
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LIBRA: EFFECTIVE YET EFFICIENT LOAD BALANCING
FOR LARGE-SCALE MOE INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Distributed inference of large-scale Mixture-of-Experts (MoE) models faces a crit-
ical challenge: expert load imbalance. Numerous system-level approaches have
been proposed for load balancing, but they either fail to achieve a satisfactory
level of balance or introduce new bottlenecks due to the overhead of the load bal-
ancing mechanism itself. To this end, we propose Libra, a system that achieves
near-optimal load balancing with minimal overhead. Libra adopts sophisticated
mechanisms that accurately predict future expert activations and, based on these
predictions, systematically perform load balancing. At the same time, it effectively
hides the associated overhead by reconstructing the execution flow so that these
costs are overlapped with MoE computation. Evaluations with two large-scale
state-of-the-art MoE models on 8 H200 GPUs demonstrate that Libra improves
throughput by up to 19.2%.

1 INTRODUCTION

The Mixture-of-Experts (MoE) architecture has become a cornerstone for state-of-the-art Large Lan-
guage Models (LLMs) such as DeepSeek-V3, Qwen3MoE, and GLM-4.5 (DeepSeek-AI et al., 2025;
Yang et al., 2025; GLM-4.5 Team et al., 2025). Through sparse activation, MoE enables models to
scale to trillions of parameters while keeping the training and inference computation cost manage-
able (Du et al., 2022; The Mosaic Research Team, 2024; Jiang et al., 2024; Fedus et al., 2022;
Lepikhin et al., 2020; Rajbhandari et al., 2022).

At the same time, the dynamic nature of MoE models introduces a key deployment challenge: load
imbalance. One common way to scale MoE inference is through Expert Parallelism (EP), in which
experts within MoE layers are partitioned across multiple GPUs. Under this setup, load imbalance
arises when a disproportionate number of tokens are assigned to a few hot experts, causing the GPUs
hosting them to become stragglers that determine the end-to-end latency.

Existing system-level load balancing approaches suffer from fundamental limitations, proving to
be less effective and/or inefficient (DeepSeek, 2025; Li et al., 2023; Doucet et al., 2025). Some
approaches fail to achieve satisfactory balance because they rely on ineffective heuristics, leaving
substantial room for improvement (DeepSeek, 2025; Li et al., 2023). Others achieve a considerable
level of balance but introduce new bottlenecks due to the additional operations required for load
balancing (Doucet et al., 2025).

To address these challenges, we propose Libra, a system that achieves near-optimal balance with
virtually zero overhead. In other words, it catches two birds at once: effective load balancing and
efficient realization of that mechanism. For effectiveness, Libra predicts expert activations for the
next layer with high accuracy by leveraging the observation that hidden states in LLMs evolve
slowly across consecutive blocks, and based on these predictions, applies a sophisticated algorithm
that yields near-optimal balance. For efficiency, Libra reconstructs the inference execution flow so
that any overhead incurred by this process is hidden under MoE computations. In evaluations on
eight benchmarks using two state-of-the-art MoE models, Qwen3MoE and GLM-4.5, on 8 H200
GPUs, Libra improves throughput by up to 19.2% compared to the state of the art.

2 BACKGROUND AND MOTIVATION

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2.1 EXPERT LOAD IMBALANCE IN MOE INFERENCE

The Mixture-of-Experts (MoE) (Jacobs et al., 1991; Jordan & Jacobs, 1994; Shazeer et al., 2017)
architecture enhances the capacity of Large Language Models (LLMs) by replacing the dense Feed-
Forward Network (FFN) layer in a Transformer block with a sparse MoE layer. This layer consists
of a large pool of subnetworks (experts) and a gating network that selectively activates a small
subset of experts (e.g., top-k) for each input token. This sparse activation allows MoE models to
scale to hundreds of billions or even trillions of parameters while keeping the computational cost for
inference relatively low (Du et al., 2022; The Mosaic Research Team, 2024; Jiang et al., 2024; Fedus
et al., 2022; Rajbhandari et al., 2022; Lepikhin et al., 2020). Consequently, large-scale open-source
MoE models have achieved performance comparable to leading proprietary models like GPT-4.1,
demonstrating the efficacy of this architecture (Yang et al., 2025; DeepSeek-AI et al., 2025; GLM-
4.5 Team et al., 2025; Baidu ERNIE Team, 2025; OpenAI et al., 2025; Kimi Team et al., 2025).

However, the inherent mechanism that grants MoE models their efficiency—independent token as-
signment—introduces a significant challenge: expert load imbalance. Historically, this issue was
addressed during the training phase by incorporating an auxiliary load-balancing loss term, which
encouraged a more uniform distribution of tokens across all experts (Xue et al., 2024; Muennighoff
et al., 2025; Fedus et al., 2022). While effective for balancing, this approach often came at the cost
of model performance, as it could hinder the degree of expert specialization (Wang et al., 2024; Guo
et al., 2025; Qiu et al., 2025; DeepSeek-AI et al., 2025).

Layer
1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Im
ba

la
nc

e
Ra

tio

Qwen2MoE vs Qwen3MoE
Qwen2MoE
Qwen3MoE

Layer
1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
DeepSeek-V2 vs DeepSeek-V3

DeepSeek-V2
DeepSeek-V3

Figure 1: Intensified expert load imbalance in recent MoE models.

Reflecting this trade-off, recent state-of-the-art MoE models have moved away from strict load-
balancing loss in favor of techniques that maximize expert specialization (Yang et al., 2025; GLM-
4.5 Team et al., 2025; DeepSeek-AI et al., 2025). This aggressive pursuit of specialization has suc-
cessfully pushed model performance to new heights but has the critical side effect of intensifying
the expert load imbalance during inference. We measure this using the imbalance ratio, defined as
the maximum load on any single GPU divided by the average load across all GPUs, where a value
of 1.0 indicates a perfect balance. This trend is illustrated in Figure 1, showing a stark contrast in
the imbalance ratio between newer MoE models and their predecessors (see Appendix A for exper-
imental setup details). This reveals a fundamental trade-off: achieving state-of-the-art performance
in large MoE models exacerbates the expert load imbalance, a problem projected to become more
severe as models advance.

