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Figure 1: Given pre-trained 3D shape generative models, we propose to adapt them to target domains using a few
target samples while preserving diverse geometry and texture information learned from source domains. Compared
with directly fine-tuned models which tend to replicate the few-shot target samples instead of producing novel
samples, our approach only needs the silhouettes of target samples as training data and achieves diverse generated
shapes following target geometry distributions but different from target samples.

Abstract

Realistic and diverse 3D shape generation is helpful for a wide variety of applications such
as virtual reality, gaming, and animation. Modern generative models learn from large-scale
datasets and generate new samples following similar distributions. However, when train-
ing data is limited, deep neural generative networks overfit and tend to replicate training
samples. Prior works focus on few-shot image generation to produce reasonable and diverse
results using a few target images. Unfortunately, abundant 3D shape data is typically hard
to obtain as well. In this work, we make the first attempt to realize few-shot 3D shape adap-
tation by adapting generative models pre-trained on large source domains to target domains.
To relieve overfitting and keep considerable diversity, we propose to maintain the probability
distributions of the pairwise relative distances between adapted samples at feature-level and
shape-level during domain adaptation. Our approach only needs the silhouettes of few-shot
target samples as training data to learn target geometry distributions and achieve gener-
ated shapes with diverse topology and textures. Moreover, we introduce several metrics to
evaluate generation quality and diversity. The effectiveness of our approach is demonstrated
qualitatively and quantitatively under a series of few-shot 3D shape adaptation setups.

1 Introduction

In recent years, 3D content has played significant roles in many applications, such as gaming, robotics, films,
and animation. Currently, the most common method of creating 3D assets depends on manual efforts using
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specialized 3D modeling software like Blender and Maya, which is very time-consuming and cost-prohibitive
to generate high-quality and diverse 3D shapes. As a result, the need for automatic 3D content generation
becomes apparent.

During the past decade, image generation has been widely studied and achieved great success using generative
models, including generative adversarial networks (GANs) (Goodfellow et al., 2014; Brock et al., 2019; Karras
et al., 2019; 2020b; 2021), variational autoencoders (VAEs) (Kingma & Welling, 2013; Rezende et al., 2014;
Vahdat & Kautz, 2020), autoregressive models (Van den Oord et al., 2016; Chen et al., 2018; Henighan
et al., 2020), and diffusion models (Ho et al., 2020; Song & Ermon, 2020; Dhariwal & Nichol, 2021; Nichol
& Dhariwal, 2021; Kingma et al., 2021). Compared with 2D images, 3D shapes are more complex and
have different kinds of representations for geometry and textures. Inspired by the progress in 2D generative
models, 3D generative models have become an active research area of computer vision and graphics and have
achieved pleasing results in the generation of point clouds (Achlioptas et al., 2018; Yang et al., 2019; Zhou
et al., 2021a), implicit fields (Chen & Zhang, 2019; Mescheder et al., 2019), textures (Pavllo et al., 2020;
2021; Richardson et al., 2023), and shapes (Gao et al., 2022; Liu et al., 2023). In addition, recent works
based on neural volume rendering (Mildenhall et al., 2020) tackle 3D-aware novel view synthesis (Chan et al.,
2021; 2022; Gu et al., 2022; Hao et al., 2021; Niemeyer & Geiger, 2021; Or-El et al., 2022; Schwarz et al.,
2020; Xu et al., 2022; Zhou et al., 2021b; Schwarz et al., 2022).

Similar to 2D image generative models like GANs and diffusion models, modern 3D generative models require
large-scale datasets to avoid overfitting and achieve diverse results. Unfortunately, it is not always possible
to obtain abundant data under some circumstances. Few-shot generation aims to produce diverse and high-
quality generated samples using limited data. Modern few-shot image generation approaches (Wang et al.,
2018; Karras et al., 2020a; Mo et al., 2020; Wang et al., 2020; Li et al., 2020; Ojha et al., 2021; Zhao et al.,
2022b; Zhu et al., 2022b;a; Zhao et al., 2023) adapt models pre-trained on large-scale source datasets to
target domains using a few available training samples to relieve overfitting and produce adapted samples
following target distributions. Nevertheless, few-shot 3D shape adaptation has yet to be studied, constrained
by the complexity of 3D shape generation and the limited performance of early 3D shape generative models.

In this paper, we make the first attempt to study few-shot 3D shape adaptation pursuing reasonable and
diverse generated shapes using limited data. Since 3D shapes contain geometry and texture information,
we need to clarify two questions: (i) what to learn from limited training data, and (ii) what to adapt from
pre-trained source models to target domains. We define "domain" as shapes sharing similar geometry or
texture features. We propose to fine-tune source models pre-trained on large-scale datasets with limited
data to fit target distributions, aiming to produce diverse target shapes. Naturally, we define two setups:
(i) geometry and texture adaptation (Setup A): the adapted models are trained to learn the geometry
information of target data only and preserve the diversity of geometry and textures from source models, and
(ii) geometry adaptation only (Setup B): the adapted models are trained to learn both the geometry and
texture information of target data and preserve the diversity of geometry from source models only.

We design a few-shot 3D shape adaptation approach based on modern 3D shape GANs, which synthesize tex-
tured meshes with randomly sampled noises requiring 2D supervision only. Source models directly fine-tuned
on limited target data cannot maintain generation diversity and produce results similar to training samples.
As shown in Fig. 1, two different source samples become analogous after few-shot domain adaptation, losing
diversity of geometry and textures. Therefore, we introduce a pairwise relative distances preservation ap-
proach to keep the probability distributions of geometry and texture pairwise similarities in generated shapes
at both feature-level and shape-level during domain adaptation. In this way, the adapted models are guided
to learn the common properties of limited training samples instead of replicating them. As a consequence,
adapted models maintain similar generation diversity to source models and produce diverse results.

The main contributions of our work are concluded as follows:

• To our knowledge, we are the first to study few-shot 3D shape adaptation and achieve diverse generated
shapes with arbitrary topology and textures.

• We propose a few-shot 3D shape adaptation approach to learn target geometry distributions using 2D
silhouettes of extremely limited data (e.g., 10 shapes) while preserving diverse information of geometry
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and textures learned from source domains. Our approach can also be adjusted to learn both target and
geometry information using few-shot 2D RGB images as training data.

• We introduce several metrics to evaluate the quality and diversity of few-shot 3D shape generation and
demonstrate the effectiveness of our approach qualitatively and quantitatively with experiments conducted
on both on-manifold and off-manifold setups.

2 Related Work

3D Generative Models with 3D Supervision Early works (Wu et al., 2016; Smith & Meger, 2017; Lunz
et al., 2020; Gadelha et al., 2017; Henzler et al., 2019) extend 2D image generators to 3D voxel grids directly
but fail to produce compelling results with high resolution due to the large computational complexity of
3D convolution networks. Other works explore the generation of alternative 3D shape representations, such
as point clouds (Achlioptas et al., 2018; Yang et al., 2019; Zhou et al., 2021a) and implicit fields (Chen
& Zhang, 2019; Mescheder et al., 2019). Following works generate meshes with arbitrary topology using
autoregressive models (Nash et al., 2020) and GANs (Luo et al., 2021). Meshdiffusion (Liu et al., 2023) first
applies diffusion models to generate 3D shapes unconditionally. These works produce arbitrary topology
only and need post-processing steps to generate textured meshes compatible with modern graphics engines.

