. With increasing number of variables both approaches see
accuracy drops; our hypothesis is that this can be addressed by increasing model capacity. The next

7

Under review as a conference paper at ICLR 2023

2 4 8
State values (K)

0.5

0.6

0.7

0.8

0.9

1.0

Ed
ge

 a
cc

ur
ac

y

5 Variables
10 Variables
20 Variables
ACD

(a) Increasing variables and states.

1 5 10 20 50 100
Train data percentage (%)

0.6

0.7

0.8

0.9

1.0

Ed
ge

 a
cc

ur
ac

y

5 Variables
10 Variables
ACD

(b) Data efficiency.

5 10 20
Num. variables (data)

0.5

0.6

0.7

0.8

0.9

1.0

Ed
ge

 a
cc

ur
ac

y

5 Variables
10 Variables
20 Variables
ACD

(c) Generalisation.

Figure 4: Results on spring data with scenario class 1 for (a) increasing variables and state values,
(b) data efficiency, and (c) generalisation, where the x-axis indicates the variables in the test data
and the legend indicates the model used. SDCI results are shown with solid lines.

5 10 20
Num. variables

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SG
 a

cc
ur

ac
y

SDCI
ACD
CD-NOD

Figure 5: Results on spring
data with scenario class 2.

(a) ground-truth (b) SDCI (c) ACD

Figure 6: Time series forecasting (dotted lines) of both (b) SCDI
and (c) ACD for 50 time-steps along with (a) the ground-truth.
The trajectories in solid lines are used as the input and the back-
ground color represents the state value.

test considers data efficiency of SDCI with results reported in Figure 4b. We see that both SDCI and
ACD are data efficient in this scenario, where training on 10% of the data returns good performance
already. Finally, we also report in Figure 4c on how these methods generalise to unseen data with
different number of variables. Here both methods generalise better to settings where the number of
variables is similar to the ones they were trained.

Results for scenario class 2. We consider the hidden state regime, where the underlying state of
a particle changes depending on its location in the box (K = 2, see Figure 1b). Results in Figure 5
show a clear advantage of SDCI over baselines in terms of summary graph identification accuracy.
Again, ACD is limited by its stationary dynamics assumption, and CD-NOD fails due to its inability
in handling discrete changes in the causal effects of the full time graph. We visualize the 50 time-
steps forecasts with SDCI and ACD given an input sequence of T = 80 time-steps in Figure 6. The
conditional stationary assumption of SDCI allows it to extract more accurate graph structures, which
results in better predictions than ACD. Overall, SDCI successfully decomposes the non-stationary
dynamics into the conditional stationary ones while capturing the state transition dynamics.

4.3 EXPERIMENTS ON NBA PLAYER TRAJECTORIES

The last experiment considers modeling NBA player movements (Linou, 2016), which is a real-
world multi-agent trajectory dataset with highly non-linear & non-stationary dynamics. Details
of this dataset can be found in Appendix D.3, including our design of states (as ground-truth is
unavailable), which is dependent on the player positions in the court. We evaluate SDCI in both
scenarios (states observed/unobserved). To simplify the task, we only model the trajectories of the
players (position and velocity), and condition the predictions on the position and velocity of the ball,
by modifying Eq. 7 to include the ball features in the message passing aggregation of the decoder.
Apart from ACD, we further include a non-causal baseline VRNN (Chung et al., 2015), which is a
popular deep learning approach for forecasting. All the models are trained on sequences of length
T = 100 (see Appendix C.4 for VRNN training details).

Figure 7a shows forecast error (in MSE) of the player positions (without velocities) for T = 100
steps computed on a held out dataset. In general, the causal discovery methods benefit from using a

8

Under review as a conference paper at ICLR 2023

0 20 40 60 80 100
Time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
SE

Mean value
ACD
SDCI Unobs (K=4)
SDCI Unobs (K=2)
SDCI Obs
VRNN

(a) Baseline comparison.

0 20 40 60 80 100
Time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
SE

Mean value
SDCI Obs
VRNN
1%
5%
10%
20%
50%
100%

(b) Data efficiency.

0 20 40 60 80 100
Time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
SE

Mean value
SDCI Obs (TOR)
SDCI Obs (BOS)
VRNN (TOR)
VRNN (BOS)

(c) Generalisation.

Figure 7: Results on NBA data for (a) forecasting on player positions on test data, (b) data efficiency
(% indicates the proportion of train data used), and (c) generalisation between NBA team matches.
The dashed black line represents a baseline that always predicts the mean value over trajectories.

graph-based approach and outperform VRNN. In addition, SDCI produces more accurate long-term
forecasts than ACD which is restricted by the stationarity assumption. For the hidden state setting,
we report forecasts using 2 and 4 states, and observe comparable results to the observed case.

We evaluate and report in Figure 7b the data efficiency of SDCI in realistic settings. Again SDCI
outperforms VRNN even in low-data regime. But more interestingly, SDCI better exploits the in-
creasing amount of data as it continues to improve, especially on long-term prediction. These ob-
servations are in line with data efficiency test results in springs data (see Figure 4b).

Lastly we explore the generalisation ability of SDCI and evaluate the transferability of learned dy-
namics between different teams. Figure 7c shows forecast error for Boston Celtics matches, where
the models are trained either on the same data (dashed line) or on Toronto Raptors matches (solid
line). Both methods produce reasonable out-of-distribution forecasts, suggesting that they are able
to learn shared dynamics between samples, and thus allowing generalisation on unseen data. Still
SDCI outperforms VRNN considerably, showing its strong competence in forecasting for multi-
agent scenarios with dynamical changes along the sequences.

(a)
q (1|xt

i) q (2|xt
i)

0.0
0.5
1.0

(b)
q (1|xt

i) q (2|xt
i) q (3|xt

i) q (4|xt
i)

0.0
0.5
1.0

Figure 8: Learned regimes from SDCI on the NBA dataset
using (a) K = 2 and (b) K = 4 state values. The dashed
line indicates the mid court line, and the colour maps refer
to the state posterior distribution qϕ(k|xti), k = {1, . . . ,K}.

