
The Role of Diverse Replay for Generalisation in
Reinforcement Learning

Max Weltevrede
Delft University of Technology

Delft, 2628 XE, The Netherlands
m.r.weltevrede@tudelft.nl

Matthijs T.J. Spaan
Delft University of Technology

Delft, 2628 XE, The Netherlands

Wendelin Böhmer
Delft University of Technology

Delft, 2628 XE, The Netherlands

Abstract

In reinforcement learning (RL), key components of many algorithms are the explo-
ration strategy and replay buffer. These strategies regulate what environment data
is collected and trained on and have been extensively studied in the RL literature.
In this paper, we investigate the impact of these components in the context of
generalisation in multi-task RL. We investigate the hypothesis that collecting and
training on more diverse data from the training environments will improve zero-
shot generalisation to new tasks. We motivate mathematically and show empirically
that generalisation to tasks that are “reachable” during training is improved by
increasing the diversity of transitions in the replay buffer. Furthermore, we show
empirically that this same strategy also shows improvement for generalisation to
similar but “unreachable” tasks which could be due to improved generalisation of
the learned latent representations.

1 Introduction

An important aspect of reinforcement learning research is investigating methods that can generalise
from the training conditions to various new and unseen deployment scenarios. In this paper, we refer
to generalisation as the goal of transferring a policy trained on a set of training tasks to a set of testing
tasks. Popular approaches in the current literature try to improve generalisation performance by
increasing the similarity or explicitly tackling the differences between the training and testing tasks
(Kirk et al., 2023). What these methods have in common is that they focus on the differences between
the distributions of tasks, rather than the specific data (states and actions) encountered during those
tasks.

Key components of many reinforcement learning algorithms are the strategies to collect, store
and sample data on which to train. For this reason, extensive literature exists on the problems
of exploration (collect) (Amin et al., 2021), replay buffers (store) (Isele & Cosgun, 2018; Bruin
et al., 2016) and replay sampling strategies (sample) (Schaul et al., 2016; Zhang & Sutton, 2017;
Andrychowicz et al., 2017). It is common in generalisation approaches to treat the exploration and
replay storing and sampling strategies in the same way one would in singleton RL: only explore and
replay new transitions to the extent necessary to learn the current task.

In this paper, we investigate the role of the exploration strategy and the replay buffer on generalisation
performance beyond the singleton perspective. We theorise that a more diverse strategy of collecting
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and sampling training data will improve performance in many generalisation scenarios (see Figure 1).
Our key contributions are the following:

• We define a measure of reachability that will allow us to prove that more diverse exploration
and replay strategies lead to improved generalisation performance under certain restrictive
conditions.

• We empirically show that generalisation to reachable tasks benefits from more diverse
exploration and replay strategies.

• We show empirically that generalisation to similar but unreachable tasks also benefits from
more diverse exploration and replay strategies.

• We analyse the latent representations induced by more diverse exploration and replay
strategies and find they are likely responsible for the improved generalisation performance.

2 Background

Training Testing

Figure 1: Example of a generalisation problem to
various 4-room tasks. With sufficient exploration
(cyan) in the training tasks, the agent can encounter
states that will likely help it generalise to the test-
ing tasks.

The goal of reinforcement learning is to opti-
mise decision-making in a Markov decision pro-
cess (MDP). A Markov decision process is often
denoted as a 6-tuple M = (S,A, T,R, p0, γ)
where S is a set of states called the state space,
A a set of actions called the action space, T :
S × A → P(S) a transition probability func-
tion (where P(X ) denotes the set of probability
distributions over set X ), R : S × A → R a
reward function, p0 : P(S) a distribution of
initial states and γ ∈ [0, 1) a discount factor.
In reinforcement learning, the goal is to find
the policy function π : S → P(A) that max-
imises in expectation the discounted sum of fu-
ture rewards: π∗ := argmaxπ Eπ

[∑∞
t=0 γ

trt
]

where π∗ is the optimal policy and Eπ de-
notes the expectation over the Markov chain
(s0, a0, r0, s1, a1, r1, ...) induced by the policy
π, initial state distribution p0, transition function
T and reward function R (Akshay et al., 2013).
The steady-state distribution ρπ : P(S) of the Markov chain induced by policy π in MDP M defines
the proportion of time spent in each state as the number of transitions within M goes to infinity.
This distribution can be proven to be unique under certain conditions on the policy π and MDP M
(Konstantopoulos, 2009).

