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Figure 1: Given pre-trained 3D shape generative models, we propose to adapt them to target domains using a few
target samples while preserving diverse geometry and texture information learned from source domains. Compared
with directly fine-tuned models which tend to replicate the few-shot target samples instead of producing novel
samples, our approach only needs the silhouettes of target samples as training data and achieves diverse generated
shapes following target geometry distributions but different from target samples.

Abstract

Realistic and diverse 3D shape generation is helpful for a wide variety of applications such
as virtual reality, gaming, and animation. Modern generative models learn from large-scale
datasets and generate new samples following similar distributions. However, when training
data is limited, deep neural generative networks overfit and tend to replicate training sam-
ples. Prior works focus on few-shot image generation to produce high-quality and diverse
results using a few target images. Unfortunately, abundant 3D shape data is typically hard
to obtain as well. In this work, we make the first attempt to realize few-shot 3D shape adap-
tation by adapting generative models pre-trained on large source domains to target domains.
To relieve overfitting and keep considerable diversity, we propose to maintain the probability
distributions of the pairwise relative distances between adapted samples at feature-level and
shape-level during domain adaptation. Our approach only needs the silhouettes of few-shot
target samples as training data to learn target geometry distributions and achieve gener-
ated shapes with diverse topology and textures. Moreover, we introduce several metrics to
evaluate generation quality and diversity. The effectiveness of our approach is demonstrated
qualitatively and quantitatively under a series of few-shot 3D shape adaptation setups.

1 Introduction

In recent years, 3D content has played significant roles in many applications, such as gaming, robotics, films,
and animation. Currently, the most common method of creating 3D assets depends on manual efforts using
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specialized 3D modeling software like Blender and Maya, which is very time-consuming and cost-prohibitive
to generate high-quality and diverse 3D shapes. As a result, the need for automatic 3D content generation
becomes apparent.

During the past decade, image generation has been widely studied and achieved great success using generative
models, including generative adversarial networks (GANs) (Goodfellow et al., 2014; Brock et al., 2019; Karras
et al., 2019; 2020b; 2021), variational autoencoders (VAEs) (Kingma & Welling, 2013; Rezende et al., 2014;
Vahdat & Kautz, 2020), autoregressive models (Van den Oord et al., 2016; Chen et al., 2018; Henighan
et al., 2020), and diffusion models (Ho et al., 2020; Song & Ermon, 2020; Dhariwal & Nichol, 2021; Nichol
& Dhariwal, 2021; Kingma et al., 2021). Compared with 2D images, 3D shapes are more complex and
have different kinds of representations for geometry and textures. Inspired by the progress in 2D generative
models, 3D generative models have become an active research area of computer vision and graphics and have
achieved pleasing results in the generation of point clouds (Achlioptas et al., 2018; Yang et al., 2019; Zhou
et al., 2021a), implicit fields (Chen & Zhang, 2019; Mescheder et al., 2019), textures (Pavllo et al., 2020;
2021; Richardson et al., 2023), and shapes (Gao et al., 2022; Liu et al., 2023). In addition, recent works
based on neural volume rendering (Mildenhall et al., 2020) tackle 3D-aware novel view synthesis (Chan et al.,
2021; 2022; Gu et al., 2022; Hao et al., 2021; Niemeyer & Geiger, 2021; Or-El et al., 2022; Schwarz et al.,
2020; Xu et al., 2022; Zhou et al., 2021b; Schwarz et al., 2022).

Similar to 2D image generative models like GANs and diffusion models, modern 3D generative models require
large-scale datasets to avoid overfitting and achieve diverse results. Unfortunately, it is not always possible
to obtain abundant data under some circumstances. Few-shot generation aims to produce diverse and high-
quality generated samples using limited data. Modern few-shot image generation approaches (Wang et al.,
2018; Karras et al., 2020a; Mo et al., 2020; Wang et al., 2020; Li et al., 2020; Ojha et al., 2021; Zhao et al.,
2022b; Zhu et al., 2022b;a; Zhao et al., 2023) adapt models pre-trained on large-scale source datasets to
target domains using a few available training samples to relieve overfitting and produce adapted samples
following target distributions. Nevertheless, few-shot 3D shape adaptation has yet to be studied, constrained
by the complexity of 3D shape generation and the limited performance of early 3D shape generative models.

In this paper, we make the first attempt to study few-shot 3D shape adaptation pursuing high-quality and
diverse generated shapes using limited data. We follow prior few-shot image generation approaches to adapt
pre-trained source models to target domains using limited data. Since 3D shapes contain geometry and
texture information, we need to clarify two questions: (i) what to learn from limited training data, and
(ii) what to adapt from pre-trained source models to target domains. Naturally, we define two 3D shape
domain adaptation setups: (i) geometry and texture adaptation (Setup A): the adapted models are trained
to learn the geometry information of target data only and preserve the diversity of geometry and textures
from source models, and (ii) geometry adaptation only (Setup B): the adapted models are trained to learn
both the geometry and texture information of target data and preserve the diversity of geometry from source
models only.

