
A Sparsity Principle for Partially Observable Causal
Representation Learning

Danru Xu1, Dingling Yao2,3, Sébastien Lachapelle4,5, Perouz Taslakian6, Julius von Kügelgen3,7,
Francesco Locatello2, and Sara Magliacane1,8

1University of Amsterdam 2Institute of Science and Technology Austria 3Max Planck Institute for
Intelligent Systems, Tübingen, Germany 4Samsung - SAIT AI Lab 5Mila, Université de Montréal

6ServiceNow Research 7University of Cambridge 8MIT-IBM Watson AI Lab

Abstract

Causal representation learning (CRL) aims at identifying high-level causal variables
from low-level data, e.g. images. Most current methods assume that all causal
variables are captured in the high-dimensional observations. The few exceptions
assume multiple partial observations of the same state, or focus only on the shared
causal representations across multiple domains. In this work, we focus on learning
causal representations from data under partial observability, i.e., when some of
the causal variables are masked and therefore not captured in the observations, the
observations represent different underlying causal states and the set of masked
variables changes across the different samples. We introduce two theoretical results
for identifying causal variables in this setting by exploiting a sparsity regularizer.
For linear mixing functions, we provide a theorem that allows us to identify the
causal variables up to permutation and element-wise linear transformations without
parametric assumptions on the underlying causal model. For piecewise linear
mixing functions, we provide a similar result that allows us to identify Gaussian
causal variables up to permutation and element-wise linear transformations. We
test our theoretical results on simulated data, showing their effectiveness.

1 Introduction
Causal representation learning (CRL) (Schölkopf et al., 2021) aims to identify high-level causal
variables from low-level data, e.g. images. Causal reasoning is a promising direction for enhancing
machine learning in terms of improving robustness, generalization, and interpretability (Pearl, 2009;
Peters et al., 2017; Spirtes et al., 2000). Traditional causality methods assume that the causal variables
are given, but in many real-world settings, we only have unstructured, high-dimensional observations
of a causal system. A popular approach to identifying high-level latent variables is (nonlinear)
independent component analysis (ICA) (Hyvarinen and Morioka, 2016, 2017; Hyvarinen et al.,
2019; Khemakhem et al., 2020), which aims to recover independent components from entangled
measurements. Several works generalize this setting to the case in which the latent variables can have
causal relations (Ahuja et al., 2023; Brehmer et al., 2022; Buchholz et al., 2023; Lachapelle et al.,
2022, 2023; Lippe et al., 2022, 2023; Squires et al., 2023; von Kügelgen et al., 2021, 2023; Wendong
et al., 2023; Yao et al., 2022; Zhang et al., 2023), providing different identifiability results, given
different assumptions on the available data or the data generating process. Most works assume that all
causal variables are captured in the high-dimensional observations, with the exception of Sturma et al.
(2023); Yao et al. (2023). In particular, Yao et al. (2023) focus on the multi-view setting, in which we
consider partial observations, or views, of the same latent state, while Sturma et al. (2023) consider
recovering a shared causal representation from unpaired observations from multiple domains.

In this work, we focus on learning causal representations from data under partial observability, i.e.,
when some of the causal variables are masked and therefore not captured in the observations, the
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Figure 1: Two example realizations of a Partially Observable Causal Representation Learning setting
with n = 5 latent variables. In our notation, c are the latent causal variables and y are the masks
that represent which variables are active. The masked causal variables z, which represent the active
causal variables (i.e., the ones for which the mask is 1), are the inputs of mixing function f , while the
outputs are the observations x. The support indices s represent the indices of the causal variables that
not masked in x. We assume all realizations share the same mixing function f , but each observation
can have a different masking pattern and represents a potentially different underlying causal state.
Our goal is to recover the masked causal variables z solely from the observations x.

observations represent different underlying causal states and the set of masked variables can change
across the different samples. This setting is motivated by real-world applications in which we cannot
at all times observe the complete state of the environment. For example, consider a stationary camera
taking pictures of a school of fish in a fish tank, where each individual fish can move out of the frame
for any image while still affecting the behavior of the visible fish. In this setting, we only observe one
image for a given state of the system, and the subsets of causal variables that are observed, i.e., the
individual fish, change dynamically across the different images.

We highlight the following contributions:

• We formalize the partial observability problem for CRL, focusing on the case in which there
can be different subsets of causal variables that are masked in each sample, and we do not
have simultaneous partial observations of the same state of the system.

• We introduce two theoretical results for identifying causal variables under partial observabil-
ity by exploiting a sparsity regularizer. In particular, Thm. 3.1 proves the identifiability up to
permutation and element-wise transformations for the case in which the mixing function is
linear and we do not have parametric assumptions on the underlying causal model. Thm. 3.3
proves identifiability up to permutation and element-wise transformations for the piecewise
linear case, when the underlying causal variables are Gaussian.

• Finally, we validate the results from Thm. 3.1 and Thm. 3.3 with numerical experiments.

2 Partially Observable Causal Representation Learning
In this section, we formalize the Partially observable Causal Representation Learning setting, in
which we have a set of high-dimensional observations that are functions of subsets of the true
underlying causal variables. In particular, each observation sample xi for i = {1, . . . , N} is
an entangled measurement of a subset of the n latent causal variables ci = {ci1, . . . , cin}. Each
observation sample can measure different subsets of the latent causal variables, and we assume we
do not have access to concurrent measurements of the same realization of causal variables. We also
assume that there can be potentially causal relations between the underlying causal variables and that
the observations are measurements of i.i.d. samples of the underlying causal variables.

Data generating process. We define our causal variables as a random vector C = (C1, ...,Cn)
that takes values in the causal space C = C1 × ...× Cn ⊆ Rn, which is an open, simply connected
latent space. The causal variables follow a distribution p(C), which allows for causal relations
between them. We use a binary mask random variable Y = {Y1, . . . , Yn} with domain Y ⊆ {0, 1}n

2



to represent the causal variables that are observed in each of the samples and assume it follows
p(Y). The masked causal variables Z = (Z1, ...,Zn) are then the Hadamard product of the causal
variables with the random variable representing the binary mask, i.e., Z = Y ⊙C. This means that
in sample i ∈ [N ] and for any causal variable j ∈ [n] for a realization of the causal variable cij and a
corresponding realization of the binary mask yij , if the mask value is 0, the corresponding masked
causal variable zij will be 0, and otherwise it will be cij . We define the support index random vector S
as the index of non-zero components of Y, i.e., S := {i ∈ [n] : Yi ̸= 0}. The support index vector
has a probability mass function p(s) and support S, defined as:

P(s) := P


∧

j∈s

(Yj = 1) ∧
∧

j ̸∈s

(Yj = 0)


 and S := {s ⊆ [n] | p(s) > 0}.

