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ABSTRACT

Diffusion or score-based models recently showed high performance in image gen-
eration. They rely on a forward and a backward stochastic differential equations
(SDE). The sampling of a data distribution is achieved by solving numerically the
backward SDE or its associated flow ODE. Studying the convergence of these
models necessitates to control four different types of error: the initialization error,
the truncation error, the discretization and the score approximation. In this paper,
we study theoretically the behavior of diffusion models and their numerical im-
plementation when the data distribution is Gaussian. In this restricted framework
where the score function is a linear operator, we derive the analytical solutions of
the backward SDE and the probability flow ODE. We prove that these solutions
and their discretizations are all Gaussian processes, which allows us to compute
exact Wasserstein errors induced by each error type for any sampling scheme.
Monitoring convergence directly in the data space instead of relying on Inception
features, our experiments show that the recommended numerical schemes from
the diffusion models literature are also the best sampling schemes for Gaussian
distributions.

1 INTRODUCTION

Over the last five years, diffusion models have proven to be a highly efficient and reliable framework
for generative modeling (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021a;b; Dhariwal
& Nichol, 2021; Karras et al., 2022). First introduced as a discrete process, Denoising Diffusion
Probabilistic Models (DDPM) (Ho et al., 2020) can be studied as a reversal of a continuous Stochastic
Differential Equation (SDE) (Song et al., 2021b). A forward SDE progressively transforms the initial
data distribution by adding more and more noise as time grows. Then, the reversal of this process,
called backward SDE, allows us to approximately sample the data distribution starting from Gaussian
white noise. Moreover, the SDE is associated with an Ordinary Differential Equations (ODE) called
probability flow (Song et al., 2021b). This flow preserves the same marginal distributions as the
backward SDE and provides another way to sample the score-based generative model.

An important issue about diffusion models is the theoretical guarantees of convergence of the model:
How close to the data distribution the generated distribution is? There are four main sources of
errors to study for deriving theoretical guarantees for diffusion models: (a) the initialization error is
induced when approximating the marginal distribution at the end of the forward process by a standard
Gaussian distribution. (b) The discretization error comes from the resolution of the SDE or the ODE
by a numerical method. (c) The truncation error occurs because the backward time integration is
stopped at a small time ϵ > 0 to avoid numerical instabilities due to ill-defined score function near
the origin. (d) The score approximation error accounts for the mismatch between the ideal score
function and the one given by the network trained using denoising score-matching.

Despite these numerous sources of errors, a lot of numerical and theoretical research has been led
to assess the generative capacity of diffusion models. Several articles (Franzese et al., 2023; Karras
et al., 2022) provide strong experimental studies for the choices of sampling parameters. On the
theoretical side, several works derive upper bounds on the 1-Wasserstein or TV distance between
the data and the model distributions by making assumptions on the L2-error between the ideal and
learned score functions and on the compacity of the support of the data (Chen et al., 2023b; Lee et al.,
2024; De Bortoli et al., 2021; Chen et al., 2023c; Lee et al., 2022; Benton et al., 2024), eventually
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under an additional manifold assumption (De Bortoli, 2022; Wenliang & Moran, 2022; Chen et al.,
2023a). Yet, on one hand, to the best of our knowledge, the derived theoretical bounds mostly rely on
worst case scenario and are not tight enough to explain the practical efficiency of diffusion models.
On the other hand, numerical considerations mostly rely on Inception feature distributions through
the FID metric (Heusel et al., 2017).

Ideally, given a data distribution of interest, one would like to have an adapted estimation of the
discrepancy between the data and the diffusion model samples, thus enabling adaptive hyperparameter
selection for the sampling procedure. As a first step towards reaching this goal, in the present work
we study diffusion models applied to Gaussian data distributions. While this setting has a priori no
practical interest, since simulating Gaussian variates does not require a diffusion model, it provides a
large parametric family of distributions for which the errors involved in diffusion model sampling
can be completely understood.

When restricting the data distribution to be Gaussian, the resulting score function is a simple linear
operator. Exploiting this specificity allows us to derive the following contributions under the
assumption that the data distribution is Gaussian:

• We give the exact solutions for both the backward SDE and the probability flow ODE.

• We fully describe the Gaussian processes that occur when using classical sampling dis-
cretization schemes.

• We derive exact 2-Wasserstein errors for the corresponding sample distributions and are able
to assert for the influence of each error type on these errors, as illustrated by Figure 1.

Our theoretical study allows for an analytical evaluation of any numerical sampler, either stochastic
or deterministic. In particular, it confirms the strength of best practice scheme such as Heun’s method
for the ODE flow (Karras et al., 2022). We provide our source code that can be applied to any
Gaussian data distribution of interest and gives insight to calibrate parameters of a diffusion sampling
algorithm, e.g. by straightforwardly generalizing our study to higher order linear numerical schemes.

While our theoretical analysis relies on an exactly known score function, we conduct additional
experiments to assess for the influence of the score approximation error. Surprisingly, in the context
of texture synthesis, we show that with a score neural network trained for modeling a specific
Gaussian micro-texture a stochastic Euler-Maruyama sampler is more faithful to the data distribution
than Heun’s method, thus highlighting the importance of the score approximation error in practical
situations.

Plan of the paper: First, we recall in Section 2 the continuous framework for SDE-based diffusion
models. Section 3 presents our main theoretical results detailing the exact backward SDE and
probability flow ODE solutions when supposing the data distribution to be Gaussian. Section 4
gives explicit Wasserstein error formulas when sampling the corresponding processes, yielding to
an ablation study for comparing the influence of each error type on several sampling schemes. In
Section 5, we study numerically a special case of Gaussian distribution for texture synthesis in
order to evaluate the influence of the score approximation error occurring with a standard network
architecture. Finally, we address discussion and limitations of our framework in Section 6.

2 PRELIMINARIES: SCORE-BASED MODELS THROUGH DIFFUSION SDES

This preliminary section follows the seminal work of Song et al. (Song et al., 2021b) and introduces
specific notation to differentiate the exact backward process and the generative backward process
obtained when starting from a white noise. Given a target distribution pdata over Rd, the forward
diffusion process is the following variance preserving SDE

dxt = −βtxtdt+
√
2βtdwt, 0 ≤ t ≤ T, x0 ∼ pdata (1)

where (wt)t≥0 is a d-dimensional Brownian motion and β is a positive weight function. The
distribution pdata is noised progressively and the function β is the variance of the added noise by
time unit. We denote by pt the density of (xt) for t > 0 since pdata can be supported on a lower-
dimensional manifold (De Bortoli, 2022). The SDE is designed so that pT is close to the Gaussian
standard distribution that we denote N0 in whole paper. Under some assumptions on the distribution
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Figure 1: Wasserstein errors for the diffusion models associated with the CIFAR-10 Gaussian. Left:
Evolution of the Wasserstein distance between pt and the distributions associated with the continuous SDE,
the continuous flow ODE and four discrete sampling schemes with standard N0 initialization, either stochastic
(Euler-Maruyama (EM) and Exponential Integrator (EI)) or deterministic (Euler and Heun). While the continuous
SDE is less sensible than the continuous ODE (as proved by Proposition 4), the initialization error impacts all
discrete schemes with a comparable order of magnitude. Heun’s method has the lowest error and is very close to
the theoretical ODE, except for the last step (which is not represented) that is usually discarded when using time
truncation. Right: Wasserstein errors due to time truncation for various truncation times ϵ. Using time truncation
increases the error for all the methods except Heun’s scheme due to instability near the origin. Interestingly, for
the standard practice truncation time ε = 10−3, all numerical schemes have a comparable error close to their
continuous counterparts.

pdata (Pardoux, 1986), the backward process (xT−t)0≤t≤T verifies the backward SDE

dyt = βT−t(yt + 2∇y log pT−t(yt))dt+
√
2βT−tdwt, 0 ≤ t < T, y0 ∼ pT . (2)

The objective is now to solve this reverse equation to sample yT ∼ pdata. However, the distribution
pT is in general not known, and image1 generation is achieved by sampling

dỹt = βT−t(ỹt + 2∇y log pT−t(ỹt))dt+
√

2βT−tdwt, 0 ≤ t < T, ỹ0 ∼ N0. (3)

Note that approximating pT by N0 for the initialization y0 makes that the solution of the SDE
of Equation (3) is not exactly the target distribution pdata. An alternative way to approximately
sample pdata is to use that every diffusion process is associated with a deterministic process whose
trajectories share the same marginal probability densities (pt)0<t≤T as the SDE (Song et al., 2021b).
The deterministic process associated with Equation (2) is

dxt = [−βtxt − βt∇x log pt(xt)] dt, 0 < t ≤ T, x0 ∼ pdata. (4)

This ODE can be solved in reverse-time to sample x0 from xT ∼ pT . Given (xt)0≤t≤T solution of
Equation (4), (xT−t)0≤t≤T is solution of

dyt = [βT−tyt + βT−t∇y log pT−t(yt)] dt, 0 ≤ t < T. (5)

Again, in practice, the ODE which is considered to achieve image generation is

dŷt =
[
βT−tŷt + βT−t∇ŷ log pT−t(ŷt)

]
dt, 0 ≤ t < T, ŷ0 ∼ N0, (6)

where pT is replaced by N0. As a consequence of this approximation, the property of conservation
of the marginals (pt)0≤t≤T does not occur. We denote by (q̃t)0≤t≤T , respectively (q̂t)0≤t≤T , the
marginals of (ỹt)0≤t≤T and (ŷt)0≤t≤T and p̃t = q̃T−t, p̂t = q̂T−t the marginals of (ỹT−t)0≤t≤T

and (ŷT−t)0≤t≤T such that p̃t and p̂t are approximations of pt.