In Q-learning the goal is to learn the optimal Q-function Q∗(s, a) := Eπ∗
[∑∞

t=0 γ
trt

∣∣s0=s

a0=a

]
which

represents the expected future discounted return given a current state s and action a. Deep Q learning
(DQN, Mnih et al., 2015) is a popular deep reinforcement learning algorithm that trains a neural
network qϕ to satisfy the optimal Bellman equation Q∗(s, a) = R(s, a) + γmaxa′ Q∗(s′, a′). It
achieves this by minimising the mean squared error between the left-hand side and right-hand side
of the optimal Bellman equation minϕ E

[
(r + γmaxa′ qϕ′(s′, a′) − qϕ(s, a))

2
∣∣⟨s, a, r, s′⟩ ∼ D

]
,

where qϕ′ is a target network which is periodically updated with the parameters of qϕ and D is
a dataset of transitions called the replay buffer. The function qϕ is trained online by interleaving
gradient steps with data collection for the replay buffer. Typically, the replay buffer has fixed size
and stores transitions collected during training in a first-in-first-out (FIFO) principle. Transitions are
commonly collected with an ϵ-greedy exploration policy: πϵ(a|s) = (1 − ϵ)π(a|s) + ϵ 1

|A| , which
selects random actions with probability ϵ or a ‘greedy’ action with probability 1 − ϵ (according
to π(a|s) = 1 if a = argmaxa′ qϕ(s, a

′) and π(a|s) = 0 otherwise). The inherent generalising
capabilities of the neural network in DQN allow the agent to learn even in continuous state spaces
(where it is impossible to collect experience for every possible state).
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2.1 Contextual Markov Decision Process

A contextual MDP (CMDP, Hallak et al., 2015) is a specific type of MDP where the state space S is
factored into an underlying state space S′ and a context space C: S = S′ × C. The context c ∈ C is
drawn at the start of an episode and fixed thereafter. The context can be thought of as defining the
task an agent has to solve in a multi-task setup and we will refer to contexts as tasks from now on. In
this paper, we will assume the task c is fully observable, which means the state s0 ∈ S at the start of
an episode fully determines the task the agent has to solve that episode. An example can be found in
Figure 1 where the agent’s starting location and orientation, the goal location and the location of the
doorways (referred to as the 4-room topology) fully determines the task to be solved in that episode.

2.2 Zero-shot Policy Transfer

It is possible to define a generalisation setting by defining an MDP M|C with a task space C and task
sets Ctrain, Ctest ⊆ C sampled during training and testing. For example, in a typical generalisation
setting the agent is tested in the MDP M|Ctest

on tasks Ctest that are unseen (held-out) during
training (Ctrain ∪ Ctest = ∅).

In particular, we consider in this paper the zero-shot policy transfer (ZSPT) problem class as defined
in Kirk et al. (2023). A ZSPT problem is defined through a choice of training and testing task sets
Ctrain, Ctest with the objective of maximising return in the testing MDP M|Ctest

, whilst only being
allowed to train on M|Ctrain

. The agent is expected to perform zero-shot generalisation in the testing
tasks, so without a fine-tuning or adaptation period. We assume the task c is fully observable at the
start of an episode, and therefore determined by the starting state s0 ∈ S, we will refer to the task
and starting state interchangeably (M|Ctrain

becomes M|Strain
0

where Strain
0 is the set of starting

states s0 ∈ Strain
0 that correspond with Ctrain).