We additionally assume that for all s ∈ S, the probability measure PZs|S=s has a density w.r.t. the
Lebesgue measure on R|s|. Finally, we assume that observations X ∈ X ⊆ Rd are generated by
mixing the realizations of the masked causal variables with the same function f : Rn → Rd, or more
precisely X = f(Z). We summarize the notation with an example in Fig. 1, where we show the
different realizations of five causal variables in two different samples and highlight how the masks
and the support indices change across the different samples. Our task is then to recover the masked
causal variables from each observation.

To prove our results, we describe the sufficient support index variability, which was originally defined
by Lachapelle et al. (2023). A simple case that would satisfy this condition is there is for each causal
variable there is at least one observation in which it is the only variable that is masked.

Assumption 2.1. (Sufficient support index variability (Lachapelle et al., 2023)) For all i ∈ [n],
where n is the number of causal variables, we assume that the union of the support indices s that do
not contain i covers all of the other causal variables, or more formally:

⋃

s∈S|i/∈s

s = [n] \ {i} .

Our goal is to identify the masked causal variables from a set of observations under weak assumptions.
In general, in CRL we cannot fully identify the (masked) causal variables, but we can only identify
the variables up to some transformation. Following Lachapelle et al. (2022), we define two different
definitions of identifiability: a weaker form, identifiability up to linear transformation, and a stronger
form, identifiability up to permutation and element-wise linear transformation for arbitrary underlying
causal models. In the linear case, we will show that we can leverage sparsity, similar to Lachapelle
et al. (2023), to prove identifiability up to permutation and element-wise linear transformation. In
the piecewise linear case, we will first prove a weaker form of identifiability, identifiability up to
linear transformations, given the binary masks Y, and then provide a theorem that proves the stronger
identifiability up to permutation and element-wise linear transformation. We first define the weaker
form of identifiability, which recovers the ground truth latent variables up to a linear transformation.

Definition 2.2 (Identifiability up to linear transformation). The ground truth representation vector
Z (a n-dimensional random vector) is said to be identified up to affine transformations by a learned
representation vector Ẑ (also a n-dimensional random vector) when there exists an invertible linear
transformation h such that, Ẑ = h(Z) almost surely.

Intuitively, this identifiability definition means there exists a linear function between ground truth
variables and learned variables, but this does not imply that each ground truth latent variable is
represented in a disentangled way by an estimated latent variable. In order to define a disentangled
version of identifiability, we now define identifiability up to element-wise linear transformations:

Definition 2.3 (Identifiability up to permutation and element-wise linear transformations). The
ground truth representation vector Z (a n-dimensional random vector) is said to be identified up to
permutation and element-wise linear transformation by a learned representation vector Ẑ (also a
n-dimensional random vector) when there exists a permutation matrix P and an invertible diagonal
matrix D such that Ẑ = PDZ almost surely.
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3 Identifiability via Masked Causal Variables Sparsity Regularization
In this section, we first introduce a theorem (Thm. 3.1) for the identifiability up to permutation and
element-wise linear transformations (Def. 2.3) of latent variables when the mixing function f is linear,
inspired by Lachapelle et al. (2022). Then, we present a set of results for the piecewise linear f : we
start by presenting an intermediate lemma (Lemma 3.3), which shows that for each realization, we
can identify the latent variables up to linear transformation (Def. 2.2) given the binary masks Y. Then
we use this lemma to prove identifiability up to permutation and element-wise linear transformations
(Def. 2.3) also for this case (Thm. 3.3). All the proofs are in Appendix A.

First, we introduce the theorem for the linear case. This theorem shows that for linear mixing functions,
under a perfect reconstruction, a sparsity constraint on the learned representation allows us to identify
the ground truth latent variables up to a permutation and element-wise linear transformations.

Theorem 3.1 (Element-wise Identifiability for Linear f ). Assume the observation X = f(Z) follows
the data-generating process in Sec. 2, where f is an invertible linear function, and Ass. 2.1 holds. Let
g : Rd → Rn be an invertible linear function onto its image and let f̂ : Rn → Rd be an invertible
continuous function. If both of the following conditions hold,

E
∥∥∥X− f̂(g(X))

∥∥∥
2

2
= 0 , and (1)

E ∥g(X)∥0 ≤ E ∥Z∥0 , (2)

then Z is identified by f̂−1(X) up to a permutation and element-wise linear transformations (Def. 2.3),
i.e., f̂−1 ◦ f is a permutation composed with element-wise invertible linear transformations.

We provide a proof in App. A.1, based on the proof strategy by Lachapelle et al. (2022). The linearity
of f is a strong assumption and not applicable in many real-world cases. As a first step towards a more
general setting, we consider piecewise linear mixing functions f for causal models with Gaussian
variables. In order to prove our results we make the additional assumptions:

Assumption 3.1. (Gaussian causal model) We assume C follows a multivariate normal distribution
(MVN), i.e. C ∼ N(µ,Σ), where µ ∈ Rn and Σ ∈ Rn×n is a positive definite matrix.

Under this assumption, the conditional distribution of the masked causal variables Z given the binary
mask vector Y is defined as a multivariate normal distribution:

Z | Y ∼ N(µY,ΣY)

where µY = (µ1Y1, . . ., µnYn), ΣY(ij) = ΣijYiYj

This distribution is a degenerate multivariate normal distribution (De-MVN), i.e., a normal with a
singular covariance matrix, if at least one of the causal variables is masked by Y.