To efficiently serve large-scale MoE models across multiple GPUs, the standard strategy is a hybrid
approach that applies Expert Parallelism (EP) to MoE layers and Data Parallelism (DP) to non-MoE
layers (e.g., self-attention) (Perplexity AI, 2025; SGLang Team, 2025; Doucet et al., 2025; Li et al.,
2025). While this strategy is essential for managing the massive parameter counts of these models, its
performance is highly susceptible to expert load imbalance, which consequently becomes a critical
performance bottleneck (Doucet et al., 2025). This issue stems from the synchronous execution
of the MoE layers, forcing all devices to wait for the most heavily loaded GPU—the one hosting
the hot expert(s)—to finish its computation. This phenomenon, known as the staggler effect, leads
to significant idle time on less-loaded workers, severely degrading end-to-end latency and overall
system throughput. Consequently, mitigating this staggler effect has become a central challenge in
MoE inference, prompting the exploration of various system-level solutions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 SYSTEM-LEVEL SOLUTIONS FOR LOAD BALANCING AND LIMITATIONS

Token
sharding

E0 t t t t t t

No replication Hot expert replication

E1 t t

E2 t

E0 t t t

E1 t t

E2 tE0

t t

t t t

GPU 0

GPU 1

GPU 2

Figure 2: Hot expert replication and token sharding

A number of studies have attempted to mitigate load imbalance in MoE inference through system-
level techniques. Most of these approaches employ hot expert replication. Figure 2 illustrates this
approach: instead of assigning each expert to an unique GPU without redundancy, hot experts (i.e.,
experts that are likely to receive many tokens) are replicated across multiple GPUs. During MoE
execution, tokens routed to these hot experts can then be distributed across replicas on different
GPUs—a process we refer to as token sharding. This alleviates bottlenecks that would otherwise
arise if a single GPU were forced to process a disproportionate number of tokens.

In the following, we discuss three representative works that constitute the most widely used and/or
state-of-the-art techniques. They share the above approach but differ in how they perform expert
replication and token sharding. While these methods present promising results, they also exhibit
notable limitations, as their strategies for replication and sharding achieve only limited effectiveness
and/or efficiency.

Profiling N iterations

…

Hot expert replication

MoE Layer
Resident experts Hot experts

Hot expert replication

Comp.

Comm.

(a) EPLB

(b) Lina

(c) HarMoEny

Iteration 0 Iteration 1 Iteration N-1

Predictor

MoE block 𝑖

Non-MoE layers Token sharding MoE layer

Predictor MoE block 𝑖+1

Non-MoE layers Token sharding MoE layer

Hot expert replication

Token sharding
& Replication decision

No predictor

Iteration 1

Profiling N iterations

…Iteration N Iteration 1 Iteration 2N-1

Predictor

Iteration N+1

Path Experts
0-0-0
0-0-1…

E0,E3,…
E5,E8,…… Predictor

Path Experts
0-0-0
0-0-1…

E1,E7 …
E3,E6,……

Routing

Figure 3: Overview of EPLB, Lina, and HarMoEny

EPLB. Expert Placement Load Balancer (EPLB) (DeepSeek, 2025) periodically performs expert
replication based on historical data. Figure 3(a) illustrates this process. It profiles expert popularity
over a fixed number of iterations (N in the figure) and uses the aggregated statistics to guide expert
replication. However, this strategy is less effective because past popularity does not capture the
instantaneous and dynamic variations across requests. EPLB’s token sharding is also limited in
effectiveness: once experts are replicated, tokens routed to them are randomly distributed across the
GPUs holding replicas. In short, while EPLB is relatively efficient, it is not effective in either expert
replication or token sharding.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Lina. Figure 3(b) illustrates how Lina (Li et al., 2023) performs expert replication. Specifically, Lina
replicates experts for the upcoming block: when executing MoE computation for Block i, it performs
expert replication for Block i+ 1, thereby removing replication overhead from the critical path. For
this purpose, it relies on a pre-constructed lookup table that tracks each token’s expert-selection-
path. This path, which is the sequence of experts a token has selected in previous few layers (e.g.,
from layer i-4 to layer i-1), is used to predict which experts will be popular in the current layer (layer
i). Such expert replication, however, is limited in effectiveness. In our evaluations on eight different
benchmarks with two models (Qwen3MoE and GLM-4.5), Lina’s prediction accuracy falls below
50% (43.7% and 11.8%, respectively). Details of the experimental setup are provided in Appendix A.

For token sharding, Lina simply distributes tokens uniformly across all replicas (e.g., assigning an
equal number of tokens to each). Similar to the random token sharding in EPLB, this strategy is
largely oblivious to the actual GPU loads, leaving significant room for improvement.

HarMoEny. Figure 3(c) illustrates HarMoEny (Doucet et al., 2025), which makes decisions on ex-
pert replication based on exact routing results. In other words, expert replication is performed only
after the current input and its routing outcomes become available. This design makes replication
highly effective, as it is guided by exact information. To prevent replication overhead from appear-
ing on the critical path, HarMoEny first performs MoE computation for tokens routed to resident
experts, while replication of hot experts proceeds in parallel. Once replication completes, the MoE
computation for hot experts is executed. Token sharding is also effective, as HarMoEny employs a
sophisticated algorithm that computes a near-optimal token assignment.

Despite this effectiveness, HarMoEny suffers from efficiency issues. The overhead required to real-
ize such accurate replication and token sharding is substantial. After routing and before completing
MoE computation, HarMoEny must perform decision making through complex algorithms to de-
termine both expert replication and token sharding. Because these algorithms run synchronously on
the GPU, they extend the critical path and introduce new bottlenecks.

3 DESIGN

In this section, we propose Libra, a system for MoE inference that achieves near-optimal load balanc-
ing with minimal overhead. Unlike prior methods, Libra simultaneously addresses both effectiveness
and efficiency in hot expert replication and token sharding, thereby overcoming the key limitations
of existing approaches. For expert replication, Libra follows the spirit of Lina by prefetching hot
experts for the next layer while processing the current layer, based on prediction. This design avoids
the inefficiency observed in HarMoEny, which cannot exploit Grouped-GEMM optimizations. At
the same time, Libra employs a more accurate prediction mechanism than Lina, thereby improving
effectiveness. For token sharding, Libra adopts the strategy of HarMoEny but effectively hides its
cost from the critical path by restructuring the execution flow and leveraging the CPU.

The remainder of this section is organized as follows. Section 3.1 explains Libra ’s execution flow.
Section 3.2 describes the hot expert replication mechanism, and Section 3.3 details the token shard-
ing mechanism.

3.1 LIBRA EXECUTION FLOW

GPU

CPU

Comm.

Routing
Planning

Dispatch

Token
Sharding

Hot Expert Replication

MoE𝑙𝑜𝑐𝑎𝑙 MoE𝑟𝑒𝑚𝑜𝑡𝑒Gate Predict

Figure 4: Two-Stage Locality-Aware Execution of Libra

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 4 illustrates the execution flow of Libra. The key novelty lies in its Two-Stage Locality-Aware
Execution, which splits MoE computation into two phases based on token locality: MoElocal and
MoEremote. The MoElocal phase processes tokens routed to experts residing on the same GPU as the
tokens themselves, while the MoEremote phase handles tokens that must be dispatched to other GPUs.
After decomposing the computation into these two phases, Libra first performs MoElocal, followed
by MoEremote.

This execution flow creates a time window in which the overhead of sophisticated token sharding
mechanism can be hidden. In the conventional execution flow with load balancing, MoE compu-
tation begins only after token sharding completes. By contrast, in Libra, the MoElocal phase has
no dependency on token sharding; it can start immediately after the gating function, with only the
MoEremote phase depending on the results of token sharding and Dispatch operation. This enables
token sharding mechanism to run in parallel with MoElocal.