We design a few-shot 3D shape adaptation approach based on modern 3D shape GANs, which synthesize tex-
tured meshes with randomly sampled noises requiring 2D supervision only. Source models directly fine-tuned
on limited target data cannot maintain generation diversity and produce results similar to training samples.
As shown in Fig. 1, two different source samples become analogous after few-shot domain adaptation, losing
diversity of geometry and textures. Therefore, we introduce a pairwise relative distances preservation ap-
proach to keep the probability distributions of geometry and texture pairwise similarities in generated shapes
at both feature-level and shape-level during domain adaptation. In this way, the adapted models are guided
to learn the common properties of limited training samples instead of replicating them. As a consequence,
adapted models maintain similar generation diversity to source models and produce diverse results.

The main contributions of our work are concluded as follows:

• To our knowledge, we are the first to study few-shot 3D shape adaptation and achieve diverse generated
shapes with arbitrary topology and textures.

• We propose a few-shot 3D shape adaptation approach to learn target geometry distributions using 2D
silhouettes of extremely limited data (e.g., 10 shapes) while preserving diverse information of geometry

2



Under review as submission to TMLR

and textures learned from source domains. Our approach can also be adjusted to learn both target and
geometry information using few-shot 2D RGB images as training data.

• We introduce several metrics to evaluate the quality and diversity of few-shot 3D shape generation and
demonstrate the effectiveness of our approach qualitatively and quantitatively.

2 Related Work

3D Generative Models Early works (Wu et al., 2016; Smith & Meger, 2017; Lunz et al., 2020; Gadelha
et al., 2017; Henzler et al., 2019) extend 2D image generators to 3D voxel grids directly but fail to produce
compelling results with high resolution due to the large computational complexity of 3D convolution net-
works. Other works explore the generation of alternative 3D shape representations, such as point clouds
(Achlioptas et al., 2018; Yang et al., 2019; Zhou et al., 2021a) and implicit fields (Chen & Zhang, 2019;
Mescheder et al., 2019). Following works generate meshes with arbitrary topology using autoregressive
models (Nash et al., 2020) and GANs (Luo et al., 2021). Meshdiffusion (Liu et al., 2023) first applies diffu-
sion models to generate 3D shapes unconditionally. These works produce arbitrary topology only and need
post-processing steps to achieve textured meshes that are compatible with modern graphics engines. DIBR
(Chen & Zhang, 2019) and Textured3DGAN (Pavllo et al., 2020; 2021) synthesize textured 3D meshes based
on input templated meshes, resulting in limited topology. GET3D (Gao et al., 2022) first proposes a 3D
generative model to achieve arbitrary and diverse 3D geometry structures and textures using 2D images for
supervision only. GET3DHuman (Xiong et al., 2023) depends on prior knowledge of human from external
sources to synthesize textured 3D humans. DreamFusion (Poole et al., 2022) depends on a pre-trained 2D
text-to-image diffusion model to perform text-to-3D synthesis. HoloDiffusion (Karnewar et al., 2023b) pro-
poses a 3D-aware generative diffusion model to reconstruct 3D-consistent objects using 2D posed images.
HoloFusion (Karnewar et al., 2023a) generates photo-realistic 3D radiance fields by combining HoloDiffusion
with a 2D super-resolution network.

3D Shape Translation LOGAN (Yin et al., 2019) and UNIST (Chen et al., 2022) realize 3D shape
translation based on VAEs trained on abundant data from two domains. Then translators are trained to
transfer samples from one domain to the other based on the latent space provided by the VAEs. They tackle
a different task from this work and aim to build a translation between two domains. Our approach aims
to produce diverse results given few-shot data. Besides, LOGAN and UNIST are not qualified for few-shot
data since both VAEs and translators need enough data to avoid overfitting.

Few-shot Generation Modern generative models need large amounts of data to achieve high-quality and
diverse results. When training data is limited to a few samples, deep generative models tend to overfit and
replicate them instead of generating novel results. Few-shot generation aims to solve the overfitting problem
of generative models when training data is limited. Domain adaptation is a mainstream choice to realize
few-shot generation. The key idea is to preserve the diverse information provided by source models while
learning the common features of a few real target samples. In this way, a generative model for target domains
is obtained to avoid overfitting or replicating training samples. The network structures of adapted models
are consistent with source models in most cases.

