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ABSTRACT

In statistical learning theory, generalization bounds usually involve a complexity
measure that is determined by the considered theoretical framework. This limits
the scope of such analyses, as other forms of capacity measures or regularization
are used in practical algorithms. In this paper, we leverage the framework of disin-
tegrated PAC-Bayesian bounds and combine it with Gibbs distributions to derive
generalization bounds involving a complexity measure that can be defined by the
user. Our bounds stand in probability jointly over the hypotheses and the learning
sample, which allows us to tighten the complexity for a given generalization gap
since it can be set to fit both the hypothesis class and the task.

1 INTRODUCTION

Statistical learning theory offers various theoretical frameworks to assess generalization by studying
whether the empirical risk is representative of the true risk thanks to an upper bounding strategy of
the generalization gap. The generalization gap is a deviation between the true risk and the empir-
ical risk. An upper bound on this gap is generally a function of two main quantities: (i) the size
of the training sample and (ii) a complexity measure that captures how prone a model is to over-
fitting. One potential limitation is that existing frameworks are restricted to particular complexity
measures, among them the VC-dimension (Vapnik & Chervonenkis, 1971) or the Rademacher com-
plexity (Bartlett & Mendelson, 2002) for which some generalization bounds can be derived. To the
best of our knowledge, there is no generalization bound able to take into account, by construction,
some arbitrary complexity measures that can serve as good proxies for the generalization gap.

In this paper, we tackle this drawback by leveraging the framework of disintegrated PAC-Bayesian
bound (Theorem 2.1) to propose a novel generalization bound with arbitrary complexity measures.
To do so, we make use of the Gibbs probability distributions (Equation (2)) that depend on a
user-defined parametric function characterizing the complexity. It allows us to derive guarantees
in terms of probabilistic bounds that depend on a model sampled from a Gibbs distribution men-
tioned above. It is worth noticing that our result allows retrieving the uniform convergence and
algorithm-dependent bounds.

We believe that our novel result provides theoretical foundations for the many regularizations used in
practice to perform model selection. For instance, our result allows integrating complexity measures
studied empirically in a recent line of work on over-parametrized models (Jiang et al., 2019; Dziu-
gaite et al., 2020; Jiang et al., 2021). In our experimental evaluation, we show how these measures
can be easily integrated into our framework in practice. We notably provide a stochastic version of
the Metropolis Adjusted Langevin algorithm to compute empirical estimates of our bounds.

Organization of the paper. In Section 2, we provide some preliminary definitions and concepts.
Then, we present our main contribution in Section 3. In Section 4, we provide a practical instantia-
tion of our framework before concluding in Section 5.
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2 PRELIMINARIES

2.1 SETTING

We consider the supervised classification learning setting where X denotes the input space and Y

is the label space. We consider that an example (x, y) 2 X⇥Y is sampled from an unknown data
distribution D on X ⇥ Y. A learning sample S={(xi, yi)}mi=1 contains m examples drawn i.i.d.

from D; we denote the distribution of such an m-sample by Dm. Let H be a potentially infinite set
of functions h : X!Y, called hypotheses (or models), that associate a label from Y given an input
from X. Let M(H) be the set of probability densities over H given a reference measure (e.g., the
Lebesgue measure); we denote by M

⇤(H) ✓M(H) the set of strictly positive probability densities.
Given a learning sample S , we aim to find h 2 H that minimizes the so-called true risk
RD(h)=P(x,y)⇠DI [h(x) 6= y], where I[a]=1 if a is true, and 0 otherwise. In practice, as the data
distribution D is unknown, we estimate the true risk with its empirical counterpart: the empirical risk
RS(h) = 1

m

Pm
i=1I [h(xi) 6= yi]. We hereafter denote the generalization gap by � : [0, 1]2 ! R,

which is usually defined by �(RD(h), RS(h)) = |RD(h)�RS(h)| that quantifies how much the
empirical risk is representative of the true risk.

In this paper, we leverage the PAC-Bayesian framework Shawe-Taylor & Williamson (1997);
McAllester (1998); Guedj (2019); Alquier (2021) to upper-bound the generalization gap with a
function that depends on an arbitrary measure of complexity. In PAC-Bayes, we consider an apriori

belief on the hypotheses in H that is modeled by a prior distribution ⇡ 2 M
⇤(H) on H. We aim to

learn, from S and ⇡, a posterior distribution ⇢ 2M(H) on H to assign higher probability to the best
hypotheses in H (the support of ⇢ being included in the support of ⇡). The classical PAC-Bayesian
generalization bounds provide upper bounds in expectation over ⇢, meaning that they bound the
generalization gap expressed as |Eh⇠⇢[RD(h)�RS(h)] |, and where the complexity term depends
on the KL divergence between ⇢ and ⇡ defined as KL(⇢k⇡) = Eh⇠⇢ln

⇢(h)
⇡(h) . This standard com-

plexity hence captures how much the prior and the posterior distribution deviate in expectation over
all the hypotheses. To incorporate custom complexities in the bounds, we follow a slightly different
framework recalled below (the disintegrated PAC-Bayesian bounds) in which the expectations on
⇢ are “disintegrated”: the gap �(RD(h), RS(h))=|RD(h)�RS(h)| of a single h sampled from ⇢ is
considered in the bounds.

