Under review as a conference paper at ICLR 2025

LEARNING TASK RELATIONS FOR TEST-TIME TRAIN-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

Generalizing deep neural networks to unseen target domains presents a major
challenge in real-world deployments. Test-time training (TTT) addresses this is-
sue by using an auxiliary self-supervised task to reduce the gap between source
and target domains caused by distribution shifts. Previous research relies on the
assumption that the adopted auxiliary task would be beneficial to the target task
we want to adapt. However, this situation is not guaranteed as each task has a dif-
ferent objective, thus adaptation relies on the relation between the tasks. This limi-
tation has motivated us to introduce a more generalized framework: Task Relation
Learning for Test-time Training (TR-TTT), which can be applied to multiple tasks
concurrently. Our key assumption is that task relations are crucial information for
successful test-time training, and we capture these relations using a Task Relation
Learner (TRL). We model task relations as conditional probabilities by predicting
the label of a target task based on the latent spaces of other task-specific features.
By leveraging these relations, the network can more effectively handle distribu-
tion shifts and improve post-adaptation performance across various tasks—both
classification and regression—unlike previous methods focused mainly on sim-
ple classification. To validate our approach, we apply TR-TTT to conventional
multi-task benchmarks, integrating it with the traditional TTT experimental pro-
tocol. Our empirical results demonstrate that TR-TTT significantly outperforms
state-of-the-art methods across a range of benchmarks.

1 INTRODUCTION

Assuming the data distributions are identical between training and test-time, deep learning networks
demonstrate robust performance across a range of tasks. Unfortunately, real-world scenarios rarely
allow for such assumptions, making it challenging to apply numerous deep learning methods in
practice. Solving the distributional gap between training and test-time has been emerged as a new
challenge towards developing deep learning methodologies, motivating the development of domain
adaptation or domain generalization. These methodologies, however, adapt or generalize to the fixed
target distribution, which leads to the same challenges in real-world scenarios that the aforemen-
tioned settings face. To address these challenges, test-time adaptation (TTA) and test-time training
(TTT) have emerged as the latest approaches to suppress the performance degradation caused by
distributional gaps, aligning the pre-trained networks with target domains during test-time.

Both TTA (Wang et al., [2020; [Nguyen et al., 2023) and TTT (Sun et al., [2020; |Liu et al.l 2021}
Gandelsman et al., 2022; [He et al., 2022; [Mirza et al., [2023} |(Osowiechi et al., 2023} 12024) have
access to a subset of the target domain during test-time, which allows them to update the network
to better adapt to the target domain. In particular, TTT methods include an additional branch for
auxiliary tasks, which leverage the information trained on source domain to the adaptation on the
target distributions. By selecting self-supervised or unsupervised schemes for these auxiliary tasks,
TTT methods effectively improve their ability to handle distributional shifts during test time.

However, it is almost impossible to pre-emptively decide which information would be effective
in reducing the domain gap, as we do not have access to the ground truth of the target distribution.
Thus, most existing TTT approaches rely on assumptions about which information will be beneficial
for narrowing the distributional gap, making the selection of the auxiliary task a critical aspect
of designing a TTT method. However, the chosen auxiliary task does not guarantee performance
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Figure 1: A comparison of conventional TTT approaches and the proposed TTT by learning Task
Relations (TR-TTT). The network takes the input data x, encodes it into a latent representation z,
and produces the task output y. (a) In the training phase, conventional TTT methods use both the
main task loss and the auxiliary loss with output y,,x. In the test phase, they rely solely on the
auxiliary loss. (b) In contrast, the proposed TR-TTT learns task relations that are generalizable
across domain changes. In both the training and test phases, it projects the latent z into the task-
specific latent z;. Using the projected latent vectors, TR-TTT learns task relations by predicting
task outputs from other tasks’ latent vectors in a separate branch (Joint Task Prediction). During the
training phase, both outputs are supervised with ground truth from the source domain, while in the
test phase, joint task prediction are supervised with the main task output.

improvements during test-time, as its objective is fundamentally different from that of the main task.
Consequently, previous TTT methods, as illustrated in Fig.[T}(a), exhibit varying adaptation abilities
depending on the relations between the main task and the selected auxiliary task. Motivated by
this limitation, we take a new approach to TTT, based on the assumption that the relations between
tasks are the key factor, robust on domain shift, which is effectively reducing the domain gap. This
eliminates reliance on auxiliary tasks, preventing the performance degradation of the main task.

In this context, we propose a new approach for Test-Time Training by learning Task Relations (TR-
TTT) , which effectively reduces the domain gap across multiple tasks, as shown in Fig. [TH(b). We
argue that the relations between tasks represent crucial information that can generalize across differ-
ent domains. To capture these task relations, we introduce a dedicated branch separate from the main
task prediction decoders. We define inter-task relations as conditional probabilities—specifically,
the probability of predicting a target task label given the set of all task-specific latent vectors. These
task-specific latent spaces are projected from a shared latent space and are optimized for each task.
To model these relations, we introduce a Task Relation Learner (TRL), which predicts task labels
using task-specific latent vectors. To further enhance the generalizability of the task relations learned
by TRL, we incorporate the masking technique motivated by the Masked AutoEncoder (MAE) (He
et al., 2022). We assume that the mutual information encoded by these task relations is preserved
across domain shifts and that TRL is sufficiently trained to predict task labels effectively, even with
masked latent vectors. At test-time, the predicted output from masked latent vectors is guided by the
predicted output from unmasked latent vectors to reduce the domain gap based on the learned task
relations in the source domain.

