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ABSTRACT

Distributed inference of large-scale Mixture-of-Experts (MoE) models faces a crit-
ical challenge: expert load imbalance. Numerous system-level approaches have
been proposed for load balancing, but they either fail to achieve a satisfactory
level of balance or introduce new bottlenecks due to the overhead of the load bal-
ancing mechanism itself. To this end, we propose Libra, a system that achieves
near-optimal load balancing with minimal overhead. Libra adopts sophisticated
mechanisms that accurately predict future expert activations and, based on these
predictions, systematically perform load balancing. At the same time, it effectively
hides the associated overhead by reconstructing the execution flow so that these
costs are overlapped with MoE computation. Evaluations with two large-scale
state-of-the-art MoE models on 8 H200 GPUs demonstrate that Libra improves
throughput by up to 19.2%.

1 INTRODUCTION

The Mixture-of-Experts (MoE) architecture has become a cornerstone for state-of-the-art Large Lan-
guage Models (LLMs) such as DeepSeek-V3, Qwen3MoE, and GLM-4.5 (DeepSeek-AI et al., 2025;
Yang et al., 2025; GLM-4.5 Team et al., 2025). Through sparse activation, MoE enables models to
scale to trillions of parameters while keeping the training and inference computation cost manage-
able (Du et al., 2022; The Mosaic Research Team, 2024; Jiang et al., 2024; Fedus et al., 2022;
Lepikhin et al., 2020; Rajbhandari et al., 2022).

At the same time, the dynamic nature of MoE models introduces a key deployment challenge: load
imbalance. One common way to scale MoE inference is through Expert Parallelism (EP), in which
experts within MoE layers are partitioned across multiple GPUs. Under this setup, load imbalance
arises when a disproportionate number of tokens are assigned to a few hot experts, causing the GPUs
hosting them to become stragglers that determine the end-to-end latency.

Existing system-level load balancing approaches suffer from fundamental limitations, proving to
be less effective and/or inefficient (DeepSeek, 2025; Li et al., 2023; Doucet et al., 2025). Some
approaches fail to achieve satisfactory balance because they rely on ineffective heuristics, leaving
substantial room for improvement (DeepSeek, 2025; Li et al., 2023). Others achieve a considerable
level of balance but introduce new bottlenecks due to the additional operations required for load
balancing (Doucet et al., 2025).

To address these challenges, we propose Libra, a system that achieves near-optimal balance with
virtually zero overhead. In other words, it catches two birds at once: effective load balancing and
efficient realization of that mechanism. For effectiveness, Libra predicts expert activations for the
next layer with high accuracy by leveraging the observation that hidden states in LLMs evolve
slowly across consecutive blocks, and based on these predictions, applies a sophisticated algorithm
that yields near-optimal balance. For efficiency, Libra reconstructs the inference execution flow so
that any overhead incurred by this process is hidden under MoE computations. In evaluations on
eight benchmarks using two state-of-the-art MoE models, Qwen3MoE and GLM-4.5, on 8 H200
GPUs, Libra improves throughput by up to 19.2% compared to the state of the art.

2 BACKGROUND AND MOTIVATION
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2.1 EXPERT LOAD IMBALANCE IN MOE INFERENCE

The Mixture-of-Experts (MoE) (Jacobs et al., 1991; Jordan & Jacobs, 1994; Shazeer et al., 2017)
architecture enhances the capacity of Large Language Models (LLMs) by replacing the dense Feed-
Forward Network (FFN) layer in a Transformer block with a sparse MoE layer. This layer consists
of a large pool of subnetworks (experts) and a gating network that selectively activates a small
subset of experts (e.g., top-k) for each input token. This sparse activation allows MoE models to
scale to hundreds of billions or even trillions of parameters while keeping the computational cost for
inference relatively low (Du et al., 2022; The Mosaic Research Team, 2024; Jiang et al., 2024; Fedus
et al., 2022; Rajbhandari et al., 2022; Lepikhin et al., 2020). Consequently, large-scale open-source
MoE models have achieved performance comparable to leading proprietary models like GPT-4.1,
demonstrating the efficacy of this architecture (Yang et al., 2025; DeepSeek-AI et al., 2025; GLM-
4.5 Team et al., 2025; Baidu ERNIE Team, 2025; OpenAI et al., 2025; Kimi Team et al., 2025).