Few-shot Image Generation Existing few-shot image generation methods aim to produce high-quality
images with great diversity utilizing a few samples. Most modern approaches follow the TGAN (Wang
et al., 2018) method to adapt generative models pre-trained on large source domains, including ImageNet
(Deng et al., 2009), FFHQ (Karras et al., 2019), and LSUN (Yu et al., 2015) et al., to target domains with
limited data. Following methods can be roughly divided into data augmentation approaches (Tran et al.,
2021; Zhao et al., 2020a;b; Karras et al., 2020a), model regularization (Li et al., 2020; Ojha et al., 2021;
Zhao et al., 2022b; Zhu et al., 2022b; Xiao et al., 2022), and trainable parameters fixing (Noguchi & Harada,
2019; Mo et al., 2020; Wang et al., 2020). CDC (Ojha et al., 2021) proposes a cross-domain consistency loss
for generators and patch-level discrimination to build a correspondence between source and target domains.
MaskDis (Zhu et al., 2022b) proposes to regularize the discriminator using masked features. DDPM-PA (Zhu
et al., 2022a) first realizes few-shot image generation with diffusion models. Besides, other recent works have
provided different research perspectives. RSSA (Xiao et al., 2022) proposes a relaxed spatial structural
alignment method using compressed latent space derived from inverted GANs (Abdal et al., 2020). AdAM
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(Zhao et al., 2022a) and RICK (Zhao et al., 2023) achieve improvement in the adaptation of unrelated
source/target domains. Research including MTG (Zhu et al., 2021), OSCLIP (Kwon & Ye, 2022), GDA
(Zhang et al., 2022b), and DIFA (Zhang et al., 2022a) et al. explore single-shot GAN adaptation with the
guidance of pre-trained CLIP (Radford et al., 2021a) image encoders. This work first explores few-shot
3D shape adaptation and shares similar ideas of preserving diverse information provided by source models,
achieving diverse textured 3D shapes using limited data. We design losses sharing similar formats with CDC
but apply to both feature-level and shape-level information and make them adaptive to 3D shapes with a
series of modifications.

3 Method

Given 3D generative models pre-trained on large source domains, our approach adapts them to target domains
by learning the common geometry properties of limited training data while maintaining the generation
diversity of geometry and textures. Directly fine-tuned models tend to replicate training samples instead of
producing diverse results since the deep generative networks are vulnerable to overfitting, especially when
training data is limited. To this end, we propose to keep the probability distributions of the pairwise relative
distances between adapted samples similar to source samples.

We employ the 3D shape generative model GET3D (Gao et al., 2022) to illustrate the proposed approach.
We first introduce GET3D briefly in Sec. 3.1. The silhouettes of target shapes are used as training data to
learn target geometry distributions only under Setup A while RGB images are employed as training data to
learn both geometry and texture distributions under Setup B. Adapted models are guided to realize geometry
adaptation (Sec. 3.2) and texture adaptation (Sec. 3.3) using source models as reference for Setup A. Under
Setup B, adapted models only preserve the diversity of geometry learned from source domains. As for
textures, we guide adapted models to fit the distributions of training samples directly. Overall optimization
targets under Setup A and B are provided in Sec. 3.4.

3.1 Preliminary: GET3D

GET3D is a 3D shape GAN trained on 2D images to generate 3D textured shapes. GET3D realizes arbi-
trary generation of topology and textures using the combination of geometry and texture generators. Both
generators are composed of mapping networks M and synthesis networks S. We empirically fix the mapping
networks M during domain adaptation in our approach. Ablations can be found in Appendix E. GET3D
utilizes the differentiable surface representation DMTet (Shen et al., 2021) to describe geometry with signed
distance fields (SDF) defined on deformation fields (Gao et al., 2020b;a). The texture generator uses mapped
geometry and texture codes as inputs and generates texture fields for explicit meshes obtained by adopting
DMTet for surface extraction. GET3D is trained with two 2D discriminators applied to RGB images and
silhouettes, respectively.

GET3D is different from 3D-aware GANs and 3D diffusion models. Both 3D-aware GANs and GET3D
need 2D images only as training data. 3D-aware GANs (Schwarz et al., 2020; Chan et al., 2021; 2022)
generate novels views of 3D shapes but cannot extract 3D shapes directly. GET3D is the first randomly
generative model trained on 2D images and synthesizing textured 3D shapes. Most 3D diffusion models (Liu
et al., 2023; Nichol et al., 2022; Gupta et al., 2023; Chou et al., 2022; Shue et al., 2023) need 3D training
data like meshes and point clouds since they need 3D ground truth to compute the reconstruction loss.
Diffusion-based methods take up significantly larger computational costs, memory occupancy, and inference
time. Our approach is implemented based on GET3D in this paper. However, it is not bound by certain
network architectures of GET3D and can be applied to more powerful 3D shape GANs in the future to
achieve higher-quality results. As an analogy, early few-shot image generation works are implemented with
BigGAN (Brock et al., 2019), but they can be applied to StyleGANs (Karras et al., 2019; 2020b) as well.

