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ABSTRACT

We introduce a new distributed policy gradient algorithm and show that it outper-
forms existing reward-aware training procedures such as REINFORCE, minimum
risk training (MRT) and proximal policy optimization (PPO) in terms of training
stability and generalization performance when optimizing machine translation mod-
els. Our algorithm, which we call MAD (on account of using the mean absolute
deviation in the importance weighting calculation), has distributed data generators
sampling multiple candidates per source sentence on worker nodes, while a central
learner updates the policy. MAD depends crucially on two variance reduction
strategies: (1) a conditional reward normalization method that ensures each source
sentence has both positive and negative reward translation examples and (2) a new
robust importance weighting scheme that acts as a conditional entropy regularizer.
Experiments on a variety of translation tasks show that policies learned using the
MAD algorithm perform very well when using both greedy decoding and beam
search, and that the learned policies are sensitive to the specific reward used during
training.

1 INTRODUCTION

There is increasing interest in fine-tuning conditional language models on the basis of feedback from
task-specific reward models or similarity functions that compare to human-generated reference outputs
rather than relying exclusively on supervised learning (Stiennon et al., 2020; Ziegler et al., 2019; Wu
et al., 2018; Paulus et al., 2018; Rennie et al., 2017; Ranzato et al., 2016). Maximising sequence
level rewards has several advantages. First, it avoids the apparent conflict between the intuitive
importance of “getting the full sequence right” in generation problems and the more conventional
token-level cross entropy loss. Second, since a policy trained to maximize rewards is supervised
with its own outputs—both good and bad ones—it mitigates issues arising from “exposure bias,” in
which a learned policy that has been trained only on correct examples has no experience recovering
from errors and therefore performs poorly at test time (Ranzato et al., 2016). Third, feedback from
(learned) rewards can be a cost-effective strategy for incorporating human preferences about how a
system should behave (Stiennon et al., 2020; Christiano et al., 2017).

Unfortunately, fine-tuning policies for generating in complex output spaces, such as language, on
the basis of sparse rewards is challenging. Estimating and debugging reliable auxiliary critic/value
functions that are needed by many learning algorithms is challenging (Wu et al., 2018; Bahdanau et al.,
2017; Nguyen et al., 2017), and commonly used average or batch-level reward baselines (Kreutzer
et al., 2017) are poor variance reducers since they are independent of the input, and input difficulty is
a strong determinant of reward magnitude.

In this paper, we propose a new distributed policy gradient algorithm (§2) for fine-tuning translation
models that addresses these issues. The distributed setup lets us use modest computation to obtain
simple and effective empirical reward baselines (Rennie et al., 2017) rather than using inappropriate
batch-level statistics or relying on brittle auxiliary value models. Our proposed algorithm has
two components designed to make learning from the reward signal more effective: we employ a
sampling and reward normalization strategy that encourage batches to contain a mix of both positive
and negative rewards for each source sentence and, second, an importance weighting strategy that
encourages the algorithm to pay attention to trajectories that are slightly off the current policy. Thus,
our algorithm learns from trajectories that are already relatively likely under the current policy
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(meaning any updates to the policy will be relatively small), while also encouraging continued
exploration throughout training by down-weighting trajectories where the model is very confident.
This enables the algorithm to make large improvements in reward while taking small, conservative
steps to change the behaviour and, also, helps slow down the rate of policy collapse letting the model
obtain continued performance improvements over many training steps.

The policies learned using our MAD algorithm produce high-quality translations, even when using
greedy decoding. In our main experiments (§3), we use sentence BLEU as the reward and find that
the average improvement on held-out test sets over the initial cross entropy trained model is 2.0
BLEU. We also find that the models are less sensitive to the beam search hyperparameters beam size
and length normalization. This means we do not need to optimize the length normalization for each
dataset and observe almost no performance degradation with larger beam sizes. We confirm that the
algorithm learns different policies depending on the reward function used during optimization, with
the resulting policies showing reward-specific improvements on held-out data. Finally, we carry out a
careful empirical analysis (§4) to better understand the impact and role the various components of the
algorithm have on training dynamics and generalization performance.

2 ALGORITHM

Our algorithm consists of workers generating training trajectories and rewards, in parallel, from a
slightly out-of-date copy of the policy, θold, and a central learner that updates the current policy, θ. At
the beginning of training, both θ and θold are initialized from a pretrained cross entropy model. The
data generation algorithm is shown Alg. 1 and the learner in Alg. 2. The learning algorithm has three
core components: sampling from a range of temperatures (§2.1), conditional reward normalization on
the basis of empirical means and variances (§2.2), and a novel robust importance weighting strategy
that focuses learning efforts on samples that are slightly off policy (§2.3). We discuss each of these
components in turn.