1Although we may refer to data as images, our analysis is fully general and applies to any vector-valued
diffusion model.
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3 EXACT SDE AND ODE SOLUTIONS

Our approach relies on deriving explicit solutions to the various SDE and ODE. We begin with
the forward SDE in full generality obtained in applying the variation of constants (see the proof in
Appendix B.1). This resolution also provides an ODE verified by the covariance matrix of xt, that
we denote Σt = Cov(xt).

Proposition 1 (Solution of the forward SDE). The strong solution of Equation (1) can be written as:

xt = e−Btx0 + ηt, 0 ≤ t ≤ T, (7)

where Bt =
∫ t

0
βsds and ηt = e−Bt

∫ t

0
eBs

√
2βsdws is a Gaussian process independent of x0

whose covariance matrix is (1− e−2Bt)I . Consequently, the covariance matrix Σt of xt is

Σt = e−2BtΣ+ (1− e−2Bt)I. (8)

where Σ is the covariance matrix of x0 ∼ pdata. Futhermore, Σt is invertible for t > 0 and verifies
the matrix-valued ODE

dΣt = 2βt(I −Σt)dt, 0 < t ≤ T. (9)

For a general data distribution pdata, solving the backward SDE in infeasible, the main reason being
that the expression of the score function to integrate is unknown. To circumvent this obstacle, we
now suppose that the data distribution is Gaussian.

Assumption 1 (Gaussian assumption). pdata is a centered Gaussian distribution N (0,Σ).

Note that Σ may be non-invertible and thus pdata supported on a strict subspace of Rd, a special
case of manifold hypothesis. Consequently, the matrix Σt is in general only invertible for t > 0.
Under Gaussian assumption, (xt) is a Gaussian process with marginal distribution pt = N (0,Σt)
and consequently the score is the linear function

∇ log pt(x) = −Σ−1
t x, 0 < t ≤ T. (10)

Note that the linearity of the diffusion score characterizes Gaussian distributions as detailed by
Proposition 5 in Appendix A.

The cornerstone of our work is that under Gaussian assumption we can derive an exact solution of the
backward SDE, without supposing that the initial condition is Gaussian.

Proposition 2 (Solution of the backward SDE under Gaussian assumption). Under Gaussian as-
sumption, the strong solution to the SDE of Equation (2):

dyt = βT−t(yt + 2∇y log pT−t(yt))dt+
√

2βT−tdwt, 0 ≤ t < T (11)

with y0 following any initial distribution can be written as:

yt = e−(BT−BT−t)ΣT−tΣ
−1
T y0 + ξt, 0 ≤ t ≤ T (12)

where ξt = e−(BT−BT−t)ΣT−t

∫ t

0
Σ−1

T−se
−(BT−BT−s)

√
2βT−sdws is a Gaussian process with

covariance matrix Cov(ξt) = ΣT−t − e−2(BT−BT−t)Σ2
T−tΣ

−1
T . Finally:

Cov(yt) = ΣT−t + e−2(BT−BT−t)Σ2
T−tΣ

−1
T

(
Σ−1

T−tCov(y0)Σ
−1
T ΣT−t − I

)
, (13)

and in particular, if Cov(y0) and Σ commute,

Cov(yt) = ΣT−t + e−2(BT−BT−t)Σ2
T−tΣ

−2
T [Cov(y0)−ΣT ] . (14)

While not as straightforward as the forward case, the proof also relies on applying the variation of
constants and is given in Appendix B.2. Note that if y0 is correctly initialized at pT , yT−t ∼ pt at
each time 0 ≤ t ≤ T . As shown by the following proposition (proved in Appendix B.3), the flow
ODE also has an explicit solution under Gaussian assumption which is related to optimal transport
(OT).
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Proposition 3 (Solution of the ODE probability flow under Gaussian assumption). The solution to
the reverse-time probability flow ODE of Equation (5):

dyt = [βT−tyt + βT−t∇y log pT−t(yt)] dt, 0 ≤ t < T (15)
for any y0 is:

yt = Σ
−1/2
T Σ

1/2
T−ty0, 0 ≤ t ≤ T, (16)

which is the application of the OT map between pT and pT−t to the initial condition y0. Consequently,
the covariance matrix Cov(yt) verifies

Cov(yt) = Σ
−1/2
T Σ

1/2
T−tCov(y0)Σ

1/2
T−tΣ

−1/2
T , 0 ≤ t ≤ T, (17)

and in particular, if Cov(y0) and Σ commute,

Cov(yt) = ΣT−tΣ
−1
T Cov(y0), 0 ≤ t ≤ T. (18)

Here we must highlight a subtle issue: Whatever the initial distribution of y0 is, the ODE solution
consists in applying the OT map between pT and pT−t at time t. If y0 follows pT , then yT−t ∼ pt at
each time 0 ≤ t ≤ T . But since in practice one cannot truly sample pT and uses y0 ∼ N0 instead,
the resulting flow is not an OT flow (even though it involves an OT mapping) and the distribution of
yT differs from pdata.

Links with related work. Some parts of Propositions 1, 2 and 3 have been stated in previous work.

Equation (7) of Proposition 1 is given without proof in (Gao & Zhu, 2024), the variance ODE, that we
generalize here to the full covariance matrix (Equation (9)), is given in (Song et al., 2021b), (Särkkä
& Solin, 2019, Equation 6.20)), and the score expression under Gaussian assumption is reported in
several recent references Albergo et al. (2023); Zach et al. (2024; 2023); Shah et al. (2023).

To the best of our knowledge Proposition 2 is new and is the cornerstone for our analytical and
numerical study. Gaussian mixtures have been studied in the context of diffusion models (Zach et al.,
2024; 2023; Shah et al., 2023) since they also provide an explicit analytical score. However, solving
exactly the backward SDE is not feasible for Gaussian mixtures as far as we know.

The relation between OT and probability flow ODE has been discussed in (Lavenant & Santambrogio,
2022; Khrulkov et al., 2023). Lavenant & Santambrogio (2022) show that, in general, the flow ODE
solution is not an OT between pdata and N0 at infinite time T → +∞, thus contradicting a conjecture
of Khrulkov et al. (2023). Yet, they briefly discuss the Gaussian case as special case for which
the conjecture is valid. Indeed, Khrulkov et al. (2023) derive the solution of the flow ODE under
Gaussian assumption at infinite time horizon (Khrulkov et al., 2023, Appendix B). More recently,
an expression of the solution of the flow ODE relying on the eigendecomposition of the covariance
matrix of the data in Gaussian case is given in (Wang & Vastola, 2023) assuming y0 ∼ N0. None of
these works discuss the mismatch between the OT map and the initialization of y0. Our Proposition 3
highlights that the generated process is not an OT flow due to the initialization error.