3D Generative Models with 2D Supervision PrGAN (Gadelha et al., 2017) is the first work to learn
a 3D generative model with 2D supervision only. MP-GAN (Li et al., 2019) extends it to multiple dis-
criminators corresponding to multiple views. Henderson et al. (2020) proposes a probabilistic generative
model of textured 3D meshes given a single natural image. However, the generation quality of these works
is still limited. DIBR (Chen & Zhang, 2019) and Textured3DGAN (Pavllo et al., 2020; 2021) synthesize
textured 3D meshes based on input templated meshes, resulting in limited topology. GET3D (Gao et al.,
2022) proposes a 3D generative model to achieve arbitrary and diverse 3D geometry structures and textures
using 2D images for supervision only. GET3DHuman (Xiong et al., 2023) depends on prior knowledge of
human from external sources to synthesize textured 3D humans. DreamFusion (Poole et al., 2022) depends
on a pre-trained 2D text-to-image diffusion model to perform text-to-3D synthesis. HoloDiffusion (Karnewar
et al., 2023b) proposes a 3D-aware generative diffusion model to reconstruct 3D-consistent objects using 2D
posed images. HoloFusion (Karnewar et al., 2023a) generates photo-realistic 3D radiance fields by combining
HoloDiffusion with a 2D super-resolution network.

3D Shape Translation LOGAN (Yin et al., 2019) and UNIST (Chen et al., 2022) realize 3D shape
translation based on VAEs trained on abundant data from two domains. Then translators are trained to
transfer samples from one domain to the other based on the latent space provided by the VAEs. They tackle
a different task from this work and aim to build a translation between two domains. Our approach aims
to produce diverse results given few-shot data. Besides, LOGAN and UNIST are not qualified for few-shot
data since both VAEs and translators need enough data to avoid overfitting.

Few-shot Generation Modern generative models need large amounts of data to achieve high-quality and
diverse results. When training data is limited to a few samples, deep generative models tend to overfit and
replicate them instead of generating novel results. Few-shot generation aims to solve the overfitting problem
of generative models when training data is limited. Domain adaptation is a mainstream choice to realize
few-shot generation. The key idea is to preserve the diverse information provided by source models while
learning the common features of a few real target samples. In this way, a generative model for target domains
is obtained to avoid overfitting or replicating training samples. The network structures of adapted models
are consistent with source models in most cases.

Few-shot Image Generation Existing few-shot image generation methods aim to produce high-quality
images with great diversity utilizing a few samples. Most modern approaches follow the TGAN (Wang
et al., 2018) method to adapt generative models pre-trained on large source domains, including ImageNet
(Deng et al., 2009), FFHQ (Karras et al., 2019), and LSUN (Yu et al., 2015) et al., to target domains with
limited data. Following methods can be roughly divided into data augmentation approaches (Tran et al.,
2021; Zhao et al., 2020a;b; Karras et al., 2020a), model regularization (Li et al., 2020; Ojha et al., 2021;
Zhao et al., 2022b; Zhu et al., 2022b; Xiao et al., 2022), and trainable parameters fixing (Noguchi & Harada,
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2019; Mo et al., 2020; Wang et al., 2020). CDC (Ojha et al., 2021) proposes a cross-domain consistency loss
for generators and patch-level discrimination to build a correspondence between source and target domains.
MaskDis (Zhu et al., 2022b) proposes to regularize the discriminator using masked features. DDPM-PA (Zhu
et al., 2022a) first realizes few-shot image generation with diffusion models. Besides, other recent works have
provided different research perspectives. RSSA (Xiao et al., 2022) proposes a relaxed spatial structural
alignment method using compressed latent space derived from inverted GANs (Abdal et al., 2020). AdAM
(Zhao et al., 2022a) and RICK (Zhao et al., 2023) achieve improvement in the adaptation of unrelated
source/target domains. Research including MTG (Zhu et al., 2021), OSCLIP (Kwon & Ye, 2022), GDA
(Zhang et al., 2022b), and DIFA (Zhang et al., 2022a) et al. explore single-shot GAN adaptation with the
guidance of pre-trained CLIP (Radford et al., 2021a) image encoders. This work first explores few-shot
3D shape adaptation and shares similar ideas of preserving diverse information provided by source models,
achieving diverse textured 3D shapes using limited data. We design losses sharing similar formats with CDC
but apply to both feature-level and shape-level information and make them adaptive to 3D shapes with a
series of modifications.

3 Method

Given 3D generative models pre-trained on large source domains, our approach adapts them to target domains
by learning the common geometry properties of limited training data while maintaining the generation
diversity of geometry and textures. Directly fine-tuned models tend to replicate training samples instead of
producing diverse results since the deep generative networks are vulnerable to overfitting, especially when
training data is limited. To this end, we propose to keep the probability distributions of the pairwise relative
distances between adapted samples similar to source samples.

We employ the 3D shape generative model GET3D (Gao et al., 2022) to illustrate the proposed approach.
We first introduce GET3D briefly in Sec. 3.1. The silhouettes of target shapes are used as training data to
learn target geometry distributions only under Setup A while RGB images are employed as training data to
learn both geometry and texture distributions under Setup B. Adapted models are guided to realize geometry
adaptation (Sec. 3.2) and texture adaptation (Sec. 3.3) using source models as reference for Setup A. Under
Setup B, adapted models only preserve the diversity of geometry learned from source domains. As for
textures, we guide adapted models to fit the distributions of training samples directly. Overall optimization
targets under Setup A and B are provided in Sec. 3.4. We show our full method for Setup A in Fig. 2 and
provide more detailed visualized demonstration in Fig. 3.

3.1 Preliminary: GET3D

GET3D is a 3D shape GAN trained on 2D images to generate 3D textured shapes. GET3D realizes arbi-
trary generation of topology and textures using the combination of geometry and texture generators. Both
generators are composed of mapping networks M and synthesis networks S. We empirically fix the mapping
networks M during domain adaptation in our approach. Ablations can be found in Appendix D. GET3D
utilizes the differentiable surface representation DMTet (Shen et al., 2021) to describe geometry with signed
distance fields (SDF) defined on deformation fields (Gao et al., 2020b;a). The texture generator uses mapped
geometry and texture codes as inputs and generates texture fields for explicit meshes obtained by adopting
DMTet for surface extraction. GET3D is trained with two 2D discriminators applied to RGB images and
silhouettes, respectively.

GET3D is different from 3D-aware GANs and 3D diffusion models. Both 3D-aware GANs and GET3D need
2D images only as training data. 3D-aware GANs (Schwarz et al., 2020; Chan et al., 2021; 2022) are designed
to generate novels views of 3D shapes but do not guarantee meaningful 3D shape generation. Besides,
extracting textures remains non-trivial even if a mesh may be synthesized from neural field representations
with the marching cube algorithm (WE, 1987). GET3D is a modern randomly generative model trained
on 2D images and synthesizing textured 3D shapes. Most 3D diffusion models (Liu et al., 2023; Nichol
et al., 2022; Gupta et al., 2023; Chou et al., 2022; Shue et al., 2023) need 3D training data like meshes and
point clouds since they need 3D ground truth to compute the reconstruction loss. Diffusion-based methods
take up significantly larger computational costs, memory occupancy, and inference time. Our approach is
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Figure 2: Overview of the proposed few-shot 3D shape generation approach using Cars → SUVs as an example: We
maintain the distributions of pairwise relative distances between the geometry and textures of generated samples
at feature-level and shape-level to keep diversity during domain adaptation. Only the silhouettes of few-shot target
samples are needed as training data to learn target geometry distributions.

implemented based on GET3D in this paper. However, it is not bound by certain network architectures of
GET3D and can be applied to more powerful 3D shape GANs in the future to achieve higher-quality results.
As an analogy, early few-shot image generation works are implemented with BigGAN (Brock et al., 2019),
but they can be applied to StyleGANs (Karras et al., 2019; 2020b) as well.

