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Abstract

A key challenge in analyzing neuroscience datasets is the profound variabil-
ity they exhibit across sessions, animals, and data modalities—i.e., hetero-
geneity. Several recent studies have demonstrated performance gains from
pretraining neural foundation models on multi-session datasets, seemingly
overcoming this challenge. However, these studies typically lack fine-
grained data scaling analyses. It remains unclear how different sources of
heterogeneity influence model performance as the amount of pretraining
data increases, and whether all sessions contribute equally to downstream
performance gains. In this work, we systematically investigate how data
heterogeneity impacts the scaling behavior of neural data transformers
(NDTs) in neural activity prediction. We found that explicit sources of
heterogeneity, such as brain region mismatches among sessions, reduced
scaling benefits of neuron-level and region-level activity prediction perfor-
mances. For tasks that do exhibit consistent scaling, we identified implicit
data heterogeneity arising from cross-session variability. Through our pro-
posed session-selection procedure, models pretrained on as few as five
selected sessions outperformed those pretrained on the entire dataset of
84 sessions. Our findings challenge the direct applicability of traditional
scaling laws to neural data and suggest that prior reports of multi-session
scaling benefits may need to be re-examined in the light of data heterogene-
ity. This work both highlights the importance of incremental data scaling
analyses and suggests new avenues toward optimally selecting pretrain-
ing data when developing foundation models on large-scale neuroscience
datasets.

1 Introduction

Recent advances in foundation models have revolutionized the modern machine learning
paradigm. Across domains such as language and vision, it has been shown that “pretraining”
a generic model on large-scale data before “finetuning” it to the actual tasks achieves much
better performance than task-specific models (Devlin et al., 2019; Brown et al., 2020; Chung
et al., 2024). This success has inspired similar efforts in systems neuroscience, where
the goal is to develop foundation models trained on large, multi-session, multi-animal
neural datasets of neural activity recordings. However, neural recordings pose unique
challenges: data collected across brain regions, sessions, and individuals often exhibit
substantial variability (Laboratory et al., 2021; 2025; Waschke et al., 2021). Even within the
same recording session, stochasticity of neuronal firing and uncontrolled behavior can lead
to significant trial-to-trial variability (Harris & Thiele, 2011; Stringer et al., 2019; Peterson
et al., 2021). Furthermore, neural data can be non-stationary due to synaptic plasticity that
induces gradual changes in population dynamics across days (Rule et al., 2019; Driscoll
et al., 2022). These challenges raise a key question: Can neural foundation models overcome
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Figure 1: Experimental Setup. (a) Schematic of the visual decision-making task performed
by mice. (b) Planned probe insertion location (black line) for all sessions in the RepeatedSite
dataset. (c) Different probe insertion locations (gray lines) for different sessions in the
Brainwidemap dataset. (d) Four different masking schemes of raw spike counts for model
training. (e) The model architecture. Sub-figures adapted from Laboratory et al. (2021; 2025;
2024); Zhang et al. (2024b). See text for details.

these sources of heterogeneity and learn more generalizable representations with more
pretraining data?

While several recent studies have demonstrated performance gains from multi-session
pretraining on a wide range of encoding and decoding tasks, they typically lack fine-grained
scaling analyses on the benefits of gradually increasing pretraining data (Azabou et al.,
2023; 2024; Zhang et al., 2024b; 2025). Most comparisons are limited to models trained on
single sessions versus entire datasets with few increments in the middle, making it unclear
how different sources of heterogeneity impact performance scaling. Moreover, it remains
unknown whether all pretraining sessions contribute equally to downstream performance
improvements (see Appendix A for related work). As pretraining scales to thousands of
sessions and hours of data (Ye et al., 2025; Azabou et al., 2024), understanding the scaling
behaviors of the model becomes increasingly critical.

In this work, we systematically investigate how data heterogeneity affects the scaling
behavior of neural data transformers (NDTs) (Ye & Pandarinath, 2021; Zhang et al., 2024b; Ye
et al., 2025) using two large-scale datasets released from the International Brain Laboratory
(Laboratory et al., 2025; 2024). These datasets differ in the consistency of recorded brain
regions across sessions, offering us an opportunity to study how different levels of brain
region heterogeneity in pretraining affect scaling. We further examine the effects of implicit
heterogeneity such as session-to-session variability. Through a proposed session-selection
procedure, we identify the impact of each pretraining session on downstream performance
improvements. Our main findings include:
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¢ We found that greater region-wise heterogeneity in pretraining data led to reduced
improvements of neuron- and region-level activity prediction performances.