However, the inherent mechanism that grants MoE models their efficiency—independent token as-
signment—introduces a significant challenge: expert load imbalance. Historically, this issue was
addressed during the training phase by incorporating an auxiliary load-balancing loss term, which
encouraged a more uniform distribution of tokens across all experts (Xue et al., 2024; Muennighoff
et al., 2025; Fedus et al., 2022). While effective for balancing, this approach often came at the cost
of model performance, as it could hinder the degree of expert specialization (Wang et al., 2024; Guo
et al., 2025; Qiu et al., 2025; DeepSeek-AI et al., 2025).
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Figure 1: Intensified expert load imbalance in recent MoE models.

Reflecting this trade-off, recent state-of-the-art MoE models have moved away from strict load-
balancing loss in favor of techniques that maximize expert specialization (Yang et al., 2025; GLM-
4.5 Team et al., 2025; DeepSeek-AI et al., 2025). This aggressive pursuit of specialization has suc-
cessfully pushed model performance to new heights but has the critical side effect of intensifying
the expert load imbalance during inference. We measure this using the imbalance ratio, defined as
the maximum load on any single GPU divided by the average load across all GPUs, where a value
of 1.0 indicates a perfect balance. This trend is illustrated in Figure 1, showing a stark contrast in
the imbalance ratio between newer MoE models and their predecessors (see Appendix A for exper-
imental setup details). This reveals a fundamental trade-off: achieving state-of-the-art performance
in large MoE models exacerbates the expert load imbalance, a problem projected to become more
severe as models advance.

To efficiently serve large-scale MoE models across multiple GPUs, the standard strategy is a hybrid
approach that applies Expert Parallelism (EP) to MoE layers and Data Parallelism (DP) to non-MoE
layers (e.g., self-attention) (Perplexity AI, 2025; SGLang Team, 2025; Doucet et al., 2025; Li et al.,
2025). While this strategy is essential for managing the massive parameter counts of these models, its
performance is highly susceptible to expert load imbalance, which consequently becomes a critical
performance bottleneck (Doucet et al., 2025). This issue stems from the synchronous execution
of the MoE layers, forcing all devices to wait for the most heavily loaded GPU—the one hosting
the hot expert(s)—to finish its computation. This phenomenon, known as the staggler effect, leads
to significant idle time on less-loaded workers, severely degrading end-to-end latency and overall
system throughput. Consequently, mitigating this staggler effect has become a central challenge in
MoE inference, prompting the exploration of various system-level solutions.

2
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2.2 SYSTEM-LEVEL SOLUTIONS FOR LOAD BALANCING AND LIMITATIONS

Token 
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Figure 2: Hot expert replication and token sharding

A number of studies have attempted to mitigate load imbalance in MoE inference through system-
level techniques. Most of these approaches employ hot expert replication. Figure 2 illustrates this
approach: instead of assigning each expert to an unique GPU without redundancy, hot experts (i.e.,
experts that are likely to receive many tokens) are replicated across multiple GPUs. During MoE
execution, tokens routed to these hot experts can then be distributed across replicas on different
GPUs—a process we refer to as token sharding. This alleviates bottlenecks that would otherwise
arise if a single GPU were forced to process a disproportionate number of tokens.

In the following, we discuss three representative works that constitute the most widely used and/or
state-of-the-art techniques. They share the above approach but differ in how they perform expert
replication and token sharding. While these methods present promising results, they also exhibit
notable limitations, as their strategies for replication and sharding achieve only limited effectiveness
and/or efficiency.
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Figure 3: Overview of EPLB, Lina, and HarMoEny

EPLB. Expert Placement Load Balancer (EPLB) (DeepSeek, 2025) periodically performs expert
replication based on historical data. Figure 3(a) illustrates this process. It profiles expert popularity
over a fixed number of iterations (N in the figure) and uses the aggregated statistics to guide expert
replication. However, this strategy is less effective because past popularity does not capture the
instantaneous and dynamic variations across requests. EPLB’s token sharding is also limited in
effectiveness: once experts are replicated, tokens routed to them are randomly distributed across the
GPUs holding replicas. In short, while EPLB is relatively efficient, it is not effective in either expert
replication or token sharding.
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Lina. Figure 3(b) illustrates how Lina (Li et al., 2023) performs expert replication. Specifically, Lina
replicates experts for the upcoming block: when executing MoE computation for Block i, it performs
expert replication for Block i+ 1, thereby removing replication overhead from the critical path. For
this purpose, it relies on a pre-constructed lookup table that tracks each token’s expert-selection-
path. This path, which is the sequence of experts a token has selected in previous few layers (e.g.,
from layer i-4 to layer i-1), is used to predict which experts will be popular in the current layer (layer
i). Such expert replication, however, is limited in effectiveness. In our evaluations on eight different
benchmarks with two models (Qwen3MoE and GLM-4.5), Lina’s prediction accuracy falls below
50% (43.7% and 11.8%, respectively). Details of the experimental setup are provided in Appendix A.