To evaluate the influence of different TTT methods on various tasks, we utilize several multi-task
benchmarks that include both classification and dense regression tasks. This setup is more challeng-
ing than previous TTT research, which typically focuses on simple classification tasks. By allowing
access to multiple task labels in the source domain, each TTT method can learn more generalizable
features across domain gaps. Therefore, we also enable previous TTT methods to access the ground
truths for multiple tasks in the source domain. We demonstrate that the proposed TR-TTT outper-
forms previous TTT methods by effectively improving the performance across all tasks, as evidenced
by experiments conducted on TTT between diverse datasets such as NYUD-v2, Pascal-Context, and
Taskonomy. The key contributions of this work are as follows:

* We propose a novel Test-Time Training method, called TR-TTT, which utilizes task relations as
key information to address domain shifts during test-time adaptation.
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* Under a plausible assumption that the quantity of information encoded in inter-task relations is
preserved across domain shifts, we provide a theoretical explanation of how the proposed TR-
TTT objective reduces task loss in the target domain.

* We demonstrate the validity of TR-TTT for both regression and classification tasks using multi-
task benchmarks. Our approach captures the relationships between tasks to enhance performance,
achieving state-of-the-art results on various domain shift scenarios.

2 RELATED WORK

Test-Time Adaptation & Training. Adapting deep neural networks to a target domain is challeng-
ing due to the necessity of additional burdens for collecting and labeling data in that domain. Recent
research has focused on using unlabeled data to infer the target domain’s distribution, thereby nar-
rowing the gap between source and target domains during adaptation (Liang et al., 2024). Test-time
adaptation (TTA) and test-time training (TTT), which enable online adaptation, show broad appli-
cability. A pivotal contribution in this area is TENT (Wang et al.| 2020), which uses entropy as an
adaptation objective for image classification. In the field of computer vision, various TTA methods
have been suggested to adapt off-the-shelf models during the testing phase, focusing on tasks such
as image classification (Wang et al.,[2022aj; [wasawa & Matsuol 2021} Chen et al.|[2023a), semantic
segmentation (Zhang et al., [2022a} |Volpi et al., 2022; |Lee et al., [2024)), and object detection (Fan
et al., [2024). However, previous TTA methods primarily enable adaptation for classification tasks,
limiting their applicability to a wider range of downstream tasks. On the other hand, TIPI (Nguyen
et al.| 2023) enforces transformation invariance, a technique commonly used in unsupervised learn-
ing to simulate domain shifts, enabling adaptation for regression tasks, although its effectiveness on
these tasks has not been fully demonstrated.

TTT employs a separate self-supervised task branch (Sun et al.| [2020) as an auxiliary task for the
main task adaptation, drawing inspiration from multi-task learning (Caruanal [{1997). |Gandelsman
et al.| (2022)) utilizes the masked autoencoder (He et al., 2022), demonstrating its generalizability in
handling distribution shifts during deployment. TTT++ (Liu et al., 2021) preserves the statistical
information of the source domain to align the test-time features through contrastive learning. As an
auxiliary self-supervised branch, TTT-MAE (Gandelsman et al., [2022)) adopt Masked Autoencoder
to adapt the network in the test-time domain while the normalizing flow (Rezende & Mohamed,
2015)) has been used for [Osowiechi et al.| (2023)). ActMad (Mirza et al.l 2023)) directly aligns the
activation statistics of the test-time domain to the training domain directly, using the L1 norm. For
only the classification task, several TTT methods (Su et al. [2022; |Hakim et al., 2023} |Li et al.,
2023)) adaptively update prototype clustering for each class, aligning the distribution shift. NC-
TTT (Osowiechi et al.| 2024), the most recent TTT study, adapt model on new domain by learning
to classify noisy views of projected feature maps.

Task Relations. Capturing inter-task relations has been the main approach in the multi-task learn-
ing (MTL) domain (Caruana, [1997). In particular, partially labeled MTL addresses the challenge
of inferring distribution shifts from one task to another when access to task labels is limited during
training. Early studies in this field (Liu et al., [2007; Zhang & Yeung, 2009; Wang et al., |2009),
uses semi-supervised learning approaches to infer these task relations. Recent works (Imran &
Terzopoulos| 2019 [Huang et al., [2020; [Latif et al., |2020) have been applied to various domains,
including computer vision and speech recognition, utilizing evolving deep neural networks. |[Zamir
et al.| (2020); |ILu et al.| (2021); Saha et al.| (2021) directly utilize task relations by leveraging the
unique characteristics of each task. [Lu et al.| (2021)) regularizes the results of depth estimation and
normal vector estimation, using the fact that normal vectors can be obtained by differentiating depth
information. [Saha et al.[(2021) infers task relations between semantic segmentation and depth esti-
mation, inspired by the human perception process, which uses depth information to infer semantic
details. On the other hand, several studies infer distribution shifts among different tasks without
explicitly analyzing task relations. |Chen et al.| (2020)) utilizes consistency loss between similar tasks
in a shadow detection problem set. Wang et al.| (2022b) uses intra-domain and inter-domain adver-
sarial loss to align the learning process of the same task across different domains. [Li et al.| (2022)
learns pairwise task relations by regularizing the outputs of tasks from different paths in a pairwise
task mapping. Nishi et al.[(2024) constructs the joint-task latent space by encoding and decoding the
stacked labels of multiple tasks at once. (Ye & Xu, 2024) enhances the diffusion model (Ho et al.,
2020) for multi-task learning by sharing the information across the different tasks.
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3 METHODS

3.1 PROBLEM DEFINITION

Consider a domain defined by the joint distribution pg(z, y) with random variables {X', '}, where
the input data  ~ X and the corresponding label y ~ ). In the source domain {X;, Vs}, a deep
learning network with parameters 6 is trained to learn the conditional distribution py (ys|zs), where
zgs ~ Xs and ys ~ V. The goal of Test-Time Training (TTT) is to find the conditional distribution
po(ye|z:) in the target domain { X}, ), } by adapting the network parameters 6 to the target domain,
where X; # X, without direct access to the target domain labels y; ~ ;. For classification tasks,
both domains share the same label space ), = );. We assume a similar setup for regression tasks,
as the accuracy of regression tasks can be evaluated using scale-invariant metrics. Therefore, we use
Y to represent the task label for both domains. Most recent multi-task architectures (Riquelme et al.}
20215 |[Zhang et al.| 2022b; [Fan et al., [2022; | Mustafa et al., [2022; |Chen et al., 2023bj [Huang et al.,
2024) use a shared encoder across different tasks, generating a common latent space. We denote this
latent space as z5; ~ Z for the source domain and z; ~ Z; for the target domain, respectively.