¢ To identify implicit heterogeneity, a session-selection procedure based on single-
session finetuning performances can effectively identify most beneficial single
sessions for pretraining.

* Models trained with as few as five selected sessions outperformed those with
randomly chosen sessions even when the full dataset was used, demonstrating the
impact of session-to-session variability in performance scaling.

Together, these findings suggest that previous claims regarding the scaling benefits of
pretraining without detailed incremental experiments may be premature, pointing to the
need for rigorous scaling analyses in future work on neural foundation models to accurately
assess the promise of large-scale pretraining.

2 Experimental Setup

Figure 1 summarizes the experimental setup used throughout our study, which mostly
follows Zhang et al. (2024b) whose experiments were conducted on a subset of the same
RepeatedSite dataset we used. We discuss the datasets, training pipeline, and evaluation
metrics in detail below. More details are included in Appendix B.

2.1 Datasets

We used two multi-brain-region, multi-animal/session datasets from the International Brain
Lab (IBL) collected from mice. Animals performed a visual decision-making task where they
detected the presence of a visual grating (of varying contrast) to their left or right and rotated
a wheel to bring the stimulus to the center (Fig. 1(a)). The main difference between the two
IBL datasets lies in how often brain regions were repeatedly recorded across sessions. In
the RepeatedSite dataset (henceforth RS), each session attempted to record from the same
brain regions (Fig. 1(b), black line shows planned electrode insertion position). In contrast,
the Brainwidemap dataset (henceforth BWM) aimed to cover as many different brain regions as
possible (Fig. 1(c), gray lines show planned insertion positions), leading to little repetition
of regions across sessions.

We used 89 out of 91 sessions in RS, excluding two sessions with fewer than one hundred
trials. Five out of 89 sessions were held out for finetuning and evaluation. We randomly
selected 200 sessions out of 460 sessions in BWM for pretraining and 10 sessions for finetuning
and evaluation. Trials within each session were randomly split into training, validation, and
test sets using an 8:1:1 ratio. Each trial included three seconds of neural activity, spanning
from 0.5 seconds before to 2.5 seconds after stimulus onset with 20 ms bins for spike counts.
The data from each session is thus a three-dimensional (trials x timesteps X neurons) tensor
of integer spike counts.

2.2 Training pipeline

Multi-masking scheme During training, input spike count vectors were masked in one
of four ways, as illustrated in Figure 1(d): (1) Co-smoothing: selected neurons’ activities
are masked; (2) Forward-prediction: all neurons’ selected timesteps are masked; (3) Inter-
region: all neurons’ activities in a selected brain region are masked; (4) Intra-region: selected
neurons in a selected brain region, along with all other neurons in other brain regions, are
masked. Models were trained to reconstruct masked input from the unmasked (Devlin
et al., 2019) by maximizing the log likelihood of the Poisson distribution, with the model
outputs as the predicted firing rates. We also applied causal attention in NDT if inputs were
masked with forward-prediction to ensure no future neural activities were used to predict
the present. Zhang et al. (2024b) showed that this multi-masking scheme significantly
outperforms a scheme using forward-prediction masks alone in spike prediction tasks.
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Figure 2: Scaling Behavior of NDT Models. Plots show pretrained NDT models’ finetuning
performances as the number of pretraining sessions increases. (a) Performances of each
neural activity prediction task on RS data. Black dashed lines show the baseline models’
performances. (b) Same as (a) but on BWM data. (c) Percentage improvements of models
pretrained with more sessions over the 20-session model. (d) Choice decoding performances
on RS (left) and BWM (right). Red dashed line shows the chance prediction accuracy. (e)
Forward-prediction performance examples on individual heldout sessions from RS (first
panel) and BWM (second & third panels).

