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Abstract
This paper analyzes the robustness of state-of-the-
art AI-based models for power grid operations
under the N − 1 security criterion. While these
models perform well in regular grid settings, our
results highlight a significant loss in accuracy fol-
lowing the disconnection of a line.Using graph
theory-based analysis, we demonstrate the impact
of node connectivity on this loss. Our findings
emphasize the need for practical scenario con-
siderations in developing AI methodologies for
critical infrastructure.

1. Introduction
The application of AI models has seen substantial growth
across various industrial sectors, including manufacturing,
transportation, and electricity. These models aim to replace
costly traditional methods and improve computational effi-
ciency. However, their deployment remains challenging due
to unmet or unverified industrial criteria (Leyli Abadi et al.,
2022). The deployment of unreliable AI models in criti-
cal infrastructure poses significant risks, potentially leading
to severe or catastrophic failures with dire economic and
societal consequences. In this paper, we study the robust-
ness of state-of-the-art AI-based models in the context of
power grids. Operating power grids requires a continuous
assessment of their state, which can be costly especially the
computation of power flow through grid lines. For Alterna-
tive Current (AC) grids, this problem is referred to as AC
power flow and is traditionally addressed using the Newton-
Raphson method, a classical numerical approach (Sereeter
et al., 2019). This method yields results with negligible
error but is rather slow and lacks flexibility with regard to
grid evolution.

The AC power flow problem can be characterized by a
system of nonlinear equations depending on the network
configuration at each time point. The network configuration
encompasses the loads, generations, and topology of the
network, as well as, some intrinsic characteristics of the
lines (i.e. reactance, resistance). Highly trained engineers
(i.e. dispatchers) can simulate the state of the power grid
using these methodologies to ensure operational security,
maintaining current flow within specified thresholds.

Yet, as grid size increases, the computational complexity
of this problem escalates. Adding to this, modern grids
incorporate a growing amount of renewable energy sources,
such as wind and solar, whose profiles are highly variable
and dependent on factors like weather, leading to significant
uncertainties and further complicating the problem (Aslam
et al., 2021; Marot et al., 2020; Donnot et al., 2017).
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Figure 1. Example of a toy power grid featuring two generators
and three loads. In the upper section of the image, an overflow
in the transmission lines is depicted. To address this issue, the
overloaded line is disconnected from the grid causing a topological
change and necessitating a recalculation of the grid’s state.

Therefore, researchers have naturally started to investigate
AI-based approaches to address the complexity of power
flow prediction problems. This effort has been further mo-
tivated by the rise of Physics-Informed Machine Learning
(Karniadakis et al., 2021), which enables a finer integration
of physical laws involved in power flow within the models
(Hu et al., 2020; Pagnier & Chertkov, 2021). Nevertheless,
these studies lack focus on practical scenarios, resulting in
inadequate frameworks for deploying these methods. Con-
sequently, AI methods cannot yet be deemed industry-ready,
as they have been minimally tested in industrial settings and
are not suitable for real-time applications.

1



Robustness Analysis of AI Models in Critical Energy Systems

In the context of power grids, one critical assessment is the
N − 1 security criterion. This criterion is a fundamental
reliability standard used in the operation of power grids. It
ensures that the grid can withstand the failure of any sin-
gle transmission line, without causing widespread outages
or instability. Under this criterion, the power grid is ex-
pected to continue operating even after the loss of one of its
lines (Figure 1). This necessitates sufficient redundancy and
flexibility within the system to handle such contingencies.
N − 1 is crucial for maintaining the stability and reliabil-
ity of power grids, as it helps prevent cascading failures
and large-scale blackouts. Evaluating AI-based methods
against it is thus essential to ensure their applicability and
robustness in real-world scenarios. In real-time operating
grids, the number of possible topological configurations in-
creases significantly, making it computationally intensive to
evaluate every potential state of the grid. While the Newton-
Raphson method achieves negligible error in the N − 1
scenario (≈ 0), it becomes computationally inefficient as
grid size increases, due to significantly longer computation
times. Conversely, machine learning models provide rapid
and reliable predictions for grids without any topological
modification, leveraging only inference time and achiev-
ing speeds approximately 145 times faster on large grids
(Lin et al., 2023). However, in the area of grid digitization,
these models must also demonstrate robustness to topologi-
cal modifications within the grid to ensure its security and
reliable operation.
In this paper, we first demonstrate the safety limitation of
recent AI-based approaches for powerflow computation and
then conduct an error analysis based on node connectivity.