3 Related Work

Zero-shot generalisation in contextual MDPs is a well-studied area of research with a diverse range
of different approaches. One branch of research is focused on increasing the similarity between
the training and testing task sets. Some examples of this are the use of (visual) data augmentations
(Raileanu et al., 2021; Lee et al., 2020; Zhou et al., 2021) or (dynamical) domain randomisation
(Tobin et al., 2017; Sadeghi & Levine, 2017; Peng et al., 2018) to increase the complexity of the
training tasks, with the aim to subsume the testing tasks in this increased training complexity. Another
branch of research is focused on explicitly handling the (expected) differences between training and
testing. This includes approaches that use inductive biases (Raileanu et al., 2021; Higgins et al., 2017;
Zambaldi et al., 2018, 2019; Kansky et al., 2017; Wang et al., 2021; Tang et al., 2020; Tang & Ha,
2021) or non-RL specific regularisation (Cobbe et al., 2019; Ada et al., 2019; Tishby & Zaslavsky,
2015; Igl et al., 2019; Lu et al., 2020; Eysenbach et al., 2021) to overcome the challenges induced by
the variations between training and testing.

Multi-task reinforcement learning can sometimes refer to several agents jointly learning to solve a
set of tasks whilst sharing some form of knowledge amongst the agents (Vithayathil Varghese &
Mahmoud, 2020). However, in this paper, we exclusively refer to multi-task reinforcement learning
as a single agent learning to solve multiple tasks in a contextual MDP.

All the above-mentioned works use techniques to improve generalisation that are not necessarily
specific to RL. For example, most of the work applies ideas from supervised learning focused on
the differences between the training and testing datasets to the differences between the training and
testing task sets, rather than the data collected from those tasks. Others (Igl et al., 2021; Lyle et al.,
2022) do look into RL-specific problems with generalisation but are mostly focused on the effects
non-stationary data or temporal difference update rules have on the generalisation capacity of neural
networks. The work most similar to ours is a workshop paper (Jiang et al., 2022) that proposes a new
exploration algorithm motivated by a similar argument as used in our paper. Our work differs in that
we don’t propose a new exploration method, but instead investigate how and why exploration and
replay buffer strategies affect generalisation performance in certain types of contextual MDPs. As
such, in Section 5.5 we observe primarily a representation learning effect which seems in contrast
to some of the results in (Jiang et al., 2022) that suggest RL-specific effects beyond representation
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learning. Furthermore, we make a clear distinction between reachable and unreachable generalisation
as two distinct scenarios requiring separate theoretical motivations.

4 Method

In the multi-task RL literature, exploration and experience replay is often treated as one would do
in singleton RL: only explore and replay new transitions enough to learn the current task. In this
section, we will define a generalisation setting to reachable states and use it to prove that the singleton
perspective on exploration and experience replay can be sub-optimal for generalisation in multi-task
RL.

     
Full 
Reachable 

 Training 
 Testing

S

ρπ*
ρπ*

Figure 2: Illustrative example of
the state space covered by the set of
reachable states Sr(M|Strain

0
) and

the steady state distributions ρπ
∗

of the optimal policy during train-
ing and testing in a ZSPT-R prob-
lem. It illustrates how a broader
optimal coverage of the reachable
state space during training can im-
prove test time performance.

We define a reachable state sr as a state for which there exists
a policy whose probability of encountering sr during training
is non-zero. This gives us the following definition of a set of
reachable states Sr in an MDP M|Strain

0
.1

Definition 1. The set of reachable states Sr(M|Strain
0

) consists
of all states sr for which there exists a sequence of actions that
give a non-zero probability of ending up in sr when performed
in the MDP M|Strain

0
.

Corollary 1.1. Any state s′ that is reachable from a state
s ∈ Sr(M|Strain

0
) in the reachable set, has to be itself in

the reachable set: s′ ∈ Sr(M|Strain
0

).