Furthermore, we make an assumption that the piecewise linear function is in a sense “well-behaved”,
i.e. there exists a ball centered in a point in the support of f(Z) that only contains one linear piece:

Assumption 3.2. (Existence of a ball with only one linear piece of the piecewise linear f ) We assume
for the invertible piecewise linear mixing function f : Rn → Rd, we can always construct an open
ball B(x0, δ) ⊆ Rd, where x0 ∈ f(Z), Z is the support set of z and δ > 0, such that it only contains
one linear piece of f−1, i.e. on which f is linear.

We now present a theorem that shows that latent variables that are distributed as potentially degenerate
multivariate normals, or (De)-MVN, are identifiable up to affine transformation.

Theorem 3.2 (Linear Identifiability for (De)-MVNs with Piecewise Affine f ). Assume f , f̂ : Rn →
Rd is invertible and piecewise affine. Let Z ∼ N(µ,Σ) be the ground truth latent variables,
and Ẑ ∼ N(µ̂, Σ̂) be the estimated latent variables. We assume Z and Ẑ follow a (degenerate)
multivariate normal distribution, i.e., they are (De)-MVNs and Ass. 3.2 holds. If f(Z) and f̂(Ẑ) are
equally distributed, then there exists an invertible affine transformation h : Rn → Rn such that
h(Z) ≡ Ẑ (Def. 2.2).

The proof is in App. A.2 and is inspired by Kivva et al. (2022). The proving strategy has three steps:

i Based on Ass. 3.2 we can construct a ball B that contains a point x0 ∈ f(Z), where Z is
the support of z, and on which f is linear;
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ii We show a (De)-MVN can be uniquely determined by its value over this ball B;
iii According to the linear closure property of (De)-MVNs, we show that we can construct an

affine transformation h from Ẑ to Z.

We now present the results for piecewise linear case. First, we show that given the information of the
binary mask Y, we can identify the latent factors Z up to a linear transformation (Def. 2.2).

Lemma 3.3 (Linear Identifiability given Y = y for Piecewise Linear f ). Assume the observation
X = f(Z) follows the data-generating process in Sec. 2, and Ass. 2.1, 3.1, 3.2 hold, and f is an
invertible piecewise linear function. Let g : Rd → Rn be a continuous piecewise linear function and
f̂ : Rn → Rd be an invertible piecewise linear function onto its image. If the following conditions
hold,

E
∥∥∥X− f̂(g(X))

∥∥∥
2

2
= 0 , and (3)

g(X) | (Y = y) ∼N(µy,Σy) for some µy ∈ Rn,Σy ∈ Rn×n, (4)

then Z | (Y = y) is identified by f̂−1(X) | (Y = y) up to affine transformation, i.e., there exists an
affine function hY : Rn → Rn, such that hy(Z) | (Y = y) = f̂−1(f(Z)) | (Y = y).

The proof is in App. A.3. Based on this lemma, we can now prove that each individual variable is
identifiable for piecewise linear f up to permutation and element-wise transformation.

Theorem 3.3 (Element-wise Identifiability for Piecewise Linear f ). Assume the observation X
follows the data-generating process in Sec 2, Ass. 2.1, 3.1, 3.2 hold and f is an invertible piecewise
linear function. Let g : Rd → Rn be a continuous invertible piecewise linear function and let
f̂ : Rn → Rd be an invertible function onto its image. We assume the two conditions of Lemma 3.3
hold. If additionally the following condition holds:

E ∥g(X)∥0 ≤ E ∥Z∥0 , (5)

then Z is identified by f̂−1(X), i.e., f̂−1 ◦ f is a permutation composed with element-wise invertible
linear transformations (Def. 2.3).

The proof for this theorem is in App. A.4 and it is based on the following reasoning. Intuitively, in
Lemma 3.3, we can identify the latent variables up to an affine function hY, when the binary mask Y
is given. We start by considering the case in which Y = 1, i.e. there is no masking. In this case, we
can know the mask; therefore, we can use Lemma 3.3 to get the reconstruction up to an affine hY=1.
We also know that we can perfectly reconstruct Z with v(Z) := f̂−1(f(Z)) on all Z . This means that
∀z ∈ ZY=1, hY=1(z) = v(z). Then, according to Lemma A.7, since the support of Z|Y ̸= 1 is a
low dimensional subspace of Z|Y = 1 (when there is no masking of the causal variables), and we
assume that v is continuous over Rn, then we can derive that ∀z ∈ Z , hY=1(z) = v(z). Therefore,
v is an invertible affine transformation, and we use a similar strategy to Theorem 3.1 to obtain the
element-wise identifiability.

4 Experimental Results
To validate Theorem 3.1 and Theorem 3.3, we perform numerical experiments in a fully-controlled,
finite sample setting, using an autoencoder with sparsity regularization.

Data generation. We generate numerical data, following the assumptions in Section 2. We consider
n = 5 ground truth causal variables C ∼ N(µ,Σ), modeling causal relations among them through
the covariance matrix Σ. We generate each mask Yi independently from a Bernoulli distribution
with parameter pi = 0.5. For f , we use a fully connected layer and 2-layer MLP with LeakyReLU
(α = 0.2) activation functions. To ensure for invertibility, we use the same process as previous work
(von Kügelgen et al., 2021), setting a condition threshold ratio to describe how much the invertibility
can be violated in each layer. For the encoder g and the decoder f̂ , we use 7-layer MLPs with
LeakyReLU activation functions with [10, 50, 50, 50, 50, 10]×n units per layer.

Masked causal variable sparsity regularization. Both of our results require that we should not
only fit the data perfectly, but also reconstruct a model such that the estimated masked causal variables
Ẑ = g(X) are sparse. To do so, we add a regularization term λ||Ẑ||1 to train the encoder g : X → Ẑ
and decoder f̂ : Ẑ → X additionally to their L2 loss.