3.2 Geometry Adaptation

We aim to guide adapted models to learn the common geometry properties of limited training samples while
maintaining geometry diversity similar to source models. We propose to keep the probability distributions of
pairwise relative distances between the geometry structures of adapted samples at feature-level and shape-
level. We first sample a batch of geometry codes

{
zn

geo

}N

0 following the standard normal distribution N (0, I)
and get mapped geometry latent codes

{
ωn

geo

}N

0 using fixed geometry mapping networks Mgeo. The proba-
bility distributions for the ith noise vector zi

geo in the source/target (s/t) geometry generators at feature-level
can be expressed as follows:

p
s/t,l
geo,i = softmax(

{
sim(Ss/t,l

geo (ωi
geo), Ss/t,l

geo (ωj
geo))

}
∀i̸=j

), (1)

where softmax and sim represent the softmax function and cosine similarity between activations at the lth

layer of the source/target geometry synthesis networks (Ss
geo and St

geo) which generate SDF and deformation
fields. Then we guide target geometry synthesis networks to keep similar probability distributions to source
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Figure 3: More detailed visualized demonstration of our approach. Our approach builds probability distributions
with the pairwise similarity between the feature-level and shape-level geometry and texture information of source
and adapted shapes and computes loss with softmax and KL-divergence.

models during domain adaptation with the feature-level geometry loss:

Lgeo(Ss
geo, St

geo) = Ezi
geo∼N (0,I)

∑
l,i

DKL(pt,l
geo,i||p

s,l
geo,i), (2)

where DKL represents KL-divergence. Similarly, we use source and target silhouettes in place of the features
in geometry synthesis networks to keep the pairwise relative distances of adapted samples at shape-level.
For this purpose, we further sample a batch of texture codes {zn

tex}N
0 for shape generation. The probability

distributions of shapes generated from the ith noise vectors (zi
geo and zi

tex) by the source/target generators
are given by:

p
s/t
mask,i = softmax(

{
sim(Mask(Gs/t(zi

geo, zi
tex)), Mask(Gs/t(zj

geo, zj
tex)))

}
∀i ̸=j

), (3)

where Gs and Gt are the source and target shape generators, Mask represents the masks of 2D rendered
shapes. We have the shape-level mask loss for geometry adaptation as follows:

Lmask(Gs, Gt) = Ezi
geo,zi

tex∼N (0,I)
∑

i

DKL(pt
mask,i||ps

mask,i). (4)

3.3 Texture Adaptation

In addition, we also encourage adapted models to preserve the texture information learned from source
domains and generate target shapes with diverse textures. We still apply the pairwise relative distances
preservation approach to relieve overfitting and keep the generation diversity of textures. Since the generated
textures for explicit meshes contain both geometry and texture information, we propose to use textures in
regions shared by two generated shapes to compute the pairwise relative distances of textures while alleviating
the influence of geometry. In the same way, we use the randomly sampled geometry codes

{
zn

geo

}N

0 and
texture codes {zn

tex}N
0 and get mapped latent codes

{
ωn

geo

}N

0 and {ωn
tex}N

0 with fixed geometry and texture
mapping networks Mgeo and Mtex, respectively. The shared regions of two generated shapes produced by
the source/target models are defined as the intersection of the masks of the 2D rendered shapes:

M
s/t
i,j = Mask(Gs/t(zi

geo, zi
tex)) ∧ Mask(Gs/t(zj

geo, zj
tex)) (i ̸= j). (5)

The probability distributions for the ith noise vectors (zi
geo and zi

tex) in the source/target texture generators
(Ss

tex and St
tex) at feature-level can be expressed as follows:

p
s/t,m
tex,i = softmax(

{
sim(Ss/t,m

tex (ωi
geo, ωi

tex) ⊗ M
s/t
i,j , S

s/t,m
tex (ωj

geo, ωj
tex) ⊗ M

s/t
i,j )

}
∀i ̸=j

) (6)
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where ⊗ and sim represent the element-wise multiplication of tensors and cosine similarity between activa-
tions at the mth layer of the source and target texture synthesis networks. For shape-level texture adaptation,
we use 2D rendered shapes of RGB formats in place of the features in texture synthesis networks to compute
the probability distributions:

p
s/t
rgb,i = softmax(

{
sim(RGB(Gs/t(zi

geo, zi
tex)) ⊗ M

s/t
i,j , RGB(Gs/t(zj

geo, zj
tex)) ⊗ M

s/t
i,j )

}
∀i ̸=j

), (7)

where RGB represents the rendered RGB images of generated shapes. We have the feature-level texture loss
and shape-level RGB loss for texture adaptation as follows:

Ltex(Ss
tex, St

tex) = Ezi
geo,zi

tex∼N (0,I)
∑
m,i

DKL(pt,m
tex,i||p

s,m
tex,i), (8)

Lrgb(Gs, Gt) = Ezi
geo,zi

tex∼N (0,I)
∑

i

DKL(pt
rgb,i||ps

rgb,i). (9)

3.4 Overall Optimization Target

3.4.1 Setup A: Learning Geometry Only

Since adapted models are guided to learn the geometry information of training data, we only use the mask
discriminator and apply the above-mentioned pairwise relative distances preservation methods to preserve
diverse geometry and texture information learned from source domains. In this way, our approach only needs
the silhouettes of few-shot target shapes as training data. The overall optimization target L of adapted
models is defined as follows:

L = L(Dmask, Gt) + µLreg + µ1Lgeo(Ss
geo, St

geo) + µ2Lmask(Gs, Gt) + µ3Ltex(Ss
tex, St

tex) + µ4Lrgb(Gs, Gt).
(10)

Here L(Dmask, Gt) and Lreg represent the adversarial objective of silhouettes and regularization term of
generated SDFs used in GET3D. More details of these two losses are added in Appendix A. µ, µ1, µ2, µ3, µ4
are hyperparameters set manually to control the regularization levels.

3.4.2 Setup B: Learning Geometry and Textures

The proposed adaptation approach under setup B has two differences compared with setup A. Firstly, the
feature-level texture loss and shape-level RGB loss are no longer needed. Secondly, generators are guided by
the RGB discriminator to learn target texture distributions. Therefore, we need RGB images of rendered
real samples as inputs for the RGB discriminator. The overall optimization target of adapted models under
setup B is defined as follows:

L = L(Dmask, Gt) + L(Drgb, Gt) + µLreg + µ1Lgeo(Ss
geo, St

geo) + µ2Lmask(Gs, Gt). (11)

Here L(Drgb, Gt) represents the adversarial objective of rgb images used in GET3D. Details are added in
Appendix A. µ, µ1, µ2 are hyperparameters set manually to control the regularization levels.

4 Experiments

We employ a series of few-shot 3D shape adaptation setups to demonstrate the effectiveness of our approach.
We mainly conduct experiments under on-manifold setups, which discuss overlapping source and target
distributions. We first show qualitative results in Sec. 4.1. Then we introduce several metrics to evaluate
quality and diversity quantitatively in Sec. 4.2. We ablate our approach in Sec. 4.3 and provide additional
experiments under off-manifold setups with large domain gaps between source/target datasets in 4.4.