To better understand the learned
states from SDCI in the unobserved
states scenario, we visualise in Figure
8 the state posterior as a function of
the player’s position xti in the court.
For 2 states, we observe that the state
changes in regions close to the mid-
court line. This is consistent with
typical strategies in an NBA match,
where the players first run to one side of the court, and then change their behaviour from “defence”
to “offence” mode, or vice-versa. Similar arguments can be made for the 4-state case, where the
court is segmented such that the second and third region boundaries are close to the 3-point line.
Therefore, in addition to better forecast results, SDCI further provides better interpretability of the
learned dynamics from data, and returns great promises in applications to other realistic scenarios.

5 CONCLUSIONS

We have developed SDCI for amortized causal discovery for conditionally stationary time series.
Key to our development is the state-dependent TiMINo as an extension of Peters et al. (2013) to
conditionally stationary time series, the new concept of conditional summary graph, and their iden-
tifiability under observed states. Evaluations on synthetic linear and nonlinear data show SDCI’s
improved accuracy in extracting the underlying causal graph and forecasting. Importantly, the im-
provement of SDCI over VRNN on modeling NBA player movements demonstrate the promise of
causality-driven methods for forecasting and data interpretability.

A number of research directions are to be explored in the future. For theoretical studies, identi-
fiability for hidden states will be derived with additional assumptions. For practical applications,
SDCI will be scaled up and extended to video understanding, where e.g. the interacting objects are
partially and noisily observed as semantically segmented regions. This would enable efficient and
effective use of neural networks for causal reasoning in challenging real-world scenarios.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

David Maxwell Chickering. Optimal structure identification with greedy search. Journal of machine
learning research, 3(Nov):507–554, 2002.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Ben-
gio. A recurrent latent variable model for sequential data. Advances in neural information pro-
cessing systems, 28, 2015.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). In Yoshua Bengio and Yann LeCun (eds.), 4th Inter-
national Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings, 2016.

Doris Entner and Patrik O Hoyer. On causal discovery from time series data using fci. Probabilistic
graphical models, pp. 121–128, 2010.

Tomas Geffner, Javier Antoran, Adam Foster, Wenbo Gong, Chao Ma, Emre Kiciman, Amit Sharma,
Angus Lamb, Martin Kukla, Nick Pawlowski, et al. Deep end-to-end causal inference. arXiv
preprint arXiv:2202.02195, 2022.

AmirEmad Ghassami, Negar Kiyavash, Biwei Huang, and Kun Zhang. Multi-domain causal struc-
ture learning in linear systems. Advances in neural information processing systems, 31, 2018.

Rohit Girdhar and Deva Ramanan. CATER: A diagnostic dataset for Compositional Actions and
TEmporal Reasoning. In ICLR, 2020.

Clark Glymour, Kun Zhang, and Peter Spirtes. Review of causal discovery methods based on graph-
ical models. Frontiers in genetics, 10:524, 2019.

Mingming Gong, Kun Zhang, Bernhard Schoelkopf, Dacheng Tao, and Philipp Geiger. Discover-
ing temporal causal relations from subsampled data. In International Conference on Machine
Learning, pp. 1898–1906. PMLR, 2015.

Clive WJ Granger. Investigating causal relations by econometric models and cross-spectral methods.
Econometrica: journal of the Econometric Society, pp. 424–438, 1969.

Biwei Huang, Kun Zhang, and Bernhard Schölkopf. Identification of time-dependent causal model:
A gaussian process treatment. In Twenty-Fourth international joint conference on artificial intel-
ligence, 2015.

Biwei Huang, Kun Zhang, Mingming Gong, and Clark Glymour. Causal discovery and forecasting
in nonstationary environments with state-space models. In International Conference on Machine
Learning, pp. 2901–2910. PMLR, 2019.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. In International Conference on Machine Learning, pp. 2688–
2697. PMLR, 2018.

10

Under review as a conference paper at ICLR 2023

Yunzhu Li, Antonio Torralba, Anima Anandkumar, Dieter Fox, and Animesh Garg. Causal discov-
ery in physical systems from videos. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 9180–9192.
Curran Associates, Inc., 2020.

Kostya Linou. NBA player movements. https://github.com/linouk23/
NBA-Player-Movements, 2016. Last accessed: 2022-08-06.

Sindy Löwe, David Madras, Richard S. Zemel, and Max Welling. Amortized causal discovery:
Learning to infer causal graphs from time-series data. ArXiv, abs/2006.10833, 2020.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relax-
ation of discrete random variables. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings, 2017.

Kevin P Murphy et al. Dynamic bayesian networks. Probabilistic Graphical Models, M. Jordan, 7:
431, 2002.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Sangmin Oh, Anthony Hoogs, Amitha Perera, Naresh Cuntoor, Chia-Chih Chen, Jong Taek Lee,
Saurajit Mukherjee, JK Aggarwal, Hyungtae Lee, Larry Davis, et al. A large-scale benchmark
dataset for event recognition in surveillance video. In CVPR 2011, pp. 3153–3160. IEEE, 2011.

Roxana Pamfil, Nisara Sriwattanaworachai, Shaan Desai, Philip Pilgerstorfer, Konstantinos Geor-
gatzis, Paul Beaumont, and Bryon Aragam. Dynotears: Structure learning from time-series data.
In International Conference on Artificial Intelligence and Statistics, pp. 1595–1605. PMLR, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems 32, pp. 8024–8035.
Curran Associates, Inc., 2019.

Judea Pearl. Causality. Cambridge university press, 2009.

Jonas Peters, Joris M. Mooij, Dominik Janzing, and Bernhard Schölkopf. Identifiability of causal
graphs using functional models. In Fabio G. Cozman and Avi Pfeffer (eds.), Proceedings of the
27th Annual Conference on Uncertainty in Artificial Intelligence (UAI-11), pp. 589–598. AUAI
Press, 2011. URL http://uai.sis.pitt.edu/papers/11/p589-peters.pdf.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Causal inference on time series using
restricted structural equation models. Advances in Neural Information Processing Systems, 26,
2013.