Corollary 1.1 entails that you cannot leave the reachable set
Sr(M|Strain

0
) through interaction with the environment.

Using this definition of reachable states we can define a particu-
lar instance of the ZSPT problem. We define ZSPT to reachable
states (ZSPT-R) as a ZSPT problem where the initial states
during testing Stest

0 are part of the set of reachable states during
training Stest

0 ⊂ Sr(M|Strain
0

). This particular instance of the
ZSPT problem has an interesting property.

Corollary 1.2. An optimal policy π that achieves maximal return from any state in the reachable
state space Sr(M|Strain

0
), will have optimal performance in the ZSPT-R problem setting.

Recall that performance in the ZSPT problem is defined as the performance in the testing MDP
M|Stest

0
, which in the case of ZSPT-R, has a state space that consists only of reachable states (due

to Corollary 1.1) It follows naturally that an optimal policy on the entire reachable state space
Sr(M|Strain

0
) also has to be optimal in M|Stest

0
.

So, in ZSPT-R it is better to explore and replay transitions from all over the reachable state space:
even though some states might be irrelevant during training (not part of the steady-state distribution
of the optimal policy), they could be crucial during testing (see Figure 2). This is in contrast with
singleton RL, where it can be (correctly) assumed that states not encountered by the optimal policy
during training, will not be encountered by the optimal policy during testing.

The above holds for an idealised scenario where it is possible to learn an exact optimal policy for
every reachable state. However, with function approximation in large state-action spaces, the exact
optimal solution might not always be achievable. Nevertheless, a more diverse exploration and replay
of the reachable state space will likely improve generalisation performance.

This insight does not directly carry over to the general ZSPT problem: if testing is no longer
constrained to reachable states Sr(M|Strain

0
), then training on a larger part of the reachable state

space might not improve test performance. However, with the inherent generalisation capabilities of
neural networks, we still expect a more diverse replay buffer to benefit generalisation to unreachable
(but similar) states through learning better generalising latent representations.

1Similar to a definition of reachability for Markov chains in Velasquez et al. (2023)
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5 Experiments

In this section, we empirically evaluate the role of a diverse replay buffer on generalisation to new
starting states. We first validate that increased diversity of the replay buffer (through exploration and
replay buffer parameters) in the function approximation setting will lead to a policy that is optimal on
a larger part of the reachable state space. We then evaluate the effect a more diverse replay buffer has
on generalisation performance to both reachable and unreachable starting states. Lastly, we analyse
the latent representations of the agents trained with different levels of replay buffer diversity.

5.1 4-Room Grid World

Our investigation is performed in a small 4-room grid world (Figure 1) adapted from the FourRooms
environment from the MiniGrid benchmark (Chevalier-Boisvert et al., 2018). The state space
(including the task space) is fully observable and has three actions: move forward, turn left, and turn
right. Between training and testing the only differences are the starting states s0 (or equivalently,
tasks), which vary along the following dimensions: the 4-room topology, the starting location of the
agent, the direction the agent is facing and the location of the goal. During training, the agent will
encounter a fixed number of different start states and will be tested on a number of unseen starting
states (generated from the same distribution). See Appendix A for more details on the environment.

In this environment, reachability is regulated through variations in the goal location and topology.
If two states share their topology and goal location, then they are both reachable from one another.
Conversely, if two states differ in either the topology or goal location, they are unreachable.