For token sharding, Lina simply distributes tokens uniformly across all replicas (e.g., assigning an
equal number of tokens to each). Similar to the random token sharding in EPLB, this strategy is
largely oblivious to the actual GPU loads, leaving significant room for improvement.

HarMoEny. Figure 3(c) illustrates HarMoEny (Doucet et al., 2025), which makes decisions on ex-
pert replication based on exact routing results. In other words, expert replication is performed only
after the current input and its routing outcomes become available. This design makes replication
highly effective, as it is guided by exact information. To prevent replication overhead from appear-
ing on the critical path, HarMoEny first performs MoE computation for tokens routed to resident
experts, while replication of hot experts proceeds in parallel. Once replication completes, the MoE
computation for hot experts is executed. Token sharding is also effective, as HarMoEny employs a
sophisticated algorithm that computes a near-optimal token assignment.

Despite this effectiveness, HarMoEny suffers from efficiency issues. The overhead required to real-
ize such accurate replication and token sharding is substantial. After routing and before completing
MoE computation, HarMoEny must perform decision making through complex algorithms to de-
termine both expert replication and token sharding. Because these algorithms run synchronously on
the GPU, they extend the critical path and introduce new bottlenecks.

3 DESIGN

In this section, we propose Libra, a system for MoE inference that achieves near-optimal load balanc-
ing with minimal overhead. Unlike prior methods, Libra simultaneously addresses both effectiveness
and efficiency in hot expert replication and token sharding, thereby overcoming the key limitations
of existing approaches. For expert replication, Libra follows the spirit of Lina by prefetching hot
experts for the next layer while processing the current layer, based on prediction. This design avoids
the inefficiency observed in HarMoEny, which cannot exploit Grouped-GEMM optimizations. At
the same time, Libra employs a more accurate prediction mechanism than Lina, thereby improving
effectiveness. For token sharding, Libra adopts the strategy of HarMoEny but effectively hides its
cost from the critical path by restructuring the execution flow and leveraging the CPU.

The remainder of this section is organized as follows. Section 3.1 explains Libra ’s execution flow.
Section 3.2 describes the hot expert replication mechanism, and Section 3.3 details the token shard-
ing mechanism.

3.1 LIBRA EXECUTION FLOW

GPU

CPU

Comm.

Routing
Planning

Dispatch

Token
Sharding

Hot Expert Replication

MoE𝑙𝑜𝑐𝑎𝑙 MoE𝑟𝑒𝑚𝑜𝑡𝑒Gate Predict

Figure 4: Two-Stage Locality-Aware Execution of Libra
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Figure 4 illustrates the execution flow of Libra. The key novelty lies in its Two-Stage Locality-Aware
Execution, which splits MoE computation into two phases based on token locality: MoElocal and
MoEremote. The MoElocal phase processes tokens routed to experts residing on the same GPU as the
tokens themselves, while the MoEremote phase handles tokens that must be dispatched to other GPUs.
After decomposing the computation into these two phases, Libra first performs MoElocal, followed
by MoEremote.

This execution flow creates a time window in which the overhead of sophisticated token sharding
mechanism can be hidden. In the conventional execution flow with load balancing, MoE compu-
tation begins only after token sharding completes. By contrast, in Libra, the MoElocal phase has
no dependency on token sharding; it can start immediately after the gating function, with only the
MoEremote phase depending on the results of token sharding and Dispatch operation. This enables
token sharding mechanism to run in parallel with MoElocal.

To further enhance the effectiveness of this parallelism, Libra performs token sharding on the CPU
rather than the GPU. In addition, Libra implements dispatch using AllGather (i.e., all tokens are
transferred to all GPUs) instead of All2All, where tokens are sent only to their assigned GPU. While
this design increases the raw communication volume of dispatch, its latency impact is negligible.
More importantly, it improves efficiency by removing dispatch from the critical path: in an All2All-
based implementation, dispatch must wait for token sharding to finish, whereas in the AllGather-
based implementation, dispatch can also proceed in parallel with token sharding.