4 EXACT WASSERSTEIN ERRORS

The specificity of the Gaussian case allows us to study precisely the different types of error with the
expression of the explicit solution of the backward SDE. In what follows, we designate by Wasserstein
distance the 2-Wasserstein distance which is known in closed forms when applied to Gaussian
distributions (Dowson & Landau, 1982). For two centered Gaussians N (0,Σ1) and N (0,Σ2) such
that Σ1,Σ2 are simultaneously diagonalizable with respective eigenvalues (λi,1)1≤i≤d , (λi,2)1≤i≤d ,

W2(N (0,Σ1),N (0,Σ2))
2 =

∑
1≤i≤d

(
√
λi,1 −

√
λi,2)

2 (19)

as used in (Ferradans et al., 2013). In the literature, the quality of the diffusion models is measured
with FID (Heusel et al., 2017) which is the W2-error between Gaussians fitted to the Inception
features (Szegedy et al., 2016) of two discrete datasets. Here we use the W2-errors directly in data
space, which is more informative and allows us to provide theoretical W2-errors. To illustrate our
theoretical results, we consider the CIFAR-10 Gaussian distribution, that is, the Gaussian distribution
such that Σ is the empirical covariance of the CIFAR-10 dataset. As shown in Appendix C, images
produced by this model are not interesting due to a lack of structure, but the corresponding covariance
has the advantage of reflecting the complexity of real data.
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The initialization error. As discussed in Sections 2 and 3, the marginals of both generative
processes ỹ and ŷ following respectively Equation (6) and Equation (3) slightly differs from pt due
to their common white noise initial condition. This implies an error that we call the initialization
error. The distance between (p̃t)0≤t≤T , (p̂t)0≤t≤T and (pt)0≤t≤T can be explicitly studied in the
Gaussian case with the following proposition (proved in Appendix B.4).

Proposition 4 (Marginals of the generative processes under Gaussian assumption). Under Gaussian
assumption, (ỹt)0≤t≤T and (ŷt)0≤t≤T are Gaussian processes. At each time t, p̃t is the Gaussian
distribution N (0, Σ̃t) with Σ̃t = Σt + e−2(BT−Bt)Σ2

tΣ
−1
T (Σ−1

T − I) and p̂t is the Gaussian
distribution N (0, Σ̂t) with Σ̂t = Σ−1

T Σt. For all 0 ≤ t ≤ T , the three covariance matrices Σt, Σ̃t

and Σ̂t share the same range. Furthermore, for all 0 ≤ t ≤ T ,

W2(p̃t, pt) ≤ W2(p̂t, pt) (20)

which shows that at each time 0 ≤ t ≤ T and in particular for t = 0 which corresponds to the
desired outputs of the sampler, the SDE sampler is a better sampler than the ODE sampler when the
exact score is konwn.

In practice the initialization error for the SDE and ODE samplers may vary by several orders
of magnitude, as shown for the CIFAR-10 example in Figure 1.(a) (solid lines) which illustrates
Equation (20).

The discretization error. The implementation of the SDE and the ODE implies to choose a
discrete numerical scheme. We propose to study four different schemes presented in Table 1. The
classical Euler-Maruyama (EM) is used in (Song et al., 2021b) and the exponential integrator (EI) in
(De Bortoli, 2022) to sample from the SDE of Equation (3). The Euler method is the simplest ODE
solver and Heun’s scheme is recommended in (Karras et al., 2022) to model the ODE of Equation (6).
Under Gaussian assumption, the eigenvalues of the covariance matrices can be computed numerically
recursively for each scheme to evaluate the Wasserstein distance. Indeed, under Gaussian assumption,
the score is a linear operator and the discrete schemes lead to linear operations described in Table 1.
Then, a Gaussian initialization for y0 provides a sequence of centered Gaussian processes (y∆,·

k )k
and if y0 follows pT or N0, the covariance matrix Cov(y∆,·

k ) admit the same eigenvectors as Σ and
we can use Equation (19) to compute Wasserstein distances. Let us illustrate the computation of the
eigenvalues with the EM scheme. Denoting (λi,t)1≤i≤d the eigenvalues of Σt and

(
λ∆,EM
i,k

)
1≤i≤d

the eigenvalues of the covariance matrix of the Euler-Maruyama discretization of the SDE at the kth
step, 1 ≤ k ≤ N − 1, the relation verified by these eigenvalues is

λ∆,EM
i,k+1 =

(
1 + ∆tβT−tk(1− 2

λi,T−tk
)
)2
λ∆,EM
i,k + 2∆tβT−tk , 1 ≤ i ≤ d, 0 ≤ k ≤ N − 2 (21)

with initialization λ∆,EM
i,0 =

{
1 if yT is initialized at N0

λi,T if yT is initialized at pT
1 ≤ i ≤ d.. More detailed com-

putations for EM and formulas for other schemes are presented in Appendix D. For each scheme, we
recursively compute the eigenvalues at each time discretization and present the observed Wasserstein
distance in Figure 1.(a). We can observe that Heun’s method provide the lower Wasserstein distance,
followed by EM, EI and the Euler scheme. Note that the discrete schemes does not preserve the
range of the covariance matrix, contrary to the continuous formulas. This explains the fact that the
Wasserstein distance increases at the final step.

The truncation error. As discussed in (Song et al., 2021b), it is preferable to study the backward
process on [ε, T ] instead of [0, T ] because the score is a priori not defined for t = 0, which occurs in
our case if Σ is not invertible. This approximation is called the truncation error. As a consequence,
even without initialization error, the backward process leads to pε and not p0. Under Gaussian
assumption, it is possible to explicit this error with the expression given in Proposition 3 and 2 as
done in Figure 1.(b) for both continuous and numerical solutions. For the standard practice truncation
time ε = 10−3 (Song et al., 2021b; Karras et al., 2022), all numerical schemes have an error close to
the corresponding continuous solution. Using a lower ε value is only relevant for the continuous SDE
solution.
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SD
E

sc
he

m
es

Euler-
Maruyama
(EM)

{
ỹ∆,EM
0 ∼ N0

ỹ∆,EM
k+1 = ỹ∆,EM

k + ∆tβT−tk

(
ỹ∆,EM
k − 2Σ−1

T−tk
ỹ∆,EM
k

)
+
√

2∆tβT−tk
zk, zk ∼ N0

(22)

Exponential
integrator
(EI)

{
ỹ∆,EI
0 ∼ N0

ỹ∆,EI
k+1 = ỹ∆,EI

k + γ1,k

(
ỹ∆,EI
k − 2Σ−1

T−tk
ỹ∆,EI
k

)
+
√

2γ2,kzk, zk ∼ N0

where γ1,k = exp(BT−tk
− BT−tk+1

) − 1 and γ2,k = 1
2 (exp(2BT−tk

− 2BT−tk+1
) − 1)

(23)

O
D

E
sc

he
m

es Explicit
Euler

{
ŷ∆,Euler
0 ∼ N0

ŷ∆,Euler
k+1 = ŷ∆,Euler

k + ∆tf(tk, ŷ
∆,Euler
k ) with f(t,y) = βT−ty − βT−tΣ

−1
T−ty

(24)

Heun’s
method


ŷ∆,Heun
0 ∼ N0

ŷ∆,Heun
k+1/2

= ŷ∆,Heun
k + ∆tf(tk, ŷ

∆,Heun
k ) with f(t,y) = βT−ty − βT−tΣ

−1
T−ty

ŷ∆,Heun
k+1 = ŷ∆,Heun

k +
∆t
2

(
f(tk, ŷ

∆,Heun
k ) + f(tk+1, ŷ

∆,Heun
k+1/2

)
) (25)

Table 1: Stochastic and deterministic discretization schemes. EM and EI disctretize the backward SDE of
Equation (3), Euler and Heun schemes discretize of the probability flow ODE of Equation (6) with a regular
time schedule (tk)0≤k≤N with stepsize ∆t =

T
N

.

Continuous N = 50 N = 250 N = 500 N = 1000

pT N0 pT N0 pT N0 pT N0 pT N0

E
M

ε = 0 0 6.7E-04 4.78 4.78 0.65 0.66 0.32 0.32 0.16 0.16
ε = 10−5 4.1E-03 4.2E-03 4.77 4.77 0.66 0.66 0.32 0.32 0.16 0.16
ε = 10−4 0.03 0.03 4.76 4.76 0.66 0.66 0.32 0.32 0.17 0.17
ε = 10−3 0.18 0.18 4.68 4.68 0.70 0.70 0.40 0.40 0.27 0.27

E
I

ε = 0 0 6.7E-04 2.81 2.81 0.57 0.57 0.30 0.30 0.16 0.16
ε = 10−5 4.1E-03 4.2E-03 2.81 2.81 0.57 0.57 0.30 0.30 0.16 0.16
ε = 10−4 0.03 0.03 2.82 2.82 0.58 0.58 0.31 0.31 0.17 0.17
ε = 10−3 0.18 0.18 2.91 2.91 0.67 0.67 0.41 0.41 0.29 0.29

E
ul

er

ε = 0 0 0.07 1.72 1.78 0.38 0.44 0.20 0.26 0.10 0.17
ε = 10−5 4.1E-03 0.07 1.72 1.78 0.38 0.44 0.20 0.26 0.10 0.17
ε = 10−4 0.03 0.08 1.72 1.78 0.38 0.44 0.20 0.26 0.11 0.17
ε = 10−3 0.18 0.19 1.73 1.79 0.42 0.48 0.27 0.32 0.21 0.25

H
eu

n

ε = 0 0 0.07 - - - - - - - -
ε = 10−5 4.1E-03 0.07 23.42 23.42 2.86 2.87 1.05 1.06 0.37 0.38
ε = 10−4 0.03 0.08 4.68 4.68 0.43 0.44 0.12 0.14 0.03 0.08
ε = 10−3 0.18 0.19 0.58 0.59 0.13 0.15 0.16 0.18 0.17 0.19

Table 2: Ablation study of Wasserstein errors for the CIFAR-10 Gaussian. For a given discretization
scheme, the table presents the Wasserstein distance associated with the truncation error for different values of ε.
The columns pT and N0 show the influence of the initialization error. The continuous column corresponds to
the continuous SDE or ODE linked with the scheme (identical values for EM, EI and Euler, Heun) and a given
number of integration steps N .