Jonas Peters, Joris M. Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal discovery with
continuous additive noise models. Journal of Machine Learning Research, 15(58):2009–2053,
2014.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations
and learning algorithms. The MIT Press, 2017.

Jakob Runge. Causal network reconstruction from time series: From theoretical assumptions to
practical estimation. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(7):075310,
2018.

Elena Saggioro, Jana de Wiljes, Marlene Kretschmer, and Jakob Runge. Reconstructing regime-
dependent causal relationships from observational time series. Chaos: An Interdisciplinary Jour-
nal of Nonlinear Science, 30(11):113115, 2020.

11

https://github.com/linouk23/NBA-Player-Movements
https://github.com/linouk23/NBA-Player-Movements
http://uai.sis.pitt.edu/papers/11/p589-peters.pdf

Under review as a conference paper at ICLR 2023

Axel Sauer and Andreas Geiger. Counterfactual generative networks. In International Conference
on Learning Representations, 2021.

Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, Antti Kerminen, and Michael Jordan. A linear
non-gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7(10),
2006.

Christopher A Sims. Macroeconomics and reality. Econometrica: journal of the Econometric
Society, pp. 1–48, 1980.

Elizabeth S Spelke and Katherine D Kinzler. Core knowledge. Developmental science, 10(1):89–96,
2007.

Peter Spirtes. An anytime algorithm for causal inference. In AISTATS, 2001.

Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causation, prediction,
and search. MIT press, 2000.

Alex Tank, Ian Covert, Nicholas Foti, Ali Shojaie, and Emily B Fox. Neural granger causality. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2021. doi: 10.1109/TPAMI.
2021.3065601.

Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba, and Joshua B.
Tenenbaum. CLEVRER: collision events for video representation and reasoning. In ICLR, 2020.

Kun Zhang and Aapo Hyvärinen. On the identifiability of the post-nonlinear causal model. In
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI ’09,
pp. 647–655, Arlington, Virginia, USA, 2009. AUAI Press. ISBN 9780974903958.

Kun Zhang, Zhikun Wang, Jiji Zhang, and Bernhard Schölkopf. On estimation of functional causal
models: general results and application to the post-nonlinear causal model. ACM Transactions on
Intelligent Systems and Technology (TIST), 7(2):1–22, 2015.

Kun Zhang, Biwei Huang, Jiji Zhang, Clark Glymour, and Bernhard Schölkopf. Causal discovery
from nonstationary/heterogeneous data: Skeleton estimation and orientation determination. In
IJCAI: Proceedings of the Conference, volume 2017, pp. 1347. NIH Public Access, 2017.

12

Under review as a conference paper at ICLR 2023

A IDENTIFIABILITY PROOFS

This section presents the detailed proofs for the theoretical results of our paper. Again we note here
that the results only apply when the states S are fully observed. Our theory extend on the theoretical
results presented in Peters et al. (2013) and Peters et al. (2017), which are presented first before our
proofs.
Proposition 1 (Prop. 6.36 in Peters et al. (2017)). Causal minimality is satisfied if and only if
∀xj ,∀y ∈ PA(xj) we have that xj ⊥̸⊥ y|PA(xj)\{y}
Proposition 2 (Prop. 7.4 in Peters et al. (2017)). Consider a distribution given by the following
additive noise model

xj = fj(PA(xj)) + ϵj , j = 1, . . . , N (12)
if the functions fj are not constant in any of their arguments, then the joint distribution satisfies
causal minimality with respect to the corresponding graph.

Recall from the main text that state-dependent TiMINo is defined as (with first-order Markov as-
sumption, additive noise model, and no instantaneous effect):

xtj = fj
(
(PA1

j |st−1)t−1
)
+ ϵti, (13)

PA1
j |st−1 = {xi : xj ∈ Ci(s

t−1
i), 1 ≤ i ≤ N}. (14)

Below we derive the identifiability results for state-dependent TiMINo given fully observed states
S.

A.1 STATE-DEPENDENT TIMINO PRESERVES MARKOV CONDITION

We show that the state-dependent TiMINo is Markov.
Lemma 1. Given the states S, if X is generated by a state-dependent TiMINo, then each variable is
conditionally independent of each non-descendants given its parents.

Proof. As the states S are given, we can retrieve the direct causes of xtj :

P := PA(xtj) = {xt−1
i : xj ∈ Ci(s

t−1
i), 1 ≤ i ≤ N},

and use state-dependent TiMINo to compute xtj given its parents:

xtj |P=p = fj(p) + ϵti.

Given its parents P, variable xtj is therefore independent of its non-descendants.

A.2 STATE-DEPENDENT TIMINO PRESERVES CAUSAL MINIMALITY

We show that the state-dependent TiMINo model satisfies causal minimality given observed states.
Lemma 2. Assume all the functions fj in a state-dependent TiMINo are not constant in any of their
arguments. Then causal minimality is preserved given observed states.

Proof. Again as the states S are observed, then for any xtj the direct causes of it can be retrieved by:

P := PA(xtj) = {xt−1
i : xj ∈ Ci(s

t−1
i), 1 ≤ i ≤ N}.

Assume causal minimality is not satisfied, then following Proposition 1, there exists xtj and xt−1
i ∈ P

such that
xtj ⊥⊥ xt−1

i |P\{xt−1
i }

Denote P\{xt−1
i } as PA. Then, if E[ϵti] = 0, there exists a function c(·) such that

E
[
xtj
]
= fj

(
PA, xt−1

i

)
= c(PA), ∀xt−1

i .

This implies that fj is constant with respect to xt−1
i . It contradicts with the assumption that fj is

not constant in any of its arguments. Therefore, causal minimality in state-dependent TiMINo is
preserved given observed states.