3.2 HOT EXPERT REPLICATION

As mentioned, Libra follows the spirit of Lina for hot expert replication: performing expert repli-
cation for the next layer while processing the current layer, based on prediction. However, Libra
departs substantially from Lina in both how the prediction is performed and how expert replication
planning (i.e., determining which experts to replicate to which GPUs) is carried out.

Non-MoE 
layers MoE layerGate

Gate Planningi+1

i

Block i
Replication

Non-MoE 
layers MoE layerGate

Gate Planningi+2 Replication

Block i+1

i+1

Figure 5: Hot expert replication of Libra with lookahead predictors

Predictor Design. Libra employs a lookahead predictor, leveraging a well-established property of
Transformer-based LLMs: hidden states evolve slowly across layers (Liu et al., 2023b;b; Hwang
et al., 2024). Figure 5 illustrates its concept. It speculatively executes the gating function of the
next layer using the hidden states from the current layer, and then uses the results to determine
which experts should be replicated across GPUs. This runtime-based approach achieves substantially
higher accuracy than Lina’s predictor (e.g. 70-80% vs 20-30%).

Locality-Aware Expert Replication Planning. During expert replication planning, Libra intro-
duces an additional consideration beyond load balancing: locality enhancement. In other words,
Libra not only balances load but also seeks to extend the MoElocal computation window, thereby
providing more opportunity to hide token sharding overhead.

To this end, Libra performs expert replication planning in two phases. In the first phase, each GPU
brings in N × α experts that are most frequently activated by the tokens on that GPU and are
not already resident on it, thereby extending the MoElocal computation window. Here, N denotes
the maximum number of additional experts a GPU may host, determined by its available memory
capacity and the allowable time window (a function of MoE computation time and communication
bandwidth), while α is a hyperparameter that controls what fraction of N is allocated to the first
phase. In the second phase, load balancing is performed iteratively: at each step, the hottest expert
from the most heavily loaded GPU is selected for replication and placed on the least-loaded GPU
among those that have not yet received N extra experts.
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Figure 6 illustrates the expert replication planning process of Libra with an example. First, to en-
hance locality, Libra addresses the initial placement (left), where a significant portion of tokens on
each GPU is routed to remote experts on other devices. Each GPU identifies its most requested re-
mote experts and replicates them locally. For instance, GPU 0 replicates E4 from GPU 2 to serve
its local tokens. This process converts remote tokens into local computations, securing the MoElocal
computation window necessary to hide system overhead. Second, to establish a foundation for load
balancing, the algorithm identifies and replicates heavily loaded experts to under-loaded GPUs. In
the figure, this is shown by replicating expert E2 to an under-loaded device. This facilitates effec-
tive token sharding by allowing the workload from overloaded GPUs to be redistributed, ultimately
enabling a near-perfect load balance.
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Figure 6: Locality-aware expert replication planning

3.3 TOKEN SHARDING

For token sharding, Libra adopts an algorithm similar to that used by HarMoEny, but with two
key differences. First, Libra applies token sharding only to remote tokens. Second, this process is
offloaded to the CPU.

Initialize Total GPU Loads (G)1

Is max(G) > Target Load?2

Select next hottest 
expert (e) on g_s

8

Calculate transfer amount (l) and 
Update loads for g_s and g_d

6

Find least-loaded replica GPU (g_d) with available capacity?5

Select hottest remote expert 
(e) on g_s

4
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(g_s)

3

Are there other experts 
to try on g_s?

7

Local Distribution

…
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Global Distribution

…
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Figure 7: Logic flow of the iterative greedy rebal-
ancing strategy.