3.2 CONNECTING TASK RELATIONS FROM SOURCE TO TARGET

In a multi-task setting, both the source and target domains are expanded to {X,{);}"_,}, where
n is the number of tasks. Similarly, the latent space that benefits each task varies across tasks.
We partition the latent space Z into task-specific subspaces {Z;}? ,, where each Z; represents the
projection of the shared latent space Z that is advantageous for target task ¢, resulting in (£ U 25 U

...UZ,) C Z. For simplicity, we denote the (£, U Z5U...U Z,) as Z.

Since we cannot access the ground truth of the target domain during adaptation, it is nearly impos-
sible to predict in advance which specific information from the source domain will be useful for the
target domain. As a result, most previous TTT approaches rely on assumptions about which infor-
mation would be beneficial across domains and suggest learning strategies tailored to their specific
objectives. Motivated by the previous research in multi-task learning, which uses task relation to
improve the generalizability of networks, we assume that the relations between tasks are key in-
formation that can be generalized across different domains. Our first assumption is that inter-task
relations will remain consistent across domain shifts, as illustrated in Assumption E}

Assumption 1 (Preservation of Task Relations). The mutual information between the latent space
and the task labels is preserved across the source and target domains, such that

I(Z,, i) = I(Z4, )
foralli € {1,2,...,n}, where Z, = (2, 1UZ,0U...UZ.,,) and Z; = (2,1 U Zi0U. . U2 ,).

Consider the scenario where we predict the task label y; using task-specific features {z;}?" ;. Ac-
cording to Assumption [I} the information required to predict the task label from the task-specific
latent space—represented by the random variable p(ys,i|zs,17 Zg 2y ,zsyn)—remains consistent
across domain shifts.

As the Masked Autoencoder (MAE) (He et al.| [2022)) has shown outstanding performance in cap-
turing a generalizable latent space of input data distributions, we adapt it to approximate the proba-
bility p(ys.i|2s.1, 25,2, - - -, 2s,n) fOr capturing inter-task relations. To adapt MAE for our purposes,
we mask the task-specific features z; with mask M;, where each masked task-specific feature is

represented as z; ~ Z;, and their union is denoted as Z = (21 U 2’2 U...uU Z'n) These masked
features are then used to jointly predict the task labels. We refer to this as Task Relation Learner
(TRL). Our second assumption is that the TRL is sufficiently trained to produce final predictions
with the masked task-specific latent space.

Assumption 2 (Sufficient Training of the Task Relation Learner). If the task relation learner is
sufficiently trained, it can reliably generate task labels from the masked latent space, ensuring that

I(2,9) = I(Z,)
Sforallie {1,2,...,n}.



Under review as a conference paper at ICLR 2025

In Assumption 2] we assume that the Task Relation Learner effectively learns task relations
by capturing the mutual information I(Z,);). This is done by approximating the probability
D(Ys,i|Zs .1, 25,25 - - - » Zs.m ), Which predicts task labels from the task-specific latent vectors.

To define the optimization objective for our TTT strategy, we begin by measuring the distance, using
any metric d, between the learnable network parameters € and the ideal probability for predicting
the target task label, represented as d(6, p({#,}7—;,vy;)). Then, we can bind it as follows:

Proposition 1. Under Assumption[I|and[2] we have

d(0,p({zt,i}i=1,v5)) < d(0,p({Zei}im1,Y5)) (1)
+ Ep(tzeiyr oo pldpe(yil{zeitica)s po(yi {zei el ()

The left-hand side of the inequality represents the loss for task 7, which we aim to minimize. This
is equivalent to the supervised learning objective on the target domain, where we maximize the
information between all available latent vectors {z;;}?" ; and the target label y;. The first term on
the right-hand side, eq. , represents the loss when using the masked latent vectors {Z; ;}7_,. The
second term, eq. (2)), reflects the gap between predicting the task label with the full latent space and
its masked version.

If task relations can be effectively learned from the process of predicting task labels from masked
task-specific features, we can assume that task-specific feature masking serves as an efficient tool
for learning generalizable task relations in latent space across domain shift. This would allow us to
transform p({Z;;}7;,v;)) back to p({Zs:}7—;,y;)). Therefore, our training objective is to mini-
mize d(0,p({Zs,:}1-1,v;)), which supervises the predicted task labels derived from masked latent
vectors using ground truth. Consequently, we train the network to reduce the gap between predic-
tions made from the masked latent spaces, using ground truth as guidance during training.