To further enhance the effectiveness of this parallelism, Libra performs token sharding on the CPU
rather than the GPU. In addition, Libra implements dispatch using AllGather (i.e., all tokens are
transferred to all GPUs) instead of All2All, where tokens are sent only to their assigned GPU. While
this design increases the raw communication volume of dispatch, its latency impact is negligible.
More importantly, it improves efficiency by removing dispatch from the critical path: in an All2All-
based implementation, dispatch must wait for token sharding to finish, whereas in the AllGather-
based implementation, dispatch can also proceed in parallel with token sharding.

3.2 HOT EXPERT REPLICATION

As mentioned, Libra follows the spirit of Lina for hot expert replication: performing expert repli-
cation for the next layer while processing the current layer, based on prediction. However, Libra
departs substantially from Lina in both how the prediction is performed and how expert replication
planning (i.e., determining which experts to replicate to which GPUs) is carried out.

Non-MoE
layers MoE layerGate

Gate Planningi+1

i

Block i
Replication

Non-MoE
layers MoE layerGate

Gate Planningi+2 Replication

Block i+1

i+1

Figure 5: Hot expert replication of Libra with lookahead predictors

Predictor Design. Libra employs a lookahead predictor, leveraging a well-established property of
Transformer-based LLMs: hidden states evolve slowly across layers (Liu et al., 2023b;b; Hwang
et al., 2024). Figure 5 illustrates its concept. It speculatively executes the gating function of the
next layer using the hidden states from the current layer, and then uses the results to determine
which experts should be replicated across GPUs. This runtime-based approach achieves substantially
higher accuracy than Lina’s predictor (e.g. 70-80% vs 20-30%).

Locality-Aware Expert Replication Planning. During expert replication planning, Libra intro-
duces an additional consideration beyond load balancing: locality enhancement. In other words,
Libra not only balances load but also seeks to extend the MoElocal computation window, thereby
providing more opportunity to hide token sharding overhead.

To this end, Libra performs expert replication planning in two phases. In the first phase, each GPU
brings in N × α experts that are most frequently activated by the tokens on that GPU and are
not already resident on it, thereby extending the MoElocal computation window. Here, N denotes
the maximum number of additional experts a GPU may host, determined by its available memory
capacity and the allowable time window (a function of MoE computation time and communication
bandwidth), while α is a hyperparameter that controls what fraction of N is allocated to the first
phase. In the second phase, load balancing is performed iteratively: at each step, the hottest expert
from the most heavily loaded GPU is selected for replication and placed on the least-loaded GPU
among those that have not yet received N extra experts.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 6 illustrates the expert replication planning process of Libra with an example. First, to en-
hance locality, Libra addresses the initial placement (left), where a significant portion of tokens on
each GPU is routed to remote experts on other devices. Each GPU identifies its most requested re-
mote experts and replicates them locally. For instance, GPU 0 replicates E4 from GPU 2 to serve
its local tokens. This process converts remote tokens into local computations, securing the MoElocal
computation window necessary to hide system overhead. Second, to establish a foundation for load
balancing, the algorithm identifies and replicates heavily loaded experts to under-loaded GPUs. In
the figure, this is shown by replicating expert E2 to an under-loaded device. This facilitates effec-
tive token sharding by allowing the workload from overloaded GPUs to be redistributed, ultimately
enabling a near-perfect load balance.

tttttt

tttttt

ttttttt t t t t t

t t t t t t

t t t t t t

E0 E1

E2 E3

E4 E5

GPU 0

GPU 1

GPU 2

E4

E1

E0

E2

Local hot experts By phase 2
x10 x15 x50 x45 x70 x10

x20 x60 x30 x30 x20 x40

x70 x10 x70 x30 x10 x10

tttttt

tttttt

ttttttt t t t t t

t t t t t t

t t t t t t

E0 E1

E2 E3

E4 E5

x10 x15 x50 x45 x70 x10

x20 x60 x30 x30 x20 x40

x10 x70 x30 x10 x10x70

Initial Expert Placement With Locality-Aware Expert Replication

Figure 6: Locality-aware expert replication planning

3.3 TOKEN SHARDING

For token sharding, Libra adopts an algorithm similar to that used by HarMoEny, but with two
key differences. First, Libra applies token sharding only to remote tokens. Second, this process is
offloaded to the CPU.

Initialize Total GPU Loads (G)1

Is max(G) > Target Load?2

Select next hottest
expert (e) on g_s

8

Calculate transfer amount (l) and
Update loads for g_s and g_d

6

Find least-loaded replica GPU (g_d) with available capacity?5

Select hottest remote expert
(e) on g_s

4

Select most overloaded GPU
(g_s)

3

Are there other experts
to try on g_s?

7

Local Distribution

…

Yes No

YesNo

Global Distribution

…

Yes

No => End: Balanced

Figure 7: Logic flow of the iterative greedy rebal-
ancing strategy.

Figure 7 explains the iterative greedy strategy
of token sharding. The algorithm’s main loop
begins by checking if any GPU’s load exceeds
the target threshold (2). If the system is bal-
anced, the process terminates. Otherwise, it se-
lects the most overloaded GPU, gs, to resolve
(3). To find the most effective transfer, the al-
gorithm enters an inner loop, starting by select-
ing the hottest remote expert, e, on gs—the one
accounting for the largest number of its remote
tokens (4). It then searches for an optimal des-
tination: the least-loaded GPU (gd) that hosts a
replica of expert e and has enough capacity to
accept new tokens (5). A replica of the expert
is necessary on the destination GPU to process
the transferred tokens, and these replicas are en-
abled by hot expert replication. If a suitable des-
tination is found, the algorithm calculates the
number of tokens to transfer and updates the
loads on both gs and gd (6). Crucially, after
each successful transfer, the algorithm returns
to the main loop’s start (2) to re-evaluate the
entire system’s balance, ensuring it always ad-
dresses the most critical imbalance first. If no suitable destination is found (7), it attempts to trans-
fer the tokens for the next hottest expert on gs (8) until all options are exhausted, at which point it
also returns to re-evaluate the global state. The full algorithm is detailed in Appendix C.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 IMPLEMENTATION DETAILS

We implement Libra atop the SGLang (v0.4.10) LLM serving framework. Our core mechanisms
for expert replication planning and token sharding are implemented in Cython to ensure minimal
overhead and are integrated as native modules during SGLang’s build process.