Ablation study. We propose in Table 2 an ablation study to monitor the magnitude of each error
and their accumulation for various sampling schemes for the CIFAR-10 example. In accordance
with Proposition 4, the initialization error influences the ODE schemes, while SDE schemes are not
affected. Schemes having a sufficient number of steps are not sensitive to the truncation error for
ε < 10−3, except Heun’s scheme which is unstable near to origin. The discretization error is the
more important approximation but it becomes very low for a sufficient number of steps. The lower
Wasserstein error is provided by Heun’s method with 1000 steps, ε = 10−4. As Karras et al. (2022),
our conclusions lead to the choice of Heun’s scheme as the go-to method.

Influence of eigenvalues. The above observations and conclusions are observed on the CIFAR-10
Gaussian. However, in general, they depend on the eigenvalues of the covariance matrix Σ. Indeed, as
seen in Equation (19), the Wasserstein distance is separable and each eigenvalue contributes to increase
it. In Figure 2, we evaluate the contribution of each eigenvalue by plotting λ 7→ |

√
λ−

√
λscheme| for
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(b) Truncation error at final time for ε = 10−3

Figure 2: Eigenvalue contribution to the Wasserstein error. The magnitude of the Wasserstein error is
influenced by the eigenvalues of the covariance of the Gaussian distribution. Left: Contribution to the Wasserstein
error for the continuous equations and the discretization schemes with standard initialization N0. Right: Same
plot when using a truncation time ε = 10−3. All schemes use N = 1000 steps. While we prove that the
continuous SDE is always better than the continuous ODE (Proposition 4), it is not the same for the discrete
schemes. With a truncation time ε = 10−3 (b), Heun’s method is nearly as good as the continuous ODE solution
for all eigenvalues, which shows it is well-adapted to any Gaussian distribution.

each scheme. Figure 2.(a) demonstrates that for the continuous equations, the error increases with the
eigenvalues except for a strong decrease for λ = 1. Besides, as proved in the proof of Proposition 4
(see Appendix B.4), the error for the SDE is always lower than the error for the ODE and we can
observe how tight is Equation (20). Unfortunately, once discretized the stochastic schemes are not as
good as the continuous solutions. The EI scheme is the more stable along the range of eigenvalues but
in the end it is in general more costly than the others in terms of Wasserstein error. Without truncation
time, Heun’s method fails for low eigenvalues because Σ is not stably invertible. However, as seen
in Figure 2.(b), with a truncation time ε = 10−3, Heun’s method is very close to the continuous
ODE solution. This shows that for any Gaussian distribution Heun’s method introduces nearly no
additional discretization error, making this scheme the one to favor in practice. Our code allows for
the evaluation of any covariance matrix and the computation of Figure 1 and Table 2 (provided the
eigenvalues can be computed, see supp. mat.).

5 NUMERICAL STUDY OF THE SCORE APPROXIMATION

So far our theoretical and numerical study has been conducted under the hypothesis that the score
function is known, thus discarding the evaluation of the score approximation. In practice, for general
data distribution, the score function is parameterized by a neural network trained using denoising
score-matching. This learned score function is not perfect and while theoretical studies assume the
network to be close to the theoretical one (with uniform or adaptative bounds, see the discussion in
(De Bortoli, 2022)), such an hypothesis is hard to check in practice, especially in our non compact
setting. Thus, we propose in this section to train a diffusion models on a Gaussian distribution and
evaluate numerically the impact of the score approximation.

The Gaussian ADSN distribution for microtextures. So far our running example was the CIFAR-
10 Gaussian but we will now turn to another example that produces visually interesting images,
namely Gaussian micro-textures. We consider the asymptotic discrete spot noise (ADSN) distribu-
tion (Galerne et al., 2011) associated with an RGB texture u ∈ R3×M×N which is defined as the
stationary Gaussian distribution that has covariance equal the autocorrelation of u. More precisely,
this distribution is sampled using convolution with a white Gaussian noise (Galerne et al., 2011):
Denoting m ∈ R3 the channelwise mean of u and tc =

1√
MN

(uc −mc), 1 ≤ c ≤ 3, its associated
texton, for w ∼ N0 of size M ×N the channelwise convolution x = m+ t⋆w ∈ R3×M×N follows
ADSN(u). This distribution is the Gaussian N (m,Σ). To deal with zero mean Gaussian, adding
the mean m is considered as a post-processing to visualize samples and we study N (0,Σ). The

8
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Figure 3: Texture samples generated with the learned score. First row: original image u and its DFT
modulus (for all DFT modulus we display the sum of the DFT modulus of the three color channels and apply a
logarithmic contrast change). Second row: three samples of ADSN(u) with their associated DFT moduli. Third
and fourth row: Samples generated with the learned score with EM and Heun’s discretization schemes and their
associated DFT moduli. While both schemes use the same learned score function, the generation with Heun’s
scheme can produce out-of-distribution samples, as seen with the third sample.

matrix Σ is a well-known convolution matrix (Ferradans et al., 2013), its eigenvectors and associated
eigenvalues can be computed in the Fourier domain, as done in Appendix F.2. Σ admits the eigen-
values λξ,ADSN

1 = |̂t1|2(ξ) + |̂t2|2(ξ) + |̂t3|2(ξ), ξ ∈ RM×N and 0 with multiplicity 2MN and we
can conduct the same analysis as before (see Appendix E). To evaluate if a set of Nsamples sampled
images is close to the ADSN distribution pdata, we evaluate a problem-specific empirical Wasserstein
distance: Supposing that the Nsamples are drawn from a Gaussian distribution pemp. = N (0,Γ) such
that Γ admits the same eigenvectors as Σ, we compute

Wemp.
2 (pemp., pdata) =

√√√√ ∑
ξ∈R3M×N

(√
λξ,emp.
1 −

√
λξ,ADSN
1

)2

+ λξ,emp.
2 + λξ,emp.

3 (26)

where (λξ,emp.
i )ξ∈RM×N ,1≤i≤3 are estimators of the eigenvalues of Γ given in Appendix F.3.

Learning the score function. We train the network using the code2 associated with the paper Song
et al. (2021b). We choose the architecture of DDPM, which is a U-Net described in Ho et al. (2020),
with the parameters proposed for the dataset CelebaHQ256 to deal with the 256×256 ADSN model
associated with the top-left image of Figure 3. We use the training procedure corresponding to DDPM
cont. in Song et al. (2021b). β is linear from 0.05 to 10 with T = 1. We train over 1.3M iterations,
and we generate at each iteration a new batch of ADSN samples. We implement the stochastic EM
and derministic Heun schemes replacing the exact score by its learned version with N = 1000 steps
and a trunction time ε = 10−3. We name pEM

θ and pHeun
θ , the corresponding distributions and present

samples in Figure 3. Both distributions accumulate the four error types.

Evaluation of the score approximation. It is not possible to compute theoretically the Wasserstein
distance between pdata = ADSN(u) and pEM

θ , pHeun
θ due to the non-linearity of the learned score.

To compute an empirical Wasserstein error between it, we use Equation (26). Let us precise that
2Code available at https://github.com/yang-song/score_sde_pytorch

9

https://github.com/yang-song/score_sde_pytorch


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Exact score distribution Learned score distribution

p W2(p,pdata) ↓ Wemp.
2 (pemp.,pdata) ↓ FID(pemp.,pemp.

data) ↓ Wemp.
2 (pemp.

θ ,pemp.
data) ↓ FID(pemp.