5.2 Policy Optimality in Reachable Space

In this experiment, training is done on a fixed set of 40 starting states which differ in their agent
location, agent direction, goal location and topology. The agent is trained using DQN with linearly
decaying ϵ-greedy exploration and a FIFO replay buffer. In order to increase the diversity of transitions
in our replay buffer, we vary the amount of exploration performed by varying the duration over which
ϵ is linearly decayed. Note that increasing the amount of exploration does not necessarily lead to a
consistently more diverse replay buffer, as the more diverse exploratory data might drop out of the
first-in-first-out buffer. To avoid this, we use a replay buffer size equal to the total length of training
(500.000 environment steps). Therefore, the replay buffer never drops any experiences and varying
the amount of exploration induces different ratios of diversity in the buffer. See Appendix B for more
training details.
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(b) Policy Optimality
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Figure 3: Left: the mean undiscounted return during training when following the greedy policy
π(s) = argmax′a Q(s, a′). Middle: fraction of reachable space where the greedy policy is optimal.
Right: ϵ in ϵ-greedy exploration as it is decayed during training. Different degrees of replay buffer
diversity are compared by using a sufficiently large replay buffer and varying the duration over which
exploration is decayed. Shown are the mean and a 95% confidence interval over 100 seeds.

We compare five different linearly decaying ϵ−greedy strategies (decayed over the first 50.000,
100.000, 200.000, 300.000 and 500.000 environment steps) and how they affect performance of
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the greedy policy π(s) = argmax′a Q(s, a′) during training and the fraction of reachable space for
which our greedy policy is optimal. The results can be found in Figure 3. Comparing Figures 3a
with 3b shows a clear trend that more exploration, and therefore more diverse data in the replay
buffer, leads to a higher fraction of reachable state space where the policy is optimal whilst training
performance is mostly unaffected.

5.3 Generalisation To Unseen Starting States

For evaluating the generalisation capabilities, the agent is trained on the same 40 starting states as the
previous experiment and tested on 40 new and unseen starting states. Two testing sets are constructed
to evaluate the agent’s performance on both reachable and unreachable starting states.

The 100% reachable test set is constructed by taking every training start state and changing only
the agent location and agent direction (keeping the topology and goal location the same). The 0%
reachable (unreachable) test set is constructed by taking every start state in the 100% reachable test
set and changing the topology to one not encountered during training (keeping the agent location,
direction and goal location the same as the 100% reachable set).
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(b) Testing performance
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Figure 4: The mean undiscounted return when following the greedy policy π(s) = argmax′a Q(s, a′).
Different degrees of replay buffer diversity are compared by using a sufficiently large replay buffer
and varying the duration over which exploration is decayed. Left: during training. Middle: when
testing on a 100% reachable test set. Right: when testing on a 0% reachable test set. Shown are the
mean and a 95% confidence interval over 100 seeds.

Figure 4 shows the greedy performance during training, testing on 100% reachable start states and
testing on 0% reachable start states. Figure 4a shows the same training performance as can be found
in Figure 3a. Comparing Figure 4a with 4b, there is a clear trend that a more diverse replay buffer
leads to better generalisation to reachable starting states (higher test performance whilst training
performance is largely unaffected). Comparing this with Figure 3b shows a correlation between a
higher fraction of reachable space where the policy is optimal and higher generalisation performance
to reachable states. Figure 4c shows that this trend even holds for generalisation to unreachable
starting states.

5.4 Uniform Replay over State-action Space

In order to further solidify the role of a diverse replay buffer, the experiment is repeated but with a
S,A-uniform replay buffer. An S,A-uniform replay buffer samples its mini-batches uniformly over
the state-action space (S ×A)D ⊆ S ×A supported in the buffer (S ×A)D = {(s, a) | (s, a) ∈ D},
rather than uniformly over the experiences (s, a, r, s′) ∈ D in the buffer (which we call buffer-uniform
here). The resulting agent is trained (approximately) uniform over the reachable state-action space
(assuming sufficient exploration that ensures every (s, a) is in the buffer at least once). We observed
the S,A-uniform buffer to train slightly slower and therefore compensated by increasing the total
amount of training steps (1 million steps).