Our objective during test-time is given in eq. (2)), and the multi-task version is as follows:

min Y Ep(gs, , z0 7 [dPo (5] {20 i) oyl {Zei i )] 3)

J=1

During test-time, we do not have access to the ground truth for each task label. Therefore, we
minimize the gap between the probability of task predictions made using the set of task-specific
latent vectors {z;;} , and the predictions made using the masked vectors {Z;;}; in the target
domain. The detailed derivation of proposition |l|can be found in Appendix

3.3 TEST-TIME TRAINING BY LEARNING TASK RELATIONS

Following the previous derivation, we implement a methodology for test-time training (TTT) by
capturing task relations on both training and test-time, as illustrated in the Fig. 2] The proposed
framework consists of two branches: the branch for the main target task and the other branch,
including the TRL, which encourages the framework to learn the generalizable task relations. Since
the ideal latent space for capturing task relations may differ from that for predicting outputs, we
implement the separate branch to extract each task-specific latent space. The encoder, pg(z|x),
extracts a latent vector, z, from the input image, . The final main output, {y;"‘“” 1, are derived
by passing the latent vector, z, through a decoder, pg(y|z), and supervised with the ground truth,
{y:}_,. On the other branch, the TRL captures the task relation by predicting the task outputs from
a set of task-specific latent vectors, {z; }7_;. The set of the latent vectors are the projected versions
of the latent vector z that pass through the task-specific projection layer.

Task-specific Projection. The additional task-specific layers are used to project the latent vectors z
into the corresponding task-specific vectors, {z; }7 ;. The task-specific projection layers consist of
two layers: one for projecting the latent vector into the task-specific vector and the subsequent layer
for predicting the task outputs, y7 ©'. During training, this output is supervised with the ground truth
to train the task-specific projection layers:

LI ="’ ) )
=1
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Figure 2: Overall Framework. Give input z, the shared encoder p(z|z) encodes the latent z and
the task-specific decoder p(y;|z) for task i decodes it into output 4", Through the single-layer
task-specific projection, the latent z is projected into task-specific latent z;, which are stacked and
passed to the TRL or passed one more layer to predict another output y? ©. The TRL p(y;|[{Z:}7 )
predicts the output y? #Z using the masked latent Z;. In the train phase, each output is supervised
with the ground truth y; using the loss £, LT and LTRL | respectively. In the test phase, only
LTRL is minimized to train the framework Wthh makes y%RL close to the ymm.

By using task-specific projection loss, £77, it is able to contain different task-specific information
into the task-specific latent vectors. In the test-time, the trained projection layers extract the task-
specific latent vectors in the target domain for the TRL.

Task Relation Learner. To reach the goal of TTT, the TRL, py(y;|{Z;},), is suggested to learn
task relations. Similar to MAE, the TRL is implemented with vision transformer which predicts the
both masked and unmasked regions of task label. The main difference is that TRL uses attention
between task-specific tokens encoded from masked task-specific latent vectors, {Z;}? ;. In the
training phase, the outputs from the TRL, 37 #L, are supervised with the Joint Task Prediction Loss,
LTRL using the ground truth, 7/;. The loss consists of the supervision loss for each task, £;:

£yt = Zﬁ y ) 5)

TRL main

During test-time, the TRL output, y; *~, is aligned with the main output, y; , which lowers the
upper bound of the objective eq. (3) on the target domain. Therefore, the total framework is trained
with the Pseudo-label Prediction Loss £ 7L and the corresponding loss function is summarized as
follows:

Ez"RL Z E TRL’ y:nmn) (6)

In summary, during the train phase, the overall framework is trained by minimizing the following
total loss (red arrows in the Fig. 2):

LTotal _ Emain + )\TRL[,TRL + )\TPETP

n

— Z‘Cl mazn7yi) +)\TRLG:£i(yiTRL7yz )\TPZ[/ 7yl (7)

Each ATEL and AT” denotes the loss weight for LT and £T7, respectively. In the test-time phase,
the framework is only trained with the Pseudo-label Prediction Loss (blue arrows in the Fig. [2):

E’g“otal _ ﬁ;TRL ZC TRLvy;nazn) (8)
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4 EXPERIMENTS

In this section, we evaluate previous TTT methods against ours across multiple benchmarks. We
also conduct an ablation study on each component of TR-TTT to analyze how the proposed methods
effectively capture task relations and handle domain shifts during test-time training.

4.1 EXPERIMENTAL SETTINGS

Datasets. To evaluate the ability to reduce the domain gap on downstream tasks, which include
both classification and regression, we utilize several existing multi-task benchmarks. We incorpo-
rate NYUD-v2 (Silberman et al. 2012), PASCAL-Context (Mottaghi et al.,[2014), and Taskonomy
(Zamir et al., |2018)) in our TTT evaluation protocols. These datasets contain 4, 5, and 26 vision
tasks, respectively. Following the typical protocol for TTT experimental settings, we use the shared
task set between each pair of benchmarks, such as depth estimation, semantic segmentation, surface
normal prediction, and edge detection for NYUD-v2 and Taskonomy. Also, for PASCAL-Context
and taskonomy datasets, we use semantic segmentation, surface normal prediction, and edge detec-
tion. We select commonly used semantic labels for each dataset pair to simulate TTT protocols.
Further details are provided in Appendix

Baselines and Evaluation Protocols. We compare our methods with previous test-time adapta-
tion approaches, including TENT (Wang et al.l 2020) and TIPI (Nguyen et al.| [2023), as well as
test-time training methods such as TTT (Sun et al., 2020), TTT++ (Liu et al.l [2021), TTTFlow
(Osowiechi et all, 2023), ClusT3 (Hakim et al., 2023), ActMAD (Mirza et al.| [2023)), and NC-
TTT (Osowiechi et al 2024). To evaluate the adaptation, we cover the domain shifts as follows:
1) Taskonomy—NYUD-v2, 2) Taskonomy—PASCAL-Context in the main paper, and 3) NYUD-
v2—Taskonomy, 4) PASCAL-Context— Taskonomy in Appendix [C} Since the TR-TTT can access
multiple tasks in the source domain to learn their relations during training, we also allow the afore-
mentioned baselines to access multi-task labels during training for a fair comparison. To achieve
this, we similarly incorporate multi-task decoders to facilitate learning during training. This setup
maximizes the potential of TTT methods, as learning multiple tasks in the source domain during
training enhances generalizability at test-time by learning shared representations across tasks. Dur-
ing test-time, we evaluate all tasks simultaneously. For TTA, we adapt the model that was trained
on multiple tasks in the source domain. To evaluate overall performance improvements during test
time, we propose a metric, A for assessing TTT, motivated by Maninis et al.|(2019). This metric
measures averaged per-task performance improvements when applying TTT methods and is defined

as: Nppp = % Z?:l(—l)l’? w In this equation, Mpy7; indicates the performance of
task 7 when TTT is applied, while M, ; represents the performance of task ¢ without TTT. The value

l; = 1if a lower measure M; indicates better performance for task ¢, and [; = 0 otherwise.