θ ,pemp.
data) ↓

EM 5.16 5.1630±7E-5 0.0891±8E-4 15.6 01.02
Heun 3.73 3.7323±2E-4 0.0447±6E-4 56.7 19.48

Table 3: Numerical evaluation of the score approximation for a Gaussian microtexture model. For two
schemes, the EM discretization of the backward SDE and Heun’s method associated with the flow ODE, the
table shows the Wasserstein distance and FID for theoretical and learned distributions. The theoretical W2

value is computed with explicit formulas, as done in Table 5. The FID and empirical W2 w.r.t the theoretical
distribution are computed on 25 samplings of 50K images while only one sampling of 50K images is drawn for
the parametric distributions (to limit computation time).

this approximation underestimates the real Wasserstein distance since it wrongly assumes that the
distributions pEM

θ , pHeun
θ are Gaussian with a covariance matrix diagonalizable in the same basis

than the covariance matrix Σ of ADSN(u). We complete this dedicated empirical measure with
the standard FID. These metrics are reported in Table 3 where for theoretical distributions that are
fast to sample we add the standard deviations computed on 25 different 50k-samplings. For this
Gaussian distribution, the score approximation is by far the most impactful source of error, which is
in accordance with previous works Chen et al. (2023c); De Bortoli et al. (2021). We observe that
the stochastic EM sampling is more resilient to score approximation than the deterministic Heun’s
scheme, resulting in out-of-distribution samples (Figure 3). We may explain this behavior by recalling
the results of Proposition 4 that shows that SDE solutions are less sensitive to initialization errors
than ODE. Indeed, adding noise at each iteration tends to mitigate the accumulated errors, and score
approximation may be considered as some initialization error ocurring at each step.

6 DISCUSSION AND LIMITATIONS

The main limitation of our work is that our results are limited to Gaussian distributions. Resorting
to diffusion models for sampling Gaussian distributions is not necessary in practice, rather we use
Gaussian distributions as a test case family to provide insight on diffusion models.

A natural extension of this work is to compute error types for more complex distributions (e.g
multimodal) such as Gaussian mixtures models (GMM). However, generalizing our results for these
more complex distributions one faces two main difficulties. First, to the best of our knowledge, we
are unable to derive exact solutions to the backward SDE or the flow ODE under GMM assumption,
even though the score has a known analytical expression (Zach et al., 2024; 2023; Shah et al., 2023).
Another key feature of this study is to evaluate exactly the Wasserstein error by using Equation (19),
strongly relying on the Gaussian assumption. A closed-form of the Wasserstein distance between
two GMMs is not known, leading to alternative distance definitions for such models (Delon &
Desolneux, 2020). Hence, to compare the distributions generated in practice with exact solutions of
time continuous equations under GMM assumption, as we do for the Gaussian case, one should solve
two open theoretical problems.

7 CONCLUSION

By restricting the analysis of diffusion models to the specific case of Gaussian distributions, we
were able to derive exact solutions for both the backward SDE and its associated probability flow
ODE. We demonstrate that regarding the initialization error, the SDE sampler is more resilient than
the ODE sampler for Gaussian distributions. Additionally, we characterized the discrete Gaussian
processes arising when discretizing these equations. This allowed us to provide exact Wasserstein
errors for the initialization error, the discretization error, and the truncation error as well as any of
their combinations. This theoretical analysis led to conclude that Heun’s scheme is the best method
out of the four considered schemes, in accordance with empirical previous work (Karras et al., 2022).

To conclude our work we conducted an empirical analysis with a learned score function using standard
architecture which showed that the score approximation error may be the most important one in
practice. This suggests that assessing the quality of learned score functions is an important research
direction for future work.
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A CHARACTERIZATION OF GAUSSIAN DISTRIBUTIONS THROUGH DIFFUSION
MODELS

The following proposition shows that our Gaussian assumption occurs if and only if the score function
is linear.
Proposition 5. The three following propositions are equivalent:

(i) x0 ∼ N (0,Σ) for some covariance Σ.

(ii) ∀t > 0,∇x log pt(x) is linear w.r.t x.

(iii) ∃t > 0,∇x log pt(x) is linear w.r.t x.

In this case, for t > 0, ∇x log pt(x) = −Σ−1
t x, with Σt defined in Proposition 1.

Proof. (ii) ⇒ (iii) is clear.

If (i), for t > 0, pt(x) = Ct exp
(
− 1

2x
TΣ−1

t x
)
. Consequently, ∇x log pt(x) = −Σ−1

t x and
(i) ⇒ (ii)

If (iii), there exists A such that ∇x log pt(x) = Ax. Consequently, pt(x) = Ct exp(− 1
2x

TAx)

and xt is Gaussian. This provides that x0 = eBtxt − ηt is Gaussian and (iii) ⇒ (i).

B PROOFS OF SECTION 3

B.1 PROPOSITION 1: SOLUTION OF THE FORWARD SDE

We aim at solving:

dxt = −βtxtdt+
√
2βtdwt, x0 ∼ pdata. (27)

By considering zt = eBtxt where Bt =
∫ t

0
βsds,

dzt = βte
Btxt + eBtdxt = βte

Btxt + eBt(−βtxtdt+
√

2βtdwt) =
√
2βte

Btdwt. (28)

Consequently, for 0 ≤ t ≤ T ,

zt = z0 +

∫ t

0

√
2βse

Bsdws, z0 = eB0x0 = x0 (29)

and for 0 ≤ t ≤ T ,

xt = e−Btzt = e−Btx0 + e−Bt

∫ t

0

eBs
√
2βsdws = e−Btx0 + ηt. (30)

By Itô’s isometry (see e.g Øksendal (2010)),

Var
(∫ t

0

eBs
√

2βsdws

)
=

∫ t

0

2βse
2Bsds = [e2Bs ]t0 = e2Bt − e2B0 = e2Bt − 1 (31)

which provides the covariance matrix of ηt:

Cov (ηt) = e−2Bt(e2Bt − 1)I =
(
1− e−2Bt

)
I. (32)

Because x0 and ηt are independent, Σt = e−2BtΣ+
(
1− e−2Bt

)
I .

And,
dΣt = −2βte

−2Bt(Σ− I)dt = −2βt [Σt − I] dt (33)
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B.2 PROPOSITION 2: SOLUTION OF THE BACKWARD SDE UNDER GAUSSIAN ASSUMPTION

We aim at solving

dyt = βT−t(yt − 2Σ−1
T−tyt)dt+

√
2βT−tdwt, 0 ≤ t ≤ T (34)

Denoting Ct =
∫ t

0
βT−sds, by considering zt = Σ−1

T−te
Ctyt,

dzt = eCtΣ−1
T−tdyt + eCtd[Σ−1

T−t]yt + βT−tztdt (35)

= eCtΣ−1
T−tdyt − eCtΣ−1

T−td[ΣT−t]Σ
−1
T−tyt + βT−tztdt by derivative of the inverse matrix (36)

= eCtΣ−1
T−t

[
βT−t(yt − 2Σ−1

T−tyt)dt+
√

2βT−tdwt

]
− 2βT−te

CtΣ−1
T−t [ΣT−t − I]Σ−1

T−tytdt+ βT−tztdt

(37)

(using Equation (9)) (38)

=
[
Σ−1

T−te
CtβT−t(yt − 2Σ−1

T−tyt)− βT−tzt + 2βT−tΣ
−1
T−tzt

]
dt+

√
2βT−te

CtΣ−1
T−tdwt (39)

= βT−t(I − 2Σ−1
T−t)ztdt− βT−tztdt+ 2βT−tΣ

−1
T−tztdt+ eCt

√
2βT−tΣ

−1
T−tdwt (40)

=
√

2βT−te
CtΣ−1

T−tdwt. (41)
(42)

Consequently,

zt = z0 +

∫ t

0

√
2βT−se

CsΣ−1
T−sdws = Σ−1

T y0 +

∫ t

0

√
2βT−se

CsΣ−1
T−sdws. (43)

And,

yt = e−CtΣT−tzt = e−CtΣT−tΣ
−1
T y0 + e−CtΣT−t

∫ t

0

Σ−1
T−se

Cs
√
2βT−sdws. (44)

Finally,

yt = e−CtΣT−tΣ
−1
T y0 + ξt with ξt = e−CtΣT−t

∫ t

0

Σ−1
T−se

Cs
√

2βT−sdws. (45)

By the multidimensional Itô’s isometry,

Cov(

∫ t

0

Σ−1
T−se

Cs
√
2βT−sdws) = 2

∫ t

0

e2CsβT−sΣ
−2
T−sds. (46)