Figure 5 shows the greedy performance of the S,A-uniform buffer during training and testing and
its policy optimality in reachable space. For comparison, the best performing buffer-uniform replay

6



0 200 400 600 800 1000
Frames (1e3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Un
di

sc
ou

nt
ed

 M
ea

n 
Re

tu
rn

Greedy Performance 
 Training

Replay Strategy:
S, A-uniform
Buffer uniform

0 200 400 600 800 1000
Frames (1e3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n 

W
he

re
 G

re
ed

y 
Ac

tio
n 

Is 
Op

tim
al

Policy Optimality 
 in Reachable Space

0 200 400 600 800 1000
Frames (1e3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Un
di

sc
ou

nt
ed

 M
ea

n 
Re

tu
rn

Greedy Performance 
 Testing (100% reachable)

0 200 400 600 800 1000
Frames (1e3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Un
di

sc
ou

nt
ed

 M
ea

n 
Re

tu
rn

Greedy Performance 
 Testing (0% reachable)

Figure 5: Performance of a uniform over state-action space (S,A-uniform) replay sampling strategy
compared to the regular (buffer-uniform) replay sampling strategy. Both methods have ϵ-greedy
exploration decayed over 500.000 steps. Shown are the mean and 95% confidence interval over 100
seeds.

buffer (ϵ-greedy decayed over the first 500.000 steps) is shown for 1 million training steps. The
exploration for the S,A-uniform buffer is also decayed over 500.000 steps to ensure sufficient
coverage of reachable space and a fair comparison between the two methods. The figure shows the
testing performance of the buffer-uniform replay buffer starts declining again after 500.000 steps.
This is in line with our previous results as the fraction of diverse data sampled from the replay buffer
starts declining after exploration has decayed. In contrast, the S,A-uniform replay buffer does not
suffer from this decline in diversity and instead keeps improving as training continues, outperforming
the buffer-uniform buffer in everything other than training performance.

5.5 Analysing Latent Representation

32 32 32

9x
9

CNN

512

25
92

FC1

3

51
2

FC2

Figure 6: The architecture used in the experiments
in Section 5.5. The dark-shaded regions indicate
ReLU activation functions.

The following experiment examines what part
of the network is responsible for the difference
in (generalisation) performance of the agents
trained in Section 5.3. We analyse the learned
latent representations by fine-tuning them on
the (narrow) steady-state distribution ρπ

∗
of the

optimal policy during training. By evaluating
on the entire reachable space and the test sets
after fine-tuning we can evaluate whether the
latent representations have learned to generalise
or not.

The experiment is structured as follows. In order
to isolate the influence of the latent representa-
tion, we simplify the network by replacing the
fully connected (FC) layers after layer FC1 with
a linear probe (Alain & Bengio, 2016) (see Fig-
ure 6). Parts of the network in Figure 6 are
frozen after the training done in Section 5.3. The downstream layers are reset and fine-tuned on
narrow on-policy data collected by the converged (approximately optimal) agents. In order to avoid
the challenges associated with offline RL (Levine et al., 2020), we allow for a small amount of
additional online data collection (up to 4.000 environment samples), which does not contain any
explicit exploration. See Appendix C for more details.

Figure 7 shows the performance when freezing the CNN and FC1 layers and fine-tuning FC2. This is
compared to fine-tuning FC1 and FC2 with only the CNN frozen. The frozen parameters are taken
from agents trained with less diverse and more diverse buffers (ϵ-greedy decayed over 50.000 and
500.000 steps respectively). The results show that the frozen CNN plus FC1, in contrast to only the
frozen CNN, can quickly recover the training performance of the original agent. Moreover, it also
recovers the generalisation performance, which depends on the diversity of the replay buffer of the
original agent.
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Figure 7: Fine-tuning performance with a frozen CNN or a frozen CNN and FC1. The less and more
diverse frozen parameters are taken from the agents trained with ϵ-greedy decayed after 50.000 and
500.000 steps respectively. Shown are the mean and 95% confidence interval over 100 seeds.