Basic Setups The hyperparameter of SDF regularization µ is set as 0.01 for all experiments. We empirically
find µ1 = 20000, µ2 = 5000, µ3 = 5000, µ4 = 1000 to work well for the employed adaptation setups. We
conduct experiments with batch size 4 on a single NVIDIA A40 GPU. The learning rates of the generator
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Figure 4: 10-shot generated shapes of our approach using ShapeNetCore Cars as the source domain.

Figure 5: 10-shot generated shapes of our approach using ShapeNetCore Chairs as the source domain.

and discriminator are set as 0.0005. Adapted models are trained for 50K iterations. The resolution of 2D
RGB images and silhouettes is 1024×1024. More details of implementation are added in Appendix F.

Baselines Since few existing works explore few-shot 3D shape generation, we compare the proposed approach
with directly fine-tuned models (DFTM) and fine-tuned models using fixed texture generators (FreezeT),
including fixed texture mapping and texture synthesis networks. The mapping networks are fixed for both
our method and baselines. Baselines share the same setups of training iterations and learning rates as our
method for fair comparison.

Datasets We use ShapeNetCore v1 Cars, Chairs, and Tables Chang et al. (2015) as source datasets and
sample several 10-shot shapes from ShapeNetCore v2 as target datasets, including (i) Trucks, (ii) Racing
Cars, (iii) Sport Utility Vehicles (SUVs), (iv) Ambulances, (v) Police Cars corresponding to Cars,(vi) Rocking
Chairs, (vii) Modern Chairs, (viii) Lawn Chairs corresponding to Chairs, and (ix) Round Tables, (x) School
Tables corresponding to Tables. The few-shot 3D shapes are processed to RGB images (for Setup B only)
and silhouettes using 24 evenly distributed camera poses as training data. The few-shot target datasets are
not included in the training set of source models. Although source models may be capable of generating
some shapes in the target domain, it remains hard for them to produce diverse target shapes and avoid
generating shapes out of the target domain, which is the main goal of our work.
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Figure 6: Visualized samples comparison on 10-shot Cars → SUVs, Cars → Racing Cars, and Chairs → Rocking
Chairs. The results of different approaches are synthesized with fixed noise inputs.

Figure 7: 10-shot generated shapes of our approach on Cars → Ambulances and Police Cars.

4.1 Qualitative Evaluation

Setup A We visualize samples produced by our approach using source models pre-trained on ShapeNetCore
Cars and Chairs in Fig. 4 and 5, respectively. Our approach only needs the silhouettes of few-shot training
samples as target datasets to adapt source models to target domains while maintaining generation diversity
of geometry and textures. In addition, we compare our approach with baselines using fixed noise inputs
for intuitive comparison in Fig. 6. DFTM models replicate training samples and fail to keep generation
diversity. FreezeT also fails to produce diverse textures since the mapped geometry codes influence the
fixed texture synthesis networks. As a result, FreezeT models produce textured meshes similar to training
samples under the guidance of RGB discriminators. Therefore, we further train FreezeT models without
RGB discriminators or using source RGB discriminators. However, these approaches still fail to preserve
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Datasets Approach CD (↓) Intra-CD (↑) Pairwise-CD (↑) Intra-LPIPS (↑) Pairwise-LPIPS (↑)

Cars →
SUVs

DFTM 1.401 0.316 ± 0.002 0.513 ± 0.001 0.062 ± 0.001 0.063 ± 0.012
FreezeT 1.553 0.240 ± 0.005 0.326 ± 0.002 0.055 ± 0.002 0.060 ± 0.014

Ours 1.3231.3231.323 0.511 ± 0.0060.511 ± 0.0060.511 ± 0.006 0.814 ± 0.0070.814 ± 0.0070.814 ± 0.007 0.109 ± 0.0260.109 ± 0.0260.109 ± 0.026 0.095 ± 0.0220.095 ± 0.0220.095 ± 0.022

Cars →
Trucks

DFTM 4.014 0.441 ± 0.003 0.689 ± 0.003 0.112 ± 0.002 0.119 ± 0.024
FreezeT 4.175 0.412 ± 0.006 0.766 ± 0.002 0.120 ± 0.003 0.128 ± 0.027

Ours 3.9403.9403.940 1.061 ± 0.0141.061 ± 0.0141.061 ± 0.014 1.175 ± 0.0041.175 ± 0.0041.175 ± 0.004 0.145 ± 0.0220.145 ± 0.0220.145 ± 0.022 0.146 ± 0.0330.146 ± 0.0330.146 ± 0.033
Chairs →

Lawn
Chairs

DFTM 40.559 4.001 ± 0.005 13.598 ± 0.013 0.165 ± 0.029 0.141 ± 0.047
FreezeT 39.422 4.671 ± 0.022 19.269 ± 0.024 0.120 ± 0.032 0.165 ± 0.040

Ours 38.66138.66138.661 5.852 ± 0.0315.852 ± 0.0315.852 ± 0.031 22.989 ± 0.02222.989 ± 0.02222.989 ± 0.022 0.278 ± 0.0400.278 ± 0.0400.278 ± 0.040 0.166 ± 0.0540.166 ± 0.0540.166 ± 0.054
Chairs →
Rocking
Chairs

DFTM 18.996 7.405 ± 0.022 15.312 ± 0.011 0.202 ± 0.039 0.203 ± 0.037
FreezeT 18.503 5.541 ± 0.014 11.977 ± 0.009 0.203 ± 0.046 0.204 ± 0.036

Ours 17.59817.59817.598 8.773 ± 0.0298.773 ± 0.0298.773 ± 0.029 16.165 ± 0.01516.165 ± 0.01516.165 ± 0.015 0.289 ± 0.0620.289 ± 0.0620.289 ± 0.062 0.222 ± 0.0630.222 ± 0.0630.222 ± 0.063

Table 1: Quantitative evaluation of our approach. We fix noise inputs for different methods to conduct fair comparison.
CD scores are multiplied by 103. Our approach performs better on both generation quality and diversity.

Datastes Approach FID (↓) CD (↓) Datastes Approach FID (↓) CD (↓)
Cars →

Ambulances
DFTM 101.583 6.896 Cars →

Police Cars
DFTM 86.833 6.440

Ours 93.69793.69793.697 5.9635.9635.963 Ours 74.95874.95874.958 5.6165.6165.616

Table 2: Quantitative evaluation of our approach on generation quality of geometry and textures.

the diverse geometry and texture information of source models and cannot produce reasonable shapes. We
maintain the pairwise relative distances between generated shapes at feature-level and shape-level and achieve
reasonable and diverse adapted samples. Supplemental visualized results are provided in Appendix H.

Setup B We employ RGB images of 10-shot Ambulances and Police Cars as training data for Setup B. As
shown in Fig. 7, our approach produces diverse ambulances and police cars with diverse topology.

Quality Analysis The proposed approach realizes few-shot domain adaptation of pre-trained models. Our
approach achieves generation quality similar to pre-trained GET3D models. We provide visualized samples
of GET3D in Appendix A, in which incomplete textures of tires and failure of detailed structures can be
found. As a result, our approach produces some samples with incomplete textures of tires and cannot
synthesize some detailed structures similar to some training samples. Our approach can be combined with
more powerful 3D shape GANs in the future to achieve better visual effects.