5
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Z
1

Z
2

Z
3

Z
4

Z
5

lin
ea

r

0.79 0.24 0.17 0.37 0.62

0.04 0.61 0.17 0.49 0.41

0.08 0.46 0.87 0.20 0.11

0.46 0.41 0.02 0.58 0.40

0.39 0.43 0.42 0.50 0.51

w.o. sparsity

Ẑ1 Ẑ2 Ẑ3 Ẑ4 Ẑ5

Z
1

Z
2

Z
3

Z
4

Z
5

1.00 0.01 0.02 0.02 0.02

0.01 0.99 0.04 0.01 0.06

0.02 0.04 0.99 0.01 0.06

0.01 0.02 0.01 1.00 0.01

0.01 0.05 0.06 0.01 0.99

w. sparsity
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Figure 2: Pearson correlation matrix (after permutation π). For (a) and (b), the top row is for linear
f , and the bottom row is for piecewise linear f . The left column corresponds to the reconstructed
variables without sparsity regularization. The right column is our approach with sparsity regularization.
The ground truth correlation matrix for the case of dependent Z from (b) is shown in (c).

Metrics. Following previous work (Khemakhem et al., 2020; Lachapelle et al., 2022), we report the
mean coefficient of determination (MCC) to assess that the learned representations match the ground
truth up to a permutation and element-wise linear transformations. This metric is obtained by comput-
ing the Pearson correlation matrix Corrn×n between the learned representations Ẑ and ground truth
latent masked causal variables Z. Since our results are up to permutation and element-wise linear trans-
formation, we then compute the MCC on the permutation π that maximizes the average of |Corri,π(i)|
for each index of a ground truth variable i ∈ [n], i.e. MCC= 1

n maxπ∈perm([n])

∑n
i=1 |Corri,π(i)|.

Results. In Fig. 2 we show the Pearson correlation matrices between the learned representations
and ground truth latent factors for the linear and piecewise linear case, both without sparsity and with
our sparsity regularizer. Note that these matrices are reordered using the same permutation π that
chooses for each masked causal variable Zi for i ∈ [n] the reconstructed variable Ẑi that maximizes
the average absolute value of the correlation, as in the MCC calculation. In order to exclude the
effect from the correlation among ground truth latent factors and provide more interpretable results,
we first show the results for independent Z in Fig. 2a. We then show the results for dependent
Z in Fig. 2b, where the dependence is induced by the causal structure between the masked causal
variables. As we can see for independent Z in Fig. 2a, in both the linear (top row) and piecewise linear
(bottom row) case, the individual latent variables are identified by our sparsity regularizer, showing a
high disentanglement, i.e., correlation to only one of the learned representations, while the baseline
representation is entangled. When we consider potential causal relation within Z (Fig. 2b), a latent
variable may become predictable by another latent variable, even if the representation we learned was
disentangled. Therefore, we can observe that some estimate variable (e.g.X̂2) has a relatively higher
correlation with other latent variables. The pattern of correlations in our reconstructed variables is
consistent with the ground truth correlation matrix in Fig. 2c.

Generative Process MCC
Mixing function f Dependence w. sparsity w.o. sparsity

Linear No 0.994±0.000 0.736±0.001
Linear Yes 0.980±0.000 0.692±0.003

Piecewise Linear No 0.935±0.001 0.687±0.003
Piecewise Linear Yes 0.913±0.002 0.601±0.003

Table 1: Average MCC for the four settings.

In Table 1, we report the average of
the MCC over 5 random seeds with
its standard deviation across four set-
tings, which are combinations of: (i)
the type of mixing function f and (ii)
dependence within latent variables Z.
An average MCC close to one indi-
cates that there is a one-to-one rela-
tion between learned representations
and ground truth latent variables, i.e. the latent variables are identified by learned representations
up to element-wise linear transformations. For all setups, we can identify each individual variable
almost perfectly with sparsity regularization, while the baseline without regularization struggles.
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5 Conclusions and Future work
In this work, we focused on learning causal representations from data under partial observability,
i.e., when some of the causal variables are not observed in the measurements. We introduced two
theoretical results for identifying causal variables under partial observability by exploiting a sparsity
regularizer, focusing in particular on the linear and piecewise linear mixing functions, and providing
identifiability proofs up to permutation and element-wise transformation. In future work, we plan to
extend our experimental evaluation and apply our methods to more realistic datasets.
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A Proofs
A.1 Proof of Theorem 3.1
We will first introduce the definition of dependent inputs, which intuitively will be the set of variables
on which a reconstruction of a given variable depends. Our end goal will be to prove that a method
provides a reconstruction in which there exists a permutation such that only the variable i ∈ [n] itself
is in the set of dependent inputs Ni.

Definition A.1. [Dependent inputs] Let v : Rn → Rn be a diffeomorphism with variables z =
(z1, ..., zn) and domain Z . For all i ∈ [n] consider Ni to be the set of all other variables on which vi

depends, which we will call dependent inputs. Formally, we define the set Ni ⊆ [n] as

Ni := {j ∈ [n] | ∃z0−j ∈ Z−j s.t. vi(zj , z
0
−j) is not a constant function of zj} , (6)

where z0−j is an n− 1 dimensional vector with domain:

Z−j := {z−j : (zj , z−j) ∈ Z} , (7)

We now prove a lemma that will be useful in the proof of the theorem, that shows that for any
diffeomorphism and any variable, there exists always a permutation that ensured that a variable is in
the set of its dependent inputs. Intuitively, this ensures that for all variables, there always exists a
permutation, such that the reconstruction of a given variable will depend on the variable itself.

Lemma A.2 (Existence of permutation π s.t. i ∈ Nπ(i)). Let v : Rn → Rn be a diffeomorphism
with variables z = (z1, ..., zn) and domain Z . Then there exists a permutation π : [n] → [n] such
that i ∈ Nπ(i) for all i, where Ni is defined as in Def. A.1.

Proof. Since v is a diffeomorphism, its Jacobian Dv = {∂vi

∂zj
}i,j∈[n] is invertible everywhere, so it

is invertible at z0 ∈ Z . Since Dv(z0) is invertible, we have that its determinant is non-zero, i.e.

det(Dv(z0)) :=
∑

π∈Sn

sign(π)
n∏

i=1

Dv(z0)π(i),i ̸= 0 , (8)

where Sn is the set of n-permutations. This equation implies that at least one term of the sum is
non-zero, and that for that term, all of the terms in the product are non-zero, meaning:

∃π ∈ Sn,∀i ∈ [n], Dv(z0)π(i),i ̸= 0 . (9)

This means that, for all i ∈ [n], ∂vπ(i)

∂zi
(z0) ̸= 0, which implies that vπ(i) is not constant for zi in z0.