Algorithm 1 Asynchronous data generator
1: function GENERATE(N,∆, Tmin, Tmax)
2: while True do
3: θold ← θ ▷ Get current global weights
4: (x,yref) ∼ Dtrain

5: for i ∈ [1, N ] do ▷ Obtain Yx, q, and r
6: ∆← (Tmax − Tmin)/(N − 1)
7: T ← Tmin + (i− 1)×∆
8: yi ← SAMPLE(x,θold, T )
9: qi ← log p(yi | xi;θold)

10: ri ← ∆(yi,yref)
11: end for
12: µr ← 1

|Yx|
∑

i ri

13: σr ←
√∑|Yx|

i=1 (ri − µr)2/|Yx|
14: µ̃q ← MEDIAN(q)
15: σ̃q ← MEDIAN(|q− µ̃q|) ▷ Median dev.
16: for i ∈ [1, |Yx|] do
17: ri ← (ri − µr)/σr

18: vi ← exp(−|qi − µ̃q|/σ̃q)
19: ENQUEUE(x,yi, qi, ri, vi)
20: end for
21: end while
22: end function

Algorithm 2 Learning algorithm
1: function LEARN(S, η,θCE)
2: θ ← θCE
3: for i ∈ [1, S] do
4: x,y, q, r, v ← DEQUEUE()
5: p← log p(y | x;θ)
6: u← exp(p− q)
7: α← SG(min{u× v, 2})
8: L ← α× r × log p(y | x; dropout(θ))
9: θ ← θ + η × ∂L

∂θ
10: end for
11: end function

2.1 MULTI-TEMPERATURE SAMPLING

To obtain suitably diverse candidates to learn from, it is conventional to add a temperature hyperpa-
rameter used to generate samples (Shen et al., 2016; Papini et al., 2020). We identify two problems
with this. First, there is the practical matter of needing to select a temperature in order to obtain good
performance. Second, it is widely observed that policy gradient algorithms result in increasingly
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peaked distributions as training progresses (Kiegeland & Kreutzer, 2021; Choshen et al., 2020; Rennie
et al., 2017), meaning that the amount of “exploration” being considered by the algorithm decreases
over time. While some RL tasks are interested in maximising total accumulated returns over time
(meaning that “exploitation” is important), we rather seek to learn a policy that is capable of behaving
as intelligently as possible in states that are not encountered during a training phase, and therefore,
we seek an exploration-heavy sampling strategy. To avoid the difficulties with drifting entropy, we
use a simple approach of generating populations of samples at several different temperatures.

Concretely our data generation algorithm (lines 5–8 of Alg. 1) begins by sampling N translations for
the current policy and source sentence x. Each sample is generated using a different temperature
that is determined by finding equally spaced values1 between the interval [Tmin, Tmax]. Duplicate
translations are removed. The process we use is:

Yx = UNIQUE({SAMPLE(x,θ, t); t ∈ T})
where

T = {Tmin + δt · (i− 1); i ∈ {1, . . . , N}}

δt =
Tmax − Tmin

N − 1
.

2.2 CONDITIONAL REWARD NORMALIZATION

Reward normalization is a well known variance reduction technique for policy gradient methods, with
the simplest version being to subtract a constant from the reward (Williams, 1992). Other methods
have been proposed such as subtracting a model baseline reward (Weaver & Tao, 2001), the running
average of the rewards seen during training (Kreutzer et al., 2017), or z-scoring the rewards in a
training batch (Stiennon et al., 2020). As demonstrated by Kiegeland & Kreutzer (2021), using the
running reward average b helps to reduce variance when REINFORCE is applied to translation.

While empirically effective, these baselines explain less reward variation than we might hope. We
note that the difficulty of generating a good translation is strongly dependent on the intrinsic difficulty
of the source sentence, not merely the current policy (Don-Yehiya et al., 2022). Since the usual
reward normalization methods do not take this dependency into account, this results in a bias toward
giving difficult sentences negative rewards and easier sentences positive rewards, leading to less
stable learning (see §4.2 and Appendix A.3).

We therefore use a standardization method that is conditioned on the source sentence. We take the set
of translations for source sentence x and obtain a vector of rewards ri = ∆(yi,yref) ∀ i ∈ [1, |Yx|]
where ∆(y,yref)

2 is a scalar valued reward indicating how well y communicates the contents of the
reference translation yref. We then standardize these rewards by removing the mean and dividing by
the standard deviation (lines 12–20 of Alg. 1),

ri = (ri − µr)/σr ∀ i ∈ [1, |Yx|], where

µr =
1

|Yx|
∑

ri, σr =

√
1

|Yx|
∑

(ri − µr)2.

This ensures that every source sentence, irrespective of its translation difficulty, has examples with
positive and negative rewards.

In contrast, the standard reward used for the PPO algorithm is the z-scored reward of the training
batch, r̃i = (ri − µ̃r)/σ̃r ∀ i ∈ [1, |B|], where B is the training batch with randomly sampled (x,y)
examples and µ̃r and σ̃r are respectively the mean and standard deviation of the rewards in B.