4.2 Quantitative Evaluation

Evaluation Metrics The generation quality of adapted models represents their capability to learn target
geometry distributions. Chamfer distance (CD) (Chen et al., 2003) is employed to compute the distances
of geometry distributions between 5000 adapted samples and target datasets containing relatively abundant
target data to obtain reliable results. Besides, we design several metrics based on CD and LPIPS (Zhang
et al., 2018) to evaluate the diversity of geometry and textures in adapted samples, which are computed in
two ways: (i) pairwise-distances: we randomly generate 1000 shapes and compute the pairwise distances
averaged over them, (ii) intra-distances (Ojha et al., 2021): we assign the generated shapes to one of the
training samples with the lowest LPIPS distance and then compute the average pairwise distances within
each cluster averaged over all the clusters. LPIPS results are averaged over 8 evenly distributed views of
rendered shapes. Adapted models tending to replicate training samples may achieve fine pairwise-distances
but only get intra-distances close to 0. However, adapted models with great generation diversity should
achieve large values of both pairwise and intra-distances.

Setup A The quantitative results of our approach under Setup A are compared with baselines on several
few-shot adaptation setups, as listed in Table 1. Our approach learns target geometry distributions better
in terms of CD. Moreover, our approach also performs better on all the benchmarks of diversity, indicating
its strong capability to produce diverse shapes with different geometry structures and textures.
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Datastes Approach Intra-CD (↑) Pairwise-CD (↑) Inra-LPIPS (↑) Pairwise-LPIPS (↑)
Cars →

Ambulances
DFTM 0.300 ± 0.002 1.027 ± 0.0071.027 ± 0.0071.027 ± 0.007 0.079 ± 0.009 0.083 ± 0.017
Ours 0.558 ± 0.0040.558 ± 0.0040.558 ± 0.004 0.638 ± 0.006 0.093 ± 0.0180.093 ± 0.0180.093 ± 0.018 0.086 ± 0.0160.086 ± 0.0160.086 ± 0.016

Cars →
Police Cars

DFTM 0.426 ± 0.003 0.926 ± 0.0080.926 ± 0.0080.926 ± 0.008 0.109 ± 0.002 0.108 ± 0.017
Ours 0.902 ± 0.0050.902 ± 0.0050.902 ± 0.005 0.902 ± 0.006 0.115 ± 0.0090.115 ± 0.0090.115 ± 0.009 0.120 ± 0.0200.120 ± 0.0200.120 ± 0.020

Table 3: Quantitative evaluation of our approach on generation diversity of geometry and textures.

Figure 8: Qualitative ablations of our approach using 10-shot Chairs → Rocking Chairs as an example. Results of
different approaches are synthesized with fixed noise inputs for intuitive comparison.

Setup B We further add FID Heusel et al. (2017) to evaluate the generation quality under Setup B. We
generate 1000 rendered shapes and use all the ambulance (73 shapes) and police car (133 shapes) sampled
from ShapeNetCore Chang et al. (2015) as target datasets. FID results are averaged over 24 views of
rendered shapes. The quantitative results are listed in Tables 2 and 3. Our approach achieves better
results than DFTM models on the employed two setups. Compared with DFTM models, our approach also
performs better in learning target geometry distributions in terms of CD. Besides, our approach achieves
greater generation diversity in terms of Intra-CD and Intra-LPIPS. DFTM models get better results on
Pairwise-CD and results close to our approach on Pairwise-LPIPS but get apparently worse results on intra-
distances, indicating that they are overfitting to few-shot training samples and tend to replicate them instead
of producing diverse results. We do not include FreezeT models for comparison under Setup B since the
adapted models need to learn the texture information from limited training samples.

4.3 Ablation Analysis

We provide ablation analysis to show the roles played by each component of our approach. In Fig. 8,
we show the qualitative ablation analysis using 10-shot Chairs → Rocking Chairs as an example. Our full
approach adapts source samples to target domains while preserving diverse geometry and texture information.
Adapted models only using GAN loss with mask discrimination fail to maintain geometry diversity or produce
reasonable shapes. Adding fixed source RGB discriminators results in texture degradation. Absence of the
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Approach CD (↓) Intra-CD (↑) Pairwise-CD (↑) Intra-LPIPS (↑) Pairwise-LPIPS (↑)
w/o Texture loss 18.178 8.054 ± 0.028 13.533 ± 0.010 0.221 ± 0.013 0.210 ± 0.045

w/o Geometry loss 18.409 7.551 ± 0.019 12.549 ± 0.009 0.271 ± 0.023 0.217 ± 0.057
w/o RGB loss 17.762 7.207 ± 0.018 13.124 ± 0.010 0.211 ± 0.006 0.213 ± 0.034
w/o Mask loss 18.275 6.878 ± 0.014 12.435 ± 0.008 0.248 ± 0.010 0.208 ± 0.010
Full Approach 17.59817.59817.598 8.773 ± 0.0298.773 ± 0.0298.773 ± 0.029 16.165 ± 0.01516.165 ± 0.01516.165 ± 0.015 0.289 ± 0.0620.289 ± 0.0620.289 ± 0.062 0.222 ± 0.0630.222 ± 0.0630.222 ± 0.063

Table 4: Quantitative ablations of the proposed approach using 10-shot Chairs → Rocking Chairs as an example.

Figure 9: Visualized samples on 10-shot Tables → Modern Chairs and Lawn Chairs.

feature-level texture loss makes it harder for adapted models to preserve the texture information learned from
source domains. Absence of shape-level RGB loss leads to repetitive textures and discontinuous shapes. As
for the feature-level geometry and shape-level mask losses, their absence results in adapted samples sharing
similar geometry structures and incomplete shapes. We also add ablations using geometry and mask losses,
texture and RGB losses, feature-level losses, and shape-level losses, respectively. None of these approaches get
compelling results. Incomplete geometry structures and low-quality textures can be found in their adapted
samples. As shown in Table 4, the full approach achieves the best quantitative results on both generation
quality and diversity. Without feature-level geometry loss or shape-level mask loss, adapted models perform
worse on geometry diversity in terms of Intra-CD and Pairwise-CD. Similarly, adapted models perform worse
on texture diversity in terms of Intra-LPIPS and Pairwise-LPIPS without feature-level texture loss or shape-
level RGB loss. More detailed ablations for the number of training samples, number of views, fixed mapping
networks, shared masks proposed in Sec. 3.4, and hyperparameters are added in Appendix D.

4.4 Larger Domain Gaps

We have conducted abundant experiments on related source/target domain adaptation like Cars → Trucks.
In this section, we further add experiments on source/target domains with larger domain gaps. We employ
two adaptation setups: Tables → Modern Chairs and Lawn Chairs trained on 10-shot silhouettes. As shown
in Fig. 9, our approach is qualified for domain gaps like Tables → Chairs. Our approach adapts source table
samples to chairs and retains considerable diversity. In addition, we add quantitative results to evaluate the
generation diversity under different adaptation setups and report results in Table 5. Our approach achieves
relatively lower diversity when adapting Tables to Modern and Lawn Chairs compared with adapting from
Chairs. Despite that, our approach still achieves apparently greater generation diversity than directly fine-
tuned models even with larger domain gaps, showing its ability to maintain diversity in few-shot 3D shape
generation. Additional visualized samples are added in Appendix H.

12



Under review as submission to TMLR

Adaptation Intra-CD (↑) Intra-LPIPS (↑)
Chairs → Modern Chairs (directly fine-tuned) 3.582 ± 0.004 0.149 ± 0.023

Chairs → Modern Chairs (ours) 5.011 ± 0.0225.011 ± 0.0225.011 ± 0.022 0.254 ± 0.0450.254 ± 0.0450.254 ± 0.045
Tables → Modern Chairs (ours) 4.735 ± 0.021 0.226 ± 0.030

Chairs → Lawn Chairs (directly fine-tuned) 4.001 ± 0.005 0.165 ± 0.029
Chairs → Lawn Chairs (ours) 5.852 ± 0.0315.852 ± 0.0315.852 ± 0.031 0.278 ± 0.0400.278 ± 0.0400.278 ± 0.040
Tables → Lawn Chairs (ours) 5.247 ± 0.018 0.242 ± 0.036

Table 5: Quantitative comparison between different adaptation setups. CD scores are multiplied by 103.