Implementation Details. For our experiments, we use resnet50 as an encoder and simple task-
specific decoders that combines multi-layer features with convolutional layers. We also use a single
convolutional layer for task-specific projection and a lightweight vision transformer for TRL. The
Task Relation Learner (TRL) increases the network size by approximately 24.1% when applied to
ResNet50. The models are trained for 40,000 iterations on the source domain with a batch size of
8, and then sequentially trained on the target domain. We utilize the loss scales and loss functions
that are commonly employed in existing multi-task learning literature (Yang et al) [2024; |Ye &
Xu, [2022bza; Vandenhende et al., [2020; [Zhang et al.,[2019)). We employ the Adam optimizer with a
learning rate of 2 x 10~° and a weight decay of 1 x 10~°, using a polynomial learning rate schedule.

4.2 EXPERIMENTAL RESULTS

Comparison with Previous methods. We compare TR-TTT with previous state-of-the-art TTT
methods. Taskonomy is used as the source domain, and results for NYUD-v2 and Pascal-Context
as target domains are presented in Table[T] and Table [2] respectively. Since each method converges
at different rates, we select the point at which each method achieves its best TTT performance, av-
eraged across all tasks, measured by Appr for a fair comparison. TR-TTT outperforms all other
methods in both settings. A key observation is that the effectiveness of previous methods depends
on the type of main task. Methods like TENT and NC-TTT, which rely on class-level clustering to
reduce the domain gap, exhibit limited performance on regression tasks across both datasets. Even
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Table 1: Comparison of multi-task performance from Taskonomy to NYUD-v2 across four different
tasks for TR-TTT, against previous TTA and TTT methods.
‘ Semseg (mIoU 1)  Depth (RMSE |) Normal (mErr|) Edge (RMSE |) ‘ Arrr (%)

Base | 29.31+0.063 1.179 0.008 61.32 +0.820 0.1443 £071e-4 | +0.00
Test-time Adaptation

TENT (Wang et al.||2020) 40.42 +1.09 1.056 +0.017 56.09 +3.21 0.1441 +0.21e-4 +14.26 £0.02
TIPI (Nguyen et al.|[2023) 48.12 £1.781 1.029 £0.0651 55.71 £0.493 0.1440 +£6.438e-5 | +21.57 £0.329
Test-time Training

TTT (Sun et al./[2020}) 41.31 +0.446 1.061 £0.001 47.54 +0.431 0.1440 +2.83e-5 | +18.43 +0.214
TTT++ (Liu et al.[[2021) 43.97 £+1.110 1.107 £0.015 46.71 £0.064 0.1440 +2.62e-5 | +20.05 41.228
TTTFlow (Osowiechi et al.|[2023) 52.75 £0.075 1.075 £0.001 46.02 £0.125 0.1442 +4.73e-5 | +28.47 £0.096
ClusT3 (Hakim et al.[[2023) 41.88 +2.058 1.102 +0.014 46.52 +0.007 0.1440 +7.28e-6 +18.44 +1.450
ActMAD (Mirza et al.|[2023) 27.62 +0.161 1.193 +0.008 56.53 +2.307 0.1444 £3.04e-5 | +0.203 £1.256
NC-TTT (Osowiechi et al.|[|2024) 48.17 +6.976 1.086 +0.052 48.32 +1.228 0.1440 +£2.83e-5 | +23.40 £5.347
TR-TTT (ours) | 59.37 +0.152 1.052 +£7.5¢-3 45.33 +0.072 0.1441 £5.1e5 | +34.94 +0.008

Table 2: Comparison of multi-task performance from Taskonomy to PASCAL-Context across three
different tasks for TR-TTT, against previous TTA and TTT methods.

| Semseg (mIoU 1) Normal (mErr |) Edge RMSE |) | Arrr T (%)

Base | 27.08 +0.014 63.46 +£0.954 0.1185£0.71e4 | 0.00
Test-time Adaptation

TENT |Wang et al.|(2020) 40.65 £0.134 58.76 +£2.05 0.1183 40.09e-4 | +19.26 +0.004
TIPI|Nguyen et al.|(2023) 43.01 £0.0013 39.03 £2.27e-4 0.1186 £1.37e-8 | +32.41 £0.002
Test-time Training

TTT |Sun et al.|(2020) 39.29 +0.228 33.76 £0.904 0.1183 +0.04e-4 | +30.70 £0.193
TTT++|Liu et al.|(2021) 37.26 +0.050 36.87 +0.045 0.1183 +0.24e-4 | +26.55 40.045
TTTFlow |Osowiechi et al.|(2023) 38.73 +0.245 43.30 4+0.755 0.1184 +4.72e-5 | +27.97 +£0.684
ClusT3|Hakim et al.|(2023) 33.26 +0.001 35.31 £3.70e-5 0.1184 40.36e-8 +22.43 +0.001
ActMAD|Mirza et al.|(2023) 22.09 +0.001 54.73 £0.001 0.1188 40.19¢-8 -1.630 40.001
NC-TTT |Osowiechi et al.|(2024) 42.81 £0.107 40.65 £0.110 0.1184 +0.77e-6 | +31.37 40.075
TR-TTT (ours) \ 45.42 +0.19 41.41 4+0.63 0.1183 £5.0e-5 \ +34.20 +o0.11

in classification tasks such as semantic segmentation, feature-level adaptation methods that use class
cluster information, like ClusT3, ActMad, and NC-TTT, show limited effectiveness. This suggests
that these methods are better suited for simple classification tasks and struggle to generalize to more
complex dense prediction tasks. The results also indicate that TTT performance heavily relies on the
choice of unsupervised tasks selected for auxiliary training. In contrast, our TR-TTT method cap-
tures task relations and effectively incorporates them into the adaptation process, achieving superior
performance across multiple tasks.