Model architecture We used the neural data transformer (NDT) architecture by Ye &
Pandarinath (2021) that has been widely applied to neural encoding and decoding tasks (Le
& Shlizerman, 2022; Ye et al., 2025; Zhang et al., 2025). NDT also achieves state-of-the-art
performance on the IBL dataset we used (Zhang et al., 2024b; 2025). Since different ses-
sions have different numbers of neurons recorded, a session-specific linear layer (encoding
“stitcher”) maps raw spike counts to spike embeddings (Fig. 1(e) left) whose dimensions
are shared across sessions (Pandarinath et al., 2018). A session embedding and a masking
scheme embedding are also appended to input sequences. Lastly, another session-specific
linear layer (decoding stitcher) maps the output of the transformer back to reconstructed
spike rates (Fig. 1(e) right).

2.3 Evaluation

Baseline To show the effect of scaling up pretraining data, we directly trained single-
session models on the training set of each heldout session as the baseline models.
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Metrics The bits-per-spike metric (BPS) is widely used to evaluate neural activity predic-
tion performance (Rieke et al., 1999; Pei et al., 2021; Zhang et al., 2024b; 2025):

bits-per-spike (A, X) = (L (X; }\) —L(X;A)), 1)

nsp log2
where A is the predicted spike rates by the model, X is the true spike counts, 75, is the total
spike count of X, L is the log likelihood function of Poisson, and A is the mean firing rate

of X. The BPS metric essentially evaluates the goodness-of-fit statistics of a model over the
null model, normalized by the spike counts. Changes in BPS directly reflect changes in

model log likelihood £ (X; )A\) when evaluated on the same dataset, as other terms remain
constant. For all experiments, we report the metrics on the test sets of the heldout sessions
after finetuning models to their training sets.

Tasks Each masking scheme used for training corresponds to a leave-one-out evaluation
task of activity prediction, namely: (1) Co-smoothing: Activities of each neuron were
predicted from all other neurons; (2) Forward-prediction: The model predicted neural
activities in continuous, non-overlapping windows of 200 ms at a time (10 timesteps) given
previous ground truth activities, starting from stimulus onset to 2.2 seconds after stimulus
onset (110 timesteps in total); (3) Inter-region: Activities of all neurons in each region were
predicted from all other regions; (4) Intra-region: Activities of each neuron in a region were
predicted from all other neurons in that region. Repeat for each region.

3 Data heterogeneity limits NDT models’ scaling behavior

As mentioned, the difference in brain region overlaps between RS and BWM provides a natural
setting to study how pretraining data heterogeneity affects model scaling behavior. BWM
sessions contain neural activity from largely non-overlapping brain regions, resulting in
greater single-neuron and brain-region heterogeneity compared to RS. We hypothesize that
increased heterogeneity in BWM will reduce the scaling benefits from pretraining on more
sessions.

We conducted our scaling analysis as follows. Using the RS dataset, we pretrained NDT
models on 20, 40, 60, and 84 sessions, then finetuned them to each of five heldout sessions.
For BWM, we pretrained models on 20, 40, 60, 80, 100, 150 and 200 sessions (out of 460 total),
then finetuned them on ten heldout sessions. During finetuning, a new session embedding
and two session-specific stitchers were learned from scratch while the mask embedding and
the core NDT parameters were initialized from pretraining.

3.1 Performance scaling is weaker in BWM than RS

Before analyzing whether pretrained models” performances scale with more pretraining
data, we first confirm they indeed outperformed baseline models (Appendix C). Next, we
investigate whether the task performances scale with increased pretraining data. Figure 2(a)
and (b) show the evaluation results of models trained on RS and BWM data, respectively.
Although performance generally improved with more pretraining data, the scaling effects
were relatively modest. Figure 2(c) illustrates the percentage performance gains relative to
the 20-session model, with the largest improvement of 4.2% observed on the intra-region
task on RS using more than four times the amount of data. Notably, performance gains
reduced across the co-smoothing, inter-region, and intra-region tasks on BWM compared to
RS. For co-smoothing in particular, scaling benefits were negligible in BWM. In contrast, the
forward-prediction performance scaled consistently on the two datasets. However, the
forward-prediction performance also plateaued around 80 pretraining sessions, suggesting
a potential upper limit on the performance improvements achievable through pretraining
given the current scope of data. These results support our hypothesis that greater brain
region heterogeneity in BWM limits the effectiveness of pretraining, particularly on single-
neuron and region-level tasks.