5 Practical Application and Broader Impact

Practical Application As the first paper to tackle the few-shot 3D shape generation task, we add more
details of the practical application of our work here. For instance, under Setup A, we can use silhouettes of
trucks to fine-tune the model pre-trained on ShapeNetCore Cars and get the generator for trucks. In this
way, we have the adapted model, which can generate diverse truck samples, while it is hard to find truck
samples from results produced by the source model. Under Setup B, the source model can be adapted to
produce police cars with various geometry structures using few-shot training samples.

Broader Impact We propose an effective approach for few-shot 3D shape generation, achieving reasonable
and diverse 3D shape generation results using limited training data. Our approach is more prone to biases
introduced by training data than typical artificial intelligence generative models since it only needs silhouettes
of few-shot samples to train adapted models. The proposed approach is applicable to 3D shape generative
models and not tailored for sensitive applications like generating human bodies. Therefore, we recommend
practitioners to apply abundant caution when dealing with such applications to avoid problems of races, skin
tones, or gender identities.

6 Conclusion and Limitations

This paper first explores few-shot 3D shape adaptation. We introduce a novel domain adaptation approach to
produce 3D shapes with diverse topology and textures using limited 2D data. The relative distances between
generated samples are maintained at both feature-level and shape-level. We only need the silhouettes of few-
shot target samples as training data to learn target geometry distributions while keeping diversity. Our
approach is implemented based on GET3D to demonstrate its effectiveness. However, it is not constrained
by specific network architectures and can be combined with more powerful 3D shape generative models to
produce higher-quality results in the future.

Limitations Despite the compelling results of our approach, it still has some limitations. For example, it is
mainly designed for relatively related source/target domains. Extending our approach to unrelated domain
adaptation would be promising. Nevertheless, we believe this work takes a further step towards democratizing
3D content creation by transferring knowledge in available source models to fit target distributions using
few-shot data.
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Supplementary Material

We provide a detailed supplementary to help readers further understand our work and make this paper more
convincing. The supplementary materials are organized as follows:

• Appendix A: More Details of GET3D
A more detailed introduction of GET3D, including the network architectures, training losses, and
generated samples.

• Appendix B Evaluation with CLIP
CLIP-based evaluation of the samples produced by our approach.

• Appendix C: Additional Baseline Mine3D
We add an additional baseline Mine3D inspired by MineGAN (Wang et al., 2020). Qualitative and
quantitative results are provided.

• Appendix D: Supplementary Ablations
Supplementary qualitative and quantitative ablations of our approach are provided in this section.

• Appendix E: More Details of Datasets
Detailed introduction of the datasets used in this paper.

• Appendix F: More Details of Implementation
Details of the implementation of our approach, including method design, hyperparameters settings,
and training details.

• Appendix G: Computational Cost
Computational cost statistics of baselines and our approach.

• Appendix H: More Visualized Results
We provide abundant visualized results of our approach to make this paper more convincing.

Reproducibility: See the code provided in the submitted supplementary file.

A More Details of GET3D

GET3D Gao et al. (2022) is the first 3D shape generative model to produce textured meshes with arbi-
trary topology and textures. Here we add more details of the GET3D model. The mapping networks of
GET3D are composed of 3D convolutional and fully connected networks. The synthesis networks for SDF
and deformation fields are MLPs. As for the texture synthesis networks, GET3D uses generator network
structures similar to StyleGAN2 to generate textures using triplane feature maps as inputs. GET3D also
follows StyleGAN2 to use the same 2D discriminators and non-saturating GAN objective. Two 2D image
discriminators are applied to RGB images and silhouettes, respectively. Given x representing an RGB image
or a silhouette, the adversarial objective is defined as:

L(Dx, Gt) =Ez∈N [g(Dx(R(Gt(z))))]
+EIx∈px

[
g(−Dx(Ix)) + λ||∇Dx(Ix)||22

]
,

(12)

where g(u) = −log(1 + exp(−u)), px and R represent the real image distributions and rendering functions
for RGB images or silhouettes. In Eq. 10, we employ the discriminator for silhouettes as L(Dmask, Gt).
The discriminator for RGB images used in GET3D is expressed as L(Drgb, Gt). The regularization loss Lreg

in Eq. 10 is designed to remove internal floating surfaces since GET3D aims to generate textured meshes
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Figure 10: Generated shapes produced by the source GET3D models trained on ShapeNetCore Cars and Chairs
datasets.

without internal structures. Lreg is defined as a cross-entropy loss between the SDF values of neighboring
vertices Munkberg et al. (2022):

Lreg =
∑

i,j∈Se,i̸=j

H(σ(si), sign(sj)) + H(σ(sj), sign(si)). (13)

Here H and σ represent binary cross-entropy loss and sigmoid function. si, sj are SDF values of neighboring
vertices in the set of unique edges Se in the tetrahedral grid. The regularization loss Lreg is applied to all
the experiments (including ablation analysis) in this paper.

GET3D needs multi-view rendered RGB images and silhouettes with corresponding camera distribution
parameters as training data. Therefore, it is evaluated with synthetic datasets such as ShapeNetCore Chang
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et al. (2015) and TurboSquid Turbosquid (Accessed: 2022-05-19). Future work may extend GET3D to
single-view real-world datasets. If so, our approach can be applied to the advanced models to realize the
few-shot generation of real-world 3D shapes using single-view silhouettes. Ablations of views used in domain
adaptation are provided in Appendix D.

In Fig. 10, we provide generated samples of the officially released GET3D models trained on ShapNetCore
Cars, Chairs, and Tables datasets. These models are used as source models in our experiments. GET3D
generates shapes with arbitrary topology and textures. However, improvement room still exists for better
results, such as incomplete textures of tires and failure of detailed structures generation in chairs.

B Evaluation with CLIP

We employ CLIP (Radford et al., 2021b) to evaluate the domain gap between the generated samples produced
by our approach and target domains. We randomly synthesize 1024 3D shapes for every target domain and
sample 24 2D RGB images with different angles for every sample. Then we use the CLIP image encoder to
encode the 2D images into embeddings and the CLIP text encoder to encode the text prompt corresponding
to the target domain (e.g., “a photo of a truck", “a photo of a rocking chair") into embeedings. We compute
the cosine similarity between these two embeddings as the CLIP-based text-image similarity metric. The
results of few-shot training data are provided as reference, and samples produced by the source models are
used for comparison. As shown in Table 6, our approach achieves text-image similarity similar to few-shot
datasets and outperforms source samples significantly. For ambulances and police cars, our approach guides
adapted models to learn both geometry structures and textures, resulting in better text-image similarity
compared with the other 4 adaptation setups of learning geometry structures only.

Target Domains Source Samples Adapted Samples (ours) Few-shot Data (Reference)
Trucks 0.2041 0.2477 0.2568
SUVs 0.2183 0.2548 0.2686

Rocking Chairs 0.2549 0.2979 0.3120
Lawn Chairs 0.2280 0.2742 0.2891
Ambulances 0.2175 0.2913 0.2961
Police Cars 0.2323 0.2737 0.2730

Table 6: CLIP-based text-image similarity results of our approach on several datasets compared with source samples
and few-shot training data.