2.2 DISINTEGRATED PAC-BAYESIAN BOUNDS

The disintegrated PAC-Bayesian bounds have been introduced by Catoni (2007, Th 1.2.7) and Blan-
chard & Fleuret (2007, Prop 3.1)1. As far as we know, despite their significance, they have been
little used in the literature and received only recently renewed interest for deriving tight bounds in
practice (e.g., Rivasplata et al. (2020); Viallard et al. (2021)). Such bounds provide guarantees for
a hypothesis h sampled from a posterior distribution ⇢S . They take the form of a bound that stands
with high probability (at least 1� �) over the random choice of training set S ⇠ Dm and hypothesis
h. This paper mainly focuses on a particular bound, namely, the one of Rivasplata et al. (2020,
Theorem 1 (i)) recalled below.
Theorem 2.1 (General Disintegrated Bound of Rivasplata et al. (2020)). For any distribution D on

X ⇥ Y, for any hypothesis set H, for any distribution ⇡ 2 M
⇤(H), for any measurable function

' : H⇥ (X⇥ Y)m ! R, for any � 2 (0, 1], we have

P
S⇠Dm,h⇠⇢S

"
'(h, S)  ln


⇢S(h)

⇡(h)

�
+ln


1

�
E

S0⇠Dm
E

g⇠⇡
exp ('(g, S 0))

�

| {z }
�(⇢S ,⇡,�)

#
� 1��,

where ⇢S is a posterior distribution such that ⇢S 2M(H).

In this case, the function '(h, S)=m �(RD(h), RS(h)) is a deviation between the true risk RD(h)
and the empirical risk RS(h). Moreover, the function �(⇢S , ⇡, �) is constituted of 2 terms: (i) the
disintegrated KL divergence ln ⇢S(h)

⇡(h) defining how much the prior and posterior distributions deviate

1Disintegrated PAC-Bayesian bounds have also been introduced as a “single-draw case” by Hellström &
Durisi (2020).
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for a single h, and (ii) the term ln
⇥
1
� ES0⇠Dm Eg⇠⇡ exp ('(g, S 0))

⇤
which is constant w.r.t. h 2 H

and S 2 (X⇥Y)m and usually upper-bounded to instantiate the bound. In the following, we refer
to the whole right-hand side of the bound, �(), as the complexity measure for the sake of simplicity.
Note that this is in slight contrast with the standard definitions of complexity, where the term (ii)

(related to � and the sample size m) is not included. This additional term is, in fact, constant w.r.t.

the hypothesis h⇠⇢S and the learning sample S⇠Dm.

In the bound of Theorem 2.1, the complexity term �() depends on the disintegrated KL divergence
and suffers from drawbacks: the KL complexity term is imposed by the framework and can be
subject to high variance in practice (Viallard et al., 2021). However, it is important to notice that
this disintegrated KL divergence has a clear advantage: it only depends on the hypothesis h and
data sample S , instead of the whole hypothesis class (as it is often the case for instance with the KL
divergence in PAC-Bayesian bounds, or the VC-dimension). This might imply a better correlation
between the generalization gap and some complexity measures. In the next section, we leverage
this disintegrated KL divergence to derive our main contribution: a general bound that involves
arbitrary complexity measures.

3 INTEGRATING ARBITRARY COMPLEXITIES IN GENERALIZATION BOUNDS

We first begin with a short presentation of our result to give some preliminary intuitions and to in-
troduce the notion of Gibbs distribution which is a key element in the exposition of our contribution.
We then formalize our theoretical result in Section 3.3.