Then by definition of Ni in Def. A.1, i ∈ Nπ(i).

We now prove identifiability up to permutation and element-wise linear transformations for case of a
linear mixing function, given the assumption of sufficient support index variability.

Theorem 3.1 (Element-wise Identifiability for Linear f ). Assume the observation X = f(Z) follows
the data-generating process in Sec. 2, where f is an invertible linear function, and Ass. 2.1 holds. Let
g : Rd → Rn be an invertible linear function onto its image and let f̂ : Rn → Rd be an invertible
continuous function. If both of the following conditions hold,

E
∥∥∥X− f̂(g(X))

∥∥∥
2

2
= 0 , and (1)

E ∥g(X)∥0 ≤ E ∥Z∥0 , (2)

then Z is identified by f̂−1(X) up to a permutation and element-wise linear transformations (Def. 2.3),
i.e., f̂−1 ◦ f is a permutation composed with element-wise invertible linear transformations.

Proof. Since X = f(Z), we can rewrite Equation (1) (perfect reconstruction) as

E||f(Z)− f̂(g(f(Z)))||22 = 0 . (10)

9



This means f and f̂ ◦ g ◦ f are equal PZ-almost everywhere. Both of these functions are continuous,
f by assumption and f̂ ◦ g ◦ f because f̂ is continuous, and f ,g are linear. Since they are continuous
and equal PZ-almost everywhere, this means that they must be equal over the support of Z, Z , i.e.,

f(z) = f̂ ◦ g ◦ f(z) ,∀z ∈ Z . (11)

This can be easily shown by considering any point z′ ∈ Z on which f and f̂ ◦ g ◦ f are different, i.e.
f̂ ◦ g ◦ f(z′) ̸= f(z′), This would imply that (f − f̂ ◦ g ◦ f), which is also a continuous function, is
non-zero in z′, and in its neighbourhood. This would contradict the assumption that f and f̂ ◦ g ◦ f
are the same almost everywhere. We can now apply the inverse of f̂ on both sides to obtain

f̂−1 ◦ f(z) = g ◦ f︸︷︷︸
v:=

(z) ,∀z ∈ Z . (12)

Since both f and g are invertible linear functions, v is also an invertible linear function.

We now show that v is a permutation composed with an element-wise linear transformation. To do
this, we leverage the sparsity constraint (2):

E ∥g(X)∥0 ≤ E ∥Z∥0 (13)
E ∥g(f(Z))∥0 ≤ E ∥Z∥0 (14)

E ∥v(Z)∥0 ≤ E ∥Z∥0 (15)

We reuse the definition of the support indices S := {i ∈ [n] : Zi ̸= 0} and analyze each side of
inequality (15), starting with its right-hand side.

E||Z||0 = E
n∑

i=1

1(Zi ̸= 0) (16)

=
∑

s∈S
p(s)E

[
n∑

i=1

1(Zi ̸= 0) | S = s

]
(17)

=
∑

s∈S
p(s)

n∑

i=1

E[1(Zi ̸= 0) | S = s] (18)

=
∑

s∈S
p(s)

n∑

i=1

1(i ∈ s) (19)

Now analyzing the left hand side of (15), starting with similar steps as previously we get

E||v(Z)||0 =
∑

s∈S
p(s)

n∑

i=1

E[1(vi(Z) ̸= 0) | S = s] (20)

=
∑

s∈S
p(s)

n∑

i=1

PZ|S=s[vi(Z) ̸= 0] (21)

=
∑

s∈S
p(s)

n∑

i=1

(
1− PZ|S=s[vi(Z) = 0]

)
. (22)

For f̂−1 ◦ f to be a permutation composed with an element-wise invertible linear transformation, it
is enough to show there exists a permutation π : [n] → [n] such that, for every i, Ni = {π(i)}. To
achieve this, we are going to first show that

PZ|S=s[vi(Z) = 0] = 1(Ni ∩ s = ∅) . (23)

Since vi is linear, we have that vi(Z) = wi · Z for some wi ∈ Rn. Furthermore, Ni = {j ∈ [N ] |
wi

j ̸= 0}. Thus,

vi(Z) = wi · Z = wi
Ni

· ZNi
.
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Case 1: Suppose Ni ∩ s = ∅. Then,

PZ|S=s[vi(Z) = 0] = PZ|S=s[w
i
Ni

· ZNi
= 0] = PZ|S=s[w

i
Ni

· 0 = 0] = 1 .

Case 2: Suppose Ni ∩ s ̸= ∅. Thus, wi
s ̸= 0. Thus,

PZ|S=s[vi(Z) = 0] = PZ|S=s[w
i · Z = 0] = PZ|S=s[w

i
s · Zs = 0] .

Note that the event {Zs | wi
s · Zs = 0} corresponds to the kernel of the linear map wi

s. We can
thus infer its dimensionality via the rank-nullity theorem (Friedberg et al., 2014) which states that
rank(wi) + dim(Ker(wi)) = dim(Dom(wi)), where Ker() is nullity and Dom() is domain, which
here implies that 1 + dim(Ker(wi)) = |s|. We thus have dim({Zs | wi

s · Zs = 0}) = |s| − 1. Since
PZ|S=s has a density w.r.t. to the Lebesgue measure, we have that PZ|S=s[w

i
s · Zs = 0] = 0 (since a

density w.r.t. to Lebesgue cannot concentrate mass on a lower-dimensional linear subspace).

We thus have proved that indeed, PZ|S=s[vi(Z) = 0] = 1(Ni ∩ s = ∅).