Now, remark that for As = e2CsΣ−1
T−s,

dAs = 2βT−sAsds+ e2Csd
[
Σ−1

T−s

]
(47)

= 2βT−sAsds− 2βT−se
2Cs
[
I −Σ−1

T−s

]
Σ−1

T−sds (using Equation (9)) (48)

= 2e2CsβT−sΣ
−2
T−sds. (49)

Cov

(∫ t

0

Σ−1
T−se

Cs
√
βT−sdws

)
=

∫ t

0

dAs = [As]
t
0 = e2CtΣ−1

T−t −Σ−1
T . (50)

Finally, Cov(ξt) = Σ2
T−t

(
Σ−1

T−t − e−2CtΣ−1
T

)
= ΣT−t − e−2CtΣ2

T−tΣ
−1
T
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We have the final formula considering:

Ct =

∫ t

0

βT−sds =

∫ T

T−t

βxdx =

∫ T

0

βxdx−
∫ T−t

0

βxdx = BT −BT−t (51)

that provides

Cov(yt) = ΣT−t + e−2(BT−BT−t)Σ2
T−tΣ

−1
T

(
Σ−1

T−tCov(y0)Σ
−1
T ΣT−t − I

)
. (52)

In particular, if Cov(y0) and Σ commute,

Cov(yt) = ΣT−t + e−2(BT−BT−t)Σ2
T−tΣ

−1
T

(
Σ−1

T Cov(y0)− I
)
. (53)

B.3 PROPOSITION 3: SOLUTION OF THE ODE PROBABILITY FLOW UNDER GAUSSIAN
ASSUMPTION

As done in Khrulkov et al. (2023), the matrix Σ
1/2
t admits a derivative which is d

[
Σ

1/2
t

]
=

1
2dΣtΣ

−1/2
t because it is diagonalisable. Let us check that

yt = Σ
−1/2
T Σ

1/2
T−ty0 (54)

is solution of the ODE of Equation (5):

dyt = −Σ
−1/2
T

1

2
dΣT−tΣ

−1/2
T−t y0 (55)

= Σ
−1/2
T [βT−tΣT−t − βT−tI]Σ

−1/2
T−t y0dt (using Equation (9)) (56)

= [βT−tΣT−t − βT−tI]Σ
−1
T−tΣ

−1/2
T Σ

1/2
T−ty0dt (by commutativity) (57)

=
[
βT−t − βT−tΣ

−1
T−t

]
ytdt (58)

= [βT−t + βT−t∇y log pT−t(yt)]ytdt. (59)

Let us discuss the link between this solution and OT. The formula of OT map between two centered
Gaussian distributions N (0,Σ1) and N (0,Σ2) is well known. In Peyré & Cuturi (2019), the authors
give the linear map (affine when the distributions are not centered) T : X 7→ AX with

A = Σ
− 1

2
1

(
Σ

1
2
1 Σ2Σ

1
2
1

) 1
2

Σ
− 1

2
1 . (60)

When Σ1 and Σ2 commute, this expression simplifies to:

A = Σ
−1/2
1 Σ

1/2
2 . (61)

We showed that the solution (Equation (54)) of the backward probability flow in the finite interval
[0, t], with 0 ≤ t ≤ T , corresponds to applying to the initial point y0 the linear map

A = Σ
− 1

2

T Σ
1
2

T−t, (62)

that is, the OT map between pT = N (0,ΣT ) and pT−t = N (0,ΣT−t).

Let us now derive the covariance matrix of the solution, which characterises a Gaussian distribution.

Cov(yt) = Σ
−1/2
T Σ

1/2
T−tCov(y0)Σ

−1/2
T−t Σ

1/2
T . (63)

In particular, if Cov(y0) and Σ commute,

Cov(yt) = Σ−1
T ΣT−tCov(y0). (64)
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B.4 PROOF OF PROPOSITION 4

For 0 ≤ t ≤ T , denoting (λi,t)1≤i≤d the eigenvalues of Σt, the eigenvalues of Σ̃t = Cov(ỹT−t) are

λ̃i,t = λi,t + e−2(BT−Bt)λ2
i,t

1

λi,T

(
1

λi,T
− 1

)
, i = 1, . . . , d. (65)

and the eigenvalues of Σ̂t = Cov(ŷT−t) are

λ̂i,t =
λi,t

λi,T
, 1 ≤ i ≤ d. (66)

Consequently, W2(pt, p̃t) is the sum of the squares of all:

√
λi,t −

√
λ̃i,t =

√
λi,t

(
1−

√
1 + e−2(BT−Bt)λi,t

1

λi,T

(
1

λi,T
− 1

))
. (67)

Similarly, W2(pt, p̂t) is the sum of the squares of all:

√
λi,t −

√
λ̂i,t =

√
λi,t

(
1−

√
1

λi,T

)
(68)

=
√
λi,t

(
1−

√
1 +

(
1

λi,T
− 1

))
. (69)

Let us now compare individually these differences.

e−2(BT−Bt)λi,t
1

λi,T

(
1

λi,T
− 1
)

1
λi,T

− 1
= e−2(BT−Bt)

λi,t

λi,T
(70)

= e−2(BT−Bt)
e−2Bt(λi − 1) + 1

e−2BT (λi − 1) + 1
(71)

=
(λi − 1) + e2Bt

(λi − 1) + e2BT
(72)

< 1. (73)

Case 1: 0 < λi < 1 and t > 0

In this case, λi,T < 1 and:

0 < e−2(BT−Bt)λi,t
1

λi,T

(
1

λi,T
− 1

)
<

1

λi,T
− 1. (74)

Thus,
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∣∣∣∣√λi,t −
√
λ̃i,t

∣∣∣∣ =√λ̃i,t −
√
λi,t (75)

=
√
λi,t

(√
1 + e−2(BT−Bt)λt

i

1

λi,T

(
1

λi,T
− 1

)
− 1

)
(76)

<
√
λi,t

(√
1 +

(
1

λi,T
− 1

)
− 1

)
(77)

=

√
λ̂i,t −

√
λi,t (78)

=

∣∣∣∣√λi,t −
√
λ̂i,t

∣∣∣∣ . (79)

Case 2: λi = 0 and t = 0.

In this case, for 1 ≤ i ≤ d, λ̂i,T = λ̃i,T = 0.

Case 3: λi = 1.

In this case, for 1 ≤ i ≤ d, λ̂i,t = λ̃i,t = 1.

Case 4: 1 < λi.

In this case, λi,T ≥ 1, and
e−2(BT −Bt)λi,t

1
λi,T

(
1

λi,T
−1
)

1
λi,T

−1
= e−2(BT−Bt) λi,t

λi,T
< 1 provides

e−2(BT−Bt)λi,t
1

λi,T

(
1

λi,T
− 1

)
>

1

λi,T
− 1. (80)

Finally,

∣∣∣∣√λi,t −
√

λ̃i,t

∣∣∣∣ =√λi,t −
√
λ̃i,t (81)

=
√
λi,t

(
1−

√
1 + e−2(BT−Bt)λi,T

1

λi,T

(
1

λi,T
− 1

))
(82)

<
√
λi,t

(
1−

√
1 +

(
1

λi,T
− 1

))
(83)

=
√
λi,t −

√
λ̂i,t (84)

=

∣∣∣∣√λi,t −
√
λ̂i,t

∣∣∣∣ . (85)

This case study provides:

W2(p̃t, pt) ≤ W2(p̂t, pt). (86)

C GAUSSIAN CIFAR-10 SAMPLES

The Gaussian CIFAR-10 produces unstructured images. A grid of samples is presented in Figure 4.
To sample from this Gaussian, the empirical covariance matrix of size R(3×32×32)×(3×32×32)is
computed and then the SVD decomposition to extract a square root matrix (see source code).
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Figure 4: CIFAR-10 Gaussian samples. Samples are generated from the Gaussian distribution
fitting the CIFAR-10 dataset.