To efficiently perform hot expert replication, we leverage PyTorch SymmetricMemory for copy
engine-based P2P transfers. We employ a double-buffering strategy by pre-allocating two large
buffers: an even buffer and an odd buffer. During the execution of an even-numbered MoE
layer, original and duplicated experts are gathered in the even buffer to be processed via a high-
performance Grouped-GEMM kernel. Concurrently, the system loads the necessary experts for the
subsequent odd-numbered layer into the odd buffer. When processing an odd-numbered MoE layer,
the roles are reversed: computation utilizes the odd buffer while the even buffer is populated for the
next layer. This pipelining mechanism effectively hides the expert replication overhead by overlap-
ping the P2P copy operations with the ongoing computation.

5 EVALUATION

We conduct a comprehensive evaluation to demonstrate the effectiveness of Libra. Our experiments
are designed to answer three key questions: (1) How does Libra’s prefill performance compare
against baselines? (2) How does the prediction accuracy of Libra’s speculative execution compare
against existing methods like Lina? (3) How stable and robust is Libra’s performance under work-
loads with dynamic and shifting token distributions?

5.1 SETUP

Model and Data. We evaluate Libra using two representative state-of-the-art large MoE models:
Qwen3MoE (235B) (Yang et al., 2025) and GLM-4.5 (355B) (GLM-4.5 Team et al., 2025). To
ensure coverage of a wide range of inputs, we use eight datasets: BookCorpus (Zhu et al., 2015),
Codeforces (Penedo et al., 2025), DeepSeek-Prover (Xin et al., 2024), FineWeb (Penedo et al.,
2024), GSM8K (Cobbe et al., 2021), HellaSwag(Zellers et al., 2019), HumanEvalPlus (Liu et al.,
2023a), and LMSYS-Chat-1M (Zheng et al., 2023). All experiments are run using BF16 precision.

Environments. All experiments are conducted on a single node equipped with 8 NVIDIA
H200-SXM5 GPUs, each with 141 GB of HBM3e memory. Intra-node communication leverages
NVSwitch with 900 GB/s of P2P bandwidth.

Baselines. We compare Libra against three baselines. The vanilla MoE implementation in SGLang
(v0.4.10) serves as our foundational baseline, representing a standard system without advanced load
balancing. For the widely adopted proactive expert replication approach, we use EPLB DeepSeek
(2025) from its implementation within SGLang. As the strongest baseline, we evaluate against
Lina Li et al. (2023). Since no public implementation of Lina is available, we developed an in-house
version built on SGLang, faithfully following the description in the original paper.

Metrics. The primary performance metric is prefill throughput, measured in tokens per second.
We assume a prefill-decode disaggregated serving system where the prefill and decode phases are
separated and handled by different GPUs (Zhong et al., 2024b; Hu et al., 2025; Feng et al., 2025).
and therefore target only the prefill phase in our evaluation. We also measure the imbalance ratio
(defined as the load of the most burdened GPU divided by the average load across all GPUs) to
analyze the effectiveness of load balancing.

5.2 RESULTS

Throughput Results. First, Libra substantially improves the performance of the prefill phase. As
shown in Figure 8, Libra achieves the highest throughput across all tested models and datasets.
The four datasets for this evaluation were specifically chosen from a total of eight because they ex-
hibited the most severe expert load imbalance, allowing for a clear demonstration of performance
differences between the laod balancing systems. Notably, This evaluation was conducted under an
experimental setup deliberately designed to be highly advantageous for the baseline systems. For
Lina, its expert-selection-path table was constructed using the same dataset as the evaluation and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0

1000

2000

3000

4000

Th
ro

ug
hp

ut

BookCorpus
0

1000

2000

Th
ro

ug
hp

ut

DeepSeek-Prover-V1 HellaSwag HumanEvalPlus Mean

Qwen3MoE, Batch size = 8, Seq = 4K

GLM-4.5, Batch size = 8, Seq = 4K

SGLang EPLB Lina Libra

Figure 8: Prefill throughput of Libra and baselines.

3000

3200

3400

3600

Th
ro

ug
hp

ut

Qwen3MoE Seq 2048

3000

3200

3400

3600

3800

4000
Qwen3MoE Seq 4096

2100

2200

2300

2400

2500

2600

GLM-4.5 Seq 2048

2200

2300

2400

2500

2600

2700

2800
GLM-4.5 Seq 4096

0 50 100 150 200
Iteration

1.0

1.2

1.4

1.6

1.8

2.0

Im
ba

la
nc

e
Ra

tio

0 25 50 75 100
Iteration

1.0

1.2

1.4

1.6

1.8

2.0

0 50 100 150 200
Iteration

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 25 50 75 100
Iteration

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

SGLang Lina Libra

Figure 9: Throughput fluctuation and imbalance ratio under a dynamic workload.

its expert prefetching allowed each GPU to hold 8 additional experts. Similarly, EPLB’s expert
placement was determined by profiling on the identical dataset. It statically placed 8 identified hot
experts—one on each of the 8 GPUs—across every MoE layer. This static replication, however,
results in higher memory consumption compared to the dynamic approaches of Lina and Libra be-
cause of a large number of layers. To meet the memory budget with Lina, Libra was configured with
N set to 8 and α set to 0.5. Despite these favorable, even biased, conditions for the baselines, Libra
consistently and significantly outperforms them for both Qwen3MoE and GLM-4.5. These results
confirm that Libra’s dynamic load balancing effectively resolves the straggler problem, leading to
superior computational efficiency and overall system performance.

Per-Iteration Fluctuation. Libra also delivers significantly higher and more stable throughput. Fig-
ure 9 illustrates this robustness using a mixed-dataset designed to simulate dynamic shifts in expert
load imbalance. For this test, Lina’s expert-selection-path table was constructed using a workload
created by mixing one-eighth of the build split from each of the eight datasets. This comparison
centers on dynamic systems like Lina and Libra, excluding EPLB, as its reliance on periodic pro-
filing and static reconfiguration is ill-suited for workloads where imbalance shifts frequently and
intensely. While baseline systems suffer from volatile performance that plummets as the imbalance
ratio spikes, Libra effectively decouples its performance from the input distribution. By maintaining

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Qwen3MoE

Dataset Lina Libra

BookCorpus 47.3 91.7
DeepSeek-Prover-V1 45.4 86.5
HellaSwag 37.5 86.6
HumanEvalPlus 44.5 87.0

GLM-4.5

Dataset Lina Libra

BookCorpus 11.7 79.6
DeepSeek-Prover-V1 12.7 72.9
HellaSwag 11.5 76.6
HumanEvalPlus 11.2 72.7

Table 1: Prediction accuracy.

a near-perfect imbalance ratio close to 1.0, Libra provides consistently high throughput, proving its
resilience to the dynamic nature of expert load imbalance.

Prediction Accuracy. We quantitatively evaluate the accuracy of Libra’s predictor for hot expert
replication compared against Lina. Table 1 presents a direct comparison between the prediction
accuracy of Libra’s speculative execution-based approach and Lina’s offline-constructed lookup ta-
ble based method on the Qwen3MoE and GLM-4.5 models. Accuracy is defined as the fraction of
correctly predicted experts for each token, where the set of actually activated experts serves as the
ground truth. We construct Lina’s expert-selection-path table on the build split of mixed dataset,
then evaluate on the evaluation split of four datasets. Evaluation setup is detailed in Appendix A.