This suggests that the FC1 layer after the CNN has learned a latent representation that generalises to
a large part of the reachable and unreachable space, even if the following layer (FC2) is fine-tuned on
very narrow transition data. Increasing the diversity of the training data on which the original agents
were trained, seems to induce a better generalising latent representation, both in terms of reachable
and unreachable generalisation. Furthermore, since fine-tuning recovers the original performance, it
seems the difference in generalisation performance of the original agents in Section 5.3 is due to the
different latent representations learned by those agents. This seems in contrast to some of the results
in Jiang et al. (2022), which suggest a component of the generalisation performance induced by more
diverse training data is due to RL-specific effects beyond representation learning.

6 Conclusion & Future Work

In this paper, we reasoned that being optimal in a larger part of the reachable state space will improve
zero-shot policy transfer to reachable states. We empirically showed this to hold in a 4-room grid
world environment. We found a more diverse replay buffer to produce a policy that is optimal
in a larger part of reachable space and has higher generalisation performance to reachable states.
Additionally, a more diverse replay buffer was empirically shown to lead to improved generalisation
performance to similar (in-distribution) but unreachable states. Finally, we found that the latent
representation induced by the fully connected layer following the CNN portion of the network
generalises to reachable and unreachable states when fine-tuned on very narrow data.

We believe this work demonstrates the non-trivial role of exploration and the replay buffer for
generalisation in reinforcement learning. For now, this has been demonstrated in a relatively simple
grid world environment. In future work, we would like to investigate whether the generalisation
benefits will sustain when scaling up to more complex benchmarks. Furthermore, we have an
intuition on why a more diverse exploration and replay strategy would result in better generalisation
performance to unreachable states. We believe it could be promising to formalise and test this
intuition in follow-up experiments.
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Hyper-parameter Value
Total timesteps 500 000
Vectorised environments 10

DQN
Buffer size 500 000
Batch size 256
Discount factor γ 0.99
Max. gradient norm 1
Gradient steps 1
Train frequency (steps) 10
Target update interval (steps) 10
Target soft update coefficient τ 0.01
Exploration initial ϵ 1
Exploration final ϵ 0.01

Adam
Learning rate 1× 10−4

Weight decay 1× 10−5

CNN
Kernel size 3
Stride 1
Padding 1
Padding mode Circular
Channels 32

Table 1: Hyper-parameters used for the experiments

A 4-Room Grid World

The 4-room grid world used in our experiments is adapted from the FourRooms environment from
the MiniGrid benchmark (Chevalier-Boisvert et al., 2018) and differs in certain ways from the default
MiniGrid configuration. For one, the action space is reduced from the default seven actions (turn
left, turn right, move forward, pick up an object, drop an object, toggle/activate an object, end
episode) to just the first three actions (turn left, turn right, move forward). Also, the reward function
is changed slightly to reward 1 for successfully reaching the goal and 0 otherwise (as opposed to the
1− 0.9 ∗ ( step count

max steps ) given upon success by the default MiniGrid environment). Additionally, the size
of the environment is reduced from the default 19 (8× 8 rooms) to 9 (3× 3 rooms).

Furthermore, the observation space is made fully observable and customised. Our agent receives a
4× 9× 9 tensor that is centred around the agent’s current location. The four binary-encoded channels
contain the following information:

• Channel 0: The location of the agent (always in the centre).
• Channel 1: The hypothetical location where the agent would move to given the current

direction it’s facing (and ignoring any collisions with walls).
• Channel 2: The location of the walls.
• Channel 3: The location of the goal.

The implementation of the 4-room grid is also customised to allow for more control over the factors
of variation (topology, agent location, agent direction, goal location) during the generation of a task.
This acts functionally the same as the ReseedWrapper from MiniGrid except that it allows for more
control and therefore easier design and construction of the training and testing sets.

B Experimental Details

We use a DQN implementation forked from the Stable-Baselines3 (Raffin et al., 2021) repository and
adapted to support double Q learning (van Hasselt et al., 2015). The network architecture consists of
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three convolutional layers followed by four fully connected layers with ReLU activation functions
(except for the last layer). The hidden dimensions of the linear layers are [512, 128, 64]. A full list of
parameters can be found in Table 1. The experiments are performed on a single computer with a RTX
3070 GPU, 32 GB of memory and 12 cores (8 performance and 4 efficient). A single run of 500.000
steps had a runtime of roughly 8 minutes.