13

Under review as a conference paper at ICLR 2023

A.3 IDENTIFIABILITY IN STATE-DEPENDENT TIMINO

Using the Markov and causal minimality results, we derived the following identifiability result for
state-dependent TiMINo, and the proof is inspired by Peters et al. (2013).

Theorem 1. Consider the state-dependent TiMINo, where only first-order Markov interactions are
present, and there is no instantaneous effects. Then the full time graph G1:T is identifiable from the
distribution of data given states.

Proof. Conditioned on S, assume that xt can be computed from two state-dependent TiMINo with
two different full time graphs, G1:T

1 and G1:T
2 . Suppose there is an edge xt−1

i −→ xtj which is in G1:T
1 ,

but not in G1:T
2 .

1. From G1:T
2 and the Markov condition (Lemma 1), we have xtj ⊥⊥ xt−1

i |{xt−1
k , 1 ≤ k ≤

N, k ̸= i}.

2. From G1:T
1 and causal minimality (Lemma 2), we have xtj ⊥̸⊥ xt−1

i |{xt−1
k , 1 ≤ k ≤ N, k ̸=

i}.

Since we have a contradiction, the full time graphs G1:T
1 and G1:T

2 must be equal. Therefore, the full
time graph is identifiable from the distribution of data given states.

Given the identifiability results, in theory, we can estimate the state-dependent TiMiNo in Eq. 2
with maximum likelihood (Zhang et al., 2015). In our implementation, we train the model with
the modified VAE objective 8. The empirical results show that it infers causal structures correctly;
however, it is nontrivial to prove that the identifiability holds with the modified VAE objective, which
has been discussed in Geffner et al. (2022) as well and will be our future work.

A.4 IDENTIFIABILITY OF CONDITIONAL SUMMARY GRAPH

Assuming the full time graph has been extracted successfully, one can deduce the structure of the
conditional summary graph by observing the edges of pairs of variables conditioned on the state
variable which is the cause of the interaction. In particular, the precise mathematical statement for
this identifiability result is as follows, assuming that all the states of each element have been visited
at least once in order to condition on each possible state.

Corollary 1. Consider the state-dependent TiMINo, where only first-order Markov interactions
are present, and there is no instantaneous effects. Then the conditional summary graph G1:K is
identifiable given the states S, if for any 1 ≤ i ≤ N and any 1 ≤ k ≤ K there exists 1 ≤ t ≤ T
such that sti = k.

Proof. Notice that Gk = {V, Ek} with V = {x1, . . . , xN}, therefore identifying Gk is equivalent to
identifying the edge set Ek. From the assumptions, the full time graph G1:T is identifiable (Theorem
1). Then for each variable xt+1

j we can retrieve from G1:T the parents PA(xt+1
j). Then for each

xti ∈ PA(xt+1
j), we can query its state sti and add an edge xi → xj to the edge set Ek if sti = k.

Now for any i, k consider the i-th node in the k-th summary graph Gk, since we assume that there
exists 1 ≤ t ≤ T such that sti = k, this makes sure that the edges coming out of node xi at state
k are added to Ek. Therefore this procedure captures all possible edge interactions, and G1:K is
identifiable given identifiability of G1:T .

Notice that the assumption on each variable visiting all possible states is required if one aims to
obtain the full structure of the conditional summary graph. Otherwise, if the state k of a variable xi
is not visited, this leaves the outgoing edges of the i-th node in Gk undetermined, since there is no
information to extract from the full time graph.

14

Under review as a conference paper at ICLR 2023

B IDENTIFIABILITY EXTENSIONS FOR STATE-DEPENDENT TIMINO

The first-order Markov assumption makes our definitions and identifiability analysis simpler. How-
ever, we argue this can still be very useful because (i) it usually suffices to describe particle trajecto-
ries (position, velocity, acceleration, etc), (ii) it allows us to present the conditional summary graph
as a compact representation of the causal structure, and (iii) we present a method (SDCI) which
leverages this assumption for efficient causal discovery. One could easily extend our identifiability
results and definitions to higher order time-lagged effects. Incorporating contemporaneous effects
is also possible, but requires further assumptions to consider an identifiable functional model class
(IFMOC) (Peters et al., 2011) (e.g. linear f st−1

j with non-Gaussian disturbances).

C IMPLEMENTATION DETAILS

All the experiments are implemented in Pytorch (Paszke et al., 2019) and carried out on NVIDIA
RTX 2080Ti GPUs.

C.1 PROBABILISTIC FRAMEWORK FOR SDCI

This section aims to clarify our implementation in terms of the probabilistic modelling perspective.
Note that some text from the main paper is re-used in this section. The underlying graphical model
for conditionally stationary time series differs among scenarios. Here we illustrate the graphical
models for scenario class 1 and 2.

C.1.1 SCENARIO CLASS 1

Generative model. Since the states S are observed at all times from our assumptions, we represent
the joint distribution given some deterministic observed states S̃.

p(X,W|S = S̃) = pψ(X|W,S = S̃)p(W) (15)

where p(W) =
∏K
k=1

∏
ij pk(wijk) represents the prior over conditional summary graphs (includ-

ing edge-types). We note that W represents the set of graphs denoting the state-dependent interaction
types among elements, and thus p(W) is a categorical distribution. p(W) can be used to provide do-
main knowledge by e.g. encouraging sparsity. The generative process of a sequence X, factorises
as

pψ(X|W,S) =
T−1∏
t=0

N∏
j=1

pψ(xt+1
j |xt, st,W) =

T−1∏
t=0

N∏
j=1

N (x̃t+1
j , σ2I). (16)

given some input states S and conditional summary graph W ∼ p(W). The mean x̃t+1
j is defined

as follows. Given sampled conditional sumary graph W = {wijk}, the decoder first queries the
edge-type for element j at time t+1 as ztij = wijk′ for sti = k′ (also see Eq. 3 in main paper). Then
the information along the predicted edge-type interactions is retrieved and aggregated as follows 2

htij =
∑
e>0

1(ztij=e)
fe(xti, xtj), x̃t+1

j = xtj + fp

(∑
i ̸=j

htij , xtj
)
, (17)

where {fe}nϵ−1
e=1 is a set of parametrizable functions, one defined for each edge type excluding the

no-edge interaction. fp is a neural network that aggregates the information from the previous time-
step, and models the dynamics for each variable xt+1

j .