The results reveal a stark contrast between the two methods. Libra’s predictor consistently achieves
a high and stable accuracy in the 70-90% range across all datasets, demonstrating the effective-
ness of its runtime prediction based on current-layer hidden states. In contrast, Lina’s lookup-based
predictor shows noticeably lower accuracy across datasets, highlights the critical generalization lim-
itations of an offline-built lookup table. This effect is more pronounced on GLM-4.5, where Lina
successfully identifies fewer than one correct experts between top-8 experts. These findings confirm
that Libra ’s dynamic prediction mechanism is significantly more robust and reliable for handling
diverse and unpredictable workloads.

6 CONCLUSION

We introduces Libra, a dynamic load balancing system addressing intensified expert load imbalance
in modern Mixture-of-Experts (MoE) models. Libra proposes Two-Stage Locality-Aware Execu-
tion, an innovative paradigm hiding dynamic load balancing overhead by overlapping it with ongo-
ing GPU computations. This is enabled by two synergistic core components: Hierarchical Expert
Prefetcher, using speculative execution for highly accurate (70-80%) expert prediction to strategi-
cally prefetch the necessary experts for the next layer, and Adaptive Token Rebalancer, comput-
ing an optimal assignment schedule by accounting for processed local token load. Implemented on
SGLang, Libra demonstrates state-of-the-art performance, reducing the prefill throughput by up to
19.2% while maintaining an imbalance ratio of nearly 1.0 under dynamic workloads. Libra thus
achieves dynamic load balancing with virtually zero-overhead for efficient serving of large-scale
MoE models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Baidu ERNIE Team. Ernie 4.5 technical report, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

DeepSeek. Expert parallelism load balancer (eplb), 2025. URL https://github.com/
deepseek-ai/EPLB.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao,
Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue
Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xi-
aokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang
Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui
Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying
Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu,
Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F.
Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao,
Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 2025. URL
https://arxiv.org/abs/2412.19437.

Zachary Doucet, Rishi Sharma, Martijn de Vos, Rafael Pires, Anne-Marie Kermarrec, and Oana
Balmau. Harmoeny: Efficient multi-gpu inference of moe models, 2025. URL https:
//arxiv.org/abs/2506.12417.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten P Bosma,
Zongwei Zhou, Tao Wang, Emma Wang, Kellie Webster, Marie Pellat, Kevin Robinson, Kathleen
Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc Le, Yonghui Wu, Zhifeng Chen,
and Claire Cui. GLaM: Efficient scaling of language models with mixture-of-experts. In Ka-
malika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 5547–5569. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/du22c.html.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022. URL http://jmlr.org/papers/v23/21-0998.html.

10

https://github.com/deepseek-ai/EPLB
https://github.com/deepseek-ai/EPLB
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2506.12417
https://arxiv.org/abs/2506.12417
https://proceedings.mlr.press/v162/du22c.html
http://jmlr.org/papers/v23/21-0998.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jingqi Feng, Yukai Huang, Rui Zhang, Sicheng Liang, Ming Yan, and Jie Wu. Windserve: Efficient
phase-disaggregated llm serving with stream-based dynamic scheduling. In Proceedings of the
52nd Annual International Symposium on Computer Architecture, pp. 1283–1295, 2025.

GLM-4.5 Team, Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie,
Cunxiang Wang, Da Yin, Hao Zeng, Jiajie Zhang, Kedong Wang, Lucen Zhong, Mingdao Liu,
Rui Lu, Shulin Cao, Xiaohan Zhang, Xuancheng Huang, Yao Wei, Yean Cheng, Yifan An, Yilin
Niu, Yuanhao Wen, Yushi Bai, Zhengxiao Du, Zihan Wang, Zilin Zhu, Bohan Zhang, Bosi Wen,
Bowen Wu, Bowen Xu, Can Huang, Casey Zhao, Changpeng Cai, Chao Yu, Chen Li, Chendi
Ge, Chenghua Huang, Chenhui Zhang, Chenxi Xu, Chenzheng Zhu, Chuang Li, Congfeng Yin,
Daoyan Lin, Dayong Yang, Dazhi Jiang, Ding Ai, Erle Zhu, Fei Wang, Gengzheng Pan, Guo
Wang, Hailong Sun, Haitao Li, Haiyang Li, Haiyi Hu, Hanyu Zhang, Hao Peng, Hao Tai, Haoke
Zhang, Haoran Wang, Haoyu Yang, He Liu, He Zhao, Hongwei Liu, Hongxi Yan, Huan Liu, Hui-
long Chen, Ji Li, Jiajing Zhao, Jiamin Ren, Jian Jiao, Jiani Zhao, Jianyang Yan, Jiaqi Wang, Jiayi
Gui, Jiayue Zhao, Jie Liu, Jijie Li, Jing Li, Jing Lu, Jingsen Wang, Jingwei Yuan, Jingxuan Li,
Jingzhao Du, Jinhua Du, Jinxin Liu, Junkai Zhi, Junli Gao, Ke Wang, Lekang Yang, Liang Xu,
Lin Fan, Lindong Wu, Lintao Ding, Lu Wang, Man Zhang, Minghao Li, Minghuan Xu, Mingming
Zhao, Mingshu Zhai, Pengfan Du, Qian Dong, Shangde Lei, Shangqing Tu, Shangtong Yang,
Shaoyou Lu, Shijie Li, Shuang Li, Shuang-Li, Shuxun Yang, Sibo Yi, Tianshu Yu, Wei Tian,
Weihan Wang, Wenbo Yu, Weng Lam Tam, Wenjie Liang, Wentao Liu, Xiao Wang, Xiaohan Jia,
Xiaotao Gu, Xiaoying Ling, Xin Wang, Xing Fan, Xingru Pan, Xinyuan Zhang, Xinze Zhang,
Xiuqing Fu, Xunkai Zhang, Yabo Xu, Yandong Wu, Yida Lu, Yidong Wang, Yilin Zhou, Yiming
Pan, Ying Zhang, Yingli Wang, Yingru Li, Yinpei Su, Yipeng Geng, Yitong Zhu, Yongkun Yang,
Yuhang Li, Yuhao Wu, Yujiang Li, Yunan Liu, Yunqing Wang, Yuntao Li, Yuxuan Zhang, Zezhen
Liu, Zhen Yang, Zhengda Zhou, Zhongpei Qiao, Zhuoer Feng, Zhuorui Liu, Zichen Zhang, Zi-
han Wang, Zijun Yao, Zikang Wang, Ziqiang Liu, Ziwei Chai, Zixuan Li, Zuodong Zhao, Wen-
guang Chen, Jidong Zhai, Bin Xu, Minlie Huang, Hongning Wang, Juanzi Li, Yuxiao Dong,
and Jie Tang. Glm-4.5: Agentic, reasoning, and coding (arc) foundation models, 2025. URL
https://arxiv.org/abs/2508.06471.