2.3 MAD IMPORTANCE WEIGHTS

A key feature of our algorithm—and the one that gives it its name—is the use of a new importance
weighting scheme for deciding which sampled trajectories are most valuable for updating the policy

1https://numpy.org/doc/stable/reference/generated/numpy.linspace.html
2For most of this work ∆(y,yref) refers to sentence BLEU, see §4.6 for alternatives and analysis.
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LREINFORCE = (r − b) · log p(y | x)
LPPO = min{u · r̃, clip(u, 1− ϵ, 1 + ϵ) · r̃}

LMRT =
∑
y∈Yx

r · p(y | x)∑
y′∈Yx

p(y′ | x)

LMAD = min{u · v, 2} · r · log p(y | x)

Figure 1: Sequence level losses used by the algorithms evaluated in this paper. x is the source
sentence and y is a sampled translation. Here r = ∆(y,yref) is the reward, which is sentence BLEU;
r̃ and r are different ways of normalizing said reward. The policy sequence probability is p(y | x)
is while u and v are importance weightings that depend on the this value along with the behaviour
sequence probability, q(y | x). See §2 for full explanation.

and which others should be downweighted. For trajectory i, our full importance sampling correction
is

wi = min{ui · vi, 2}. (1)

We explain ui and vi below and note that truncating importance weights is a standard variance
reduction strategy (Cortes et al., 2010; Schulman et al., 2017).

The first term in Eq. 1, ui, is the standard importance weighting ratio (Precup et al., 2000; Pang &
He, 2021) to deal with the fact that in a distributed setup, data is generated from a stale policy:

ui = exp(pi − qi), where
pi = log p(yi | x;θ), qi = log p(yi | x;θold).

The second term in Eq. 1, vi, encourages continued exploration during training by having the learner
pay attention to samples that are “relatively likely” under the current policy (as approximated by q,
since we want the calculation to be carried out on the worker nodes, and p is only available on the
central learner). We operationalize the notion of “relatively likely” as something that is near to the
median3 probability under q of the elements in Yx, using the exponentiated negative median absolute
deviation (MAD; lines 14–20):

vi = exp(−|qi − µ̃q|/σ̃q)

µ̃q = MEDIAN(q)

σ̃q = MEDIAN(|q− µ̃q|).

Why do we want to concentrate learning on these relatively likely trajectories, rather than perhaps
other trajectories that have even higher (or lower) rewards? First, down-weighting very unlikely
samples is a strategy for reducing the gradient variance, since gradients associated with smaller
changes to the policy will require, on average, less significant updates to the network. This is
advantageous since smaller gradient variance can lead to better generalization error Kreutzer et al.
(2017). Second, Choshen et al. (2020) provide evidence that RL algorithms cause the policy to
become more peaked during training which means that sampling diversity decreases and, thus, the
amount exploration as training progresses is reduced (§4.3). Since we seek an exploration-heavy RL
algorithm, we focus learning effort on instances which are “in reach” of the current policy but not at
the current policy’s mode.

3 EXPERIMENTS

3.1 DATASETS

We run our model along with all the baselines on a total of 9 dataset–language direction translation
tasks. See Appendix C for the detailed description of dataset, preprocessing, and tokenization.

3The median was chosen because q can have a long tail due to degenerate translations.
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3.2 TRAINING

For each task, we pretrain a sequence-to-sequence transformer model (Vaswani et al., 2017), using
a word level cross entropy loss, until convergence. We refer to this model as the Cross Entropy
(CE) model. All treatments for a task are initialized using the same CE checkpoint, which is the
checkpoint that had the highest development set BLEU. The treatments are trained using the same
training/development sets for a total of 200K steps with early stopping if the average development
BLEU is not improved for the last 20K steps. In the case of PPO and MAD, every 20 training steps
the learning node saves a checkpoint which the workers and evaluators load asynchronously. We use
a global batch size of 256 training examples per step. See Appendix B for detailed hyperparameter
configurations and Appendix D for implementation details.

3.3 COMPARED RL OBJECTIVES

Figure 1 gives the primary RL objectives we compare. These are: the REINFORCE algo-
rithm (Williams, 1992) using a moving average baseline (Weaver & Tao, 2001), a proximal policy
optimization algorithm (Schulman et al., 2017, PPO), minimium risk training (Shen et al., 2016,
MRT), and our algorithm MAD. Since REINFORCE and MRT are on-policy algorithms, we optimize
these objectives on a single worker; the distributed infrastructure is only used for MAD and PPO.

3.4 EVALUATION AND HYPERPARAMETERS

We use the sacreBLEU script Post (2018)4 with detokenized model hypothesis and the original
references.5 When running on the test set, we select the checkpoint that had the highest development
set BLEU under greedy decoding.

The important hyperparameters of our algorithm are N , Tmin, and Tmax. During preliminary experi-
ments, we swept over N and found that anything in the range of [8, 24] provided similar results. We
fixed it at N = 12 for all the experiments reported in this work. We found that the optimal temperature
range was dataset dependent (§4.5) so performed sweeps for all the models in order for fair comparison.
For MAD, we swept over 4 interval ranges, [Tmin, Tmax] ∈ {[0.2, 0.6], [0.4, 0.8], [0.6, 1.0], [0.8, 1.2]},
while for the baselines we found the single best temperature by sweeping over 10 temperatures in the
interval [0.2, 1.2] using increments of 0.1. See Table 3 in Appendix B for selected temperatures.