Performance Over Time with Adaptation Iterations. We evaluate the performance of each TTT
method in an online manner over time with adaptation iterations. As shown in Fig. [3] the perfor-
mance of TR-TTT continuously improves with an increasing number of time steps. In contrast,
most other adaptation methods experience performance degradation during longer adaptation pro-
cesses. This phenomenon has been frequently reported in previous research, such as TENT, which
indicated that adaptation loss has a detrimental influence on learning the target task over longer
adaptation periods. This is a crucial point in practice since we often do not know how many adap-
tation steps are needed during test-time. TR-TTT is less affected by this issue because it directly
leverages the relations between the main tasks that the network is trying to adapt. Additionally, in
situations where multiple tasks need to be adapted across domains, TR-TTT offers more advantages
as it avoids problems related to differing convergence rates between tasks.

4.3 ABLATION STUDY

In this section, we present additional ablation experiments to evaluate each component of TR-TTT
and their respective strategies. We assess the influence of the following components: (1) the Task
Relation Learner (TRL), including the joint task prediction loss L7, (2) task-specific projection,
including £77, (3) feature masking applied to each task-specific latent vector, and (4) a comparison
of results when using image reconstruction as an auxiliary task instead of the main tasks we aim
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Figure 3: Comparison of previous TTA and TTT methods with our TR-TTT across time steps during
test-time training. We evaluate the performance of each task and the overall TTT performance,
denoted as A7, under the domain shift from Taskonomy to NYUD-v2.

Table 3: Ablation study for individual components of TR-TTT.

Benchmark | Taskonomy — NYUD-v2 Taskonomy — PASCAL-Context
TRL - v v v v - v v v v
Task-specific Projection - - v - v - - v - v
Feat. Masking - - - v v - - - v v
Image Recon. Task - - - v - - - - v -
Arrr T (%) +0.00 +26.16 +33.79 +26.76 +34.94 | +0.00 +28.32 +32.27 +26.43 +34.20

to adapt for the TTT branch. In Table 3] we show the performance improvements in TTT based on

different combinations of these components, with improvements measured relative to results without
any TTT methods, denoted as Apprr T (%).

Ablation on Each Component. In the TR-TTT framework, using the TRL alone effectively re-
duces the domain gap, leading to performance improvements of 26.16% for NYUD-v2 and 28.32%
for PASCAL-Context. In this scenario, the TRL captures task relations by utilizing shared represen-
tations across multiple tasks, rather than task-specific latent vectors. When task-specific projection
is introduced to extract task-specific latent vectors for the TRL, the performance further improves,
suggesting that task relations are more effectively captured with distinct task-specific information.
Additionally, the feature masking strategy, which is analyzed in the following subsection, provides
further performance gains, although most of the improvements are driven by the TRL and task-
specific projection. Lastly, to validate our TTT strategy, we focused on capturing the task relations
we want to adapt. Instead of using an entirely different auxiliary task like image reconstruction,
we integrated image reconstruction into our TTT branch. In this setup, the TRL predicts the recon-
structed image instead of task labels. The learned information from image reconstruction resulted
in significantly poorer TTT performance compared to our approach. This highlights that using
auxiliary tasks, such as image reconstruction, does not necessarily ensure the inclusion of useful
information for downstream tasks, especially in the context of domain shift.

Masking Strategy and Masking Ratio. To evaluate which masking strategy M for task-specific
latent vectors Z; = M;(z;) would be beneficial for learning inter-task relations, we select several
candidates for masking strategies to assess their influence, as shown in Fig. f] We consider four
scenarios: (a) we randomly mask each task-specific latent vector z;, (b) we mask them without
overlap across tasks, (c) we mask identical patches, which are randomly chosen for all tasks, and
(d) we randomly select task sets and entirely mask their task-specific latent vectors. As shown in
Table [ (c) Same for All shows the best performance, thus we adopt this strategy for our meth-
ods. We guess there are two reasons why (c) produces the best performance compared to the other
strategies. First, although the task-specific latent vector z; is derived from a task-specific projection,
it may still contain shared representations from other tasks. In such cases, using each task’s latent



Under review as a conference paper at ICLR 2025

Table 4: Ablation study on the impact of different masking strategies, as described in Fig. 4]

Method [ (a) Random (b) Not Overlap (c) Same for All (d) Hide specific Tasks
Arrr T (%) [ +32.76 +32.56 +34.94 +33.06
| | [}

]
BRI EEN

(a) Random (b) Not Overlap (c) Same for all (d) Hide specific Tasks

Figure 4: Candidates for the masking strategy M, applied to task-specific latent vectors, denoted
as Z; = M;(z;). Each task-specific latent vector z; is represented by separate large squares, with
the unmasked portions shaded in black. In (a), we randomly select patches for masking. In (b), we
mask without overlap between tasks, represented as M1 N MsoN---NM,, = (. In (c), we apply the
same masking strategy across all task-specific latent spaces, denoted as M1 = My = --- = M,,.
In (d), we completely mask the latent vector of a specific task, indicated as M; = () for some .
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Figure 5: Ablation study on the masking ratio of TR-TTT. We evaluate the performance under the
domain shift from Taskonomy to NYUD-v2.

vector for prediction results in trivial predictions by the TRL. Second, predicting the task label for
a masked patch from the unmasked patch encourages the TRL to capture spatially global informa-
tion across different task-specific latent vectors. If the TRL has access to the same patch location
from another task’s latent vector, it might merely memorize the style transfer between these vectors,
which would negatively affect generalization. In Fig. [5] we evaluate the influence of the masking
ratio for the adopted masking strategy (c) on the performance of tasks during test-time. The overall
TTT performance improves as the masking ratio increases, peaking at approximately 0.7 to 0.8. It
is noteworthy that the overall trend is quite consistent across tasks.