Hongcan Guo, Haolang Lu, Guoshun Nan, Bolun Chu, Jialin Zhuang, Yuan Yang, Wenhao Che,
Sicong Leng, Qimei Cui, and Xudong Jiang. Advancing expert specialization for better moe,
2025. URL https://arxiv.org/abs/2505.22323.

Xiannan Hu, Tianyou Zeng, Xiaoming Yuan, Liwei Song, Guangyuan Zhang, and Bangzheng He.
Bestserve: Serving strategies with optimal goodput in collocation and disaggregation architec-
tures. arXiv preprint arXiv:2506.05871, 2025.

Ranggi Hwang, Jianyu Wei, Shijie Cao, Changho Hwang, Xiaohu Tang, Ting Cao, and Mao Yang.
Pre-gated moe: An algorithm-system co-design for fast and scalable mixture-of-expert inference.
In 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA), pp.
1018–1031. IEEE, 2024.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87, 1991. doi: 10.1162/neco.1991.3.1.79.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024. URL https://arxiv.org/abs/2401.04088.

Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the em algorithm.
Neural Computation, 6(2):181–214, 1994. doi: 10.1162/neco.1994.6.2.181.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong,
Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao,
Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang
Guo, Hao Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu,

11

https://arxiv.org/abs/2508.06471
https://arxiv.org/abs/2505.22323
https://arxiv.org/abs/2401.04088

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin,
Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao
Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin Liu,
Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu, Tianwei
Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe Lu,
Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo
Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan Shi,
Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao, Qifeng
Teng, Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou Wang, Jiaxing Wang,
Jinhong Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin Wang,
Yuzhi Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang, Chu Wei, Qianqian Wei, Wenhao Wu,
Xingzhe Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu, Jinjing
Xu, L. H. Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie
Yan, Yuzi Yan, Xiaofei Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang, Haotian Yao,
Xingcheng Yao, Wenjie Ye, Zhuorui Ye, Bohong Yin, Longhui Yu, Enming Yuan, Hongbang
Yuan, Mengjie Yuan, Haobing Zhan, Dehao Zhang, Hao Zhang, Wanlu Zhang, Xiaobin Zhang,
Yangkun Zhang, Yizhi Zhang, Yongting Zhang, Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng
Zhang, Haotian Zhao, Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou,
Zaida Zhou, Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. Kimi k2: Open agentic intelligence,
2025. URL https://arxiv.org/abs/2507.20534.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with condi-
tional computation and automatic sharding, 2020. URL https://arxiv.org/abs/2006.
16668.

Jiamin Li, Yimin Jiang, Yibo Zhu, Cong Wang, and Hong Xu. Accelerating distributed MoE train-
ing and inference with lina. In 2023 USENIX Annual Technical Conference (USENIX ATC 23),
pp. 945–959, Boston, MA, July 2023. USENIX Association. ISBN 978-1-939133-35-9. URL
https://www.usenix.org/conference/atc23/presentation/li-jiamin.

Yan Li, Pengfei Zheng, Shuang Chen, Zewei Xu, Yuanhao Lai, Yunfei Du, and Zhengang Wang.
Speculative moe: Communication efficient parallel moe inference with speculative token and ex-
pert pre-scheduling, 2025. URL https://arxiv.org/abs/2503.04398.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and LINGMING ZHANG. Is your code gener-
ated by chatgpt really correct? rigorous evaluation of large language models for code generation.
In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 21558–21572. Curran Associates, Inc.,
2023a. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/43e9d647ccd3e4b7b5baab53f0368686-Paper-Conference.pdf.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms
at inference time. In International Conference on Machine Learning, pp. 22137–22176. PMLR,
2023b.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita Bhagia,
Dustin Schwenk, David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers, Douwe Kiela,
Ali Farhadi, Noah A. Smith, Pang Wei Koh, Amanpreet Singh, and Hannaneh Hajishirzi. Olmoe:
Open mixture-of-experts language models, 2025. URL https://arxiv.org/abs/2409.
02060.

OpenAI, Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus,
Rahul K. Arora, Yu Bai, Bowen Baker, Haiming Bao, Boaz Barak, Ally Bennett, Tyler Bertao,
Nivedita Brett, Eugene Brevdo, Greg Brockman, Sebastien Bubeck, Che Chang, Kai Chen, Mark
Chen, Enoch Cheung, Aidan Clark, Dan Cook, Marat Dukhan, Casey Dvorak, Kevin Fives, Vlad
Fomenko, Timur Garipov, Kristian Georgiev, Mia Glaese, Tarun Gogineni, Adam Goucher, Lukas
Gross, Katia Gil Guzman, John Hallman, Jackie Hehir, Johannes Heidecke, Alec Helyar, Hai-
tang Hu, Romain Huet, Jacob Huh, Saachi Jain, Zach Johnson, Chris Koch, Irina Kofman, Do-
minik Kundel, Jason Kwon, Volodymyr Kyrylov, Elaine Ya Le, Guillaume Leclerc, James Park

12

https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2006.16668
https://www.usenix.org/conference/atc23/presentation/li-jiamin
https://arxiv.org/abs/2503.04398
https://proceedings.neurips.cc/paper_files/paper/2023/file/43e9d647ccd3e4b7b5baab53f0368686-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/43e9d647ccd3e4b7b5baab53f0368686-Paper-Conference.pdf
https://arxiv.org/abs/2409.02060
https://arxiv.org/abs/2409.02060

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Lennon, Scott Lessans, Mario Lezcano-Casado, Yuanzhi Li, Zhuohan Li, Ji Lin, Jordan Liss,
Lily, Liu, Jiancheng Liu, Kevin Lu, Chris Lu, Zoran Martinovic, Lindsay McCallum, Josh Mc-
Grath, Scott McKinney, Aidan McLaughlin, Song Mei, Steve Mostovoy, Tong Mu, Gideon Myles,
Alexander Neitz, Alex Nichol, Jakub Pachocki, Alex Paino, Dana Palmie, Ashley Pantuliano,
Giambattista Parascandolo, Jongsoo Park, Leher Pathak, Carolina Paz, Ludovic Peran, Dmitry
Pimenov, Michelle Pokrass, Elizabeth Proehl, Huida Qiu, Gaby Raila, Filippo Raso, Hongyu
Ren, Kimmy Richardson, David Robinson, Bob Rotsted, Hadi Salman, Suvansh Sanjeev, Max
Schwarzer, D. Sculley, Harshit Sikchi, Kendal Simon, Karan Singhal, Yang Song, Dane Stuckey,
Zhiqing Sun, Philippe Tillet, Sam Toizer, Foivos Tsimpourlas, Nikhil Vyas, Eric Wallace, Xin
Wang, Miles Wang, Olivia Watkins, Kevin Weil, Amy Wendling, Kevin Whinnery, Cedric Whit-
ney, Hannah Wong, Lin Yang, Yu Yang, Michihiro Yasunaga, Kristen Ying, Wojciech Zaremba,
Wenting Zhan, Cyril Zhang, Brian Zhang, Eddie Zhang, and Shengjia Zhao. gpt-oss-120b gpt-
oss-20b model card, 2025. URL https://arxiv.org/abs/2508.10925.

Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo Goiri, Saeed Maleki, and Ri-
cardo Bianchini. Splitwise: Efficient generative llm inference using phase splitting. In 2024
ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA), pp. 118–
132, 2024. doi: 10.1109/ISCA59077.2024.00019.

Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for
the finest text data at scale. In The Thirty-eight Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2024. URL https://openreview.net/forum?
id=n6SCkn2QaG.

Guilherme Penedo, Anton Lozhkov, Hynek Kydlı́ček, Loubna Ben Allal, Edward Beeching,
Agustı́n Piqueres Lajarı́n, Quentin Gallouédec, Nathan Habib, Lewis Tunstall, and Leandro von
Werra. Codeforces. https://huggingface.co/datasets/open-r1/codeforces,
2025.

Perplexity AI. Efficient and portable mixture-of-experts communica-
tion, 2025. URL https://www.perplexity.ai/hub/blog/
efficient-and-portable-mixture-of-experts-communication.

Zihan Qiu, Zeyu Huang, Bo Zheng, Kaiyue Wen, Zekun Wang, Rui Men, Ivan Titov, Dayiheng
Liu, Jingren Zhou, and Junyang Lin. Demons in the detail: On implementing load balancing loss
for training specialized mixture-of-expert models, 2025. URL https://arxiv.org/abs/
2501.11873.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. DeepSpeed-MoE: Advancing mixture-of-
experts inference and training to power next-generation AI scale. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceed-
ings of the 39th International Conference on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pp. 18332–18346. PMLR, 17–23 Jul 2022. URL https:
//proceedings.mlr.press/v162/rajbhandari22a.html.

SGLang Team. Deploying deepseek with pd disaggregation and large-scale ex-
pert parallelism on 96 h100 gpus, 2025. URL https://lmsys.org/blog/
2025-05-05-large-scale-ep/.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,
2017. URL https://arxiv.org/abs/1701.06538.

The Mosaic Research Team. Introducing dbrx: A new state-of-the-art open
llm, March 2024. URL https://www.databricks.com/blog/
introducing-dbrx-new-state-art-open-llm. Databricks Mosaic Research
Blog.

Lean Wang, Huazuo Gao, Chenggang Zhao, Xu Sun, and Damai Dai. Auxiliary-loss-free load
balancing strategy for mixture-of-experts, 2024. URL https://arxiv.org/abs/2408.
15664.

13

https://arxiv.org/abs/2508.10925
https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=n6SCkn2QaG
https://huggingface.co/datasets/open-r1/codeforces
https://www.perplexity.ai/hub/blog/efficient-and-portable-mixture-of-experts-communication
https://www.perplexity.ai/hub/blog/efficient-and-portable-mixture-of-experts-communication
https://arxiv.org/abs/2501.11873
https://arxiv.org/abs/2501.11873
https://proceedings.mlr.press/v162/rajbhandari22a.html
https://proceedings.mlr.press/v162/rajbhandari22a.html
https://lmsys.org/blog/2025-05-05-large-scale-ep/
https://lmsys.org/blog/2025-05-05-large-scale-ep/
https://arxiv.org/abs/1701.06538
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://arxiv.org/abs/2408.15664
https://arxiv.org/abs/2408.15664

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Huajian Xin, Daya Guo, Zhihong Shao, Z.Z. Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li,
and Xiaodan Liang. Advancing theorem proving in LLMs through large-scale synthetic data.
In The 4th Workshop on Mathematical Reasoning and AI at NeurIPS’24, 2024. URL https:
//openreview.net/forum?id=TPtXLihkny.

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang You.
Openmoe: An early effort on open mixture-of-experts language models, 2024. URL https:
//arxiv.org/abs/2402.01739.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle Li, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zhuohan Li, Zi Lin, Eric. P Xing, Joseph E. Gonzalez, Ion Stoica, and Hao Zhang.
Lmsys-chat-1m: A large-scale real-world llm conversation dataset, 2023.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and
Hao Zhang. DistServe: Disaggregating prefill and decoding for goodput-optimized large lan-
guage model serving. In 18th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 24), pp. 193–210, Santa Clara, CA, July 2024a. USENIX Association.
ISBN 978-1-939133-40-3. URL https://www.usenix.org/conference/osdi24/
presentation/zhong-yinmin.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao
Zhang. {DistServe}: Disaggregating prefill and decoding for goodput-optimized large language
model serving. In 18th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 24), pp. 193–210, 2024b.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), December 2015.

14

https://openreview.net/forum?id=TPtXLihkny
https://openreview.net/forum?id=TPtXLihkny
https://arxiv.org/abs/2402.01739
https://arxiv.org/abs/2402.01739
https://arxiv.org/abs/2505.09388
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A EXPERIMENTAL SETUP DETAILS

Models. For Figure 1 1, we compare the imbalance ratio across recent MoE families by pairing
models with different load-balancing strategies during training. Within the Qwen family, we evalu-
ate Qwen2MoE and Qwen3MoE. Qwen2MoE has 57 billion total parameters and 14 billion activated
parameters, and it utilizes a micro-batch level auxiliary load-balancing loss during training to ensure
load balance. In contrast, Qwen3MoE, with 235 billion total and 22 billion activated parameters, for-
goes this term in favor of a global-batch load balancing loss, a strategy that maximizes expert special-
ization while still addressing balance. The DeepSeek family shows a similar contrast: DeepSeek-V2
(236B total, 21B activated) also employs an auxiliary load-balancing loss, whereas DeepSeek-V3
(671B total, 37B activated) improves training efficiency by adopting the auxiliary-loss-free load
balancing technique. For all other experiments, we evaluate Libra and baselines on Qwen3MoE and
GLM-4.5, models that are trained without such fine-grained balancing losses. GLM-4.5 has 355
billion total parameters and 32 billion activated parameters.

Datasets. We evaluate Libra and baselines on eight datasets: BookCorpus (Zhu et al., 2015), Code-
forces (Penedo et al., 2025), DeepSeek-Prover (Xin et al., 2024), FineWeb (Penedo et al., 2024),
GSM8K (Cobbe et al., 2021), HellaSwag(Zellers et al., 2019), HumanEvalPlus (Liu et al., 2023a),
and LMSYS-Chat-1M (Zheng et al., 2023). Unless noted otherwise, each dataset contributes a total
of 2.0M tokens. The first 1.6M tokens form the build split for EPLB offline profiling and for con-
structing Lina’s prediction table. The next 0.4M tokens form the evaluation split used for testing.
Figure 1 is the only exception, which uses a 0.07% subset of the BookCorpus dataset. For Ta-
ble 1, we build Lina’s expert-selection-path table is on a mixed workload that uniformly interleaves
the build splits of all eight datasets. We then evaluate Lina and Libra separately on each dataset’s
evaluation split. Figure 8 reports results on BookCorpus, DeepSeek-Prover-V1, HellaSwag, and Hu-
manEvalPlus dataset. Figure 9 uses a shuffuled workload constructed from all eight datasets.