3.5 MAIN RESULTS

Table 1 presents the performance of our algorithm compared to other objectives (§3.3) on 9 machine
translation tasks. We compare these models on both greedy decoding and beam search. As can be
seen, our reinforcement learning algorithm outperforms REINFORCE, PPO, and MRT by an average
of 1.0 BLEU when using greedy decoding. With beam search decoding, MAD outperforms the strong
MRT baseline by 0.5 BLEU on average.

We observe that models trained using the MAD algorithm display a smaller gap in performance
between greedy decoding and beam search decoding. The explanation for this is related to obtaining
more peaked and possibly smoother output distributions (Dabre & Fujita, 2020). The benefit of this is
that it reduces the need for per dataset beam search hyperparameter tuning. Specifically, Meister et al.
(2020) show that, when using beam search, it is necessary to tune a length normalization term, α, for
each dataset in order to prevent the model from generating sentences that are too short or too long.
Since the MAD algorithm results in models that are less sensitive to α we are able to use a uniform α
on all the datasets without sacrificing substantial performance.

We provide some additional remarks along with more test set results using larger beams and other
decoding hyperparameters in Appendix A. The test results in Table 8 show that MAD’s performance
is fairly insensitive to these hyperparameters in marked contrast to CE (Meister et al., 2020).

4https://github.com/mjpost/sacreBLEU
5See Table 7 in Appendix B for settings.
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Table 1: Performance of different algorithms on translation. We report sacreBLEU on the held-out
test set between the detokenized model hypothesis and original (not tokenized) references. Note that
for IWSLT’14 and NIST both the hypotheses and references were lower-cased to keep comparable
with prior works. µ is the average BLEU across all datasets for each method. MAD outperforms
other methods by a large margin when greedy decoding is used. The gap shrinks when beam search
is used, but MAD still outperforms the next best method, MRT.

Greedy Decoding
NIST IWSLT’14 WMT’14 WMT’20

Model Zh-En De-En En-De De-En En-De Zh-En En-Zh Ps-En En-Ps µ
Cross Entropy 45.5 30.1 26.7 30.5 25.7 25.0 37.3 6.6 6.0 25.9
REINFORCE 45.5 30.2 26.7 29.3 25.7 25.0 37.1 7.2 5.9 25.8
PPO 45.9 31.0 27.7 30.8 25.6 24.8 37.3 7.3 7.5 26.4
MRT 45.2 30.8 26.7 31.3 25.8 26.4 38.8 8.4 7.5 26.8
MAD 47.4 32.1 28.0 31.8 27.1 27.5 39.5 8.8 7.9 27.8

Beam Search | Beams = 5 | Length Normalization (α) = 1.0
NIST IWSLT’14 WMT’14 WMT’20

Model Zh-En De-En En-De De-En En-De Zh-En En-Zh Ps-En En-Ps µ
Cross Entropy 47.6 31.4 27.9 31.8 26.4 26.4 37.5 7.0 6.0 26.9
REINFORCE 47.5 31.4 28.0 30.6 26.3 26.3 37.8 8.1 6.0 26.9
PPO 47.5 31.3 28.2 31.7 26.3 26.2 37.5 7.7 7.6 27.1
MRT 47.0 31.9 27.9 32.0 26.6 27.4 39.3 9.2 7.9 27.7
MAD 48.2 32.4 28.3 32.2 27.3 28.0 39.9 9.4 8.1 28.2

4 ANALYSIS AND ABLATION EXPERIMENTS

In this section we investigate various aspects of the MAD algorithm. We use a variety of datasets as
to not overfit our analysis to the quirks of a specific one. We start off with a full ablation study (§4.1)
followed by a closer inspection of the effects of conditional reward normalization (§4.2) and the MAD
importance weights (§4.3). After this, we move on to looking at training stability (§4.4) and MAD’s
temperature range hyperparameter sensitivity (§4.5). Finally, we discuss the impact of optimizing
different rewards (§4.6).

4.1 FULL ABLATION

In this section we run an ablation study on the two innovations of the MAD algorithm, the conditional
normalized rewards (§2.2) and the MAD importance weights (§2.3). For each experiment we use the
distributed and sampling components of our algorithm. In experiments where our conditional reward,
ri, is not included, we use PPO’s batch normalized reward, r̃i and in experiments where the MAD
weights, wi, are not included, we use the standard importance weights, min{ui, 2}. We start with a
baseline setup where both the conditional reward normalization and MAD weights are removed; this
is the pink line in Figure 5. Next we add back each of these components separately and then, finally,
add both components back which results in our MAD algorithm. We can see from this ablation that
the primary driver of our results is the conditional reward normalization and that the MAD weights
reduce variance enabling the model to continue learning for more training steps.