Figure 7 explains the iterative greedy strategy
of token sharding. The algorithm’s main loop
begins by checking if any GPU’s load exceeds
the target threshold ( 2 ). If the system is bal-
anced, the process terminates. Otherwise, it se-
lects the most overloaded GPU, gs, to resolve
( 3 ). To find the most effective transfer, the al-
gorithm enters an inner loop, starting by select-
ing the hottest remote expert, e, on gs—the one
accounting for the largest number of its remote
tokens ( 4 ). It then searches for an optimal des-
tination: the least-loaded GPU (gd) that hosts a
replica of expert e and has enough capacity to
accept new tokens ( 5 ). A replica of the expert
is necessary on the destination GPU to process
the transferred tokens, and these replicas are en-
abled by hot expert replication. If a suitable des-
tination is found, the algorithm calculates the
number of tokens to transfer and updates the
loads on both gs and gd ( 6 ). Crucially, after
each successful transfer, the algorithm returns
to the main loop’s start ( 2 ) to re-evaluate the
entire system’s balance, ensuring it always ad-
dresses the most critical imbalance first. If no suitable destination is found ( 7 ), it attempts to trans-
fer the tokens for the next hottest expert on gs ( 8 ) until all options are exhausted, at which point it
also returns to re-evaluate the global state. The full algorithm is detailed in Appendix C.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 IMPLEMENTATION DETAILS

We implement Libra atop the SGLang (v0.4.10) LLM serving framework. Our core mechanisms
for expert replication planning and token sharding are implemented in Cython to ensure minimal
overhead and are integrated as native modules during SGLang’s build process.

To efficiently perform hot expert replication, we leverage PyTorch SymmetricMemory for copy
engine-based P2P transfers. We employ a double-buffering strategy by pre-allocating two large
buffers: an even buffer and an odd buffer. During the execution of an even-numbered MoE
layer, original and duplicated experts are gathered in the even buffer to be processed via a high-
performance Grouped-GEMM kernel. Concurrently, the system loads the necessary experts for the
subsequent odd-numbered layer into the odd buffer. When processing an odd-numbered MoE layer,
the roles are reversed: computation utilizes the odd buffer while the even buffer is populated for the
next layer. This pipelining mechanism effectively hides the expert replication overhead by overlap-
ping the P2P copy operations with the ongoing computation.

5 EVALUATION

We conduct a comprehensive evaluation to demonstrate the effectiveness of Libra. Our experiments
are designed to answer three key questions: (1) How does Libra’s prefill performance compare
against baselines? (2) How does the prediction accuracy of Libra’s speculative execution compare
against existing methods like Lina? (3) How stable and robust is Libra’s performance under work-
loads with dynamic and shifting token distributions?

5.1 SETUP

Model and Data. We evaluate Libra using two representative state-of-the-art large MoE models:
Qwen3MoE (235B) (Yang et al., 2025) and GLM-4.5 (355B) (GLM-4.5 Team et al., 2025). To
ensure coverage of a wide range of inputs, we use eight datasets: BookCorpus (Zhu et al., 2015),
Codeforces (Penedo et al., 2025), DeepSeek-Prover (Xin et al., 2024), FineWeb (Penedo et al.,
2024), GSM8K (Cobbe et al., 2021), HellaSwag(Zellers et al., 2019), HumanEvalPlus (Liu et al.,
2023a), and LMSYS-Chat-1M (Zheng et al., 2023). All experiments are run using BF16 precision.

Environments. All experiments are conducted on a single node equipped with 8 NVIDIA
H200-SXM5 GPUs, each with 141 GB of HBM3e memory. Intra-node communication leverages
NVSwitch with 900 GB/s of P2P bandwidth.

Baselines. We compare Libra against three baselines. The vanilla MoE implementation in SGLang
(v0.4.10) serves as our foundational baseline, representing a standard system without advanced load
balancing. For the widely adopted proactive expert replication approach, we use EPLB DeepSeek
(2025) from its implementation within SGLang. As the strongest baseline, we evaluate against
Lina Li et al. (2023). Since no public implementation of Lina is available, we developed an in-house
version built on SGLang, faithfully following the description in the original paper.

Metrics. The primary performance metric is prefill throughput, measured in tokens per second.
We assume a prefill-decode disaggregated serving system where the prefill and decode phases are
separated and handled by different GPUs (Zhong et al., 2024b; Hu et al., 2025; Feng et al., 2025).
and therefore target only the prefill phase in our evaluation. We also measure the imbalance ratio
(defined as the load of the most burdened GPU divided by the average load across all GPUs) to
analyze the effectiveness of load balancing.