C Additional Baseline Mine3D

Similar to MineGAN (Wang et al., 2020), we add another baseline of “Mine3D" by adding two additional
4-layer MLPs using the texture and geometry latent codes as inputs, respectively. The whole generator is
fixed. However, similar to MineGAN, it fails to build cross-domain correspondence like our approach and
still overfits and replicates training samples. Qualitative examples are shown in Fig. 11. We use the same
10-shot adaptation setting as our approach. We choose two samples from training data to show that Mine3D
produces samples very similar to training samples. The quantitative results are shown in Table 7. Mine3D
gets worse quantitative results than our approach. We also tried to fix the RGB discriminator of Mine3D
but got blurred textures like FreezeT w/o RGB discriminator shown in the row of Fig. 6.

D Supplementary Ablations

K-shot Ablations We add the ablations of the number of training samples. We empirically find that
directly fine-tuned models produce diverse samples with about 50 samples but get limited diversity with
fewer. Therefore, we use 10 training samples in our paper. Here we add the experiments of 5-shot, 3-shot,
and 1-shot adaptation and get quantitative results as follows:

Since intra-metrics are computed based on training samples, we only provide pairwise-metrics of different
settings of training samples in Table 8 for fair comparison. As the training samples decrease, the learning
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Datasets Approach CD (↓) Intra-CD (↑) Pairwise-CD (↑) Intra-LPIPS (↑) Pairwise-LPIPS (↑)

Cars →
SUVs

DFTM 1.401 0.316 ± 0.002 0.513 ± 0.001 0.062 ± 0.001 0.063 ± 0.012
FreezeT 1.553 0.240 ± 0.005 0.326 ± 0.002 0.055 ± 0.002 0.060 ± 0.014
Mine3D 1.470 0.328 ± 0.005 0.622 ± 0.001 0.075 ± 0.002 0.071 ± 0.020

Ours 1.3231.3231.323 0.511 ± 0.0060.511 ± 0.0060.511 ± 0.006 0.814 ± 0.0070.814 ± 0.0070.814 ± 0.007 0.109 ± 0.0260.109 ± 0.0260.109 ± 0.026 0.095 ± 0.0220.095 ± 0.0220.095 ± 0.022

Cars →
Trucks

DFTM 4.014 0.441 ± 0.003 0.689 ± 0.003 0.112 ± 0.002 0.119 ± 0.024
FreezeT 4.175 0.412 ± 0.006 0.766 ± 0.002 0.120 ± 0.003 0.128 ± 0.027
Mine3D 4.199 0.508 ± 0.010 0.824 ± 0.002 0.126 ± 0.014 0.130 ± 0.022

Ours 3.9403.9403.940 1.061 ± 0.0141.061 ± 0.0141.061 ± 0.014 1.175 ± 0.0041.175 ± 0.0041.175 ± 0.004 0.145 ± 0.0220.145 ± 0.0220.145 ± 0.022 0.146 ± 0.0330.146 ± 0.0330.146 ± 0.033

Table 7: Quantitative results of Mine3D compared with other baselines and our approach.

Figure 11: 10-shot generated shapes of Mine3D on 10-shot Cars → Trucks and SUVs.

of target distributions and generation diversity of geometry structures become worse compared with 10-shot
adaptation. The qualitative examples are shown in Fig. 12. Our approach still maintains a degree of
diversity even with a single training sample, as shown in the qualitative results.

Figure 12: Qualitative ablations of different numbers of
training samples using Cars → SUVs as an example. Figure 13: Qualitative ablations of different views of

training samples using 10-shot Cars → SUVs as an ex-
ample.

K-view Ablations We also explore the influence of the views of rendered samples on our approach. In this
paper, we follow GET3D to use 24 randomly sampled views. Here we add 10-shot experiments using 18, 12,
6, and 1 randomly sampled views of each sample and get quantitative evaluation in Table 9.

With fewer views, the learning of target distributions is biased as shown by the worse CD results. Besides,
the diversity degrades inevitably as shown by the intra and pairwise metrics. The qualitative results are
shown in Fig. 13. With fewer views of training samples (like 6-18 views), our approach generates plausible
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Datasets CD (↓) Pairwise-CD (↑) Pairwise-LPIPS (↑)
10-shot SUVs 1.3231.3231.323 0.814 ± 0.0070.814 ± 0.0070.814 ± 0.007 0.095 ± 0.0220.095 ± 0.0220.095 ± 0.022
5-shot SUVs 1.400 0.747 ± 0.008 0.094 ± 0.020
3-shot SUVs 1.423 0.562 ± 0.015 0.090 ± 0.023
1-shot SUVs 1.519 0.530 ± 0.012 0.086 ± 0.024

Table 8: Quantitative ablations of the number of training samples using few-shot Cars → SUVs as an example.

results using the prior knowledge of source models. For 1 view training, our approach gets some low-quality
samples with unreasonable shapes (e.g., sharp car heads). However, our approach still shows a strong ability
of maintaining quality and diversity using fewer views of training samples. Considering that GET3D needs
more views (24 or 100 used in the GET3D (Gao et al., 2022) paper) to generate plausible results, our
approach could serve as a strategy to improve generation quality and diversity by training from related
source models using fewer views.

Views CD (↓) Intra-CD (↑) Pairwise-CD (↑) Intra-LPIPS (↑) Pairwise-LPIPS (↑)
24 views 1.3231.3231.323 0.511 ± 0.0060.511 ± 0.0060.511 ± 0.006 0.814 ± 0.0070.814 ± 0.0070.814 ± 0.007 0.109 ± 0.0260.109 ± 0.0260.109 ± 0.026 0.095 ± 0.0220.095 ± 0.0220.095 ± 0.022
18 views 1.556 0.431 ± 0.010 0.796 ± 0.019 0.098 ± 0.017 0.088 ± 0.019
12 views 1.623 0.415 ± 0.005 0.785 ± 0.002 0.090 ± 0.012 0.084 ± 0.015
6 views 1.626 0.420 ± 0.005 0.789 ± 0.003 0.089 ± 0.028 0.083 ± 0.009
1 view 1.755 0.427 ± 0.003 0.772 ± 0.014 0.083 ± 0.009 0.080 ± 0.008

Table 9: Quantitative ablations of the number of views using 10-shot Cars → SUVs as an example.

Figure 14: Qualitative ablations of shared masks applied to the feature-level texture loss and shape-level RGB loss
using 10-shot Cars → Trucks as an example. The generated shapes of different approaches are synthesized with fixed
noise inputs for intuitive comparison.

Ablations of Shared Masks In addition, we provide qualitative ablations for the shared masks used for
feature-level texture loss and shape-level RGB loss computation in Fig. 14. Absence of shared masks causes
geometry structures to bias the domain adaptation of textures, making the textures of adapted samples
more different from source samples. Without shared masks, it’s hard to preserve the diversity of textures
influenced by geometry structures. As shown in Fig. 14, the absence of shared masks leads to more obvious
changes of textures (e.g., colors and stripes) during adaptation compared with source samples. For example,
the blue and orange source cars change into yellow-blue and red trucks during the 10-shot domain adaptation.
The full approach applies shared masks to relieve the influence of geometry structures and achieves better
preservation of the texture information in source models.