3.1 AN INTRODUCTION TO OUR RESULTS

Let �µ(h, S, �) be a real-valued function that takes a hypothesis h 2 H, a learning sample S 2
(X⇥Y)m, and the parameter � as arguments and that is dependent on an additional function µ :
H⇥(X⇥Y)m!R. The idea is to use this function µ() to parametrize the complexity measure with
respect to the data sample S and the model h, in order to introduce custom complexity measures
in the bound; we call “parametric function” the function µ(). This function must, in fact, serves to
obtain a complexity measure �µ(h, S, �) that is representative of the generalization gap (which is
unknown). For instance, when H is a set of hypotheses hw parameterized by some weights w2Rd,
we can fix µ(hw, S)=kwk, for some norm k · k. This means that µ(hw, S) can be set to the
regularization term of the chosen objective function so that the complexity, hence the bound, will
depend on it. This is not entirely new since, for example, uniform stability bounds allow one to
consider such norms (see, e.g., Kakade et al., 2008). This example is just for illustration purposes.
Our framework is compatible with broader families of complexity measures, as we will see later.
Given such a parametric function µ(), the bound we derive in Theorem 3.1 takes the following form.
Definition 3.1 (Generalization Bound with Complexity Measures). Let � : [0, 1]2!R be the gener-

alization gap, µ :H⇥(X⇥Y)m!R be a parametric function. A generalization bound with arbitrary

complexity measures is defined such that if for any distribution D on X⇥Y, for any hypothesis set H,

there exists a real-valued function �µ :H⇥(X⇥Y)m⇥(0, 1]!R such that for any �2(0, 1], we have

P
S⇠Dm, h⇠⇢S

h
�(RD(h), RS(h))  �µ(h, S, �)

i
� 1��. (1)

The main trick to obtain such a result is to consider a particular posterior distribution ⇢S : we
incorporate the function µ() by choosing the distribution ⇢S as the Gibbs distribution defined as

⇢S(h) / exp [�↵RS(h)� µ(h, S)] , where ↵ 2 R
+
. (2)

This Gibbs distribution ⇢S is interesting from an optimization viewpoint: a hypothesis h is more
likely to be sampled from it when the objective function h 7! RS(h)+ 1

↵ µ(h, S) is low for a
given S . In the ideal case, since we want to minimize the generalization gap �(RD(h), RS(h)),
one can define the function µ(h, S) = ↵�(RD(h), RS(h))� ↵RS(h) to obtain a Gibbs distribution
that samples hypotheses with small gaps. However, since the generalization gaps are unknown,
they must be replaced with a computable function µ(). For instance, the function µ() can serve as a
“regularizing term” (when µ() is a norm), so that a hypothesis is more likely to be sampled when the
trade-off RS(h)+ 1

↵ µ(h, S) is low. Equation (2) might look restrictive, but it can actually represent
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any probability density function. Indeed, let ⇢
0
S be a distribution on H, e.g., a Gaussian or a Laplace

distribution, by setting µ(h, S) = �↵RS(h) � ln ⇢
0
S(h) we can retrieve the distribution ⇢

0
S . The

Gibbs distribution is well-known and studied in learning theory. In the following, we discuss the
principal theoretical works based on it and highlight the differences with our framework.

3.2 RELATED WORKS USING THE GIBBS DISTRIBUTION

This section highlights two lines of work that are related to our setting: (i) the link between the Gibbs
distribution and optimization and (i) the usage of the Gibbs distribution in generalization bounds.

Relationship between optimization and the Gibbs distribution. Given an objective function
f : H⇥(X⇥Y)m ! R, the information risk minimization principle (Zhang, 2006) is related to the
Gibbs distribution, i.e., by taking

⇢S = argmin
⇢2M(H)

⇢
E

h⇠⇢
f(h, S) +

KL(⇢k⇡)

↵

�
where ⇢S(h) / exp [�↵f(h, S) + ln ⇡(h)] .

Note that in our case, we have f(h, S) = RS(h) + 1
↵ µ(h, S)� 1

↵ ln ⇡(h). This distribution is also
linked to the Stochastic Gradient Langevin Dynamics (SGLD) algorithm (Welling & Teh, 2011) that
learns the hypothesis h 2 H by running several iterations of the form

ht  � ht�1 � �rf(h, S) +

r
2�

↵
✏t, with ✏t ⇠ N (0, ID), (3)

where ht is the hypothesis learned at iteration t 2 N, � is the learning rate, and ↵ is the concentration
parameter of the Gibbs distribution. This algorithm has an interesting feature: when the learning rate
� tends to zero, the SGLD algorithm becomes a continuous-time process called Langevin diffusion,
defined as the stochastic differential equation in Equation (4). Indeed, Equation (3) can be seen as
the Euler-Maruyama discretization (see, Raginsky et al., 2017) of Equation (4) defined for t � 0 as

dht = �rf(ht, S)dt +
p

2↵Bt, (4)

where Bt is the Brownian motion. Under some mild assumptions on the function f(), Chiang
et al. (1987) show that the invariant distribution of the Langevin diffusion is the Gibbs distribution
proportional to exp(�↵f(ht, S)).