4.2 CONDITIONAL REWARD EFFECT

Our ablation study shows that using conditionally normalized rewards is the most important part of
our algorithm. We hypothesized that due to the heterogeneous nature of source sentence translation
difficulty that unconditional normalization schemes would systemically assign negative rewards
to difficult source sentence translations. To test this hypothesis, we randomly sampled 10 source
sentences from the WMT’20 En→Zh training dataset and ran our translation sampling algorithm on
them. We then compared the assigned rewards for the translations when using batch normalization
vs. conditional normalization. Figure 2 shows that when unconditional normalization is used the
sign of the reward is strongly determined by the source sentence rather than the relative quality of
the translation and that this issue is mitigated by using conditional normalization. We also note that
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Figure 2: Some source sentences are intrinsically more difficult to translate than others. This
results in their translations receiving systematically lower BLEU scores. When unconditional reward
normalization such as batch level normalization (left column) is applied, the training examples for
these difficult source sentences predominately receive negative rewards. To correct this, we introduce
conditional reward normalization (§2.2) (right column) and see that it produces both positive and
negative rewards for every source sentence. We also find that the batch level reward distribution
(bottom row) is more normal when using conditional normalization.

the distribution of rewards at the batch level is more Gaussian when using conditional normalization.
This analysis helps to explain why models trained with an unconditionally normalized reward exhibit
a catastrophic drop in performance during training. These models are consistently reducing the
entropy of easy source sentences and increasing the entropy of difficult ones which eventually leads
to divergence. We explore the concept of source sentence difficulty in the Appendix A.3.

4.3 MAD WEIGHTS EFFECT

At first it seems counter-intuitive that we would want to down-weight both high and low probability
translation samples. Lowering the weight of very bad translations makes sense because they are
off policy and, in many cases, degenerate. However, down-weighting translations that have a very
high probability seems counterproductive. Prior work has shown that translation models fine-tuned
with policy gradient methods end up having lower entropy predictions (Kiegeland & Kreutzer, 2021;
Choshen et al., 2020). We observed that when sampling from a pre-trained cross entropy model, as
is done at the very beginning of RL fine-tuning, the highest reward sample is usually the greedily
decoded translation which also usually has the lowest entropy since it comes from the mode of the
sampling distribution. This results in the policy’s mode getting the most positive reinforcement
during training and makes the sampling distribution more peaked. We formulated the MAD weights
to try and preserve sampling diversity over the course of training and Figure 6 demonstrates that
it is effective in this regard. We see MAD weights as a sort of conditional entropy regularizer that
focuses learning to occur in the space that is slightly off the current policy. It is conditional in the
sense that the level of low entropy penalization (down-weighting) depends on the characteristics of
the sampling distribution for the given source sentence and policy state. MAD weights are a step in
the right direction but there is more research to be done in this area since it does not prevent policy
collapse, just slows down the rate at which it occurs.

4.4 TRAINING STABILITY

We look at two aspects of training stability: 1) the amount of variance in generalization performance
between random seeds and 2) the rate at which over-fitting occurrs during training. Given this
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Figure 4: MAD temperature hyperparameter
sweep. In line with the other sampling based
sequence level optimization baselines we evalu-
ated, MAD is sensitive to the temperature range
used to generate samples.

definition of training stability, we can see in Figure 3 that MAD provides stable training for many
steps. The difference in generalization performance between the best and worst MAD seed on NIST
was 0.15 BLEU. Also, in terms of over-fitting, PPO and REINFORCE consistently produced learning
curves similar to the orange lines in Figure 3 across all the datasets we evaluated. We did not observe
this catastrophic drop in performance when using MRT or MAD. The primary difference between
MRT and MAD in terms of training dynamics is that MAD has lower seed variance and obtains its
max development dataset BLEU score later in training.

4.5 TEMPERATURE SENSITIVITY

We find that all of the sequence level optimization algorithms evaluated in this work are sensitive to
the temperature used during sampling. Figure 4 shows the MAD training curves during a temperature
sweep on WMT’20 En→Zh. We can see that getting the correct temperature range is important,
but that there is some leeway in terms of the optimal range. Table 3 in the Appendix shows the
optimal temperatures found for each of the datasets and algorithms. Generally speaking, there is
agreement among the various algorithms as to the optimal temperature range for a given dataset.
One of the benefits of using a temperature range rather than a single temperature is that a smaller
sweep can be performed to find this optimal hyperparameter. We were able to reduce the number
of sweep experiments from 10 to 4 (§3.4). The MAD algorithm works just as well when using a
single temperature, but we believe the reduction in computational burden during tuning makes using
a temperature range worth the effort.

4.6 IMPACT OF REWARD TYPE

In the experiments reported so far, we have used sentence BLEU as a reward function. However,
Choshen et al. (2020) have shown that uninformative rewards work as well as informative rewards at
improving the BLEU score, conjecturing that the reported improvements in these algorithms are due
to training artifacts such as reduced entropy of the predictive distribution rather than reward-driven
learning. In this section we look at whether training with MAD on different rewards results in a
policy that improves those rewards on held-out test sets.6 We can see in Table 2 that the models are
able to generalize on their metric and usually outperform models trained to optimize different metrics.
We are able to train a model to optimize multiple metrics and generalize well on all of them.