To probe the quality of the NDT’s internal representations, we trained a logistic regres-
sion classifier on the output of the third intermediate transformer block (out of five, see
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Appendix B) to predict the animals” decisions. Previous work typically performed such
decoding analyses using reconstructed spikes rather than models’ internal representations
(Pei et al., 2021; Zhang et al., 2024b). Under the latter setup, improvements in choice decod-
ing performance could reflect better spike reconstruction rather than better representations
of choice-related latent states underlying the data. With our setup, decoding accuracies
are higher in RS than BWM (Appendix C). Figure 2(d) shows the changes in classification
accuracy with increasing amounts of pretraining data. There was no clear scaling of decod-
ing performance on either dataset. Taken together, these results highlight the importance
of investigating the scaling behaviors of pretrained models with more fine-grained data
increments.

We also observed large cross-session variabilities in the finetuning performances. Fig. 2(e)
shows the forward-prediction performance of three heldout sessions (see Appendix D for
all sessions). In addition to the substantial differences in absolute bits-per-spike values,
their scaling trends deviate from the session averages (second panel in Fig. 2(a) & (b)).
Such variability indicates a more implicit form of data heterogeneity that comes from
individual differences among animals. Given this observation and our previous findings on
the pretrained models’ limited scaling behavior, a natural question arises: Can we identify
more beneficial sessions than others in the pretraining dataset for improving scaling
performance? We answer this question in the next section.

4 Identifying more beneficial single sessions for performance scaling

We hypothesize that each pretraining session exhibits varying degrees of distribution shift
relative to a heldout session. We call this implicit data heterogeneity, which arises from subtle
individual differences among animals and sessions that are harder to identify than explicit
sources of heterogeneity such as task design and brain regions. We expect that models
pretrained on sessions “closer” to the heldout sessions will achieve higher performances
more data-efficiently than models pretrained with randomly selected sessions.

To test this, we conducted our experiments on the RS dataset, which allows us to control the
brain region heterogeneity as discussed in the last section. We trained NDT models with
only forward-prediction masking to focus on this evaluation task, which exhibits the most
consistent scaling behavior on the two datasets (Fig. 2(c)). For more fine-grained scaling
analysis, we pretrained models on 1, 2, 3, 4, 5, 10, 20, 30, 40, and all 84 sessions.

4.1 Ranking pretraining sessions by single-session finetuning performances

First, we propose using single-
session finetuning performances
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Figure 3: Schematic of the ranking process. (a)
Pretraining stage: We trained 84 single-session mod-
els, each consisting of a transformer and two session-
specific stitchers. (b) Finetuning stage: For each pre-
trained model, we trained two new stitchers on the
heldout session’s training set, keeping the transformer
weights frozen. Models were ranked by their bits-per-
spike metric on the heldout session’s validation set.
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Figure 4: Scaling performances under different session orders. (a) Forward-prediction
performances of each heldout session as we increased pretraining sessions according to
random (blue), ranked (green), or reverse-ranked (orange) order. The error bars show
the standard deviation over three seeds (ranked /reverse-ranked) or three shuffled orders
(random). Black dashed lines show the baseline models” performance (averaged over three
seeds). (b) Same as (a) but with the total number of trials as the x-axis. Linear regressions
were fitted with logarithmic x values and dashed lines show extrapolated predictions.
Shading shows the standard deviations. Red stars show the performances of the models
pretrained with all pretraining sessions. (c) Percentage improvements of models pretrained
with more sessions over the 1-session model.

weights were the input/output linear layers that map the raw spike counts to the frozen
feature space and back. Lastly, we report each model’s forward-prediction performance on
the heldout session’s validation set, yielding 84 metric values — one per pretraining session.
The pretraining stage (Fig. 3(a)) was performed once, while the finetuning and ranking
stage (Fig. 3(b)) were repeated for each heldout session. See Appendix E for the ranked
single-session finetuning performances.

We conducted our data scaling experiments by incrementally selecting more pretraining ses-
sions in three session-selection orders: random, ranked (based on the procedure above), and
reverse-ranked. To reduce variance, we used three random seeds for both ranking sessions
and training models in the scaling analysis, including the baseline models that were directly
trained on the heldout sessions. For the random order, we used three different shuffles
of the session list. The transformers” weights were frozen for all finetuning experiments
across data orders to be consistent with the ranking procedure. We limited experiments to a
maximum of 40 pretraining sessions (except for the full 84-session case) since more selected
sessions overlap as we exhaust the pretraining data.