Inference. Note that we wish to compute the posterior over the conditional summary graphs,
which might be intractable. We can introduce a variational distribution qϕ(W|X,S) that approxi-
mates the posterior for tractable inference and learning. The corresponding evidence lower bound
(ELBO) is

log p(X|S = S̃) ≥ −KL
(
qϕ(W|X,S = S̃)||p(W)

)
+ Eqϕ(W|X,S=S̃)

[
log pψ(X|W,S = S̃)

]
(18)

2In training, 1(ztij=e) is replaced by the e-th dimension of wijk′ which is sampled from qϕ with Gumbel-
softmax relaxation.

15

Under review as a conference paper at ICLR 2023

Similar to Löwe et al. (2020), we use a factorized q distribution qϕ(W|X,S) =∏K
k=1

∏
ij qϕ(wijk|X,S). The encoder receives both X and S as the input, and extracts an embed-

ding that represents the causal interaction conditioning on the state for every possible edge xi → xj .
We compute approximate posterior qϕ(wijk|X,S) as follows,

ϕij = fϕ(X,S)ij ∈ RK×nϵ , (19)
qϕ(wijk|X,S) = Θ(ϕijk/τ), (20)

where fϕ(X,S) is a neural network that returns outputs {ϕij : 1 ≤ i, j ≤ N} given the input
as X concatenated with a one-hot representation of the state variable S. Θ(·) denotes a softmax
activation with temperature τ . Note here the softmax activation is taken over the k-th row vector
ϕijk ∈ Rnϵ in ϕij , which is the edge embedding for xi −→ xj at state k. As this returns a categorical
distribution for qϕ(wijk|X,S), we apply the Gumble-softmax trick (Maddison et al., 2017) to enable
direct differentiation for back-propagation during training.

The construction of fϕ(X,S) is based on graph neural networks and MLPs. See Appendix C.2 for
more details.

C.1.2 SCENARIO CLASS 2

Generative model. Note that now the states are not observed, but could directly inferred from
observed data (as illustrated in Figure 1b). The corresponding joint distribution is as follows.

p(X,W,S) = pψ(X,S|W)p(W) = p(W)

T∏
t=1

pψ(xt|xt−1, st−1,W)p(st|xt) (21)

where we represent the time series structure for clarity purposes. p(W), and the generative process
are defined similarly as above, except now we also define the generation for S.

Inference. Again, we can use a variational approximation over the latent variables for tractable
inference. We make a factorised approximation qϕ(W,S|X) = qϕ(W|X)qϕ(S|X), where qϕ(W|X)
is defined in a similar way as in the fully-observed case (see above) except for using network fϕ(X)

for the softmax logits. For the states, we consider qϕ(S|X) =
∏T
t=1

∏N
i=1 qϕ(s

t
i|xti), with each

qϕ(s
t
i|xti) defined as

qϕ(s
t
i|xti) = Θ(ŝti/γ), ŝti = f̂s(xti), (22)

with γ < 1 as a temperature factor and f̂s as a neural network. The ELBO is

log p(X) = log

∫
p(X,W,S)dWdS ≥ Eqϕ(W,S|X)

[
log

p(X,S|W)p(W)

qϕ(W|X)qϕ(S|X)

]
(23)

≥ −KL (qϕ(W|X)||p(W)) + Eqϕ(W,S|X)

[
T∑
t=1

log
p(xt|xt−1, st−1,W)pψ(st|xt)

qϕ(st|xt)

]
(24)

≥
T∑
t=1

Eqϕ(W,S|X)

[
log pψ(xt|xt−1, st−1,W)

]
−KL

(
qϕ(W|X)||p(W)

)
−KL

(
qϕ(S|X)||p(S|X)

)
(25)

In our implementation, we set qϕ(S|X) = p(S|X), and thus KL
(
qϕ(S|X)||p(S|X)

)
= 0. Note

that we also sample states S ∼ qϕ(S|X) using the categorical reparameterization (Maddison et al.,
2017). Therefore, the decoding step can be performed as in Eq. 7 and the resulting message passing
operation becomes

htij =
K∑
k=1

1(sti=k)

∑
e>0

1(wijk=e)fe(x
t
i, xtj), (26)

and we apply similar Gumbel-softmax tricks as in the fully-observed state case to replace 1(sti=k)

and 1(wijk=e) during training.

16

Under review as a conference paper at ICLR 2023

MLP

Embedding
Pairwise

concatenation
Aggregate

MLP + Aggr

Edge type
distribution

Input
Pairwise

Embedding

0 T

Figure 9: Illustration of the implementation of the SDCI encoder which is adapted from ACD (Löwe
et al., 2020) and allow for conditioning on states. In the example, we consider 2 states.

C.2 ENCODER ARCHITECTURE

Below we provide details of the encoder architectures.

SDCI encoder The first design of the architecture extends directly from ACD (Löwe et al., 2020)
and we refer to this model as SDCI. We discuss the network construction for hidden state case as
an example, for which the logits ϕij for the distribution qϕ(W|X) are obtained as follows. First, the
model computes a latent embedding for each node i using the whole sequence:

h1
i = fϕ1

(x1:T
i). (27)

Then each embedding is updated using a graph neural network (GNN) that captures the correlations
between nodes. Specifically the message passing procedure follows the two equations below:

h1
ij = fϕ2(h

1
i ,h1

j), (28)

h2
i = fϕ3

(∑
i ̸=j

h1
ij

)
. (29)

Finally, we obtain the softmax logit ϕij ∈ RK×nϵ for every possible edge xi → xj and every
possible state 1 ≤ k ≤ K:

ϕij = fϕ4
(h2
i ,h2

j). (30)

The above network architecture design is visualised in Figure 9. according to equation 4. The
details of the architecture settings follows the design in Löwe et al. (2020). Each embedding step
fϕi

uses two-layers of 256 dimensions and ELU (Clevert et al., 2016) activations followed by a
batch normalization. fϕ4

uses skip connections and we modify its output size to generate a pairwise
embedding for each of the K states. For fully-observed state case, the architecture for qϕ(W|X,S)
follows a similar structure, except that for the first layer we use h1

i = fϕ1
(concat(x1:T

i , s1:Ti)), where
s1:Ti is a set of one-hot vectors representing the states {sti}Tt=1.