Gibbs distributions in generalization bounds. The Gibbs distribution is introduced in the PAC-
Bayesian theory by Catoni (2004; 2007). Alquier et al. (2016, Theorems 4.2 & 4.3) further de-
velop PAC-Bayesian generalization bounds based on the Gibbs distribution of Equation (2) with
µ(h, S) = 0 as posterior. The Gibbs distribution has also been considered in information-theoretic
generalization bounds (see e.g., Xu & Raginsky, 2017; Goyal et al., 2017; Bu et al., 2020) that upper-
bound the expected generalization gap ES⇠Dm,h⇠⇢S RD(h) � RS(h). For instance, Kuzborskij
et al. (Theorem 1, 2019) provides generalization bounds for f being the empirical risk (with sub-
Gaussian losses). Aminian et al. (Theorem 1, 2021) prove a closed-form solution of the expected
generalization gap with the Gibbs distribution defined with a non-negative f . The expected true risk
ES⇠Dm,h⇠⇢S RD(h) has also been upper bounded by excess risk bounds (Xu & Raginsky, 2017;
Kuzborskij et al., 2019), i.e., bounds w.r.t. the minimal true risk over the hypothesis set. However,
all these bounds consider expected risks while we are interested in the risk of a single hypothesis
h sampled from ⇢S . Hence, to the best of our knowledge, we are the first to derive probabilistic
bounds for a single hypothesis sampled from a Gibbs distribution (see Corollary 3.1, Theorem 3.1).

3.3 OUR MAIN RESULT: GENERALIZATION BOUND WITH COMPLEXITY MEASURES

We now state our main result: a bound on the generalization gap involving a custom µ, standing for
hypotheses sampled from the posterior ⇢S(h) / exp [�↵RS(h)� µ(h, S)].

Theorem 3.1 (Generalization Bound with Complexity Measures). Let � : [0, 1]2!R be the

generalization gap. For any D on X ⇥ Y, for any hypothesis set H, for any prior distribution
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⇡ 2M
⇤(H) on H, for any µ :H⇥(X⇥Y)m!R, for any �2(0, 1], we have

P
S⇠Dm, h0⇠⇡, h⇠⇢S

"
�(RD(h), RS(h)) 

h
↵RS(h0) + µ(h0

, S)
i
�
h
↵RS(h) + µ(h, S)

i

+ ln
⇡(h0)

⇡(h)
+ ln

✓
4

�2
E

S0⇠Dm
E

g⇠⇡
exp [�(RD(g), RS0(g))]

◆#
� 1��,

where ⇢S is the Gibbs distribution defined by Equation (2).

This theorem is general since it depends only on the functions �() (expressing the generalization
gap) and µ() (expressing the complexity) chosen by the user. Moreover, we show that this theorem
allows obtaining uniform-convergence-based and algorithm-dependent bounds with the integration
of complexity measures. We defer the proof of this result to Appendix D.

Given �() and µ(), we note a point that can be surprising at first reading: it appears indeed possible to
sample hypotheses with a high objective RS(h)+ 1

↵ µ(h, S) value and to obtain a tight generalization
bound. However, by definition of the Gibbs distribution ⇢S , such a sampled hypothesis h⇠⇢S is less
likely to be drawn since the density is higher when the objective is low. In other words, when µ(h, S)
acts as a regularizer, the bound holds more likely for the hypotheses achieving a low regularized
empirical risk, which is a rather expected result when considering regularized learning.

In general, the bound may appear loose as there is no explicit dependence on the size of
the data sample m. However, to get a bound that converges when m increases, it is
sufficient to fix �() as a function of m such as �(RD(h), RS(h))=m kl[RS(h)kRD(h)] or
�(RD(h), RS(h))=2m[RD(h)�RS(h)]2 where kl(qkp) , q ln q

p + (1 � q) ln 1�q
1�p for p 2 (0, 1)

and q 2 [0, 1]. Then, the tightness of the bound depends on m, apart from �(), µ() and ↵.