4.2 Pretraining on five top-ranked sessions outperforms all random sessions

Figure 4(a) shows the performances of our scaling analysis on each heldout session’s
test set with different session orders (see Appendix G for qualitative examples). The
results clearly show that in all heldout sessions, models pretrained with ranked session
order outperform those trained with randomly chosen sessions. Importantly, the models
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Table 1: Percentage improvements over baseline with different session selection procedures.

Session selection order (best of all experiments)

Heldout session Random Ranked Reverse-ranked Ranked (top 5 sessions)
84 5.74% 11.08%  2.54% 8.69%

85 11.33% 18.87%  9.39% 16.92%

86 3.13% 4.78% 0.89% 3.39%

87 8.37% 8.43% 3.30% 8.43%

88 19.12% 26.60% 10.95% 22.44%

Average 9.54% 13.95%  5.42% 11.97%

pretrained with reverse-ranked sessions achieved worse performances than random-order
models, proving the validity of our ranking procedure based on single-session finetuning.
Notably, the performance differences in ranked, random, and reverse-ranked settings are
more pronounced in low-data regimes (fewer than ten sessions). Since the number of trials
was different among sessions, we also plotted the model performances in Figure 4(a) against
the total number of trials from the pretraining sessions for fairer comparisons. As shown in
Figure 4(b), the same performance differences hold among the different session-selection
orders given the same number of trials. We fit the models” performances using linear
regression (with logarithmic input). In contrast to the success of “scaling laws” in machine
learning (Kaplan et al., 2020; Hoffmann et al., 2022; Muennighoff et al., 2023), the actual
pretraining performance using the entire 84 RS sessions (Fig. 4(b) red stars) is consistently
lower than the extrapolated performance (Fig. 4(b) dashed lines), indicating limited scaling
effects for the neural IBL data with the NDT model. This further supports our hypothesis
that differences in pretraining and finetuning data distributions greatly affect the promises
of neural data scaling.

Table 1 summarizes the best percentage improvements over the baseline models for each
session selection order, along with the performance of models pretrained on five top-ranked
sessions. On average, models using rank-ordered session data achieved a 4% greater im-
provement over the baseline than models using random-ordered session data. Remarkably,
models trained on just five ranked sessions outperformed the best models trained on ran-
domly selected sessions, indicating an over 8x gain in data efficiency (compared to 40
random session models, which outperformed the models trained on all sessions (Fig. 4(b)).
However, this also implies a reduced scaling effect compared to randomly selected sessions.
Figure 4(c) demonstrates that the percentage performance gains using more pretraining
data relative to using one pretraining session under each session selection order. The scaling
effects when using the ranked sessions were clearly weaker than when using random or
reverse-ranked sessions. Indeed, models with five ranked sessions already achieved 86% of
the best model performances with all 40 ranked sessions (Table 1), suggesting that most of
the pretraining benefit is concentrated in the top few sessions. The top sessions in different
rankings were also sufficiently different based on the finetuning session used (Appendix F).
Taken together, our analysis suggests that apparent scaling benefits in multi-session datasets
can be highly sensitive to the specific sessions selected, due to substantial individual differ-
ences across sessions. Thus, it is extremely important for studies that claim scaling benefits
to show detailed experimental results with fine-grained data increments.

5 Conclusion

Our results show that data heterogeneity in multi-session electrophysiology datasets fun-
damentally limits performance improvements expected from increasing pretraining data.
Future work can focus on (1) scaling experiments with other architectures beyond NDT and
different learning objectives, including supervised approaches; (2) different modalities of
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neural data such as calcium imaging and local field potentials !, and (3) more computation-
ally efficient session selection strategies. In conclusion, our results show that pretraining
neural encoding models with more sessions does not naturally lead to improved down-
stream performance. We strongly advocate for rigorous scaling analyses in future work on
neuroscience foundation models to account for data heterogeneity effects.
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A Related Work