Ablations of Fixed Mapping Networks As illustrated in Sec. 3, the geometry and texture mapping
networks Mgeo and Mtex are fixed during domain adaptation. We propose this design to isolate the geome-
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Figure 15: Qualitative ablations of fixed mapping networks during domain adaptation. Without fixed mapping
networks, our approach fails to preserve the diverse texture information of source samples and produces blurred
textures.

try and texture adaptation since the texture synthesis networks need the mapped geometry codes as inputs.
Without fixed mapping networks, fine-tuned geometry mapping networks would influence the texture adap-
tation process. We add ablations of fixed mapping networks under different adaptation setups and provide
qualitative samples in Fig. 15. The low-quality adapted samples show blurred textures and fail to preserve
the diverse texture information of source samples.

Ablations of Hyperparameters We add ablations of the hyperparameters applied to the proposed four
adaptation losses. We use different values of hyperparameters and provide qualitative results using 10-shot
Cars → SUVs in Fig. 16. Too large values of hyperparameters prevent adapted models from learning target
distributions, resulting in results similar to source samples. Too small values of hyperparameters lead to

25



Under review as submission to TMLR

Figure 16: Qualitative ablations of the hyperparameters applied to the proposed adaptation losses using 10-shot Cars
→ SUVs as an example.

diversity degradation of geometry and textures. We empirically recommend hyperparameters µ1, µ2, µ3, µ4
ranging from 2000 to 10000 for adaptation setups used in this paper.

E More Details of Datasets

This paper employs several 10-shot datasets sampled from ShapeNetCore (Chang et al., 2015) as training
data for few-shot 3D shape generation. As for the main experiments of our paper, we only need silhouettes
of target samples as training data, as shown in Fig. 2. For the experiments of geometry adaptation only,
rendered RGB images are also needed to train adapted models. The training datasets used in this paper are
shown in Fig. 4, 5, and 7.

We employ CD (Chen et al., 2003) and FID (Heusel et al., 2017) as quantitative evaluation metrics for
generation quality. Datasets containing relatively abundant data are applied for evaluation to obtain reliable
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results. The few-shot samples are excluded from the relatively abundant datasets to avoid the influence of
overfitting. The relatively abundant Trucks, SUVs, Ambulances, Police Cars, Rocking Chairs, and Lawn
Chairs datasets contain 40, 369, 73, 133, 87, and 78 samples.

The few-shot target shapes are not included in the training dataset of GET3D. The source GET3D models
are pre-trained on the ShapeNetCore v1 dataset, while the target shapes are picked from the ShapeNetCore
v2 dataset. We have checked that they are not included in the ShapeNetCore v1 dataset. Moreover, it
doesn’t influence our approach’s evaluation even if the target shapes are directly picked from the source
datasets. The source models still fail to produce diverse target samples, which is the target of the adapted
models obtained through our approach. Instead, they generate lots of samples out of target domains. Taking
trucks as the target domain, the source model is trained on cars in the ShapeNetCore v1 dataset. There are
only 31 truck samples in 3533 car samples, making it hard to produce truck samples with the source model.
Prior 2D GAN-based few-shot image generation works (Wang et al., 2020; 2018; Li et al., 2020; Zhu et al.,
2022b;a; Ojha et al., 2021; Zhao et al., 2022b) directly use samples in FFHQ to adapt the source model
pre-trained on FFHQ to a smaller target domain like babies and people wearing sunglasses.

F More Details of Implementation

The proposed approach is implemented based on the official code of GET3D (Gao et al., 2022). The setups
of adapted models are consistent with those of the officially released source models trained on ShapeNetCore
Cars and Chairs (Chang et al., 2015). The geometry and texture synthesis networks are composed of 2-layers
MLP networks. We concatenate the output features of the first layers in the synthesis networks of SDFs
and deformation fields for feature-level geometry loss computation since the output features of the second
layers have different sizes for SDFs and deformation fields. We also use the features in the synthesis networks
of SDFs and deformation fields separately for feature-level geometry loss computation. Unfortunately, it is
more time-consuming and fails to produce better results. For feature-level texture loss computation, we use
the output features of the second layers in the texture synthesis network, which has the same resolution as
the generated shapes. Therefore, we can directly apply the shared masks of generated shapes to the texture
features.

We set the hyperparameters of the proposed losses (µ1, µ2, µ3, µ4) equally for adaptation from Cars and
Chairs and achieve reasonable results. Different hyperparameters can be tried to obtain compelling results
under other adaptation setups. We train adapted models with batch size 4 on a single NVIDIA A40 GPU
(45GB GPU memory). Our approach needs about 20 GB GPU memory for the image resolution of 1024 ×
1024. The standard deviations of pairwise-distance and intra-distance results listed in Tables 1, 3, and 4 are
computed across shape pairs picked from generated samples and 10 clusters (the same number as few-shot
training samples), respectively.

G Computational Cost

Table 10 shows the computational cost of our approach under two adaptation setups using a single NVIDIA
A40 GPU. We also ablate our approach to show the computational cost of each component. The adapted
models are trained for 50K iterations in our experiments, costing about 4.4-6.5 and 3.8-5.7 hours under
setup A (geometry and texture adaptation) and setup B (geometry adaptation only), respectively. DFTM
under setup B is the same as training GET3D models directly. DFTM under setup A excludes the RGB
discriminator. Compared with DFTM, the approach only using GAN loss includes the time cost by source
models.

H More Visualized Results

In Fig. 17, we add generated shapes of different target domains rendered in multiple views. Our approach
produces reasonable results different from the few-shot training samples. In Fig. 18, we add additional
samples on Tables → Chairs as supplements to Sec. 4.4. We employ the ShapeNetCore v1 (Chang et al.,
2015) Tables datasets and sample two 10-shot target datasets: School Tables and Round Tables. The
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Setups Approaches Time cost for 1K iterations

Setup A

DFTM 228.83
GAN loss only 272.27
GAN loss w/ Texture loss 352.80
GAN loss w/ Geometry loss 295.28
GAN loss w/ RGB loss 291.62
GAN loss w/ Mask loss 279.34
Full Approach 392.67

Setup B

DFTM 281.15
GAN loss only 316.55
GAN loss w/ Geometry loss 344.82
GAN loss w/ Mask loss 322.51
Full Approach 340.38

Table 10: The time cost of our approach trained for 1K iterations in terms of seconds on a single NVIDIA A40 GPU
(image resolution 1024 × 1024, batch size 4).

Figure 17: Multi-view rendered shapes produced by our approach on different 10-shot target domains.

visualized results are shown in Fig. 19. Our approach also achieves reasonable and diverse samples under
these adaptation setups. As supplements to generated samples shown in Fig. 4 and 5, we display more
examples produced by our approach under several few-shot adaptation setups. Adapted samples obtained
with the source models pre-trained on ShapeNetCore Cars and Chairs (Chang et al., 2015) are shown in Fig.
20 and 21, respectively.

We further add hundreds of randomly generated samples on 10-shot Cars → Racing Cars and SUVs in Fig.
22 to show that most of the samples produced by our approach are plausible. The quality and diversity of
these samples make our work more convincing.
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Figure 18: Additional visualized samples on 10-shot Tables → Modern Chairs and Lawn Chairs.

Figure 19: 10-shot generated shapes of our approach using ShapeNetCore Tables as the source domain.
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Figure 20: Additional 10-shot generated shapes of our approach on Cars → Trucks, SUVs, and Racing Cars.
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Figure 21: Additional 10-shot generated shapes of our approach on Chairs → Modern Chairs, Rocking Chairs, and
Lawn Chairs.
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Figure 22: 200 randomly 10-shot generated samples produced by our approach on Cars → Racing Cars and SUVs.
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