C.3 TRAINING SPECIFICATIONS (SDCI AND ACD)

All SDCI and ACD models have been trained using the following training scheme, including ACD
(Löwe et al., 2020).

Customized decoder (linear data only) One of our objectives in the linear data experiments is
to recover the underlying world parameters {βk}nϵ−1

k=1 . Therefore the decoder design imitates the
message passing operation presented in Eq. 31, which allows us to initialize the decoder using the
underlying world parameters and analyse the performance of the encoder as a separate entity from
the whole model.

17

Under review as a conference paper at ICLR 2023

Hyper-parameters Following Kipf et al. (2018), the models are trained using ADAM optimizer
(Kingma & Ba, 2015). The learning rate of the encoder is 5 ·10−4, the learning rate of the decoder is
1 · 10−3 for the synthetic linear data experiments and 5 · 10−4 for spring data experiments. Learning
rate decay is in use with factor of 0.5 every 200 epochs. We train for 1000 epochs in the linear
experiments and 500 epochs in the springs experiments, using a batch size of 128. The decoder
is trained with teacher forcing every 10 time-steps, i.e., it receives the ground-truth as input every
10 time-steps. The temperature τ is set to 0.5 and the variance of the Gaussian distribution of the
decoder is σ2 = 5 · 10−5. When considering the setting where we make the state dependent on the
dynamics of the objects (scenarios 2 and 3), we set λ = 103. For inferring the hidden states, we set
the temperature γ = 0.1 in the linear experiments and γ = 0.05 in the spring data experiments.

C.4 TRAINING SPECIFICATIONS (VRNN)

The experiments with NBA player trajectories consider VRNN as a non-causal baseline to compare
forecasting performance. Below we specify the network architecture and training scheme. To allow
a fair comparison between SDCI, ACD, and VRNN, we modify the decoder defined in Chung et al.
(2015) to condition the player positions on the ball features, similarly as we did for the previous
models: pθ(xt|x<t, z≤t,bt), where bt represents the ball features at time t. The architecture of
the model follows the original work: 3-layer LSTM networks with 256 dimensions and a latent
space size of 128 dimensions. The encoder and decoder architectures use two-layer MLPs of 256
dimensions. The models are trained using ADAM (Kingma & Ba, 2015) for 350K iterations with a
learning rate of 10−4 and batch size 32.

D DATASETS

In this section we provide detailed information about the datasets used in this work. For linear
and spring data, we generate 50000 samples of each setting for training the models. Regarding
testing, we compute all the metrics using 10000 samples, except when comparing with CD-NOD,
SAEM, and TdCM, where we use 200 samples since they require retraining the whole model for
each sample. Moreover, notice that for these baselines we use sequences of much longer length
(e.g., T = 100 or T = 1000) as these methods rely on longer sequences to get accurate results.

D.1 LINEAR DATA

The ground-truth structural equation for the data generation process at time t is

xt+1
j = αxtj +

N∑
i ̸=j

βkxti + ϵtj , k =
(
Esti

)
ij
, (31)

where α ∈ R controls the self-connection, and ϵti denotes independent noise sampled at each time-
step.

Below we provide details of the data generation process for the linear data. First, we set the
edge-type interactions. In our experiments we set α = 0.9, β1 = 0.5, and β2 = −0.5 and
ϵti ∼ U(−0.2, 0.2). To generate each sample, we need to sample the initial values of the contin-
uous variable for each element, x0i ∼ N (0, 2), and the underlying causal structure dependent on the
state, G1:K . At each time-step, it suffices to query the edge-type k for each pair of variables and
apply the corresponding causal effect βk following Equation 31. The edge-type is k =

(
Estj

)
ji

,

where (Es)ji denotes the causal effect from j to i at state s, which has been defined at the beginning
of the sequence. For all our experiments with this dataset, we simulate N = 3 variables. When
considering hidden states in scenario class 2, we set sti = 1(|xti|>2) (2 states).

There are potential concerns that the generated samples produced in the linear data may be unstable.
Still we use this data for one of the evaluations with the following reasons. First, they define a
simulated environment where one has the ground truth and can debug and control simulation errors
with ease. Furthermore, for one-dimensional variables xi ∈ R (which is our case), this dataset
reduces to a first order Vector Autoregressive (VAR) model (Sims, 1980), which is widely used

18

Under review as a conference paper at ICLR 2023

in works related to causal discovery for time series data (Gong et al., 2015). The evolution of a
sequence in this case can be expressed as follows:

xt = Axt−1 + et (32)

where A is the causal transition matrix and et is an independent noise process.

Regarding stability, the samples in this dataset are described by a causal transition matrix A where
the diagonal elements are α and the off-diagonal elements are βk where k is the edge-type interac-
tion. For a first-order VAR to be stable, the singular values of A need to be smaller than one. Taking
into the account that each sample can obey a different underlying causal graph, one needs to check
this condition for all the possible arrangements of the off-diagonal elements (since the diagonal ele-
ments are always α). The number of matrices that one needs to check grows rapidly for increasing
number of variables, which makes the verification of this condition computationally infeasible (re-
call that computing the eigenvalues of a matrix has cubic cost O(N3)). In practice, we generate
random samples and keep them if the magnitude of the last observation is comparable to the initial
one. We also require that the states are visited in similar proportions to ease the causal discovery
task.