The remaining challenge is to upper-bound ES0⇠Dm Eg⇠⇡ exp[�(RD(g), RS0(g))] and ln ⇡(h0)
⇡(h)

to get a practical bound. As an illustration, we provide in the next corollary an instantia-
tion of Theorem 3.1 for two generalization gaps: �(RD(h), RS(h))=m kl[RS(h)kRD(h)] and
�(RD(h), RS(h))=2m[RD(h)�RS(h)]2; and for ⇡ is a uniform distribution on a bounded set H.
Corollary 3.1 (Practical Generalization Bound with Complexity Measures). For any D on X⇥Y,

for any bounded hypothesis set H, given the uniform prior ⇡ on H, for any µ :H⇥(X⇥Y)m!R, for

any �2(0, 1], with probability at least 1�� over S⇠Dm
, h

0⇠⇡, h⇠⇢S we have

kl [RS(h)kRD(h)]  1

m

h
↵RS(h0) + µ(h0

, S)
i
�
h
↵RS(h) + µ(h, S)

i
+

8
p

m

�2

�

+

, (5)

and

���RD(h)�RS(h)
��� 

s
1

2m

h
↵RS(h0) + µ(h0, S)

i
�
h
↵RS(h) + µ(h, S)

i
+

8
p

m

�2

�

+

, (6)

where [a]+ = max(0, a), and ⇢S is the Gibbs distribution defined in Equation (2).

Interestingly, Corollary 3.1 gives a bound on kl [RS(h)kRD(h)] and |RD(h)�RS(h)| where all
terms except RD(h) are computable. To compute Equations (5) and (6) we can rearrange the terms
to obtain a generalization bound on the true risk RD(h). We obtain respectively

RD(h)  kl

 
RS(h)

�����
1

m


[↵RS(h0) + µ(h0

, S)]� [↵RS(h) + µ(h, S)] +
8
p

m

�2

�

+

!
, (7)

and RD(h)  RS(h) +

s
1

2m


[↵RS(h0) + µ(h0, S)]� [↵RS(h) + µ(h, S)] +

8
p

m

�2

�

+

, (8)

where kl(q|⌧)= max{p 2 (0, 1) | kl(qkp)  ⌧}. These bounds are used in Section 4 to illustrate
the generalization guarantees for different values of µ() and ↵. In general, Equation (7) provides
a tighter bound on the true risk than Equation (8). This can be proven with Pinsker’s inequality
(Appendix G) and is shown in our experiments. Notice that the r.h.s. of Equations (5) and (6)
enjoys asymptotic convergence for m!1. However, for some trivial cases, the convergence rate
can be arbitrarily degraded by increasing [↵RS(h0)+ µ(h0

, S)]� [↵RS(h)+ µ(h, S)]. For example,
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for a large empirical risk RS(h0) (which is common when h
0 is sampled from a uniform prior on

H), and for ↵=m and µ(h, S)=0, the r.h.s. for �(RD(h), RS(h)) = kl[RS(h)kRD(h)] simplifies to
�µ(h, S, �) = [[RS(h0)�RS(h)] + 1

m ln 2
p
m

� ]+ and is large, no matter m. In order for the bound to
be meaningful, we have then to set ↵ and µ() such that (i) the distribution ⇢S allows us to sample a
hypothesis h associated with a low objective function h 7! RS(h)+ 1

↵ µ(h, S) and (ii) the complex-
ity measure �µ(h, S, �) is tight. For example, for ↵=

p
m and µ(h, S)=0, the distribution ⇢S is

less concentrated around the minimizers of the empirical risk, but the complexity measure is tighter
compared to the previous example: [ 1p

m
[RS(h0)�RS(h)] + 1

m ln 2
p
m

� ]+. Lastly, in the ideal case
with µ(h, S)= ↵

m�(RD(h), RS(h))�↵RS(h) and ↵=
p

m, the upper-bound of �(RD(h), RS(h)) =

m kl[RS(h)kRD(h)] becomes [ 1p
m

(kl[RS(h0)kRD(h0)]� kl[RS(h)kRD(h)]) + 1
m ln 2

p
m

� ]+ which
is tight when the gaps of h and h

0 are small; the tightness arise with high probability since the den-
sity ⇢S(h)/ exp(� ↵

m�(RD(h), RS(h))) is concentrated around the small gaps. This also highlights
that the choice of the parametric function µ() is key to obtaining a tight generalization bound.

In our previous analysis, we considered a uniform distribution for the prior ⇡ for illustration pur-
poses. It is nevertheless clear that if the prior is good, i.e., it associates a higher probability to
hypotheses having a low objective function, then the bounds become tighter. The most favorable
case is when both the prior ⇡ and the posterior ⇢S associate high probabilities to these hypotheses.
While the posterior ⇢S is generally learned from data, the choice of the prior ⇡ matters to get tight
bounds. When no prior knowledge of the problem is available, to obtain better bounds, one solution
is to consider data-dependent priors that have been heavily used in the PAC-Bayesian literature (see,
e.g., Parrado-Hernández et al., 2012; Dziugaite et al., 2021; Pérez-Ortiz et al., 2021). In the context
of our practical evaluation hereafter, we consider only uniform distributions for the prior ⇡, as we
think it helps us assess generalization better. Indeed, a hypothesis h sampled from the uniform dis-
tribution ⇡ has a high chance of underfitting. Hence, if the hypothesis h ⇠ ⇢S has a tight bound, it
must be that this hypothesis generalizes well. On the other hand, when using data-dependent priors,
we cannot tell if the bound is tight because the hypothesis generalizes well or because the posterior
is close to the prior.