D COMPUTATION OF THE 2-WASSERSTEIN DISTANCES FOR NUMERICAL
SCHEMES

The 2-Wasserstein errors can be computed by using Equation (19) recalled here:

W2(N (0,Σ1),N (0,Σ2))
2 =

∑
1≤i≤d

(
√

λi,1 −
√
λi,2)

2. (19)

for two centered Gaussians N (0,Σ1) and N (0,Σ2) such that Σ1,Σ2 are simultaneously diago-
nalizable with respective eigenvalues (λi,1)1≤i≤d , (λi,2)1≤i≤d. We aim at computing these errors
between the Gaussian process folowing (pt)0≤t≤T and the processes induced by the discretization
schemes. Table 1 shows that each discretization scheme leads to a discrete time Gaussian process
whose covariance matrix is diagonalizable in the basis of Σ when intialize them with either N0 (usual
sampling) or pT (no initialization error). Let detail this point for the Euler-Maruyama (EM) scheme.
Let denote (vi)1≤i≤d a basis of eigenvectors of Σ and its associated eigenvalues (λi)1≤i≤d. For
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0 ≤ t ≤ T , Σt = e−2BtΣ+ (1− e−2Bt)I and for all 1 ≤ i ≤ d,

Σtvi =
(
e−2Btλi + (1− e−2Bt)

)
vi (87)

Consequently Σt admits the same eigenvectors than Σ with associated eigenvalues (λi,t)1≤i≤d =(
e−2Btλi + (1− e−2Bt)

)
1≤i≤d

. Let study the covariance matrix of the EM process. Let denote(
Σ∆,EM

k

)
1≤i≤d,0≤k≤N

the covariance matrix of the Gaussian process generated by the EM scheme

at each step and
(
λ∆,EM
i,k

)
1≤i≤d,0≤k≤N

its eigenvalues. First,

Σ∆,EM
0 =

{
I if yT is initialized at N0

ΣT if yT is initialized at pT
. (88)

And consequently,

λ∆,EM
i,0 =

{
1 if yT is initialized at N0

e−2BT λi + (1− e−2BT ) if yT is initialized at pT
1 ≤ i ≤ d. (89)

Then, by Table 1,

ỹ∆,EM
1 =

(
I +∆tβT−t0

(
I − 2Σ−1

T−t0

))
ỹ∆,EM
0 +

√
2∆tβT−t0z0, z0 ∼ N0 (90)

and

Σ∆,EM
1 =

(
I +∆tβT−t0

(
I − 2Σ−1

T−t0

))
Σ∆,EM

0

(
I +∆tβT−t0

(
I − 2Σ−1

T−t0

))T
+ 2∆tβT−t0I

(91)

=
(
I +∆tβT−t0

(
I − 2Σ−1

T−t0

))2
Σ∆,EM

0 + 2∆tβT−t0I because Σ and Σ∆,EM
0 commute.

(92)

Let 1 ≤ i ≤ d,

Σ∆,EM
1 vi =

[(
1 + ∆tβT−t0

(
I − 2

λi,T−t0

))2

λ∆,EM
i,0 + 2∆tβT−t0

]
vi (93)

Consequently, (vi)1≤i≤d is also a basis of eigenvectors of Σ∆,EM
1 and

λ∆,EM
i,1 =

(
1 + ∆tβT−t0

(
I − 2

λi,T−t0

))2

λ∆,EM
i,0 + 2∆tβT−t0 , 1 ≤ i ≤ d. (94)

Thus, we can obtain the eigenvalues
(
λ∆,EM
i,k

)
1≤i≤d,0≤k≤N

at each time and plot at each time√√√√ ∑
1≤i≤d

(√
λi,T−tk −

√
λ∆,EM
i,k

)
, 1 ≤ k ≤ N (95)

as done in Figure 1. These computations can be led for the different schemes, as presented in Table 4.

E THEORETICAL WASSERSTEIN DISTANCE FOR THE ADSN MODEL

As done for the Gaussian CIFAR-10, the Wasserstein errors can be computed for the ADSN model as
shown in Figure 5 and Table 5.

F STUDY OF THE COVARIANCE MATRIX OF THE ADSN DISTRIBUTION

F.1 REMINDERS ON THE DISCRETE FOURIER TRANSFORM (DFT)

For a given image v ∈ R3×M×N , we define the DFT of v, v̂ ∈ R3×M×N such that for 1 ≤ c ≤
3,ξ ∈ RM×N
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SD
E

sc
he

m
es EM λ

∆,EM
i,k+1

=

(
1 + ∆tβT−tk

(
1 − 2

λi,T−tk

))2
λ
∆,EM
i,k

+ 2∆tβT−tk
, 1 ≤ i ≤ d, 0 ≤ k ≤ N − 1

EI λ
∆,EI
i,k+1

=

(
1 + γ1,k

(
1 − 2

λi,T−tk

))2
λ
∆,EI
i,k

+ 2γ2,k 1 ≤ i ≤ d, 0 ≤ k ≤ N − 1
O

D
E

sc
he

m
es Euler λ

∆,Euler
i,k+1

=

(
1 + ∆tβT−tk

(
1 − 1

λi,T−tk

))2
λ

Euler,k
i 1 ≤ i ≤ d, 0 ≤ k ≤ N − 1

Heun λ
∆,Heun
i,k+1

=

(
1 +

∆t
2

βT−tk

(
1 − 1

λi,T−tk

)
+

∆t
2

βT−tk+1

(
1 − 1

λi,T−tk+1

)(
1 + ∆tβT−tk

(
1 − 1

λi,T−tk

)))
λ
∆,Heun
i,k

1 ≤ i ≤ d, 0 ≤ k ≤ N − 1

Table 4: Recursive form of the eigenvalues of the covariance matrix associated with the Gaussian
process generated by the different schemes for a regular time schedule (tk)0≤k≤N with steps ∆t =

T
N .

0 0.2 0.4 0.6 0.8 T = 1

Time t

10−6

10−5

10−4

10−3

10−2

10−1

100

101

W
2
(·,
p
t
)

SDE

ODE

EM

EI

Euler

Heun

(a) Initialization error along the integration time.
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Figure 5: Wasserstein errors for the diffusion models associated with the Gaussian microtextures. Left:
Evolution of the Wasserstein distance between pt and the distributions associated with the continuous SDE,
the continuous flow ODE and four discrete sampling schemes with standard N0 initialization, either stochastic
(Euler-Maruyama (EM) and Exponential Integrator (EI)) or deterministic (Euler and Heun). While the continuous
SDE is less sensible than the continuous ODE (as proved by Proposition 4), the initialization error impacts all
discrete schemes. Heun’s method has the lowest error and is very close to the theoretical ODE, except for the
last step that is usually discarded when using time truncation. Right: Wasserstein errors due to time truncation
for various truncation times ϵ. Heun’s scheme is not defined without truncation time due to the zero eigenvalue.
Interestingly, for the standard practice truncation time ε = 10−3, all numerical schemes have a comparable error
close to their continuous counterparts.

v̂c,ξ =
∑

x∈M×N

vc,x exp(−
2iπx1ξ1

M
) exp(−2iπx2ξ2

N
), i2 = −1 (96)

where v̂c,ξ is the value of v̂ at coordinate ξ of the k-th channel of v̂. For u ∈ R3M×N , by defining
u ⋆ v the periodic convolution such that for 1 ≤ c ≤ 3, x ∈ RM×N :

(u ⋆ v)c,x =
∑

y∈M×N

uc,x−yvc,y (97)

we have:

û ⋆ v = û⊙ v̂, (98)

where ⊙ is the componentwise product.
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Continuous N = 50 N = 250 N = 500 N = 1000

pT N0 pT N0 pT N0 pT N0 pT N0

E
M

ε = 0 0 5.2E-06 53.37 53.37 10.58 10.58 6.27 6.27 4.02 4.02
ε = 10−5 0.36 0.36 53.35 53.35 10.57 10.57 6.26 6.26 4.02 4.02
ε = 10−4 1.15 1.15 53.21 53.21 10.53 10.53 6.25 6.25 4.03 4.03
ε = 10−3 3.84 3.84 51.92 51.92 10.55 10.55 6.80 6.80 5.16 5.16

E
I

ε = 0 0 5.2E-06 30.91 30.91 8.85 8.85 5.71 5.71 3.84 3.84
ε = 10−5 0.36 0.36 30.92 30.92 8.85 8.85 5.72 5.72 3.84 3.84
ε = 10−4 1.15 1.15 31.01 31.01 8.92 8.92 5.78 5.78 3.90 3.90
ε = 10−3 3.84 3.84 31.94 31.94 9.74 9.74 6.76 6.76 5.24 5.24

E
ul

er

ε = 0 0 6.4E-03 5.69 5.70 3.27 3.27 2.50 2.51 1.87 1.87
ε = 10−5 0.36 0.36 5.70 5.71 3.28 3.28 2.53 2.53 1.90 1.90
ε = 10−4 1.15 1.15 5.80 5.80 3.43 3.43 2.72 2.72 2.15 2.15
ε = 10−3 3.84 3.84 6.79 6.79 4.85 4.85 4.41 4.41 4.14 4.14

H
eu

n

ε = 0 0 6.4E-03 - - - - - - - -
ε = 10−5 0.36 0.36 2.4E+03 2.4E+03 3.0E+02 3.0E+02 1.1E+02 1.1E+02 40.00 40.00
ε = 10−4 1.15 1.15 2.3E+02 2.3E+02 26.34 26.34 8.54 8.54 2.01 2.01
ε = 10−3 3.84 3.84 15.42 15.42 2.25 2.25 3.40 3.40 3.73 3.73

Table 5: Ablation study of Wasserstein errors for the Gaussian microtextures. For a given discretization
scheme, the table presents the Wasserstein distance associated with the truncation error for different values of ε.
The columns pT and N0 show the influence of the initialization error. The continuous column corresponds to
the continuous SDE or ODE linked with the scheme (identical values for EM, EI and Euler, Heun). Note that the
Heun scheme is not defined without truncation time due to the zero eigenvalue.