D.2 SPRING DATA

When considering springs with directed connections, we follow the generation procedure described
Kipf et al. (2018) with a small modification where the spring interaction between a pair of particles
can change over time (depending on the state).

In this dataset, N particles are simulated inside a 2D box where they can collide elastically with
its walls. Each pair of variables is connected by a spring with uniform probability. To allow for
identification of causal connections (directed edges), the connection is made unidirectional. The
springs interact via the Hooke’s law and this setting yield the following equations:

fij = −δk(ri − rj), r̈i =
N∑
j=1

fij , xi = {ri, ṙi} (33)

where fij is the unidirectional interaction from particle j to particle i, δk denotes the edge-type
for each pair of variables, and ri and ṙi denote the 2D position and velocity of each particle. The
continuous variable xi is constructed by concatenating the position and the velocity measurements.

Notice that the above equation defines the evolution of the continuous variable for a single time-step.
In our setting, we have that k =

(
Estj

)
ji

. Thus, fij will change over time, contrary to Kipf et al.

(2018). Since we consider two edge-types, we define δ0 = 0 and δ1 = 0.1. To generate samples, we
first generate a random conditional summary graph G1:K and the initial location and velocity. Then,
trajectories are simulated by solving the previous differential equations using leapfrog integration.
The step size used is 0.001 and the trajectories are obtained by sub-sampling each 100 steps. In our
experiments, we set T = 80. When considering hidden states in scenario class 2, we set sti = 1(xti>0)

(2 states).

D.3 NBA DATA

Figure 10: Hand-crafted ground-truth
state map on NBA data which is for-
warded to SDCI with observed states.
Colours indicate different states.

The NBA dataset (Linou, 2016) consists of recordings
from 632 NBA games played during Winter 2015-2016.
Each game is composed by approximately 400 to 600
events, which represents sequences of plays. In each tra-
jectory, we find information about the ball location and 5
players of the 2 different teams (10 in total). The coor-
dinates of the ball and players are represented in 3D and
the length of each sequence can vary from 100 to 600. In
our experiments, we consider a sequence up to 200 time-
steps (T = 100 for reconstruction and the rest 100 steps

2Data extracted from the following code repository https://github.com/linouk23/
NBA-Player-Movements – last accessed 2022-09-28.

19

https://github.com/linouk23/NBA-Player-Movements
https://github.com/linouk23/NBA-Player-Movements

Under review as a conference paper at ICLR 2023

for prediction), which gives us a total training dataset of 150K samples and a test set of 6380 samples.
Data inspection shows that the court size is 100× 50, and we use this information to standardise the
data. For experiments with SDCI with observed states, we design some ground-truth states which
depend on different locations of the court. We set K = 4 and our choice is shown in figure 10.

E COMMENTS ON EVALUATION METRICS

E.1 SUMMARY GRAPH IN TDCM

Huang et al. (2015) do not specify explicitly the computation of the summary graph (or an equivalent
object). To allow a fair comparison, we take the same approach as in Huang et al. (2019), where
and edge from i to j is not incorporated in the summary graph if the corresponding estimated time-
varying coefficient has mean and variance lower than a theshold.

E.2 ACCURACY OF THE SUMMARY GRAPH

To clarify, the evaluation of the summary graph considers correctly classifying the interaction be-
tween all pairs of nodes in both directions. To exemplify, for N=3 variables, our method needs to
produce 6 predictions (one for every pair of edges in both directions). We then compute the accuracy
of these predictions and average across all the samples in the test set.

E.3 COMPUTING THE SUMMARY GRAPH IN SDCI

Notice that SDCI can extract the conditional summary graph (CSG) whereas the baselines we com-
pare with only consider the summary graph (SG). Consequently, the only immediate way to compare
the performance in capturing the causal structure among the methods we consider is to evaluate the
latter. From the definition of summary graph, we deduce that one can estimate it by taking the union
of the graphs in the CSG. This is used to compute the summary graphs of both SDCI and the ground
truth structure of the generative process.

F ADDITIONAL RESULTS

In this section we report additional experiments and qualitative visualisations, which can be helpful
to complement the main results from Section 4 in the main text.

F.1 LINEAR DATA

Table 2: Test edge-type accuracy (in %) and MSE for linear data gen-
erated with scenario class 1 settings (fully-observed states) for 2 states
and 2 edge-types.

METHOD EDGE ACCURACY TEST MSE
ACD - FIXED DECODER 66.02± 0.29 0.49± 1.89 · 10−2

ACD 66.44± 0.29 0.47± 1.98 · 10−2

SDCI - FIXED DEC. 90.43± 0.23 2.64 · 10−2 ± 4.55 · 10−3

SDCI 93.84± 0.19 1.57 · 10−2 ± 4.03 · 10−3

Scenario class 1 We con-
sider the case of scenario
class 1 (see Section 1)
where the states S are ob-
served and their dynam-
ics are independent from
X. We compare SCDI-
Static with ACD, and eval-
uate the effect of explic-
itly modeling the underly-
ing state. We further con-
sider the case where the decoder is fixed and uses the ground-truth βk values, for which we denote
as - FIXED DECODER or - FIXED DEC. for short.

Table 2 shows the edge-type identification accuracy and test data reconstruction mean-squared error
(MSE) for a simulation with N = 3 variables, K = 2 states, and nϵ = 2 edge-types (no-edge
and β1). SDCI successfully performs the task of identifying the edges. In terms of the ℓ1 error for
estimating {βk}, ACD scores worse (∼ 10−3) compared to SDCI (∼ 10−5).

We repeat the same experiments with 3 edge-types and 2 states, and report the results in Table 3.
As before, SCDI shows superior performance in comparison to ACD. In terms of the ℓ1 error for

20

Under review as a conference paper at ICLR 2023

Table 3: Test edge-type accuracy (in %) and MSE for linear data generated with scenario class 1
settings (fully-observed states) for 2 states and 3 edge-types.