4 USING ARBITRARY COMPLEXITIES IN PRACTICE

The bound of Corollary 3.1 is not directly applicable in practice: the remaining challenge is to
sample h from the Gibbs distribution ⇢S defined in Equation (2). We address the sampling issue in
Section 4.1. Then, we make use of the proposed solution to assess our bound in practice. Section 4.2
introduces our experimental setting and Section 4.3 reports an overview of results on the tightness
of the bound. We report more results on the influence of ↵ and the other parameters in Appendix E.

4.1 SAMPLING FROM THE GIBBS DISTRIBUTION

Sampling from the Gibbs distribution of Equation (2) is a hard task: naively, it requires to evaluate
the function h 7! �↵RS(h)�µ(h, S) for all h 2 H, which is intractable when H is infinite or
even large. In an empirical study of our bound, we tackle this issue for over-parameterized models,
which we later consider in Section 4.2. Let us consider a set H of hypotheses hw parameterized
by w 2 R

D, and a tractable distribution denoted Pw
U (e.g., a Gaussian distribution) such that its

density approximates the density of ⇢S . In this setting, to learn such a tractable distribution,
we propose in Algorithm 1 a stochastic version of the Metropolis Adjusted Langevin Algorithm
(MALA, Besag (1994))2. Its objective is to generate samples from ⇢S by iteratively refining the
tractable distribution that we define as

Pw
U = N

✓
w��r


R`
U (w)+

1

↵
µ(w, U)

�
,

2�
↵ I

◆
, (9)

where R`
U (w) = E(x,y)⇠U `(hw, (x, y)) is the empirical risk on the mini-batch U ✓ S , and

` : H ⇥ (X⇥Y) ! [0, 1] is a loss function. Concretely, we initialize the parameters w of
the model as the output of an optimization algorithm (Vanilla SGD in our case) minimizing
R`
S(w)+ 1

↵ µ(w, S) (which is approximated by R`
U (w)+ 1

↵ µ(w, U) for each mini-batch U ).

2See Chib & Greenberg (1995) for an introduction on Metropolis-Hastings Algo on which MALA is based.
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Algorithm 1 Stochastic MALA
1: Input: Learning set S , weights w, function µ(), loss function `()
2: Hyperparameters: Number of iterations T , learning rate �, parameter ↵

3: for t 1 . . . T do
4: U  Sample (without replacement) a mini-batch from S
5: w0  Sample from the distribution Pw

U

6: ⌧  min

✓
1,

⇢U (w0)Pw0
U (w)

⇢U (w)Pw
U (w0)

◆

7: u Sample from the distribution Uni(0, 1)
8: if u  ⌧ then
9: w w0

10: return w

Then, we refine them as follows: at each iteration, given the current weights w and a mini-batch
U ✓ S (Line 4), we sample a candidate vector w0 (Line 5) according to the distribution Pw

U ; then
(Line 6 to 9) we decide to reject or accept the new candidate to become our current weights w,

depending on its ratio ⌧= min
�
1,

⇢U (w0)Pw0
U (w)

⇢U (w)Pw
U (w0)

�
is larger than a control value u sampled from

the uniform distribution Uni(0, 1) on [0, 1]. Note that, to compute ⌧ , it is not necessary to know
the normalization constants of the two distributions appearing in ⌧ since they cancel out. In other
words, only the function (without the normalizations) associated to the distributions are required
to compute ⌧ . Under the mild assumption that ⇢S is absolute continuous w.r.t. Pw

S (see Chib &
Greenberg, 1995, for details), when the number of iterations tends to infinity and when U=S , the
returned w is sampled according to ⇢S (Smith & Roberts, 1993). Note that this assumption requires
that the tractable distribution Pw

S has a strictly positive density when the density of ⇢S is strictly
positive as well (see Chib & Greenberg, 1995).

4.2 EXPERIMENTAL SETTING

In this section, we investigate the tightness of our bounds of Equations (7) and (8) on the MNIST (Le-
Cun et al., 1998) and FashionMNIST (Xiao et al., 2017) datasets. We keep the original learning set
as S and the original test set T to estimate the true risk that we refer to as test risk RT (h).