5.2 RESULTS

Throughput Results. First, Libra substantially improves the performance of the prefill phase. As
shown in Figure 8, Libra achieves the highest throughput across all tested models and datasets.
The four datasets for this evaluation were specifically chosen from a total of eight because they ex-
hibited the most severe expert load imbalance, allowing for a clear demonstration of performance
differences between the laod balancing systems. Notably, This evaluation was conducted under an
experimental setup deliberately designed to be highly advantageous for the baseline systems. For
Lina, its expert-selection-path table was constructed using the same dataset as the evaluation and
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Figure 9: Throughput fluctuation and imbalance ratio under a dynamic workload.

its expert prefetching allowed each GPU to hold 8 additional experts. Similarly, EPLB’s expert
placement was determined by profiling on the identical dataset. It statically placed 8 identified hot
experts—one on each of the 8 GPUs—across every MoE layer. This static replication, however,
results in higher memory consumption compared to the dynamic approaches of Lina and Libra be-
cause of a large number of layers. To meet the memory budget with Lina, Libra was configured with
N set to 8 and α set to 0.5. Despite these favorable, even biased, conditions for the baselines, Libra
consistently and significantly outperforms them for both Qwen3MoE and GLM-4.5. These results
confirm that Libra’s dynamic load balancing effectively resolves the straggler problem, leading to
superior computational efficiency and overall system performance.

Per-Iteration Fluctuation. Libra also delivers significantly higher and more stable throughput. Fig-
ure 9 illustrates this robustness using a mixed-dataset designed to simulate dynamic shifts in expert
load imbalance. For this test, Lina’s expert-selection-path table was constructed using a workload
created by mixing one-eighth of the build split from each of the eight datasets. This comparison
centers on dynamic systems like Lina and Libra, excluding EPLB, as its reliance on periodic pro-
filing and static reconfiguration is ill-suited for workloads where imbalance shifts frequently and
intensely. While baseline systems suffer from volatile performance that plummets as the imbalance
ratio spikes, Libra effectively decouples its performance from the input distribution. By maintaining
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Qwen3MoE

Dataset Lina Libra

BookCorpus 47.3 91.7
DeepSeek-Prover-V1 45.4 86.5
HellaSwag 37.5 86.6
HumanEvalPlus 44.5 87.0

GLM-4.5

Dataset Lina Libra

BookCorpus 11.7 79.6
DeepSeek-Prover-V1 12.7 72.9
HellaSwag 11.5 76.6
HumanEvalPlus 11.2 72.7

Table 1: Prediction accuracy.

a near-perfect imbalance ratio close to 1.0, Libra provides consistently high throughput, proving its
resilience to the dynamic nature of expert load imbalance.

Prediction Accuracy. We quantitatively evaluate the accuracy of Libra’s predictor for hot expert
replication compared against Lina. Table 1 presents a direct comparison between the prediction
accuracy of Libra’s speculative execution-based approach and Lina’s offline-constructed lookup ta-
ble based method on the Qwen3MoE and GLM-4.5 models. Accuracy is defined as the fraction of
correctly predicted experts for each token, where the set of actually activated experts serves as the
ground truth. We construct Lina’s expert-selection-path table on the build split of mixed dataset,
then evaluate on the evaluation split of four datasets. Evaluation setup is detailed in Appendix A.

The results reveal a stark contrast between the two methods. Libra’s predictor consistently achieves
a high and stable accuracy in the 70-90% range across all datasets, demonstrating the effective-
ness of its runtime prediction based on current-layer hidden states. In contrast, Lina’s lookup-based
predictor shows noticeably lower accuracy across datasets, highlights the critical generalization lim-
itations of an offline-built lookup table. This effect is more pronounced on GLM-4.5, where Lina
successfully identifies fewer than one correct experts between top-8 experts. These findings confirm
that Libra ’s dynamic prediction mechanism is significantly more robust and reliable for handling
diverse and unpredictable workloads.