6We note that the constant reward used by Choshen et al. (2020) would result in no learning in our algorithm
on account of the reward standardisation discussed above in §2.2, so we do not compare to this condition.
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Table 2: MAD was used to optimize different rewards on the IWSLT’14 De-En dataset. We report
test set results for the checkpoint with the max validation performance on the metric being optimized.
For TER, a lower score is better, so we optimize −TER. The last row, ALL, optimized the equally
weighted average of the rewards, (1/6)(BLEU + GLEU + ChrF + Token F1 − TER + BLEURT).

Reward Optimized BLEU GLEU ChrF TER Token F1 BLEURT ALL
sBLEU (Papineni et al., 2002) 32.1 30.0 55.5 50.0 55.9 58.6 30.3
GLEU (Mutton et al., 2007) 32.2 30.5 55.7 49.1 57.0 59.5 31.0
ChrF (Popović, 2015) 32.0 30.0 56.5 49.7 56.0 59.0 30.6
−TER (Snover et al., 2006) 32.2 30.0 55.8 48.8 56.3 59.2 30.8
Token F1 31.9 30.4 55.5 49.5 57.1 59.5 30.8
BLEURT (Sellam et al., 2020) 29.5 28.4 54.9 52.0 54.8 62.3 29.6
ALL (equal weight) 32.2 30.4 56.0 49.0 56.8 59.9 31.1

5 RELATED WORK

During the era of linear translation models, setting parameters to optimize rewards was standard.
Although cross entropy is still widely used, Ranzato et al. (2016) inaugurated using RL techniques for
neural translation models, and Edunov et al. (2018) provide a thorough survey of the topic and find
that RL fine-tuning usually improves the original model. Although it has been shown to optimize a
biased approximation to the expected reward objective (Choshen et al., 2020), minimum risk training
remains extremely effective (Shen et al., 2016; Kiegeland & Kreutzer, 2021).

More complicated policy gradient methods have been proposed that rely on auxiliary networks.
MIXER (Ranzato et al., 2016) predicts a per-token reward baseline while actor-critic methods
(Bahdanau et al., 2017) learn a per-timestep Q function concurrently with the translation policy.
Although not widely used yet in translation, proximal policy optimization (PPO) (Schulman et al.,
2017) has been used to train summarization models from human preferences (Stiennon et al., 2020),
and this algorithm provided inspiration for some of the techniques we used here.

Another important source of inspiration in the development of our algorithm was the “hope and
fear” online learning algorithm of Chiang (2012), which used a margin-based analysis to argue for a
decision rule that selected positive and negative training samples on the basis of a combination of
current model score and reward. Additionally, pairwise ranking optimization (Hopkins & May, 2011)
reduced the parameter learning problem to classifying pairs of positively and negatively rewarded
trajectories, and our objective can be understood as a weighted variant of that objective.

Our work differentiates itself through our conditional reward normalization and approach to entropy
regularization through the use of MAD weights.

6 CONCLUSION

We introduce a new policy gradient algorithm, MAD, for machine translation and show that it
outperforms existing reward-aware training procedures such as REINFORCE, minimum risk training
(MRT) and proximal policy optimization (PPO). We test these algorithms on a variety of datasets,
language pair directions, and reward functions and demonstrate good test set performance. Our
algorithm excels at producing models that generate quality translations, even when greedy decoding
is used. Our analysis shows that the conditional reward normalization we introduce is a critical
component of the model’s success while the MAD weights improve sample diversity and training
stability. Taken together, we see an average 2.0 BLEU improvement over the initial cross entropy
model and a 1.0 BLEU improvement over the best baseline treatment, MRT. Finally, we offer a method
for reducing the number of sweeps needed to find the optimal sampling temperature hyperparameter
making it easy to use on new tasks.
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A SUPPLEMENTARY EXPERIMENTS

A.1 ABLATION STUDY FIGURES
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Figure 5: Ablation study of the components
of the MAD algorithm on multiple datasets,
see §4.1 for more detailed description. The most
important component of our algorithm is condi-
tional reward normalization, orange lines. Addi-
tionally including the MAD weights, green line,
improves training stability and offers additional
performance improvement.
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Figure 6: We plot the mean number of unique
samples generated by the worker nodes over the
course of training for two different datasets. For
each source sentence, 12 samples are generated
and is thus the upper bound. The green line is
the full MAD algorithm while the orange line
is an ablation where the MAD weights have
been removed. We see that including the MAD
weights helps to slow the loss of diversity during
training.

A.2 ADDITIONAL BEAM SEARCH RESULTS

Table 8 shows results (on the test set) using larger beams and different decoding hyperparameters.
MAD trained with sentenceBLEU continues to outperform other training objectives, and displays the
notable behaviour that decoding without length normalization with large beams is effective, whereas
performs drops significantly with CE and REINFORCE trained models.