Environments. All expertiments use a single-node system equipped with eight NVIDIA H200-
SXM5 GPUs, each with 141GB of HBM3e memory. The server configuration is summarized in
Table 2.

Table 2: Server configuration

CPU 2× Intel Xeon Platinum 8580 (128 cores)
GPU 8× NVIDIA H200-SXM5-141GB
System Memory 32× 64 GB DDR5-5600 (total 2,048 GB)
GPU Memory 141GB HBM3e per GPU
GPU Interconnect Connected with NVSwitch (900GB/s bandwidth)

Metrics. Table 1 reports accuracy, defined as the fraction of tokens whose ground-truth experts
appear in the predicted top-k set. Figure 8 and Figure 9 report prefill throughput in tokens per
second. Throughout these experiments, we adopt Prefill-Decode disaggregation (Patel et al., 2024;
Zhong et al., 2024a) setup, and therefore we evaluate preill only as we target prefill phase. Figure 1
and Figure 9 also report the imbalance ratio, defined as the load of the most heavily utilized GPU
divided by the average load across all GPUs.

B HIERARCHICAL EXPERT PREFETCHER

The Hierarchical Expert Prefetcher optimally places experts on GPUs for the next MoE layer. This
process is crucial for facilitating effective load balancing and extending the MoElocal computation
window, which in turn hides system overhead. The algorithm operates in two main phases after an
initial setup.

First, it duplicates ”local hot experts”—those most frequently requested by a GPU’s local tokens
but residing on other GPUs—onto the source GPU itself. This strategically increases the number
of local tokens that can be processed without inter-GPU communication, creating a sufficient time
window for the Adaptive Token Rebalancer to execute in parallel without affecting the critical path.

Second, the algorithm iteratively balances the remaining load by duplicating global hot experts. It
identifies the most overloaded GPU and replicates its hottest expert to the least-loaded GPU that has

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

available capacity. This ensures that the overall load is distributed as evenly as possible before the
next layer’s computation begins. The final output is an optimized expert placement map that serves
as the foundation for the rebalancing stage.

Algorithm 1 Hierarchical Expert Prefetcher

Inputs: Predicted expert IDs for upcoming tokens next topk ids, Total number of experts E, To-
tal number of GPUs G, Max duplicated experts per GPU N , Number of local hot experts to
duplicate L.

Outputs: A binary matrix for expert placement on GPUs: Mnext ∈ {0, 1}E×G.

1: Calculate ExpertLoad[g, e] (requests for expert e from GPU g) based on next topk ids.
2: Initialize Mnext by assigning each expert to its home GPU.
3: for each GPU gs do ▷ Phase 1: Duplicate Local Hot Experts
4: Identify top L remote experts most requested by gs.
5: Duplicate these experts to gs.
6: end for
7: Calculate initial GPU loads based on the current mapping in Mnext.
8: B ← Target balanced load per GPU.
9: for i = 1 to (N − L)×G do ▷ Phase 2: Balance Load via Iterative Duplication

10: gsrc ← most overloaded GPU where load > B.
11: if no such GPU exists then break
12: end if
13: e← expert contributing most to gsrc’s remote load.
14: gdst ← least loaded candidate GPU that can host e (respecting capacity N).
15: if gdst is found and duplicating e keeps Load[gdst] ≤ B then
16: Update Mnext by duplicating e to gdst.
17: Update GPU loads to reflect newly localized computations.
18: end if
19: end for
20: return Mnext

C ADAPTIVE TOKEN REBALANCER

The Adaptive Token Rebalancer determines an optimal assignment for remote tokens to resolve load
imbalance, operating on the expert placement map generated by the Hierarchical Expert Prefetcher.
Its core strategy is an iterative greedy approach that ensures the final token distribution is as close to
perfectly balanced as possible.

The algorithm begins by calculating the total load for each GPU. It then enters a loop that continues
as long as any GPU’s load exceeds a target threshold. Within the loop, it identifies the most over-
loaded GPU (gs) and selects its hottest remote expert (e)—the one responsible for the largest portion
of its remote token load. It then finds the least-loaded GPU (gd) that already hosts a replica of expert
e and has sufficient capacity.

A calculated number of tokens for expert e are then transferred from gs to gd, and the load states of
both GPUs are updated. After each transfer, the algorithm restarts its loop to re-evaluate the global
system state, ensuring it always addresses the most critical imbalance first. This process repeats until
the loads are balanced or no further beneficial transfers can be made.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 2 Adaptive Token Rebalancer

Require: Expert-to-GPU mapping M ∈ {0, 1}E×G, Local GPU loads L ∈ ZG, Remote expert
loads R ∈ ZG×E , Average target load B ∈ R, Imbalance tolerance ε ∈ (0, 1)

Ensure: Rebalanced loads R, G, and maximum load tmax

1: G[g]← L[g] +
∑

e R[g, e] for all g ∈ G ▷ Initialize total GPU loads
2: while maxg G[g] > (1 + ε)B do
3: moved← false
4: for each gs ∈ {g | G[g] > B} in descending order of G[g] do
5: for each e ∈ {e | R[gs, e] > 0} in descending order of R[gs, e] do
6: C ← {g ̸= gs |M [e, g] = 1} ▷ Find candidate destination GPUs
7: if C is not empty then
8: gd ← argming∈C G[g] ▷ Select least-loaded destination
9: cap← B −G[gd] ▷ Calculate destination’s remaining capacity

10: if cap > 0 then
11: l← min(R[gs, e], cap) ▷ Determine amount to move
12: R[gs, e]← R[gs, e]− l; R[gd, e]← R[gd, e] + l
13: G[gs]← G[gs]− l; G[gd]← G[gd] + l ▷ Perform the token transfer
14: moved← true
15: break ▷ Exit inner loop to re-evaluate the most overloaded GPU
16: end if
17: end if
18: end for
19: end for
20: if not moved then
21: break ▷ Converged or stuck, exit outer loop
22: end if
23: end while
24: tmax ← maxg G[g]; return R,G, tmax

17

	Introduction
	Background and Motivation
	Expert Load Imbalance in MoE Inference
	System-Level Solutions for Load Balancing and Limitations

	Design
	Libra Execution Flow
	Hot Expert Replication
	Token Sharding

	Implementation Details
	Evaluation
	Setup
	Results

	Conclusion
	Experimental Setup Details
	Hierarchical Expert Prefetcher
	Adaptive Token Rebalancer