3.2 Geometry Adaptation

We aim to guide adapted models to learn the common geometry properties of limited training samples while
maintaining geometry diversity similar to source models. We propose to keep the probability distributions of
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Figure 2: Overview of the proposed few-shot 3D shape generation approach using Cars → SUVs as an example: We
maintain the distributions of pairwise relative distances between the geometry and textures of generated samples
at feature-level and shape-level to keep diversity during domain adaptation. Only the silhouettes of few-shot target
samples are needed as training data to learn target geometry distributions.

pairwise relative distances between the geometry structures of adapted samples at feature-level and shape-
level. We first sample a batch of geometry codes

{
zn

geo

}N

0 following the standard normal distribution N (0, I)
and get mapped geometry latent codes

{
ωn

geo

}N

0 using fixed geometry mapping networks Mgeo. The proba-
bility distributions for the ith noise vector zi

geo in the source and target geometry generators at feature-level
can be expressed as follows:

ps,l
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{
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geo(ωi
geo), Ss,l

geo(ωj
geo))

}
∀i ̸=j

), (1)

pt,l
geo,i = sfm(

{
sim(St,l

geo(ωi
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geo(ωj
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}
∀i ̸=j

), (2)

where sfm and sim represent the softmax function and cosine similarity between activations at the lth layer
of the source and target geometry synthesis networks (Ss

geo and St
geo) which generate SDF and deformation

fields. Then we guide target geometry synthesis networks to keep similar probability distributions to source
models during domain adaptation with the feature-level geometry loss:

Lgeo(Ss
geo, St

geo) = Ezi
geo∼N (0,I)

∑
l,i

DKL(pt,l
geo,i||p

s,l
geo,i), (3)

where DKL represents KL-divergence. Similarly, we use source and target silhouettes in place of the features
in geometry synthesis networks to keep the pairwise relative distances of adapted samples at shape-level.
For this purpose, we further sample a batch of texture codes {zn

tex}N
0 for shape generation. The probability

distributions of shapes generated from the ith noise vectors (zi
geo and zi

tex) by the source and target generators
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are given by:

ps
mask,i = sfm(

{
sim(Mask(Gs(zi

geo, zi
tex)), Mask(Gs(zj

geo, zj
tex)))

}
∀i ̸=j

), (4)

pt
mask,i = sfm(

{
sim(Mask(Gt(zi

geo, zi
tex)), Mask(Gt(zj

geo, zj
tex)))

}
∀i̸=j

), (5)

where Gs and Gt are the source and target shape generators, Mask represents the masks of 2D rendered
shapes. We have the shape-level mask loss for geometry adaptation as follows:

Lmask(Gs, Gt) = Ezi
geo,zi

tex∼N (0,I)
∑

i

DKL(pt
mask,i||ps

mask,i). (6)

3.3 Texture Adaptation

In addition, we also encourage adapted models to preserve the texture information learned from source
domains and generate target shapes with diverse textures. We still apply the pairwise relative distances
preservation approach to relieve overfitting and keep the generation diversity of textures. Since the generated
textures for explicit meshes contain both geometry and texture information, we propose to use textures in
regions shared by two generated shapes to compute the pairwise relative distances of textures while alleviating
the influence of geometry. In the same way, we use the randomly sampled geometry codes

{
zn

geo

}N

0 and
texture codes {zn

tex}N
0 and get mapped latent codes

{
ωn

geo

}N

0 and {ωn
tex}N

0 with fixed geometry and texture
mapping networks Mgeo and Mtex, respectively. The shared regions of two generated shapes produced by
the source and adapted models are defined as the intersection of the masks of the 2D rendered shapes:

Ms
i,j = Mask(Gs(zi

geo, zi
tex)) ∧ Mask(Gs(zj

geo, zj
tex)) (i ̸= j), (7)

M t
i,j = Mask(Gt(zi

geo, zi
tex)) ∧ Mask(Gt(zj

geo, zj
tex)) (i ̸= j). (8)

The probability distributions for the ith noise vectors (zi
geo and zi

tex) in the source and target texture
generators (Ss

tex and St
tex) at feature-level can be expressed as follows:

ps,m
tex,i = sfm(

{
sim(Ss,m

tex (ωi
geo, ωi

tex) ⊗ Ms
i,j , Ss,m

tex (ωj
geo, ωj

tex) ⊗ Ms
i,j)

}
∀i ̸=j

), (9)

pt,m
tex,i = sfm(

{
sim(St,m

tex (ωi
geo, ωi

tex) ⊗ M t
i,j , St,m

tex (ωj
geo, ωj

tex) ⊗ M t
i,j)

}
∀i̸=j

), (10)

where ⊗ and sim represent the element-wise multiplication of tensors and cosine similarity between activa-
tions at the mth layer of the source and target texture synthesis networks. For shape-level texture adaptation,
we use 2D rendered shapes of RGB formats in place of the features in texture synthesis networks to compute
the probability distributions:

ps
rgb,i = sfm(

{
sim(RGB(Gs(zi

geo, zi
tex)) ⊗ Ms

i,j , RGB(Gs(zj
geo, zj

tex)) ⊗ Ms
i,j)