Putting (15), (19), (22) and (23) together, we obtain

∑

s∈S
p(s)

n∑

i=1

[1− 1(Ni ∩ s = ∅)] ≤
∑

s∈S
p(s)

n∑

i=1

1(i ∈ s) (24)

By Lemma A.2, there exists a permutation π such that, for all i ∈ [n], i ∈ Nπ(i). We now permute
the terms on the l.h.s. according to π and reorganize the terms as:

∑

s∈S
p(s)

n∑

i=1

[1− 1(Nπ(i) ∩ s = ∅)] ≤
∑

s∈S
p(s)

n∑

i=1

1(i ∈ s)

∑

s∈S
p(s)

n∑

i=1

[1− 1(Nπ(i) ∩ s = ∅)− 1(i ∈ s)] ≤ 0 (25)

∑

s∈S
p(s)

n∑

i=1

[1(Nπ(i) ∩ s ̸= ∅)− 1(i ∈ s)] ≤ 0 . (26)

Note how, for all i, 1(Nπ(i) ∩ s ̸= ∅) − 1(i ∈ s) ≥ 0, since whenever i ∈ s, we must have
Nπ(i) ∩ s ̸= ∅, because we chose a permutation such that i ∈ Nπ(i). If i ̸∈ s, the function can have
either value 0 or 1, but in any case not negative. Hence the inequality in (26) is actually an equality
and hence for all s ∈ S and all i ∈ [n],

1(Nπ(i) ∩ s ̸= ∅) = 1(i ∈ s) (27)

1(Nπ(i) ∩ s = ∅) = 1(i ̸∈ s) . (28)

Importantly, this means

∀i ∈ [n],∀s ∈ S, i ̸∈ s =⇒ Nπ(i) ∩ s = ∅ =⇒ Nπ(i) ⊆ sc , (29)

which can be rewritten as

∀i ∈ [n], Nπ(i) ⊆
⋂

s∈S|i ̸∈s

sc . (30)

We now rewrite Assumption 2.1 below and take the complement on both sides:

∀i ∈ [n],
⋃

s∈S|i̸∈s

s = [n] \ {i} (31)

⋂

s∈S|i ̸∈s

sc = {i} (32)

Combining (30) with (32) implies that Nπ(i) = {i} for all i, which concludes the proof.
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A.2 Proof of Theorem 3.2
We first prove a lemma that will be useful for our final result.

Lemma A.3. (Degenerate) Multivariate Normals are close under affine transformation. More
formally, if Z ∼ N(µ,Σ) with µ ∈ R and |Σ| ≥ 0, is a potentially degenerate multivariate normal
variable, then AZ, where A ∈ Rn×n is also a potentially degenerate multivariate normal variable.

Proof. Let Ẑ = AZ, then PẐ = AN(µ,Σ) = N(Aµ,AΣAT ) where the determinant of the
covariance, |AΣAT | ≥ 0. Therefore, Ẑ is a potentially degenerate multivariate normal variable.

We now summarize the results on the identifiability of non-degenerate multivariate normal variables
by Kivva et al. (2022). We report an adapted version of from Theorem C.3 by Kivva et al. (2022).

Theorem A.4 (Identifiability of non-degenerate MVNs (Kivva et al., 2022)). Consider a pair of
non-degenerate MVNs in Rn. If

P = N(µ,Σ) and P ′ = N(µ′,Σ′), (33)

and there exists a ball B(x0, δ), where x0 ∈ Rn and δ > 0, such that P and P ′ induce the same
measure on B(x0, δ), then P ≡ P ′.

The original proof follows from the identity theorem for real analytic functions. We extend this result
to the case of potentially degenerate multivariate normal variables, that we call (De)-MVNs. We
first propose an intermediate result for the case in which only one of the variables is a (degenerate)
multivariate normal, while the other variable is a non-degenerate multivariate normal. We then use
this result to prove the general case in which both variables are potentially degenerate MVNs.

Lemma A.5 (Identifiability of a (De)-MVNs and a non-degenerate MVN). Consider a pair of random
vectors X, X′ in Rn distributed as

X ∼ N(µ,Σ) and X′ ∼ N(µ′,Σ′), (34)

for appropriate values of µ,µ′ and where the determinant |Σ| ≥ 0 and the determinant |Σ′| > 0. In
other words, X is a potentially degenerate MVN, while X′ is a non-degenerate MVN.

If there exists a ball B(x0, δ) ⊆ Rn, where x0 ∈ Rn and δ > 0, such that X and X′ follow the same
distribution on B(x0, δ), then X ≡ X′, i.e.,(µ,Σ) = (µ′,Σ′).

Proof. Let the rank of Σ be k ≤ n and consider the spectral decomposition of Σ:

Σ = QDQT , (35)

where Q is an orthogonal n× n matrix and D a the diagonal matrix. If n = k we consider D to have
k diagonal entries (σ2

1 , σ
2
2 , . . . , σ

2
k) where σi for i ∈ [k] are the eigenvalues. Otherwise, if k < n, D

has n diagonal entries (σ2
1 , σ

2
2 , . . . , σ

2
k, 0, . . . , 0) where σi for i ∈ [k] are the eigenvalues.

Let Y = QTX and Y′ = QTX′. Since Q is an orthogonal matrix, this means that

Y ∼ N(QTµ, QTQDQTQ) = N(QTµ,D) (36)

Y′ ∼ N(QTµ′, QTΣ′Q) (37)

Since we know X ≡ X′ in B(x0, δ), then we can derive that Y ≡ Y′ in B(QTx0, δ̃) for an appro-
priate δ̃ > 0. We project B(QTx0, δ̃) into two subspaces, B(QTx0, δ̃)1:k and B(QTx0, δ̃)k+1:n.
The first captures the first k dimensions of the ball, and the second the last (n− k) dimensions.

We can pick the first k dimensions of Y and Y′, and denote them as Y1:k and Y′
1:k respectively. The

first k dimensions of both variables are still the same, i.e., Y1:k ≡ Y′
1:k in B(QTx0, δ̃)1:k. We can

show that Y1:k is a non-degenerate multivariate normal, because its covariance matrix D1:k,1:k is full
rank. Since both Y1:k and Y′

1:k are non-degenerate multivariate normals, by Theorem A.4 by (Kivva
et al., 2022) we have Y1:k ≡ Y′

1:k.

We will now prove by contradiction that Y is also a non-degenerate MVN, i.e., that k = n. We
consider the other (n−k) dimensions of Y and Y′. The covariance matrix of Yk+1:n is Dk+1:n,k+1:n,
which is a zero matrix. However, since determinant |Σ′| > 0, the variance of any component of
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Y′
k+1:n cannot be 0. Since Yk+1:n ≡ Y′

k+1:n in the ball B(QTx0, δ̃)k+1:n, their covariance
matrices should be the same. We now come to a contradiction, because one is supposed to be a
zero matrix, while the other one is supposed to be full rank. We therefore derive that k = n, and
hence Y1:k ≡ Y′

1:k implies Y ≡ Y′. We can now exploit that X = QY and X′ = QY′, due to the
orthogonality of Q, and conclude that X ≡ X′.