2. Background
2.1. Problem Description

First, we can think of the grid as a graph. The nodes repre-
sent the grid’s buses, which are connected through edges,
i.e. the transmission lines. The buses are categorized into
three primary types: PV, PQ, and slack bus. The PV buses
represent grid generators that produce and inject energy,
including renewable energy (RE) generators that introduce
significant uncertainties into power grid control. The PQ
buses represent the grid’s loads, which are modules that
consume energy. The slack bus serves as a reference point
for the grid operation, where the voltage angle θ is known.

The objective of the power flow prediction problem is to
determine the current flowing through each transmission
line based on inputs from the buses and the grid’s topology.
Specifically, for generator buses, the active power (Pg) and
voltage magnitude (Vm) are provided, whereas, for load
buses, the active (Pl) and reactive (Ql) powers are known.
Mathematically, the problem can be expressed through the
Kirchhoff’s equations.

{
Pi = Vi

∑n
k=1 Vk (Gik cos(θi − θk) +Bik sin(θi − θk))

Qi = Vi

∑n
k=1 Vk (Gik sin(θi − θk)−Bik cos(θi − θk))

(1)

In the above equations, the index denotes the buses of the
grid and does not follow the aforementioned notation, where
the index denotes the type of the bus. However the vari-
ables remain the same, so for example Pi denotes the active
power of the i-th bus regardless of its type (i.e. generator,
load, slack). Moreover Gik and Bik denote two physical
line properties, the conductance and susceptance respec-
tively. Based on this system of equations, the current that
flows from bus i to bus k is then calculated through a basic
physic’s equation (Ohm’s Law):

Iik = Yik(Vi − Vk) (2)

while the current injected in bus i, is calculated based on:

Ii =

n∑
k=1

YikVk (3)

In Eqs. 2 and 3, Yik is the element in the (i, k) position of
the admittance matrix Y . This matrix consists of the admit-
tance values (i.e. physical characteristics of the transmission
lines) between different nodes in the power grid.

Newton-Raphson method Traditionally, AC power flow
problem solvers use the Newton-Raphson method, lineariz-
ing power flow equations around an initial guess, x0. The
equations are represented as:

F(x) =

[
Pi − P appr

i (x)
Qi −Qappr

i (x)

]
= 0, (4)

where Pi and Qi are the specified active and reactive powers
for each bus i, and P appr

i and Qappr
i are the calculated powers

based on the state vector x (voltage magnitudes and angles).
The iterative update is given by:

x(k+1) = x(k) − J−1(x(k))F(x(k)), (5)

where J is the Jacobian matrix of partial derivatives of F
with respect to x. This process is repeated until reaching
the convergence threshold defined by the user.
Unlike traditional numerical approaches, machine learning
methods aim to predict current flows based on bus inputs
and grid topology. These methods estimate the function f
that:

f : (X, τ) → I (6)

where X denotes the space of the inputs of the buses, τ
denotes the space of the grid’s topology and I denotes the
the output space.
The dimension of I varies across studies and depends on
the framework employed. Some research predicts the vector
(Pi, Qi, Vi, θi) for each bus, while others predict directly
the vector (Ii, Iik). Although using the Eqs. 2 and 3, one
can infer the former vector from the latter and vice versa.
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2.2. Related Work