METHOD EDGE ACCURACY TEST MSE
ACD - FIXED DECODER 49.29± 0.31 0.50± 1.56 · 10−2

ACD 34.11± 0.28 0.66± 2.52 · 10−2

SDCI - FIXED DEC. 92.75± 0.22 1.00 · 10−2 ± 1.57 · 10−3

SDCI 84.36± 0.28 3.64 · 10−2 ± 2.19 · 10−3

estimating {βk}, we observe that SDCI provides more accurate estimations (∼ 10−2 respectively)
compared to ACD (∼ 10−1).

(a) Ground-truth (b) 2 edges

(c) 3-edges const (d) 3-edges free

Figure 11: Underlying state function for scenario
class 2 in the linear dataset, sti = 1.

Scenario class 2 The results considering lin-
ear data with hidden states in scenario class 2
show that the CSG accuracy decreases when
considering an additional edge-type (see Ta-
ble 1). However, when leaving the summary
graph constant (3-EDGE CONST) we obtain bet-
ter CSG estimations. Figure 11 shows the ap-
proximate posterior qϕ(sti|xti) inferred by SDCI
in each of the 3 settings studied in this experi-
ment along with the true underlying state func-
tion, sti = 1(|xti|>2). We notice that SDCI
achieves better results when the quality of the
estimated state function is higher. This is ex-
pected, since querying the correct edge-type
from the conditional summary graph strongly
relies on accurate state estimations. Therefore,
the model has to learn the state distribution and
only then will be able to infer accurate causal
structures. Although they can be challenging in
general, our results show that SDCI is success-
ful in performing both learning steps in simple settings. This offers a promising direction of work
towards the conditional stationary setting with hidden states.

Figure 12 shows samples for the linear data considering hidden states and 2 edge-types along with
the corresponding causal summary graphs and summary graphs inferred by both SDCI and ACD.
Since SDCI achieves high accuracy, the majority of the graph estimations match the true causal
summary graph, which results in good forecasts. We also show two cases (two last rows) where the
graph estimations do not match the ground-truth, and in these cases the model does not predict the
future trajectories accurately. Similar to what we show in the main text, the trajectories obtained
with ACD drop rapidly to 0, and the summary graph estimates are considerably worse.

F.2 SPRINGS DATA

Scenario class 2 We provide additional visualisations for the case with hidden states in Figure 13,
where we show the predictions of both SDCI and ACD as well as the corresponding conditional
summary graphs and summary graphs extracted by both methods respectively. As in the linear case,
SDCI produces accurate causal graph estimates. Regarding time series forecasting, our method is
able make reasonable predictions. Notice that to train the models, we use teacher forcing every 10
time-steps, which means that the learned models are less suited for long-term dynamics modelling.
However, one can expect to obtain more accurate predictions by progressively reducing the teacher
forcing frequency during training. Considering ACD, despite being restricted by assuming stationary
time series, it still infers graph structures that allow the model to produce decent forecasts.

Scenario class 3 We consider the case where the particles are contained in a box, and the state of
a particle transitions when it collides with the wall of the box (see Figure 1c). For simplicity, we
only consider K = 2 states that transition alternatively on wall collision. Due to the complexity of
the state transitions, our method cannot identify accurate causal structures for hidden states. Instead,

21

Under review as a conference paper at ICLR 2023

Table 4: Test Edge-type accuracy (in %) and test MSE using spring data with state transitions on
wall collision.

METHOD EDGE ACCURACY TEST MSE STATE ACC

ACD 68.63± 0.14 1.46 · 10−3 ± 1.35 · 10−5 98.21± 0.02
SDCI 79.19± 0.14 1.39 · 10−3 ± 1.33 · 10−5 98.53± 0.02

we use the state information to learn the transitions and leave the hidden setting for future work.
We report SDCI’s performance along with ACD in Table 4. Regarding edge accuracy SDCI per-
forms significantly better, and ACD is limited by considering stationary dynamics only. However,
both methods achieve comparable test MSE metrics, indicating that that ACD can still make decent
predictions even when it fails in identifying the edge-type interactions.

Predictions Conditional summary graph Summary graph

Figure 12: time series forecasting (left) of both SDCI (solid line) and ACD (dashed line) for 50
time-steps along with the ground-truth (GT, transparent line). The first 50 time-steps are given to
the models as input and the background color represents the state value. We show the associated
conditional summary graph (center) and summary graph (right) of SCDI (red) and ACD (blue) along
with the ground-truth (GT, black) for each sample. Each row represents a different sample.

22

Under review as a conference paper at ICLR 2023

Predictions
Conditional summary graph Summary graphGround-truth SDCI ACD

Figure 13: time series forecasting (left, dotted lines) of SDCI and ACD for 50 time-steps along
with the ground-truth. We use solid lines to denote the input to the models and the background
color represents the state value. We show the associated conditional summary graph (center) and
summary graph (right) of SCDI (red) and ACD (blue) respectively along with the ground-truth (GT,
black) for each sample. Each row represents a different sample.

23

	Introduction
	Related work
	State-dependent causal inference (SDCI)
	Problem formulation
	Implementation

	Experiments
	Experiments on linear data
	Experiments on nonlinear spring data
	Experiments on NBA player trajectories

	Conclusions
	Identifiability Proofs
	State-dependent TiMINo preserves Markov condition
	State-dependent TiMINo preserves causal minimality
	Identifiability in State-Dependent TiMINo
	Identifiability of conditional summary graph

	Identifiability extensions for state-dependent TiMINo
	Implementation details
	Probabilistic framework for SDCI
	Scenario class 1
	Scenario class 2

	Encoder Architecture
	Training specifications (SDCI and ACD)
	Training specifications (VRNN)

	Datasets
	Linear data
	Spring data
	NBA Data

	Comments on evaluation metrics
	Summary graph in TdCM
	Accuracy of the summary graph
	Computing the summary graph in SDCI

	Additional results
	Linear data
	Springs data