C Analysing Latent Representation

In order to more accurately analyse the performance due to some latent part of the network, we follow
a process akin to linear probing (Alain & Bengio, 2016). For the agent with frozen CNN and FC1, the
original remaining network (see above) is shortened by appending only a single linear layer (without
activation function) to the frozen layers. We tried the same with the frozen CNN but found the single
linear layer to not be sufficient to learn anything. Instead, we keep the fully connected layer FC1
followed by a single linear layer (but reset and fine-tune both). This way the network architectures
are also identical between the two agents with differently frozen layers.

To obtain the steady-state distribution ρπ
∗

of the optimal policy during training we simply perform
greedy rollouts by the converged policies of our agents trained with ϵ-greedy decayed over 500.000
steps. At the start of fine-tuning, the agent’s buffer is initialised with the data collected from these
rollouts. Fine-tuning is performed with the regular DQN algorithm but with certain hyper-parameters
adjusted to speed up training and prohibit exploration. The adjusted hyper-parameters can be found
in Table 2.

Hyper-parameter Value
Total timesteps 4 000
Vectorised environments 1

DQN
Buffer size 4 000
Gradient steps 10
Train frequency (steps) 1
Target update interval (steps) 1
Target soft update coefficient τ 1
Exploration initial ϵ 0
Exploration final ϵ 0

Table 2: Hyper-parameters used for the experiments in Section 5.5

C.1 Additional Experiments

Since, the fine-tuning in Section 5.5 recovered the original performance of the agents, it seems the
network used in the experiments in sections 5.3 and 5.4 was over-parametrised. For completeness,
we reran the main experiment in Section 5.3 but with the smaller network as shown in Figure 6. The
results can be found in Figure 8.

The results show that the smaller network achieves a higher policy optimality in reachable space and
a higher generalisation performance to reachable and unreachable states than the original network.
Moreover, the difference between the more and less diverse replay buffers is slightly smaller than
before. This could be due to a smaller network overfitting less to the training data, resulting in a
smaller difference between better and worse generalising strategies. However, we argue that our main
results with the larger network imitate a more realistic scenario in which the network architecture
isn’t finely tuned to the complexity of the problem. In this case, the network has a higher chance of
overfitting to the training data and the positive effects of a diverse buffer could be larger.

14



0 100 200 300 400 500
Frames (1e3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Un
di

sc
ou

nt
ed

 M
ea

n 
Re

tu
rn

Greedy Performance During Training

Exploration Decayed Over (1e3 frames):
50
100
200
300
500

0 100 200 300 400 500
Frames (1e3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n 

W
he

re
 G

re
ed

y 
Ac

tio
n 

Is 
Op

tim
al

Policy Optimality 
 in Reachable Space

0 100 200 300 400 500
Frames (1e3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Un
di

sc
ou

nt
ed

 M
ea

n 
Re

tu
rn

Greedy Performance During Testing 
 (100% reachability)

0 100 200 300 400 500
Frames (1e3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Un
di

sc
ou

nt
ed

 M
ea

n 
Re

tu
rn

Greedy Performance During Testing 
 (0% reachability)

Figure 8: Performance when using a smaller network as shown in Figure 6. Shown are the mean and
95% confidence interval over 100 seeds.

15


	Introduction
	Background
	Contextual Markov Decision Process
	Zero-shot Policy Transfer

	Related Work
	Method
	Experiments
	4-Room Grid World
	Policy Optimality in Reachable Space
	Generalisation To Unseen Starting States
	Uniform Replay over State-action Space
	Analysing Latent Representation

	Conclusion & Future Work
	4-Room Grid World
	Experimental Details
	Analysing Latent Representation
	Additional Experiments