}
∀i ̸=j

), (11)

pt
rgb,i = sfm(

{
sim(RGB(Gt(zi

geo, zi
tex)) ⊗ M t

i,j , RGB(Gt(zj
geo, zj

tex)) ⊗ M t
i,j)

}
∀i ̸=j

), (12)

where RGB represents the rendered RGB images of generated shapes. We have the feature-level texture loss
and shape-level RGB loss for texture adaptation as follows:

Ltex(Ss
tex, St

tex) = Ezi
geo,zi

tex∼N (0,I)
∑
m,i

DKL(pt,m
tex,i||p

s,m
tex,i), (13)

Lrgb(Gs, Gt) = Ezi
geo,zi

tex∼N (0,I)
∑

i

DKL(pt
rgb,i||ps

rgb,i). (14)

3.4 Overall Optimization Target

3.4.1 Setup A: Learning Geometry Only

Since adapted models are guided to learn the geometry information of training data, we only use the mask
discriminator and apply the above-mentioned pairwise relative distances preservation methods to preserve
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Figure 3: 10-shot generated shapes of our approach using ShapeNetCore Cars as the source domain.

diverse geometry and texture information learned from source domains. In this way, our approach only needs
the silhouettes of few-shot target shapes as training data. The overall optimization target L of adapted
models is defined as follows:

L = L(Dmask, Gt) + µLreg + µ1Lgeo(Ss
geo, St

geo) + µ2Lmask(Gs, Gt) + µ3Ltex(Ss
tex, St

tex) + µ4Lrgb(Gs, Gt).
(15)

Here L(Dmask, Gt) and Lreg represent the adversarial objective of silhouettes and regularization term of
generated SDFs used in GET3D. More details of these two losses are added in Appendix B. µ, µ1, µ2, µ3, µ4
are hyperparameters set manually to control the regularization levels.

3.4.2 Setup B: Learning Geometry and Textures

The proposed adaptation approach under setup B has two differences compared with setup A. Firstly, the
feature-level texture loss and shape-level RGB loss are no longer needed. Secondly, generators are guided by
the RGB discriminator to learn target texture distributions. Therefore, we need RGB images of rendered
real samples as inputs for the RGB discriminator. The overall optimization target of adapted models under
setup B is defined as follows:

L = L(Dmask, Gt) + L(Drgb, Gt) + µLreg + µ1Lgeo(Ss
geo, St

geo) + µ2Lmask(Gs, Gt). (16)

Here L(Drgb, Gt) represents the adversarial objective of rgb images used in GET3D. Details are added in
Appendix B. µ, µ1, µ2 are hyperparameters set manually to control the regularization levels.

4 Experiments

We employ a series of few-shot 3D shape adaptation setups to demonstrate the effectiveness of our approach.
We first show qualitative results in Sec. 4.1. Then we introduce several metrics to evaluate quality and
diversity quantitatively in Sec. 4.2. We ablate our approach in Sec. 4.3 and provide additional experiments
on larger domain gaps in 4.4.

Basic Setups The hyperparameter of SDF regularization µ is set as 0.01 for all experiments. We empirically
find µ1 = 2e + 4, µ2 = 5e + 3, µ3 = 5e + 3, µ4 = 1e + 4 to work well for the employed adaptation setups. We
conduct experiments with batch size 4 on a single NVIDIA A40 GPU. The learning rates of the generator
and discriminator are set as 0.0005. Adapted models are trained for 40K-60K iterations. The resolution of
2D RGB images and silhouettes is 1024×1024. More details of implementation are added in Appendix G.

Datasets We use ShapeNetCore Cars, Chairs, and Tables Chang et al. (2015) as source datasets and
sample several 10-shot shapes as target datasets, including (i) Trucks, (ii) Racing Cars, (iii) Sport Utility
Vehicles (SUVs), (iv) Ambulances, (v) Police Cars corresponding to Cars,(vi) Rocking Chairs, (vii) Modern
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Figure 4: 10-shot generated shapes of our approach using ShapeNetCore Chairs as the source domain.

Figure 5: Visualized samples comparison on 10-shot Cars → SUVs, Cars → Racing Cars, and Chairs → Rocking
Chairs. The results of different approaches are synthesized with fixed noise inputs.

Chairs, (viii) Lawn Chairs corresponding to Chairs, and (ix) Round Tables, (x) School Tables corresponding
to Tables. The few-shot 3D shapes are processed to RGB images (for Setup B only) and silhouettes using
24 evenly distributed camera poses as training data.
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Figure 6: 10-shot generated shapes of our approach on Cars → Ambulances and Police Cars.