Model. We use a “Convolutional Network in Network” (Lin et al., 2013) similarly to Jiang et al.
(2019) and Dziugaite et al. (2020) , that consists of several modules of 3 convolutional layers each
followed by a leaky ReLU activation function (its negative slope is set to 10�2). The depth of the
network L is the number of convolutional layers, and the width H is the number of channels of
each convolution. In addition, for each layer i, we denote its weights by wi. For full details of
the architecture, we refer the reader to Appendix E. We consider L2{9, 12, 15} and H2{128, 256}.
Furthermore, we initialize the network with the weights w02RD obtained by the uniform Kaiming
He initializer He et al. (2015). The set H corresponds to the hypotheses hw that can be obtained from
this initialization (and we clamp the weights during the optimization in the initialization interval).

Arbitrary complexity measures. We study 6 different complexity measures parametrized by differ-
ent functions µ(hw, S) from Jiang et al. (2019, Sec. C)3. These 6 functions are actually independent
of the learning sample S (S is dropped below for convenience) and defined as follows:

DIST FRO(hw) =
LX

i=1

kwi�w0
i k2, and DIST L2(hw) = kw�w0k2,

and PARAM NORM(hw) =
LX

i=1

kwik22, and PATH NORM(hw)=

card(Y)X

i=1

hw2(1)[i],

and SUM FRO(hw) = L

 
LY

i=1

kwik22

!1
L

, and ZERO(hw) = 0.

3Note we consider a subset of the functions studied by Jiang et al.: we select those that are optimizable.

7



Under review as a conference paper at ICLR 2023

0.0 0.2 0.4

0.02

0.04

0.06

0.08

0.10
MNIST, µ(h, S) = Dist Fro

0.0 0.1 0.2 0.3 0.4

0.02

0.04

0.06

0.08

0.10
MNIST, µ(h, S) = Param Norm

0.0 0.1 0.2 0.3

0.025

0.050

0.075

0.100

0.125

MNIST, µ(h, S) = Sum Fro

0.0 0.1 0.2 0.3

0.05

0.10

0.15

MNIST, µ(h, S) = Dist l2

0.0 0.2 0.4 0.6

0.02

0.04

0.06

0.08

0.10

0.12
MNIST, µ(h, S) = Path Norm

0.0 0.1 0.2 0.3

0.05

0.10

0.15

MNIST, µ(h, S) = Zero

Figure 1: Scatter plot given a parametric function µ(h, S), where each segment represents a neural
network hw learned with a given ↵, width H and depth L. Each segment has a corresponding orange
square and a blue circle. The orange squares corresponds to the empirical risk RS(h) (x-axis) and
test risk RT (h) (y-axis). The blue circle resp. the black triangle represents Equation (7) resp. Equa-
tion (8) in the x-axis and the test risk RT (h) in the y-axis. The dashed line is the identity function.

We define the considered measures with ↵ taken among 5 values uniformly spaced between
[
p

m, m]. Note that, as mentioned above, these 6 parametric functions are independent of the sam-
ple S , we have also analyzed other parametric functions that depend on S . The results obtained are
similar, we decided to defer these results in Appendix E.

Bound optimization. To compute our bound in Equations (7) and (8), we aim to sample a
hypothesis h ⇠ ⇢S via Algorithm 1. We set the loss function to the bounded cross entropy from Dz-
iugaite & Roy (2018): `(h, (x, y))= � 1

4 ln(e�4+(1�2e
�4)h[y]), where h[y] is the probability

assigned to label y by h. The advantage of Dziugaite & Roy (2018)’s cross-entropy is that it lies
in `(h, (x, y)) 2 [0, 1], whereas the classical cross-entropy is unbounded. Indeed, taking into
account the classical cross-entropy when optimizing the objective function would lead to focusing
too much on the risk minimization, while we want to take into account 1

↵ µ(w, U). We initialize the
weights w2RD to the solution found by optimizing the objective function R`

S(w)+ 1
↵ µ(w, S) with

a Vanilla SGD (with 10 epochs, a learning rate of 10�1, and a batch size of 64). Given these initial
parameters w, we execute Algorithm 1 for 1 epoch with a mini-batch of size 64, where �=10�4.