In recent years, the demand for faster and more robust power
grid simulators has increased due to the growing complex-
ity of grid control problems and traditional simulation ap-
proaches (Sereeter et al., 2019; Kulworawanichpong, 2010;
D’orto et al., 2021; Coffrin & Van Hentenryck, 2014; Capi-
tanescu, 2016) have started to open the path for AI-based
ones to meet rising computational requirements and the
integration of renewable energy. One of the primary ap-
proaches was introduced by (Donon et al., 2020a) where
the authors suggested a graph neural network architecture
capable of calculating power flow and generalizing to small
and medium-sized grids. The originality exists in the direct
incorporation of Kirchhoff’s law into the optimization objec-
tive. Similarly, (Lin et al., 2023) introduced a graph-based
architecture that also integrates Kirchhoff’s law into the loss
function and employs a message-passing mechanism for fea-
ture propagation during training. Other relevant approaches
include the work of (Bolz et al., 2019), who suggested a
graph-based convolutional neural network. (Donnot et al.,
2018) also proposed a novel dropout mechanism (Srivastava
et al., 2014) within a simple feed-forward neural network
to train the model using N − 1 instances. Building on this
approach, (Donon et al., 2020b) proposed an architecture
inspired by the aforementioned dropout technique. Their
model incorporates an additional block designed to handle
topological changes, and the training process includes both
instances with the original topology (N case) and N − 1
cases, enhancing the model’s adaptability and robustness.

3. Experimental Setup
Our aim is to evaluate the recently suggested AI-based ap-
proaches for power flow prediction on the N − 1 security
criterion, thus assessing their industrial readiness. In par-
ticular, we perform evaluations over two datasets of N − 1
cases and explore whether: (a) the degree of connectivity of
a node for which a line has been disconnected impacts the
robustness of the approach to N − 1, (b) prior exposure of
the model to certain N−1 instances enhances its robustness.

3.1. Datasets

To perform our experiments, we rely on two standard
datasets across the Power Engineering community, namely
IEEE 14 and IEEE 118. These datasets contain one instance
of the grid, with the nominal values for each bus. They
consist of 14 and 118 busses respectively.
To approach the problem from a machine learning perspec-
tive, it is required to augment these datasets to generate new
iid data instances. For this purpose, we employed two dis-
tinct strategies: (a) Constrained Sampling and (b) Random
Agent Cutting.

Regarding (a), we sampled new data instances for PQ buses
based on a normal distribution around their nominal values
while for the generators based on Dirichlet simplex sam-
pling. Mathematically we express the process as:
Pl ∼ N(|Pl|, 0.01), Vm ∼ N(|Vm|, 0.01),
Ql ∼ N(|Ql|, 0.01) and Pg ∼ Dir(G),
where G denotes the total amount of generation.

We use Dirichlet sampling for the generators, since the total
amount of generation should be constant among all the data
instances, and is predefined in the grid’s configuration. Then,
we utilize Newton-Raphson method to calculate the outputs
of the power flow problem (ground truth). The output is a
vector (Pi, Qi, Vi, θi) for each bus i of the generated power
grid instance.

For the second strategy (b), a grid agent was initialized and
tasked with randomly cutting one line of the grid, based on
a probability p. The new state of the grid was computed
using the Newton-Raphson method (same as before), and
the resulting data instance was recorded.

3.2. Models

We chose 3 state-of-the-art models namely: PowerFlowNet
(Lin et al., 2023), LeapNet (Donon et al., 2020b) and ResNet
(Donon et al., 2020b). The models relies on the same inputs
X which are the known values of each bus, but differ in their
outputs differ. Hence, PowerFlowNet outputs the vector
(Pi, Qi, Vi, θi) for each bus i, while LeapNet and Resnet
outputs the vector (Ii, Iik). Both vectors can be converted
into the other using Eqs. 2 and 3.

3.3. Evaluation Protocol

Firstly, we utilized the pretrained PowerFlowNet models in
the aforementioned datasets and we evaluated them in the
N − 1 cases. We note that these models were originally
trained exclusively on N cases, meaning they had no expo-
sure to topological changes in the grid during training. We
also trained a modified version of ResNet1, with the final
linear layer replaced with one that projects the data into R2

to match the dimensions of the output I. We then applied
the N − 1 criterion to assess the robustness of these mod-
els in real and critical scenarios. Moreover, training with
instances of N − 1 was performed in order to enhance the
robustness of the models. For this, we also used LeapNet
which integrates a module into its architecture that tracks
the topological changes of the grid.