A.1 Foundation models in neuroscience

Foundation models represent a paradigm shift in artificial intelligence, allowing large-scale
models pretrained on internet-scale data to be efficiently adapted to various downstream
tasks through finetuning. These models demonstrate remarkable capability to learn ver-
satile representations via self-supervised objectives and adapt effectively to downstream
tasks (Radford et al., 2018; 2019; Wei et al., 2021; OpenAl et al., 2024; Radford et al., 2021;
Dosovitskiy et al., 2020; Kirillov et al., 2023; Reed et al., 2022). Motivated by these advances,
the neuroscience community has begun adopting similar approaches, starting with non-
invasive human neural data across modalities (Cui et al., 2024; Thomas et al., 2022; labs at
Reality Labs et al., 2024). More recent work trained large attention-based models on invasive
rodent and nonhuman primate data, such as POYO (Azabou et al., 2023), POYO+ (Azabou
et al., 2024), and NDT model series (Ye & Pandarinath, 2021; Ye et al., 2023; 2025). Using
calcium imaging data, Wang et al. (2025) explored combining recurrent architectures with
attention modules for predicting neural activities from visual stimuli and locomotion.

More specifically, NDT models scaled attention-based models to multi-session spiking data
by incorporating context embeddings and learning a shared latent space across sessions,
enabling transfer to new recording conditions (Ye et al., 2023; 2025). Azabou et al. (2023)
extended the multi-subject pretraining paradigm to primate data and proposed single-
spike tokenization through a PerceiverlO architecture (Jaegle et al., 2021). Zhang et al.
(2024b) employed multiple spike masking schemes on the IBL RS dataset, upon which we
based our work. Similarly, Zhang et al. (2025) proposed a novel multimodal training and
masking method, demonstrating improved performance from multi-session training over
single-session models.

A.2 Scaling behavior in foundation models for neuroscience
Foundation models in NLP have been empirically shown to follow scaling laws, where

performance improves predictably with more data and parameters (Kaplan et al., 2020; Hoff-
mann et al., 2022). In neuroscience, similar scaling effects have been explored through many
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pretraining studies. Azabou et al. (2023) used primate data from motor and premotor cor-
tices and demonstrated that pretraining on over 100 hours of data enables rapid adaptation
to unseen sessions. Azabou et al. (2024) extended their model to rodent visual cortex data
and presented benefits of pretraining on over a thousand sessions. Using the IBL dataset,
Zhang et al. (2024a) showed that reduced-rank regression models trained on hundreds of
sessions across diverse brain regions outperform session-specific models, indicating benefits
from multi-session data. Zhang et al. (2025) similarly reported performance gains from
their multi-task masking strategies when pretrained across multiple sessions. While these
results suggest that pretraining on multi-session data is generally beneficial, they often lack
fine-grained analyses of how performance trends evolve with incremental pretraining data.
As shown by our results in Fig. 4, scaling behaviors of the model may drastically vary when
pretrained on different subsets of the pretraining dataset. Therefore, it may be misleading
to conclude that the model enjoys scaling benefits with just a few data increments. In fact,
recent studies have begun to observe limited scaling effects in foundation models for motor
decoding when finetuning data exceeds 100 minutes (Ye et al., 2025), similar to our results.

B Experimental setup details

In this section, we detail our experimental setup introduced in Section 2.

B.1 Model architecture

Our model follows the architecture of Zhang et al. (2024b). At each time step f, a raw
spike count vector x; € RNi from session i (with N; neurons recorded) is projected via a
session-specific linear layer to a spike token with dimension d. Another linear layer with
Softsign activation maps the spike tokens to embeddings. A session embedding and a
masking scheme embedding were appended to the spike embedding sequence. Learned
position embeddings are added to the input embeddings, making up the final input to the
transformer block. Lastly, another session-specific linear layer maps the transformer output
back to the spike count vectors of dimension N; for session i.

B.2 Hyperparameter selection

We tuned learning rates, dropout rates, weight decay rates, and batch sizes using small-scale
experiments on single- and ten-session models. Optimal values were chosen based on test
losses from pretraining sessions in RS. Other hyperparameter values were inherited from the
implementation of Zhang et al. (2024b). Table 2 summarizes the hyperparameters we used
for all experiments. We increased the spike token dimension to 1024 for BWM experiments to
account for higher numbers of neurons. We used seed 42 for all experiments in Section 3,
and seeds 10, 20, and 42 for experiments in Section 4 that required three seeds.