4.3 TIGHTNESS OF THE BOUNDS

For each parametric function µ(), we report in Figures 1 and 2, the test risks RT (h) and the values
of the tightest bound on RD(h) (w.r.t. ↵) associated to Equations (7) and (8) for different param-
eters (depth L, width H). First of all, we observe that the bounds correctly upper-bound the test
risks and that some measures lead to tighter bounds, such as SUM FRO or DIST L2. We also re-
mark that certain empirical risks are high, in particular, for these latter measures. This is due to
the sampling of the hypothesis h from the distribution ⇢S : the hypothesis does not necessarily min-
imizes the objective function h 7! RS(h)+ 1

↵ µ(h, S). We nevertheless observe that the bounds’
values are higher when the empirical risk RS(h) is low. This can be explained by the fact that
[↵RS(h0) + µ(h0

, S)]� [↵RS(h) + µ(h, S)] is large in this case due notably to the non-informative
prior ⇡. Interestingly, when the empirical risks are a bit worse or close to the true risks, the bounds
become tighter for certain parametric functions such as DIST L2 and SUM FRO, which then appear
to capture more information on the generalization capabilities. Indeed, the more the objective func-
tion RS(h)+ 1

↵ µ(h, S) is representative of the gap of h, the tighter the bound. On the other hand,
we can also note that for some measures such as DIST FRO, PARAM NORM, and ZERO (mainly
for FashionMNIST), the bounds remain similar whatever the hypothesis which illustrates that these
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Figure 2: Scatter plot given a parametric function µ(h, S), where each segment represents a neural
network hw learned with a given ↵, width H and depth L. Each segment has a corresponding orange
square and a blue circle. The orange squares correspond to the empirical risk RS(h) (x-axis) and
test risk RT (h) (y-axis). The blue circle resp. the black triangle represents Equation (7) resp. Equa-
tion (8) in the x-axis and the test risk RT (h) in the y-axis. The dashed line is the identity function.

latter measures do not really help to capture some information about the generalization gap. This
confirms that there is an interest in using a parametric function that captures information on the
model during the training phase to assess its generalization capability. In Appendix E, we provide
additional results on the influence of the parameter ↵ and the depth/width of the network. As ex-
pected, the bounds tend to increase when ↵ becomes large for smaller ↵ (e.g., close to

p
m), the

bounds are improved but to the price of potentially higher risks. In contrast, about the depth/width
impact, some measures are less sensitive to the increase of such parameters, such as PARAM NORM
and, to a lesser extend, SUM FRO and DIST L2. This illustrates our framework’s interest in studying
the impact of some regularization when learning (over-)parameterized models.

5 CONCLUSION

In this paper, we provide a novel generalization bound that is able to incorporate arbitrary complex-
ity measures, unlike classical learning theory frameworks (for which the framework imposes the
complexity). These measures incorporate a data and model-dependent function, which can favor
tightening the complexity for the generalization gap. To the best of our knowledge, our framework
is one of the few able to be general enough to bring theoretical guarantees for most of the arbitrary
complexity measures used in practice, e.g., based on some norms or a validation set. Such a frame-
work may be adapted to other settings, such as transfer learning, offering new research directions.
However, one limitation of this work is clearly that the hypothesis is obtained from a distribution
difficult to use, namely, the Gibbs distribution, which uses a specific sampling algorithm, e.g., our
algorithm stochastic MALA. It would be interesting to study the performance of such a sampling
theoretically. Alternately, the generality of this framework allows one to avoid the sampling if we
consider uniform-convergence-type bounds, for example, as in Corollary D.1. Improving the frame-
work in this direction is an interesting future work. In particular, investigating the use of other
distributions for sampling the hypothesis could be a possible direction. Another one could be to
consider other specific ways to define informative data-dependent priors in order to obtain better
bounds. For instance, the parametric function can be leveraged in order to include informative
prior. Another interesting perspective is to study SGD-based algorithms, either by analyzing models
learned by SGD through our framework or by developing SGD alternatives to optimize our bounds.
In conclusion, we believe that this work paves the way for new research directions that try to bridge
statistical learning theory and practice.

9



Under review as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

In order to ensure the reproducibility of our results, we complete the presentation of the experimental
setup of the main text in Section 4.2 with a more complete description of the setting, models, and
parameter used in Appendix E where some additional results are also provided. We also include the
code of our method as an additional zip file in the supplementary material in order to facilitate the
reproduction of the experiments.
Regarding the theoretical contributions, we provide in Appendices A to C the proofs of the results
presented in the main paper, namely Theorems 2.1 and 3.1 and corollary 3.1. We also provide in
Appendix D some additional results and discussion about the comparison of our framework with the
uniform convergence and algorithm-dependent generalization bounds.

ETHIC STATEMENT

The contributions of this paper are essentially fundamental and theoretical; we do not see an immedi-
ate potential negative social impact from these contributions. We followed classic ethical guidelines
in machine learning which in our case mainly consists in bringing information about reproducibility
issues which is addressed in the previous paragraph.
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