1This is not the classical version of ResNet as defined in (He
et al., 2016). Instead, we adopt the implementation detailed in
(Donon et al., 2020b), where the authors refer to their model as
ResNet, inspired by the incorporation of residual connections.
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3.4. Metric

To evaluate the performance of the models, we used the tra-
ditional Mean Squared Error (MSE) metric. For the ResNet
and LeapNet models, performance was assessed by aver-
aging the MSE of the outputs Ii and Iik, representing the
current at both the origin and end of the line. Regarding
PowerFlowNet as the model outputs a different vector, we
use the equations to convert the output into Ii and Iik to
obtain comparable result.

3.5. Implementation Details

We explore 3 configurations of the PowerFlowNet, de-
fined as PowerF lowNetL (large), PowerF lowNetM
(medium), and PowerF lowNetS (small). These reflect
the number of hidden topology-adaptive convolutions uti-
lized, as specified in the original paper. In a similar manner,
we implemented LeapNetM , LeapNetS , ResNetM , and
ResNetS which vary in the number of hidden layers used,
according to the values of (Donon et al., 2020b).
For the dataset generation we used Grid2op (Donnot, 2020)
and Pandapower (Thurner et al., 2018), which are two pop-
ular Python frameworks for AI-based Power Engineering.
The models were trained for 25 epochs using the Adam opti-
mizer (Kingma & Ba, 2014). The learning rate was fixed at
0.001, with a linear scheduler of a step size equal to 5 and
a batch size equal to 128. The training dataset comprised
10,000 different N grid instances, while both the evaluation
dataset for the N case and the evaluation dataset for the
N − 1 case consisted of 2,000 instances each.

4. Results
In this section, we present the experimental results. Initially,
we demonstrate that pretrained models lack robustness in
the N − 1 scenario and we conduct a short analysis of this
issue using graph theory. Finally, as a partial solution to this
problem, we report on the outcomes of an empirical study
by mixing N − 1 cases into the training set.

4.1. N − 1 case

While the results on the N cases are promising for each
approach on the two datasets, and could even be deemed
reliable enough given the speedup compared to Newton
Raphson, their performance deteriorates in the modified
topology scenario. We observe a significant increase in the
error when evaluating the models under the N − 1 scenario
(Table 1). In particular, the best MSE reported for the N
case is 0.051, resp. 0.113, whereas for the N − 1 case it is
1.467, resp. 4.184 in the IEEE 14 dataset, resp. in the IEEE
118 dataset. The increase ranges between 10-100x in most
cases and highlights the extent to which the models are
impacted by simple grid’s topology modification, especially
in the case of larger grids such as IEEE 118, which remains

small in comparison to actual grids.

This indicates that the current models lack robustness when
subjected to the critical assessments required for real-time
operating grids.

Models Datasets N N-1

PowerF lowNetL
IEEE 14 0.051 1.467
IEEE 118 0.363 8.293

PowerF lowNetM
IEEE 14 0.076 1.582
IEEE 118 0.184 4.184

PowerF lowNetS
IEEE 14 0.055 2.358
IEEE 118 0.415 7.249

ResNetM
IEEE 14 0.089 1.789
IEEE 118 0.594 4.536

ResNetS
IEEE 14 0.097 2.121
IEEE 118 0.113 7.897

Table 1. MSE for the power flow prediction without any topologi-
cal change and for the N − 1 case, across the two datasets. Bold
indicates the smaller MSE reported for the IEEE 14 dataset, while
gray indicates the smaller MSE reported for the IEEE 118 dataset.