We emphasize that the beam search length normalization term is the same for all models and datasets
reported in Table 1. Most prior work in machine translation optimizes α per dataset and only reports
this score. We have confirmed that our cross entropy models match prior work when using the
tuned α. In this sense, we believe the BLEU numbers we report are a lower bound, which might be
improved through α tuning.

A.3 SOURCE SENTENCE DIFFICULTY

It’s somewhat difficult to quantify how hard a source sentence will be to translate. However, there
is evidence that the uncertainty (as measured by entropy) a powerful Language Model has when
modeling the source sentence can be used as a proxy for this (Rae et al., 2022). We see in Figure 7
that there is negative relationship between source sentence entropy and translation performance. This
means that unconditional reward normalization methods will incorporate this bias.

A.4 ADDITIONAL REMARKS

We note that the conditional reward normalization could be applied to both REINFORCE and PPO,
however, decided against it to keep these baselines in line with prior work. We also believe our
baselines coincide with the form most likely to be used in practice. We did run some preliminary
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Figure 7: Plot of the relationship between source sentence difficulty and the average score of sampled
translations. We use the average word entropy from a strong 280 billion parameter language model
(Rae et al., 2022) as a proxy for the uniqueness/difficulty of a given source sentence. We can see that
the more uncertainty a language model has about the source sentence, the lower the average BLEU of
its sampled translations.

experiments with PPO where we replaced r̃ with r, however, the results were mixed. PPO has a few
additional hyperparameters that can be tuned so we leave this as future research.

Table 3: Temperatures used for models in main
results. REINFORCE used same temperatures
as PPO. Only MAD uses a temperature range,
other algorithms use as single temperature.

Temperatures
Dataset Algo Tmin Tmax

IWSLT’14 De→En
PPO 1.0
MRT 0.9
MAD 0.8 1.2

IWSLT’14 En→De
PPO 1.2
MRT 0.6
MAD 0.8 1.2

WMT’14 De→En
PPO 0.2
MRT 0.6
MAD 0.4 0.8

WMT’14 En→De
PPO 1.2
MRT 0.4
MAD 0.4 0.8

WMT’20 Ps→En
PPO 1.2
MRT 1.2
MAD 0.8 1.2

WMT’20 En→Ps
PPO 1.2
MRT 1.0
MAD 0.4 0.8

NIST Zh→En
PPO 1.0
MRT 0.8
MAD 0.6 1.0

WMT’20 Zh→En
PPO 0.8
MRT 0.8
MAD 0.4 0.8

WMT’20 En→Zh
PPO 0.8
MRT 0.6
MAD 0.2 0.6

Table 4: Base settings for our Transformer
models.

Transformer - Base Settings
Setting Value
embeddings dim 512
feed forward 2048
num layers 6 enc + 6 dec
num heads 8
dropout .1
tied embeddings True
tied softmax True
optimizer Adam
learning rate (η) 1e-5
η warmup steps 1000
η scheduling Constant
gradient clipping global norm(1)
training steps 200,000
seq length 128
global batch size 256

Table 5: Deviations from Transformer base
settings.

Transformer - Deltas
Dataset Setting Value

WMT’20 Ps↔En seq length 64
dropout .3

WMT’14 De↔En seq length 144

IWSLT’14 De↔En
feed forward 1024
num heads 4
dropout .3
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Table 8: Additional test set results when using different Beam Search hyperparameters. Even when
large beams are used without length normalization, MAD performs well indicating that it is better
calibrated.

Beam Search | Beams = 5 | Length Normalization (α) = None
NIST IWSLT’14 WMT’14 WMT’20

Model Zh-En De-En En-De De-En En-De Zh-En En-Zh Ps-En En-Ps µ
Cross Entropy 47.0 31.1 27.5 31.0 26.8 25.1 34.7 7.8 5.9 26.3
REINFORCE 47.0 31.1 27.5 29.9 26.7 25.0 34.9 7.6 5.8 26.2
PPO 47.1 31.2 28.0 31.2 26.7 25.0 34.7 8.1 7.5 26.6
MRT 47.4 31.7 27.5 31.8 27.0 27.0 38.8 9.2 7.8 27.6
MAD 48.3 32.4 28.2 32.0 27.4 27.7 39.7 9.3 8.0 28.1

Beam Search | Beams = 50 | Length Normalization (α) = None
NIST IWSLT’14 WMT’14 WMT’20

Model Zh-En De-En En-De De-En En-De Zh-En En-Zh Ps-En En-Ps
Cross Entropy 42.8 28.1 26.5 28.5 24.9 22.9 32.3 4.0 1.3 23.5
REINFORCE 43.0 28.0 26.4 28.8 25.4 22.8 32.0 2.5 1.3 23.3
PPO 45.9 31.2 28.0 29.1 24.9 23.1 32.3 6.9 6.3 25.3
MRT 47.1 30.8 26.5 31.2 27.1 26.8 38.4 9.0 7.1 27.1
MAD 48.5 32.4 28.1 31.9 27.5 27.4 39.5 7.9 6.4 27.7