Datasets Approach CD (↓) Intra-CD (↑) Pairwise-CD (↑) Intra-LPIPS (↑) Pairwise-LPIPS (↑)

Cars →
SUVs

DFTM 1.401 0.316 ± 0.002 0.513 ± 0.001 0.062 ± 0.001 0.063 ± 0.012
FreezeT 1.553 0.240 ± 0.005 0.326 ± 0.002 0.055 ± 0.002 0.060 ± 0.014

Ours 1.3231.3231.323 0.511 ± 0.0060.511 ± 0.0060.511 ± 0.006 0.814 ± 0.0070.814 ± 0.0070.814 ± 0.007 0.109 ± 0.0260.109 ± 0.0260.109 ± 0.026 0.095 ± 0.0220.095 ± 0.0220.095 ± 0.022

Cars →
Trucks

DFTM 4.014 0.441 ± 0.003 0.689 ± 0.003 0.112 ± 0.002 0.119 ± 0.024
FreezeT 4.175 0.412 ± 0.006 0.766 ± 0.002 0.120 ± 0.003 0.128 ± 0.027

Ours 3.9403.9403.940 1.061 ± 0.0141.061 ± 0.0141.061 ± 0.014 1.175 ± 0.0041.175 ± 0.0041.175 ± 0.004 0.145 ± 0.0220.145 ± 0.0220.145 ± 0.022 0.146 ± 0.0330.146 ± 0.0330.146 ± 0.033
Chairs →

Lawn
Chairs

DFTM 40.559 4.001 ± 0.005 13.598 ± 0.013 0.165 ± 0.029 0.141 ± 0.047
FreezeT 39.422 4.671 ± 0.022 19.269 ± 0.024 0.120 ± 0.032 0.165 ± 0.040

Ours 38.66138.66138.661 5.852 ± 0.0315.852 ± 0.0315.852 ± 0.031 22.989 ± 0.02222.989 ± 0.02222.989 ± 0.022 0.278 ± 0.0400.278 ± 0.0400.278 ± 0.040 0.166 ± 0.0540.166 ± 0.0540.166 ± 0.054
Chairs →
Rocking
Chairs

DFTM 18.996 7.405 ± 0.022 15.312 ± 0.011 0.202 ± 0.039 0.203 ± 0.037
FreezeT 18.503 5.541 ± 0.014 11.977 ± 0.009 0.203 ± 0.046 0.204 ± 0.036

Ours 17.59817.59817.598 8.773 ± 0.0298.773 ± 0.0298.773 ± 0.029 16.165 ± 0.01516.165 ± 0.01516.165 ± 0.015 0.289 ± 0.0620.289 ± 0.0620.289 ± 0.062 0.222 ± 0.0630.222 ± 0.0630.222 ± 0.063

Table 1: Quantitative evaluation of our approach. We fix noise inputs for different methods to conduct fair comparison.
CD scores are multiplied by 103. Our approach performs better on both generation quality and diversity.

Baselines Since few existing works explore few-shot 3D shape generation, we compare the proposed approach
with directly fine-tuned models (DFTM) and fine-tuned models using fixed texture generators (FreezeT),
including fixed texture mapping and texture synthesis networks.

4.1 Qualitative Evaluation

Setup A We visualize samples produced by our approach using source models pre-trained on ShapeNetCore
Cars and Chairs in Fig. 3 and 4, respectively. Our approach only needs the silhouettes of few-shot training
samples as target datasets to adapt source models to target domains while maintaining generation diversity
of geometry and textures. In addition, we compare our approach with baselines using fixed noise inputs for
intuitive comparison in Fig. 5. DFTM models replicate training samples and fail to keep generation diversity.
FreezeT also fails to produce diverse textures since the mapped geometry codes influence the fixed texture
synthesis networks. As a result, FreezeT models produce textured meshes similar to training samples under
the guidance of RGB discriminators. Therefore, we further train FreezeT models without RGB discriminators
or using source RGB discriminators. However, these approaches still fail to preserve the diverse geometry
and texture information of source models and cannot produce reasonable shapes. We maintain the pairwise
relative distances between generated shapes at feature-level and shape-level and achieve high-quality and
diverse adapted samples. Supplemental visualized results are provided in Appendix I.

Setup B We employ RGB images of 10-shot Ambulances and Police Cars as training data for Setup B. As
shown in Fig. 6, our approach produces diverse ambulances and police cars with diverse topology.

Quality Analysis The proposed approach realizes few-shot domain adaptation of pre-trained models. Our
approach achieves generation quality similar to pre-trained GET3D models. We provide visualized samples
of GET3D in Appendix B, in which incomplete textures of tires and failure of detailed structures can be
found. As a result, our approach produces some samples with incomplete textures of tires and cannot
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Datastes Approach FID (↓) CD (↓) Datastes Approach FID (↓) CD (↓)
Cars →

Ambulances
DFTM 101.583 6.896 Cars →

Police Cars
DFTM 86.833 6.440

Ours 93.69793.69793.697 5.9635.9635.963 Ours 74.95874.95874.958 5.6165.6165.616

Table 2: Quantitative evaluation of our approach on generation quality of geometry and textures.