F.2 EIGENVECTORS OF THE COVARIANCE MATRIX OF THE ADSN DISTRIBUTION

Let u ∈ R3×M×N and its associated texton t ∈ R3×M×N . The distribution ADSN(u) is the
Gaussian distribution of X = t ⋆w such that:

Xi = ti ⋆w ∈ RM×N , 1 ≤ i ≤ 3,w ∼ N0 (99)

Consequently, denoting Σ the covariance of ADSN(u), for v ∈ R3M×N ,

Σ̂vi = t̂it̂1v̂1 + t̂it̂2v̂2 + t̂it̂3v̂3 = t̂i

(
t̂1v̂1 + t̂2v̂2 + t̂3v̂3

)
(100)

This equation proves that the kernel of Σ contains the kernel of v ∈ R3×M×N 7→ t̂1v̂1 + t̂2v̂2 +

t̂3v̂3 ∈ RM×N which has a dimension greater than 2MN . Consequently, 0 is eigenvalue of Σ with
multiplicity greater than 2MN . Furthermore, for ξ ∈ RM×N , denoting u1,ξ such that:

û1,ξ
i (ω) = 1ω=ξ t̂i(ω), 1 ≤ i ≤ 3, ω ∈ RM×N (101)

we have,

Σu1,ξ = (|̂t1(ξ)|2 + |̂t2(ξ)|2 + |̂t3(ξ)|2)u1,ξ. (102)

Furthermore, the family
(
u1,ξ

)
ξ∈M×N

is orthogonal. Thus, the eigenvalues of Σ are(
|̂t1(ξ)|2 + |̂t2(ξ)|2 + |̂t3(ξ)|2

)
ξ∈M×N

and 0 with multiplicity 2MN .

For ξ ∈ RM×N , we denote u2,ξ,u3,ξ such that for ω ∈ RM×N :
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
û2,ξ
1 (ω) = −1ω=ξ t̂3(ω)

û2,ξ
2 (ω) = 0

û2,ξ
3 (ω) = 1ω=ξ t̂1(ω)

(103)


û3,ξ
1 (ω) = 0

û3,ξ
2 (ω) = −1ω=ξ t̂3(ω)

û3,ξ
3 (ω) = 1ω=ξ t̂2(ω)

(104)

We have

Σu2,ξ = 0.u2,ξ (105)

Σu3,ξ = 0.u3,ξ. (106)

Then, applying the orthonomalization of Gram-Schmidt on each tuple (u1,ξ,u2,ξ,u3,ξ)ξ∈RM×N , we
obtain an orthonormal basis in the Fourier domain (v1,ξ,v2,ξ,v3,ξ)ξ∈RM×N of eigenvectors of Σ.
More precisely, for ξ1, ξ2 ∈ RM×N , 1 ≤ j1, j2 ≤ 3,

(
v̂
j1,ξ1

)T
v̂j2,ξ2 =

∑
x1∈M×N
x2∈M×N

v̂
j1,ξ1
x1

v̂j2,ξ2
x2

(107)

= 1j1=j2
ξ1=ξ2

(108)

which is applying the square root of Σ to the white Gaussian noise w. Furthermore, we can ensure
that for ξ ̸= ω ∈ RM×N , 1 ≤ j ≤ 3, v̂j,ξ(ω) = 0 such that only the frequency ξ is active in the
Fourier transform of vj,ξ. Consequently, for w ∈ R3M×N ,

ŵ
T
vj,ξ =

∑
1≤i≤3

ŵi(ξ)v̂
j,ξ
i (ξ). (109)

In particular,

(
v̂
j,ξ
)T

= ∥v̂j,ξ∥2 =
∑

1≤i≤3

∣∣∣vj,ξ
i (ξ)

∣∣∣2 = 1. (110)

F.3 COMPUTATION OF THE EMPIRICAL WASSERSTEIN ERROR IN THE ADSN COVARIANCE
DIAGONALIZATION BASIS

Let consider a Gaussian distribution N (0,Γ) such that there exists (λξ
1, λ

ξ
2, λ

ξ
3)ξ∈RM×N such that for

all ξ ∈ RM×N ,
Γvj,ξ = λξ

jv
j,ξ, 1 ≤ j ≤ 3. (111)

Let w ∼ N0 ∈ R3M×N , (v1,ξ,v2,ξ,v3,ξ)ξ∈RM×N is an orthonormal basis in the Fourier domain
such that:

ŵ =
∑

ξ∈RM×N

([
ŵ

T
v̂1,ξ

]
v̂1,ξ +

[
ŵ

T
v̂2,ξ

]
v̂2,ξ +

[
ŵ

T
v̂3,ξ

]
v̂3,ξ

)
(112)

(113)

A sample drawn from N (0,Γ) has the same distribution as Y given by
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Ŷ =
∑

ξ∈RM×N

√
λξ
1

[
ŵ

T
v̂1,ξ

]
v̂1,ξ +

∑
ξ∈RM×N

√
λξ
2

[
ŵ

T
v̂2,ξ

]
v̂2,ξ +

∑
ξ∈RM×N

√
λξ
3

[
ŵ

T
v̂3,ξ

]
v̂3,ξ.

(114)

Note that the three channels of w are independent. Furthermore, for 1 ≤ j ≤ 3

(
v̂
j,ξ
)T

Ŷ =

√
λξ
1

[
ŵ

T
v̂j,ξ

] ∥∥v̂j,ξ
∥∥2 =

√
λξ
1

[
ŵ

T
v̂j,ξ

]
(115)∣∣∣∣(v̂j,ξ

)T
Ŷ

∣∣∣∣2 = λξ
j

∣∣∣ŵT
v̂j,ξ

∣∣∣2 (116)

E

[∣∣∣∣(v̂j,ξ
)T

Ŷ

∣∣∣∣2
]
= λξ

jE
[∣∣∣ŵT

v̂j,ξ
∣∣∣2] (117)

E
[∣∣∣ŵT

v̂j,ξ
∣∣∣2] = ∑

1≤c1,c2≤3

E
[
ŵc1(ξ)ŵc2(ξ)

]
v̂j,ξ
c1 (ξ)v̂c2(ξ) by Equation (109) (118)

=
∑

1≤c≤3

E
[
|ŵc(ξ)|2

] ∣∣v̂j,ξ
c (ξ)

∣∣2 because the channels are inependent (119)

= 3MN
∑

1≤c≤3

∣∣v̂j,ξ
c (ξ)

∣∣2 because E
[
|ŵc(ξ)|2

]
= MN (120)

= 3MN by Equation (110). (121)

Finally,

E

[∣∣∣∣(v̂j,ξ
)T

Ŷ

∣∣∣∣2
]
= 3MNλξ

1 (122)

Finally, for a given sampling (Yk)1≤k≤Nsamples
following the distribution N (0,Γ), an estimator of λξ

j

is:

λξ,emp.
j =

1

3NsamplesMN

Nsamples∑
k=1

∣∣∣∣(v̂j,ξ
)T

Ŷk

∣∣∣∣2 . (123)

The empirical Wasserstein distance between the Gaussian distribution N (0,Γ) and the ADSN model
with texton t is:

Wemp.
2 (N emp.(0,Γ),ADSN(u)) =

√√√√ ∑
ξ∈RM×N

((√
λξ,emp.
1 −

√
λξ,ADSN
1

)2

+ λξ,emp.
2 + λξ,emp.

3

)
(124)

with λξ,ADSN
1 = |̂t1(ξ)|2 + |̂t2(ξ)|2 + |̂t3(ξ)|2 for ξ ∈ RM×N .

Furthermore, the computations can be vectorized by componentwise products in the Fourier domain.
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