5 CONCLUSION

In this paper, we introduce Task Relation Learning for Test-time Training (TR-TTT) to address the
distribution gap between source and target domains during adaptation. We demonstrate that under-
standing task relations is crucial for successful adaptation in TTT. By employing a Task Relation
Learner to capture these relations as conditional probabilities, our approach enables the network to
predict the labels of target tasks using information from other task-specific latent spaces. This in-
novative strategy allows TR-TTT to manage distribution shifts more effectively and enhances post-
adaptation performance across a range of tasks, including both classification and regression. We
validated our approach through extensive experiments using conventional multi-task benchmarks
integrated with established TTT protocols. The empirical results indicate a significant performance
improvement compared to state-of-the-art methods, confirming the effectiveness of our framework.
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A DERIVATIONS OF PROPOSITIONI]

For simplicity, denote the task-specific latent space as {z;; }7_; and its masked version as {2, ; }7_;.
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The eq. (I5) follows from the triangle inequality.

Rearranging the above equation results in the following inequality.:

d(0,p({zt,i}i=1,Y5)) < d(0,p({Zt,i}i=1,Y5)) (16)
+ Ep(fzim, oo dpe(il{ze i), po(yi {2 1)l (17)
+Ep(tzeir, oy pldlpil{zei tiza), p(y; {Ze Fe )] (18)

In the multi-task setting, we apply eq. (I8) to each task as follows:
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The inequality between eq. (21I) and eq. (24) holds due to assumption [I] which states that task
relations are preserved between tasks and their masked versions. With an adequate masking ratio,
the joint MAE sufficiently captures the task relations in the source domain, and eq. (24) approaches
zero, as this is the objective during training in the source domain.

Therefore, the following inequality holds:
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B ADDITIONAL EXPERIMENTAL DETAILS

Experimental Settings. In the training phase within the source domain, we utilize the Adam opti-
mizer (Kingma & Bal 2014)) with a polynomial decay for the learning rate. We set the learning rate
to 2 x 10~° and the weight decay to 1 x 10~° for training the networks. The batch size is 8, and
we perform 60,000 iterations for training. During test time, we adopt the SGD optimizer to ensure
stable convergence with the TTT loss. The learning rate remains the same, but we reduce the loss
scale for TTT to approximately 0.01. During test time, we update the network for each batch of data
for up to 40 steps in an online manner.

Table 5: Hyperparameters for experiments.

Hyperparameter Value
L Scheduler Polynomial Decay
L Minibatch size 8
L Backbone ResNet50 (He et al.,[2016)
L Learning rate 0.00002
L Weight Decay 0.000001
Train Time Training
L Optimizer Adam (Kingma & Ba,[2014)
L Number of iterations 60000
L Learning rate 0.00002
L Weight Decay 0.000001
Test Time Training
L Optimizer SGD
L Minibatch size 8
L Number of steps 40

Metrics. For semantic segmentation, we utilize the mean Intersection over Union (mIoU) metric.
The performance of surface normal prediction was measured by calculating the mean angle distances
between the predicted output and the ground truth. To evaluate depth estimation and edge detection,
we use the Root Mean Squared Error (RMSE).

Datasets. To implement TTT in semantic segmentation tasks on different datasets (Taskonomy
< NYUD-v2, Taskonomy <+ PASCAL-Context), we find shared class labels in each of the two
datasets. For Taskonomy <+ NYUD-v2, we use 6 shared classes: table, tv, toilet,
sofa, potted plant, chair. For Taskonomy <> PASCAL-Context, we use 7 class labels:
refridgeator, table, toilet, sofa, bed, sink, chair. We use the split of
train/test following the common multi-task benchmarks, NYUD-v2, PASCAL-Context and Taskon-
omy. In the case of NYUD-v2, we utilize 795 images for training and reserve 654 images for
test-time training. With PASCAL-Context, 4,998 images are employed during training, and 5,105
images are used for test-time training. For Taskonomy, we leverage 295,521 images for training and
apply 5,451 images during test-time.

C ADDITIONAL EXPERIMENTS

Comparison with Previous Methods in Different Scenarios. We compare TR-TTT with previous
state-of-the-art TTT methods in different scenarios, using NYUD-v2 and PASCAL-Context as the
source domains and Taskonomy as the target domain. The results are presented in Tables [6] and
respectively. For a fair comparison, we select the point at which each method achieves its best TTT
performance, averaged across all tasks, as measured by Appr. Since NYUD-v2 and PASCAL-
Context have smaller datasets, the overall TTT performance is lower compared to scenarios where
Taskonomy is used as the source domain. The proposed TR-TTT still demonstrates comparable
performance in these scenarios.
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Table 6: Comparison of multi-task performance from NYUD-v2 to Taskonomy across four different
tasks for TR-TTT, against previous TTA and TTT methods.