Datastes Approach Intra-CD (↑) Pairwise-CD (↑) Inra-LPIPS (↑) Pairwise-LPIPS (↑)
Cars →

Ambulances
DFTM 0.300 ± 0.002 1.027 ± 0.0071.027 ± 0.0071.027 ± 0.007 0.079 ± 0.009 0.083 ± 0.017
Ours 0.558 ± 0.0040.558 ± 0.0040.558 ± 0.004 0.638 ± 0.006 0.093 ± 0.0180.093 ± 0.0180.093 ± 0.018 0.086 ± 0.0160.086 ± 0.0160.086 ± 0.016

Cars →
Police Cars

DFTM 0.426 ± 0.003 0.926 ± 0.0080.926 ± 0.0080.926 ± 0.008 0.109 ± 0.002 0.108 ± 0.017
Ours 0.902 ± 0.0050.902 ± 0.0050.902 ± 0.005 0.902 ± 0.006 0.115 ± 0.0090.115 ± 0.0090.115 ± 0.009 0.120 ± 0.0200.120 ± 0.0200.120 ± 0.020

Table 3: Quantitative evaluation of our approach on generation diversity of geometry and textures.

synthesize some detailed structures similar to some training samples. Our approach can be combined with
more powerful 3D shape GANs in the future to achieve better visual effects.

4.2 Quantitative Evaluation

Evaluation Metrics The generation quality of adapted models represents their capability to learn target
geometry distributions. Chamfer distance (CD) (Chen et al., 2003) is employed to compute the distances
of geometry distributions between 5000 adapted samples and target datasets containing relatively abundant
target data to obtain reliable results. Besides, we design several metrics based on CD and LPIPS (Zhang
et al., 2018) to evaluate the diversity of geometry and textures in adapted samples, which are computed in
two ways: (i) pairwise-distances: we randomly generate 1000 shapes and compute the pairwise distances
averaged over them, (ii) intra-distances (Ojha et al., 2021): we assign the generated shapes to one of the
training samples with the lowest LPIPS distance and then compute the average pairwise distances within
each cluster averaged over all the clusters. LPIPS results are averaged over 8 evenly distributed views of
rendered shapes. Adapted models tending to replicate training samples may achieve fine pairwise-distances
but only get intra-distances close to 0. However, adapted models with great generation diversity should
achieve large values of both pairwise and intra-distances.

Setup A The quantitative results of our approach under Setup A are compared with baselines on several
few-shot adaptation setups, as listed in Table 1. Our approach learns target geometry distributions better
in terms of CD. Moreover, our approach also performs better on all the benchmarks of diversity, indicating
its strong capability to produce diverse shapes with different geometry structures and textures.

Setup B We further add FID Heusel et al. (2017) to evaluate the generation quality under Setup B. To
produce stable and reliable FID results, we use 73 ambulances samples and 133 police cars samples from
ShapeNetCore Chang et al. (2015) as target datasets. FID results are averaged over 24 views of rendered
shapes. The quantitative results are listed in Tables 2 and 3. Our approach achieves better results than
DFTM models on the employed two setups. Compared with DFTM models, our approach also performs
better in learning target geometry distributions in terms of CD. Besides, our approach achieves greater
generation diversity in terms of Intra-CD and Intra-LPIPS. DFTM models get better results on Pairwise-
CD and results close to our approach on Pairwise-LPIPS but get apparently worse results on intra-distances,
indicating that they are overfitting to few-shot training samples and tend to replicate them instead of
producing diverse results. We do not include FreezeT models for comparison under Setup B since the
adapted models need to learn the texture information from limited training samples.

4.3 Ablation Analysis

We provide ablation analysis to show the roles played by each component of our approach. In Fig. 7,
we show the qualitative ablation analysis using 10-shot Chairs → Rocking Chairs as an example. Our full
approach adapts source samples to target domains while preserving diverse geometry and texture information.
Adapted models only using GAN loss with mask discrimination fail to maintain geometry diversity or produce
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Figure 7: Qualitative ablations of our approach using 10-shot Chairs → Rocking Chairs as an example. Results of
different approaches are synthesized with fixed noise inputs for intuitive comparison.