6 CONCLUSION

We introduces Libra, a dynamic load balancing system addressing intensified expert load imbalance
in modern Mixture-of-Experts (MoE) models. Libra proposes Two-Stage Locality-Aware Execu-
tion, an innovative paradigm hiding dynamic load balancing overhead by overlapping it with ongo-
ing GPU computations. This is enabled by two synergistic core components: Hierarchical Expert
Prefetcher, using speculative execution for highly accurate (70-80%) expert prediction to strategi-
cally prefetch the necessary experts for the next layer, and Adaptive Token Rebalancer, comput-
ing an optimal assignment schedule by accounting for processed local token load. Implemented on
SGLang, Libra demonstrates state-of-the-art performance, reducing the prefill throughput by up to
19.2% while maintaining an imbalance ratio of nearly 1.0 under dynamic workloads. Libra thus
achieves dynamic load balancing with virtually zero-overhead for efficient serving of large-scale
MoE models.
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A EXPERIMENTAL SETUP DETAILS

Models. For Figure 1 1, we compare the imbalance ratio across recent MoE families by pairing
models with different load-balancing strategies during training. Within the Qwen family, we evalu-
ate Qwen2MoE and Qwen3MoE. Qwen2MoE has 57 billion total parameters and 14 billion activated
parameters, and it utilizes a micro-batch level auxiliary load-balancing loss during training to ensure
load balance. In contrast, Qwen3MoE, with 235 billion total and 22 billion activated parameters, for-
goes this term in favor of a global-batch load balancing loss, a strategy that maximizes expert special-
ization while still addressing balance. The DeepSeek family shows a similar contrast: DeepSeek-V2
(236B total, 21B activated) also employs an auxiliary load-balancing loss, whereas DeepSeek-V3
(671B total, 37B activated) improves training efficiency by adopting the auxiliary-loss-free load
balancing technique. For all other experiments, we evaluate Libra and baselines on Qwen3MoE and
GLM-4.5, models that are trained without such fine-grained balancing losses. GLM-4.5 has 355
billion total parameters and 32 billion activated parameters.

Datasets. We evaluate Libra and baselines on eight datasets: BookCorpus (Zhu et al., 2015), Code-
forces (Penedo et al., 2025), DeepSeek-Prover (Xin et al., 2024), FineWeb (Penedo et al., 2024),
GSM8K (Cobbe et al., 2021), HellaSwag(Zellers et al., 2019), HumanEvalPlus (Liu et al., 2023a),
and LMSYS-Chat-1M (Zheng et al., 2023). Unless noted otherwise, each dataset contributes a total
of 2.0M tokens. The first 1.6M tokens form the build split for EPLB offline profiling and for con-
structing Lina’s prediction table. The next 0.4M tokens form the evaluation split used for testing.
Figure 1 is the only exception, which uses a 0.07% subset of the BookCorpus dataset. For Ta-
ble 1, we build Lina’s expert-selection-path table is on a mixed workload that uniformly interleaves
the build splits of all eight datasets. We then evaluate Lina and Libra separately on each dataset’s
evaluation split. Figure 8 reports results on BookCorpus, DeepSeek-Prover-V1, HellaSwag, and Hu-
manEvalPlus dataset. Figure 9 uses a shuffuled workload constructed from all eight datasets.

Environments. All expertiments use a single-node system equipped with eight NVIDIA H200-
SXM5 GPUs, each with 141GB of HBM3e memory. The server configuration is summarized in
Table 2.

Table 2: Server configuration

CPU 2× Intel Xeon Platinum 8580 (128 cores)
GPU 8× NVIDIA H200-SXM5-141GB
System Memory 32× 64 GB DDR5-5600 (total 2,048 GB)
GPU Memory 141GB HBM3e per GPU
GPU Interconnect Connected with NVSwitch (900GB/s bandwidth)

Metrics. Table 1 reports accuracy, defined as the fraction of tokens whose ground-truth experts
appear in the predicted top-k set. Figure 8 and Figure 9 report prefill throughput in tokens per
second. Throughout these experiments, we adopt Prefill-Decode disaggregation (Patel et al., 2024;
Zhong et al., 2024a) setup, and therefore we evaluate preill only as we target prefill phase. Figure 1
and Figure 9 also report the imbalance ratio, defined as the load of the most heavily utilized GPU
divided by the average load across all GPUs.

B HIERARCHICAL EXPERT PREFETCHER

The Hierarchical Expert Prefetcher optimally places experts on GPUs for the next MoE layer. This
process is crucial for facilitating effective load balancing and extending the MoElocal computation
window, which in turn hides system overhead. The algorithm operates in two main phases after an
initial setup.

First, it duplicates ”local hot experts”—those most frequently requested by a GPU’s local tokens
but residing on other GPUs—onto the source GPU itself. This strategically increases the number
of local tokens that can be processed without inter-GPU communication, creating a sufficient time
window for the Adaptive Token Rebalancer to execute in parallel without affecting the critical path.