4.2. Graph Analysis

Dataset Dmax MSE Dmedian MSE

IEEE 14 5 1.297 3 1.325
4 1.632 2 1.244

IEEE 118 12 7.526 8 4.864
11 8.491 7 6.503

Table 2. Comparison of the MSE metric based on the node with
the highest degree Dmax and on the node with the median degree
Dmedian for the IEEE 14 and IEEE 118 datasets. Bold indicates
the smaller MSE reported.

To further investigate the issue, we conducted an additional
analysis to determine if the model’s performance in the
N − 1 scenario is influenced by the specific line removed
from the grid topology.
We, therefore, focused on nodes with higher connectivity to
assess their impact on model predictions (Figure 2). Specifi-
cally, we identified the node with the highest degree xDmax

in the original topology (N case). Since the grid agent re-
moves lines randomly, the degree of xDmax

varies across
instances. We clustered test set instances based on the de-
gree of the node xDmax

and evaluated the model on these
subsets. Additionally, we included the node with the me-
dian degree xDmedian

for a more comprehensive analysis.
For this experiment, we utilized PowerF lowNetL, which
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(a) Normal (b) 1 → 2 (c) 1 → 3 (d) 1 → 4

Figure 2. Visual comparison of the model’s prediction in the N case and three different N − 1 cases for the IEEE 14 dataset. In (a), the
standard topology is shown. In (b), the line from bus 1 to bus 2 is disconnected. In (c), the line from bus 1 to bus 3 is disconnected. In (d),
the line from bus 1 to bus 4 is disconnected.

demonstrated the lowest MSE error in both the N and N−1
power flow scenarios for the IEEE 14 dataset.

In Table 2, for each dataset, the first row represents the
original values of Dmax and Dmedian, while the second
row shows the degrees of these nodes when a connected line
is removed. We observe that when a line connected to nodes
with higher degrees is removed, it has a greater impact on
the prediction process, as it produces a bigger error in the
model. The intuition behind this finding is that nodes with
higher degrees exhibit greater connectivity within the graph,
thereby exerting a more significant impact on the grid’s
physical behavior.

Models p MSE

PowerF lowNetL
0.01 0.141
0.1 0.078

PowerF lowNetM
0.01 0.358
0.1 0.091

PowerF lowNetS
0.01 0.195
0.1 0.096

ResNetM
0.01 0.296
0.1 0.104

ResNetS
0.01 0.348
0.1 0.122

LeapNetM
0.01 0.175
0.1 0.067

LeapNetS
0.01 0.137
0.1 0.082

Table 3. MSE for the mixed N − 1 and N-2 power flow prediction
across the two datasets. Bold indicates the smaller MSE reported
for the p = 0.01, while gray indicates the smaller MSE reported
for p = 0.1.

4.3. Mix Training

The ResNet, LeapNet, and PowerFlowNet models were
trained using instances of both N and N − 1 cases from the
IEEE 14 dataset to evaluate their performance on unseen
N − 1 cases. The probability p of generating an N − 1
instance was set to either 0.01 or 0.1 for each dataset. As
shown in Table 3, the robustness of each model notably
improves, particularly when p = 0.1. This finding is partic-
ularly significant for larger grids, where the number of N−1
configurations increases exponentially. It demonstrates that
grid robustness is enhanced even with a relatively small
number of N − 1 instances during the training process.

5. Conclusion
In this paper, we analyzed the robustness of AI-based mod-
els for power grid operations under the N − 1 security crite-
rion. Our study identified significant deficiencies in model
robustness under real-time conditions and emphasized the
need for improvements. A graph theory-based analysis high-
lighted the critical impact of node connectivity on model
predictions. We deployed a mixed training technique with
both N and N − 1 instances, which significantly enhanced
model adaptability and reliability. Future research could
focus on developing a sampling method for N − 1 instances
to construct a training dataset, taking into account graph
connectivity. This approach is motivated by the observation
that the connectivity degree of each node significantly im-
pacts the prediction accuracy of the models. In conclusion,
our findings stress the importance of practical scenarios in
developing AI methodologies for critical infrastructure, ad-
vocating for future research on more complex topological
changes and related topics, such as Voltage Control (Sun
et al., 2019).
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