Approach CD (↓) Intra-CD (↑) Pairwise-CD (↑) Intra-LPIPS (↑) Pairwise-LPIPS (↑)
w/o Texture loss 18.178 8.054 ± 0.028 13.533 ± 0.010 0.221 ± 0.013 0.210 ± 0.045

w/o Geometry loss 18.409 7.551 ± 0.019 12.549 ± 0.009 0.271 ± 0.023 0.217 ± 0.057
w/o RGB loss 17.762 7.207 ± 0.018 13.124 ± 0.010 0.211 ± 0.006 0.213 ± 0.034
w/o Mask loss 18.275 6.878 ± 0.014 12.435 ± 0.008 0.248 ± 0.010 0.208 ± 0.010
Full Approach 17.59817.59817.598 8.773 ± 0.0298.773 ± 0.0298.773 ± 0.029 16.165 ± 0.01516.165 ± 0.01516.165 ± 0.015 0.289 ± 0.0620.289 ± 0.0620.289 ± 0.062 0.222 ± 0.0630.222 ± 0.0630.222 ± 0.063

Table 4: Quantitative ablations of the proposed approach using 10-shot Chairs → Rocking Chairs as an example.

high-quality shapes. Adding fixed source RGB discriminators results in texture degradation. Absence of the
feature-level texture loss makes it harder for adapted models to preserve the texture information learned from
source domains. Absence of shape-level RGB loss leads to repetitive textures and discontinuous shapes. As
for the feature-level geometry and shape-level mask losses, their absence results in adapted samples sharing
similar geometry structures and incomplete shapes. We also add ablations using geometry and mask losses,
texture and RGB losses, feature-level losses, and shape-level losses, respectively. None of these approaches get
compelling results. Incomplete geometry structures and low-quality textures can be found in their adapted
samples. As shown in Table 4, the full approach achieves the best quantitative results on both generation
quality and diversity. Without feature-level geometry loss or shape-level mask loss, adapted models perform
worse on geometry diversity in terms of Intra-CD and Pairwise-CD. Similarly, adapted models perform worse
on texture diversity in terms of Intra-LPIPS and Pairwise-LPIPS without feature-level texture loss or shape-
level RGB loss. More detailed ablations for the number of training samples, number of views, fixed mapping
networks, shared masks proposed in Sec. 3.4, and hyperparameters are added in Appendix E.

4.4 Larger Domain Gaps

We have conducted abundant experiments on related source/target domain adaptation like Cars → Trucks.
In this section, we further add experiments on source/target domains with larger domain gaps. We employ
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Figure 8: Visualized samples on 10-shot Tables → Modern Chairs and Lawn Chairs.

Adaptation Intra-CD (↑) Intra-LPIPS (↑)
Chairs → Modern Chairs (directly fine-tuned) 3.582 ± 0.004 0.149 ± 0.023

Chairs → Modern Chairs (ours) 5.011 ± 0.0225.011 ± 0.0225.011 ± 0.022 0.254 ± 0.0450.254 ± 0.0450.254 ± 0.045
Tables → Modern Chairs (ours) 4.735 ± 0.021 0.226 ± 0.030

Chairs → Lawn Chairs (directly fine-tuned) 4.001 ± 0.005 0.165 ± 0.029
Chairs → Lawn Chairs (ours) 5.852 ± 0.0315.852 ± 0.0315.852 ± 0.031 0.278 ± 0.0400.278 ± 0.0400.278 ± 0.040
Tables → Lawn Chairs (ours) 5.247 ± 0.018 0.242 ± 0.036

Table 5: Quantitative comparison between different adaptation setups. CD scores are multiplied by 103.

two adaptation setups: Tables → Modern Chairs and Lawn Chairs trained on 10-shot silhouettes. As shown
in Fig. 8, our approach is qualified for domain gaps like Tables → Chairs. Our approach adapts source table
samples to chairs and retains considerable diversity. In addition, we add quantitative results to evaluate the
generation diversity under different adaptation setups and report results in Table 5. Our approach achieves
relatively lower diversity when adapting Tables to Modern and Lawn Chairs compared with adapting from
Chairs. Despite that, our approach still achieves apparently greater generation diversity than directly fine-
tuned models even with larger domain gaps, showing its ability to maintain diversity in few-shot 3D shape
generation. Additional visualized samples are added in Appendix I.

5 Conclusion and Limitations

This paper first explores few-shot 3D shape adaptation. We introduce a novel domain adaptation approach to
produce 3D shapes with diverse topology and textures using limited 2D data. The relative distances between
generated samples are maintained at both feature-level and shape-level. We only need the silhouettes of few-
shot target samples as training data to learn target geometry distributions while keeping diversity. Our
approach is implemented based on GET3D to demonstrate its effectiveness. However, it is not constrained
by specific network architectures and can be combined with more powerful 3D shape generative models to
produce higher-quality results in the future. Despite the compelling results of our approach, it still has some
limitations. For example, it is mainly designed for relatively related source/target domains. Extending our
approach to unrelated domain adaptation would be promising. Nevertheless, we believe this work takes a
further step towards democratizing 3D content creation by transferring knowledge in available source models
to fit target distributions using few-shot data.
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