Lemma A.6 (Identifiability of (De)-MVNs). Consider a pair of random vectors X, X′ in Rn

distributed as
X ∼ N(µ,Σ) and X′ ∼ N(µ′,Σ′), (38)

for appropriate values of µ,Σ,µ′,Σ′, including also singular Σ and Σ′. If there exists a ball
B(x0, δ) ⊆ Rn, where x0 ∈ X , δ > 0 and X is support of X, such that X and X′ follow the same
distribution on B(x0, δ), then X ≡ X′, i.e.,(µ,Σ) = (µ′,Σ′).

Proof. Let the rank of Σ be k ≤ n and consider the spectral decomposition of Σ:

Σ = QDQT , (39)

where Q is an orthogonal n × n matrix and D a the diagonal matrix. If the rank k < n, i.e. X is
a degenerate multivariate normal, we consider D to have n diagonal entries σ2

1 , σ2
2 , ..., σ2

k, 0, ..., 0,
where σi for i ∈ [k] are the eigenvalues.

Let Y = QTX and Y′ = QTX′. This means that

Y ∼ N(QTµ, QTQDQTQ) = N(QTµ, D) (40)

Y′ ∼ N(QTµ′, QTΣ′Q) (41)

Since we know X ≡ X′ in B(x0, δ), then we can derive that Y ≡ Y′ in B(QTx0, δ̃) for an appro-
priate δ̃ > 0. We project B(QTx0, δ̃) into two subspaces, B(QTx0, δ̃)1:k and B(QTx0, δ̃)k+1:n.
The first captures the first k dimensions of the ball, and the second the last (n− k) dimensions.

We can pick the first k dimensions of Y and Y′, and denote them as Y1:k and Y′
1:k respectively. The

first k dimensions of both variables are still the same, i.e., Y1:k ≡ Y′
1:k in B(QTx0, δ̃)1:k. We can

show that Y1:k is a non-degenerate multivariate normal, because its covariance matrix D1:k,1:k is full
rank. So by Lemma A.5 we have Y1:k ≡ Y′

1:k, i.e. (QTΣ′Q)1:k,1:k = D1:k,1:k.

For the other (n − k) dimensions of Y and Y′, i.e., Yk+1:n and Y′
k+1:n, we can also show that

Yk+1:n ≡ Y′
k+1:n in B(QTx0, δ̃)k+1:n. For Yk+1:n, since x0 is contained in B(x0, δ), we can de-

rive that QTx0 is contained in B(QTx0, δ̃). Since the covariance matrix of Yk+1:n is Dk+1:n,k+1:n,
which is a zero matrix, the distribution of Yk+1:n is a point mass with all of the probability on a
single value (QTx0)k+1:n. From (40), we know that Yk+1:n ∼ N((QTµ)k+1:n, Dk+1:n,k+1:n) =
N((QTµ)k+1:n,0), so we can derive (QTµ)k+1:n = (QTx0)k+1:n.

Since Yk+1:n ≡ Y′
k+1:n in B(QTx0, δ̃)k+1:n, and Yk+1:n is a point mass on (QTµ)k+1:n ∈

B(QTx0, δ̃)k+1:n, then we can derive that Y′
k+1:n should be a point mass on the same point

(QTµ)k+1:n. Therefore, (QTΣ′Q)k+1:n,k+1:nis a zero matrix, which is equal to Dk+1:n,k+1:n,
and (QTµ)k+1:n = (QTµ′)k+1:n. This means that Yk+1:n ≡ Y′

k+1:n.

We can now exploit that X = QY and X′ = QY′ due to the orthogonality of Q, and we can write:

X = QY = Q(Y1:k
T ,Yk+1:n

T ) (42)

X′ = QY′ = Q(Y′
1:k

T
,Y′

k+1:n
T
), (43)

which together with Y1:k ≡ Y′
1:k and Yk+1:n ≡ Y′

k+1:n implies that X ≡ X′.

Theorem 3.2 (Linear Identifiability for (De)-MVNs with Piecewise Affine f ). Assume f , f̂ : Rn →
Rd is invertible and piecewise affine. Let Z ∼ N(µ,Σ) be the ground truth latent variables,
and Ẑ ∼ N(µ̂, Σ̂) be the estimated latent variables. We assume Z and Ẑ follow a (degenerate)
multivariate normal distribution, i.e., they are (De)-MVNs and Ass. 3.2 holds. If f(Z) and f̂(Ẑ) are
equally distributed, then there exists an invertible affine transformation h : Rn → Rn such that
h(Z) ≡ Ẑ (Def. 2.2).
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Proof. We construct a ball B(x0, δ) ⊆ Rd,where x0 ∈ f(Z), Z is the support set of z and δ >

0. By assumption f and f̂ are invertible and equally distributed, so they are also invertible on
B(x0, δ) ∩ f(Rn). Additionally, since we assume they are invertible piecewise affine, the inverse
functions are also piecewise affine. Moreover, by assumption 3.2, we also have that the ball B(x0, δ)

we construct can only contain one linear piece of f−1 and f̂−1, i.e. both f−1 and f̂−1 on B(x0, δ) are
defined by affine functions.

Let L ⊆ Rd be an affine subspace, such that B(x0, δ)∩ f(Rn) = B(x0, δ)∩L. Let hf ,hf̂ : R
n → L

be a pair of invertible affine functions such that h−1
f coincides with f−1 on B(x0, δ) ∩ L and h−1

f̂

coincides with f̂−1 on B(x0, δ) ∩ L. This means that distributions hf (Z) and hf̂ (Ẑ) coincide on
B(x0, δ) ∩ L, since f(Z) ≡ f̂(Ẑ). Moreover, since hf and hf̂ are affine transformations and Z and
Ẑ are (De)-MVNs by assumption, by Lemma A.3, hf (Z) and hf̂ (Ẑ) are also (De)-MVNs with mean
hf (µ) and hf (µ̂). Additionally, since x0 ∈ f(Z) and f is affine over B(x0, δ), x0 ∈ L. Then,
x0 ∈ B(x0, δ) ∩ L. By Lemma A.6, hf (Z) ≡ hf̂ (Ẑ). We define an invertible affine transformation
h := h−1

f̂
◦ hf . Then we can prove the theorem’s claim by showing that h(Z) = h−1

f̂
(hf (Z)) ≡

Ẑ.