\ Semseg (mIoU 1)  Depth (RMSE |) Normal (mErr |) Edge (RMSE |) ‘ Arrr T (%)
Base | 4821158 0.0507 £0.0002 27.60 £0.12 0.3058 £2.40¢-4 | 0.00
Test Time Adaptation
TENT (Wang et al.,[2020) 39.75 £1.20 0.0634 +£0.00 37.49 +035 0.3084 £4.94e-4 -19.76 +£0.23
TIPI (Nguyen et al.|[2023) 47.03 £7.08e-4 0.0514 +3.55¢-8 28.40 +1.49e-5 0.3052 +£3.32¢-8 -1.639 +£0.0003
Test Time Training
TTT (Sun et al.|2020} 49.66 +0.412 0.0523 +4.12¢-3 31.96 +0.119 0.3094 +6.27¢-4 -4.276 +0.5720
TTT++ (Liu et al.[[2021) 39.29 +1.089 0.0595 +1.29¢-3 36.53 +0.416 0.3132 +2.61-¢3 -17.65 +0.6608
TTTFlow (Osowiechi et al.|2023) 48.56 +0.300 0.054 +1.297e-4 34.36 +0.1425 0.3086 +£9.01e-5 -7.73.00 +0.356
ClusT3 (Hakim et al.|2023) 51.14 +1.757 0.0516 +3.75¢-4 30.03 +0.431 0.3065 +4.60e-4 -1.164 +1.449
ActMAD (Mirza et al.|[2023) 55.04 +0.73¢-4 0.0506 +0.58¢-8 27.88 +0.07¢-4 0.3081 +£1.10e-9 | +3.173 +£4.1326¢-5
NC-TTT (Osowiechi et al.|[2024) 49.95 +0.653 0.0516 +0.046e-5 29.95 +0.042 0.3093 £1.01e-4 -1.957 +£0.3619
TR-TTT (ours) | 53.12x0134 0.0511 +£1.93¢-4 27.58 £0.1044 03089 £354e-5 | +2.13 £0.071

Table 7: Comparison of multi-task performance from PASCAL-Context to Taskonomy across three
different tasks for TR-TTT, against previous TTA and TTT methods.

| Semseg (mloU 1) Normal (mErr |) Edge RMSE ) | Arrr 1 (%)
Base | 50.94+0.663 31.27 +£0.071 0.3032 £0.141e-4 | 0.00
Test Time Adaptation
TENT Wang et al.|(2020) 44.68 £0.353 42.32 40.183 0.3269 +0.21e-4 -0.184 +0.007
TIPINguyen et al.|(2023) 51.48 £0.0012 32.33 +4.18¢-5 0.3031 +£1.49¢-7 | -0.766 £7.74e-4
Test Time Training
TTT|Sun et al.|{(2020) 48.00 +2.661 37.77 +2.214 0.3048 £3.60e-4 -9.002 +4.141
TTT++|Liu et al.|(2021) 38.66 +0.309 39.81 +0.385 0.3050 +6.48¢-4 -17.33 4+0.1945
TTTFlow Mirza et al.|(2023) 51.55 40.395 34.60 40.120 0.3042 +1.45¢-3 -3.258 £0.0289
ClusT3|Osowiechi et al.|(2023) 49.67 +0.648 35.22 4+0.157 0.3019 +1.90e-4 -4.904 +0.2365
ActMad |Hakim et al.|(2023) 51.79 +0.803 31.10 40.124 0.3031 £1.02e-4 | +0.744 40.3821
NC-TTT |Osowiechi et al.|(2024) 48.78 £0.510 32.86 +2.220 0.3040 +1.28¢-3 -3.187 £2.841
TR-TTT (ours) |  53.18+0315 31.50 +0.0789 0.3036 £0.0002 | +1.179 £0.175

Table 8: We compare the TTT performance of Taskonomy as the source domain and NYUD-v2 as
the target domain across four tasks for TR-TTT, analyzing both single-task and multi-task scenarios.

| Semseg (mIoU 1) Depth (RMSE |) Normal (mErr |) Edge (RMSE |) | Arrr 1 (%)
Base | 29.31+0.063 1.179 +0.008 61.32 +0.820 0.1443 £0.71e-4 | +0.00
TR-TTT (single) 59.37 +0.152 1.052 4+7.5¢-3 45.33 £0.072 0.1441 £5.1e-5 -
TR-TTT 59.37 +0.152 1.052 +7.5¢-3 45.33 £0.072 0.1441 £5.1e-5 +34.94 +0.008

Table 9: We compare the TTT performance of Taskonomy as the source domain and PASCAL-
Context as the target domain across three tasks for TR-TTT, analyzing both single-task and multi-
task scenarios.

| Semseg (mloU 1)  Normal (mErr |) Edge (RMSE |) | Arrr 1 (%)
Base | 27.08 £0.014 63.46 £0.954 0.1185£0.71e-4 | 0.00
TR-TTT (single) 43.28 +0.37 46.91 +0.075 0.1185 +9.6e-6 -
TR-TTT 45.42 +0.19 41.41 +0.63 0.1183 £5.0e-5 +34.20 £0.11

Evaluation of TR-TTT Using Single Task for Adaptation. Evaluating learned task relations is
a crucial aspect of our framework. We assess performance improvements during adaptation by
allowing access to each single-task label in the source domain. In this scenario, TLR predicts the
single-task label using a single latent vector corresponding to that task. As shown in the results (see
Tables [8|and[9), the single-task scenario exhibits significantly lower TTT performance, highlighting
the importance of task relations for TTT.

17



	Introduction
	Related Work
	methods
	Problem Definition
	Connecting task relations from source to target
	Test-Time Training by Learning Task Relations

	Experiments
	Experimental Settings
	Experimental Results
	Ablation Study

	Conclusion
	Derivations of proposition1
	Additional Experimental Details
	Additional Experiments