Second, the algorithm iteratively balances the remaining load by duplicating global hot experts. It
identifies the most overloaded GPU and replicates its hottest expert to the least-loaded GPU that has
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available capacity. This ensures that the overall load is distributed as evenly as possible before the
next layer’s computation begins. The final output is an optimized expert placement map that serves
as the foundation for the rebalancing stage.

Algorithm 1 Hierarchical Expert Prefetcher

Inputs: Predicted expert IDs for upcoming tokens next topk ids, Total number of experts E, To-
tal number of GPUs G, Max duplicated experts per GPU N , Number of local hot experts to
duplicate L.

Outputs: A binary matrix for expert placement on GPUs: Mnext ∈ {0, 1}E×G.

1: Calculate ExpertLoad[g, e] (requests for expert e from GPU g) based on next topk ids.
2: Initialize Mnext by assigning each expert to its home GPU.
3: for each GPU gs do ▷ Phase 1: Duplicate Local Hot Experts
4: Identify top L remote experts most requested by gs.
5: Duplicate these experts to gs.
6: end for
7: Calculate initial GPU loads based on the current mapping in Mnext.
8: B ← Target balanced load per GPU.
9: for i = 1 to (N − L)×G do ▷ Phase 2: Balance Load via Iterative Duplication

10: gsrc ← most overloaded GPU where load > B.
11: if no such GPU exists then break
12: end if
13: e← expert contributing most to gsrc’s remote load.
14: gdst ← least loaded candidate GPU that can host e (respecting capacity N ).
15: if gdst is found and duplicating e keeps Load[gdst] ≤ B then
16: Update Mnext by duplicating e to gdst.
17: Update GPU loads to reflect newly localized computations.
18: end if
19: end for
20: return Mnext

C ADAPTIVE TOKEN REBALANCER

The Adaptive Token Rebalancer determines an optimal assignment for remote tokens to resolve load
imbalance, operating on the expert placement map generated by the Hierarchical Expert Prefetcher.
Its core strategy is an iterative greedy approach that ensures the final token distribution is as close to
perfectly balanced as possible.

The algorithm begins by calculating the total load for each GPU. It then enters a loop that continues
as long as any GPU’s load exceeds a target threshold. Within the loop, it identifies the most over-
loaded GPU (gs) and selects its hottest remote expert (e)—the one responsible for the largest portion
of its remote token load. It then finds the least-loaded GPU (gd) that already hosts a replica of expert
e and has sufficient capacity.

A calculated number of tokens for expert e are then transferred from gs to gd, and the load states of
both GPUs are updated. After each transfer, the algorithm restarts its loop to re-evaluate the global
system state, ensuring it always addresses the most critical imbalance first. This process repeats until
the loads are balanced or no further beneficial transfers can be made.
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Algorithm 2 Adaptive Token Rebalancer

Require: Expert-to-GPU mapping M ∈ {0, 1}E×G, Local GPU loads L ∈ ZG, Remote expert
loads R ∈ ZG×E , Average target load B ∈ R, Imbalance tolerance ε ∈ (0, 1)

Ensure: Rebalanced loads R, G, and maximum load tmax

1: G[g]← L[g] +
∑

e R[g, e] for all g ∈ G ▷ Initialize total GPU loads
2: while maxg G[g] > (1 + ε)B do
3: moved← false
4: for each gs ∈ {g | G[g] > B} in descending order of G[g] do
5: for each e ∈ {e | R[gs, e] > 0} in descending order of R[gs, e] do
6: C ← {g ̸= gs |M [e, g] = 1} ▷ Find candidate destination GPUs
7: if C is not empty then
8: gd ← argming∈C G[g] ▷ Select least-loaded destination
9: cap← B −G[gd] ▷ Calculate destination’s remaining capacity

10: if cap > 0 then
11: l← min(R[gs, e], cap) ▷ Determine amount to move
12: R[gs, e]← R[gs, e]− l; R[gd, e]← R[gd, e] + l
13: G[gs]← G[gs]− l; G[gd]← G[gd] + l ▷ Perform the token transfer
14: moved← true
15: break ▷ Exit inner loop to re-evaluate the most overloaded GPU
16: end if
17: end if
18: end for
19: end for
20: if not moved then
21: break ▷ Converged or stuck, exit outer loop
22: end if
23: end while
24: tmax ← maxg G[g]; return R,G, tmax
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