A.3 Proof of Lemma 3.3
Lemma 3.3 (Linear Identifiability given Y = y for Piecewise Linear f ). Assume the observation
X = f(Z) follows the data-generating process in Sec. 2, and Ass. 2.1, 3.1, 3.2 hold, and f is an
invertible piecewise linear function. Let g : Rd → Rn be a continuous piecewise linear function and
f̂ : Rn → Rd be an invertible piecewise linear function onto its image. If the following conditions
hold,

E
∥∥∥X− f̂(g(X))

∥∥∥
2

2
= 0 , and (3)

g(X) | (Y = y) ∼N(µy,Σy) for some µy ∈ Rn,Σy ∈ Rn×n, (4)

then Z | (Y = y) is identified by f̂−1(X) | (Y = y) up to affine transformation, i.e., there exists an
affine function hY : Rn → Rn, such that hy(Z) | (Y = y) = f̂−1(f(Z)) | (Y = y).

Proof. From the perfect reconstruction constraint (3), we can derive

E||X− f̂(g(X))||22 = 0 (44)

E||f(Z)− f̂(g(f(Z))))||22 = 0 (45)

E
{
E
[
||f(Z)− f̂(g(f(Z)))||22 | Y

]}
= 0 (46)

E
[
||f(Z)− f̂(g(f(Z)))||22 | Y

]
= 0 PY−a.e. (47)

by first substituting X = f(Z), then applying the law of total expectation and finally using the fact
that the sum of squares is a positive function. Finally Y is a discrete random variable, in this case
PY-almost everywhere means everywhere on its support. We now denote v := g ◦ f : Rn → Rn.
Then, following (47), we have for any value y ∈ Y we have

E
[
||f(Z)− f̂(v(Z))||22 | Y = y

]
= 0, (48)

This means that for the data that satisfy Y = y, f(Z) and f̂(v(Z)) are equal PZ|Y-almost everywhere.
Since Z and v(Z) are potentially degenerate MVNs, by Theorem 3.2, there exists an invertible affine
transformation hy : Rn → Rn such that

hy(Z) ≡ v(Z) (49)

This proves that in the case of known mask Y = y we can identify the masked causal variables
mixed through a piecewise linear function up to a linear transformation.
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A.4 Proof of Theorem 3.3
Before we proof Theorem 3.3, we first prove an intermediate Lemma.

Lemma A.7 (Consistent affine transformation across all realization). Suppose we have a n-
dimensional random vector Z with an open, connected support space Z ⊆ Rn. Let Z0 be a
lower-dimensional subspace of Z . Assume v : Rn → Rn is a homeomorphism function. If we have
another homeomorphism function f : Rn → Rn such that

f(z) = v(z) ∀z ∈ Z \ Z0

then, since f and v are both continuous, we can intuitively conclude that:

f(z) = v(z) ∀z ∈ Z.

Proof. Let d(z) := f(z) − v(z), ∀z ∈ Z . Since both f and v are continuous functions, d is
continuous function as well.

Let set A := d−1(Rn \ 0), where 0 is the vector of all zeros. Since Rn \ 0 is an open set and d is
continuous, we can derive that A is an open set as well. We furthermore know that A ⊆ Z0, because
it is the preimage of the non-zero values of d, i.e. the collection of z ∈ Z for which f(z) ̸= v(z).

Since Z0 is a lower-dimensional subspace of Z , the measure of Z0 is zero. Therefore, the Lebesgue
measure of set A which is contained in Z0 is zero as well.

Since A is an open set with measure zero, and in this measure all non-empty open sets have a non-zero
measure, we can derive A = ∅. Thus, f(z) = v(z) ∀z ∈ Z .

With this results, we can now prove the following Theorem 3.3.

Theorem 3.3 (Element-wise Identifiability for Piecewise Linear f ). Assume the observation X
follows the data-generating process in Sec 2, Ass. 2.1, 3.1, 3.2 hold and f is an invertible piecewise
linear function. Let g : Rd → Rn be a continuous invertible piecewise linear function and let
f̂ : Rn → Rd be an invertible function onto its image. We assume the two conditions of Lemma 3.3
hold. If additionally the following condition holds:

E ∥g(X)∥0 ≤ E ∥Z∥0 , (5)

then Z is identified by f̂−1(X), i.e., f̂−1 ◦ f is a permutation composed with element-wise invertible
linear transformations (Def. 2.3).

Proof. From Lemma 3.3, we know that for all y ∈ Y , given mask Y = y, v(Z) ≡ hy(Z), where
hy : Rn → Rn is an invertible affine transformation.

We start by considering the case in which Y = 1, i.e. there is no masking. In this case, we can
know the mask; therefore, we can use Lemma 3.3 to get the reconstruction up to an affine hY=1. We
also know that we can perfectly reconstruct Z with v(Z) := f̂−1(f(Z)) on all Z . This means that
∀z ∈ ZY=1, hY=1(z) = v(z). Then, according to Lemma A.7, since the support of Z|Y ̸= 1 is a
low dimensional subspace of Z|Y = 1 (when there is no masking of the causal variables), and we
assume that v is continuous over Rn, then we can derive that ∀z ∈ Z , hY=1(z) = v(z). Therefore,
v is an invertible affine transformation.

We can now apply the inverse of f̂ on both sides of equation 3 to obtain

f̂−1 ◦ f(z) = g ◦ f︸︷︷︸
v:=

(z) ,∀z ∈ Z . (50)

where v is an invertible affine function.

To show that v is a permutation composed with an element-wise linear transformation, we leverage
the sparsity constraint (5) and reuse the same strategy from (15) to (32) to conclude the proof.
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