Beam Search | Beams = 50 | Length Normalization (α) = 1.0
NIST IWSLT’14 WMT’14 WMT’20

Model Zh-En De-En En-De De-En En-De Zh-En En-Zh Ps-En En-Ps
Cross Entropy 48.2 31.6 27.9 31.7 25.3 25.9 36.8 5.4 2.9 26.2
REINFORCE 48.3 31.6 28.0 30.5 26.0 25.9 36.9 6.2 2.8 26.2
PPO 47.8 31.3 28.2 31.7 25.3 25.9 36.9 7.1 6.9 26.8
MRT 47.6 32.1 27.9 31.9 26.4 27.5 39.0 9.0 7.2 27.6
MAD 48.3 32.5 28.4 32.1 27.4 28.0 39.8 8.8 7.4 28.1

B HYPERPARAMETERS

We provide the hyperparameters for our Transformer models in Tables 4 and 5. The algorithm specific
settings are in Table 6. Finally, the setting used when calculation sacreBLEU are found in Table 7.

Table 6: Settings for sequence level algo-
rithms. Note that we did run experiments with
|Yx| = 12 for MRT and found no improvement
in development set max BLEU. Given the slow
training speed of MRT, we opted to use the con-
vention of 5 samples.

Algorithm Settings
Algorithm Setting Value
PPO ϵ 0.2
MRT |Yx| 5

MAD
reverb
settings

max times sampled 1
min size to sample 512
max size 4096
sampler Uniform
remover Fifo

Table 7: sacreBLEU settings for each language.

sacreBLEU Settings
Language Setting Value
De tokenizer intl
En tokenizer 13a
Ps tokenizer intl
Zh tokenizer zh

All smooth method exp
smooth value 0
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C DATASETS

We evaluate all the models on the following translation tasks: NIST7 Open MT Chinese→English
task, IWSLT’148 English↔German translation task, WMT’149 English↔German news translation
task, and the WMT’2010 Chinese↔English and Pashto↔English news translation tasks. The sizes
of each dataset is avaliable in Table 9.

Preprocessing We perform text normalization on the datasets before tokenization.

• All languages - Unicode canonicalization (NKFD from), replacement of common multiple
encoding errors present in training data, standardization of quotation marks into “directional”
variants.

• English - Replace non-American spelling variants with American spellings using the aspell
library.11 Punctuation was split from English words using a purpose-built library.

• Chinese - Convert any traditional Chinese characters into simplified forms and segment into
word-like units using the Jieba segmentation tool.12

Tokenization We encode text into sub-word units using the sentencepiece tool Kudo &
Richardson (2018). When generating our own subword segmentation, we used the algorithm from
Kudo (2018) with a minimum character coverage of 0.9995.

Table 9: Number of training, development, and
test examples in each dataset.

Dataset Train Dev Test
IWSLT’14 De→En 164K 7,466 6,750
IWSLT’14 En→De 173K 1,474 6,750
WMT’20 Ps↔En 516K 5,860 2,719
NIST Zh→En 1.45M 1,664 5,146
WMT’14 De↔En 4.7M 3,000 3,003
WMT’20 Zh→En 21.8M 2,000 2,000
WMT’20 En→Zh 21.8M 1,997 1,418

Table 10: We show the training speed as a
function of the number of 2x2 TPU workers
used. Speed is measured in seconds per 1000
training steps.

Training Speed
Algorithm Workers Sec per 1K
REINFORCE n/a 2,038
MRT n/a 1,728

PPO & MAD 2 1,898
4 946

D IMPLEMENTATION DETAILS

Software We use Launchpad (Yang et al., 2021) to create and launch our DAG computing graph.
The graph consists of a Reverb table (Cassirer et al., 2021) that holds training examples, multiple
worker nodes that generate and publish examples, a learner node that pulls and trains on examples,
and an evaluator node that loads fresh checkpoints to calculate dev set sacreBLEU. It is important to
not make the Reverb table cache too large to avoid the table filling with stale training examples. This
can happen if the training node job is temporarily deallocated while the workers are still running.

Compute All of our program nodes run on a 2x2 TPU configuration. Our hyperparameter sweeps
for PPO and MAD used 2 data generating workers running for 50K steps, while final results used 4
workers and ran for 200K steps. Table 10 in the body of the paper provides the wall clock training
speed for each algorithm.

7https://www.nist.gov/itl/iad/mig/open-machine-translation-evaluation
8https://sites.google.com/site/iwsltevaluation2014/mt-track
9http://statmt.org/wmt14/translation-task.html

10http://www.statmt.org/wmt20/translation-task.html
11http://wordlist.aspell.net/varcon-readme/
12https://github.com/fxsjy/jieba
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Training time Because of our distributed algorithm, we are able to obtain faster training times
by increasing the number of workers that sample from the current policy (this in contrast to purely
“on-policy” REINFORCE and MRT algorithms). Table 10 shows that we get near linear scaling as
the number of workers is increased.
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