The two session-specific linear layers contain approximately 1.2 million parameters on
average per session. The number of parameters in NDT (shared across sessions) is roughly
12 million with the values in Table 2, which achieved better performance than smaller 8
million models and larger 24 /38 million models on RS. We did not run larger models on BWM
due to computing resource constraints.

B.3 Compute

All models were trained on a single Nvidia A40 or L40 GPU. Single-session training and
finetuning take about one hour to train on average. The full 84-session model on RS
takes about 3.5 days, while the full 200-session model on BWM takes about a week to train.
Finetuning jobs in Section 4 are significantly faster since we only train the two linear stitchers,
with each taking about 20 minutes to finish on average.
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C Pretraining offers performance improvements across tasks over
baseline models

Table 3 presents the evaluation metrics achieved by the baseline models and the best
pretrained-then-finetuned models on RS and BWM, averaged over all heldout sessions. Pre-
training improves performance on both datasets, though gains are smaller for co-smoothing
and choice decoding tasks than others. Notably, co-smoothing metrics are higher than
intra-region in RS but not in BWM, suggesting that models trained on RS data benefited
more from cross-region information. This is consistent with the distinct recording strategies
of the two datasets.

D Cross-session variabilities in scaling behaviors

Here, we show detailed experimental results of the scaling analysis in Section 3. Figure 5 and
Figure 6 show the finetuning performances on each heldout session in RS and BWM, respec-
tively. As discussed in Section 3, there exist large cross-session variabilities in the finetuning
performances among heldout sessions. These results suggest differential contributions of
different sessions in pretraining, which we investigated in Section 4.

E Finetuning results from the session-selection procedure

Here, we show the results of the session-selection procedure described in Section 4.1. Fig-
ure 7 shows the single-session finetuning performances on the validation set of each heldout
session, sorted from high to low. As the figure shows, there exist large differences between
the best and worst single-session finetuning performances, which are more noticeable in
Sessions 84, 85, and 88 than in others.

F Session-specificity of the rankings

Here, we examine how session-specific the rankings were. Figure 8 shows the number of
sessions shared in all five top-k ranking of the heldout sessions. The top 20 sessions were
highly session-specific: no session appeared in the top five for all held-out sessions, and only
three were shared in the top 23. In contrast, rankings became increasingly similar beyond
23 sessions, with 43 sessions shared in all five top 53 rankings. These results suggest that
only a small number of top-ranked sessions have a strong impact on performance, while
the remaining pretraining sessions are more consistent across held-out sessions and affect
model performance less significantly.

G Qualitative comparison on forward-prediction performances

Here, we qualitatively compare the forward-prediction results on some example neurons
from Session 84. As shown in Figure 9, predictions made by the models trained on five top-
ranked sessions (green) match the ground truth activity dynamics (blue) much better than
those trained by five reverse-ranked sessions (orange). Neurons were randomly selected
from the 100 most active ones.
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Table 2: Hyperparameter values across experiments

Hyperparameter Value
Model

Spike token dim 668

Embedding dim 512

Feedforward dim 1024

# attention heads 8

# transformer blocks 5

Dropout rate 0.2
Training

Optimizer

Learning rate

Learing rate scheduler
Weight decay

Batch size

Gradient clipping

# Epochs

Masking ratio

AdamW Loshchilov & Hutter (2018)
le-4

OneCycle Smith & Topin (2018)

0.01

16

1

1000

0.3

Table 3: Evaluation metrics of baseline and best pretrained models on RS and BWM. Higher

values indicate better performance.

RS BWM
Task Baseline Pretrained Baseline Pretrained
Co-smoothing (BPS) 0.765 0.774 0.693 0.711
Forward-prediction (BPS) 0.256 0.275 0.309 0.334
Inter-region (BPS) 0.659 0.689 0.604 0.640
Intra-region (BPS) 0.644 0.663 0.688 0.724
Choice decoding (accuracy) 0.839 0.841 0.781 0.823
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Figure 5: Pretrained models’ finetuning performances on each heldout session in RS. Black
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Figure 9: Qualitative comparison of forward-prediction performances between ranked
and reverse-ranked models. Ground truth activities and predictions are averaged over
trials. Shading shows standard error of the mean.
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