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Abstract

A key challenge in analyzing neuroscience datasets is the profound variabil-1

ity they exhibit across sessions, animals, and data modalities–i.e., hetero-2

geneity. Several recent studies have demonstrated performance gains from3

pretraining neural foundation models on multi-session datasets, seemingly4

overcoming this challenge. However, these studies typically lack fine-5

grained data scaling analyses. It remains unclear how different sources of6

heterogeneity influence model performance as the amount of pretraining7

data increases, and whether all sessions contribute equally to downstream8

performance gains. In this work, we systematically investigate how data9

heterogeneity impacts the scaling behavior of neural data transformers10

(NDTs) in neural activity prediction. We found that explicit sources of11

heterogeneity, such as brain region mismatches among sessions, reduced12

scaling benefits of neuron-level and region-level activity prediction perfor-13

mances. For tasks that do exhibit consistent scaling, we identified implicit14

data heterogeneity arising from cross-session variability. Through our pro-15

posed session-selection procedure, models pretrained on as few as five16

selected sessions outperformed those pretrained on the entire dataset of17

84 sessions. Our findings challenge the direct applicability of traditional18

scaling laws to neural data and suggest that prior reports of multi-session19

scaling benefits may need to be re-examined in the light of data heterogene-20

ity. This work both highlights the importance of incremental data scaling21

analyses and suggests new avenues toward optimally selecting pretrain-22

ing data when developing foundation models on large-scale neuroscience23

datasets.24

1 Introduction25

Recent advances in foundation models have revolutionized the modern machine learning26

paradigm. Across domains such as language and vision, it has been shown that “pretraining”27

a generic model on large-scale data before “finetuning” it to the actual tasks achieves much28

better performance than task-specific models (Devlin et al., 2019; Brown et al., 2020; Chung29

et al., 2024). This success has inspired similar efforts in systems neuroscience, where30

the goal is to develop foundation models trained on large, multi-session, multi-animal31

neural datasets of neural activity recordings. However, neural recordings pose unique32

challenges: data collected across brain regions, sessions, and individuals often exhibit33

substantial variability (Laboratory et al., 2021; 2025; Waschke et al., 2021). Even within the34

same recording session, stochasticity of neuronal firing and uncontrolled behavior can lead35

to significant trial-to-trial variability (Harris & Thiele, 2011; Stringer et al., 2019; Peterson36

et al., 2021). Furthermore, neural data can be non-stationary due to synaptic plasticity that37

induces gradual changes in population dynamics across days (Rule et al., 2019; Driscoll38

et al., 2022). These challenges raise a key question: Can neural foundation models overcome39

these sources of heterogeneity and learn more generalizable representations with more40

pretraining data?41

While several recent studies have demonstrated performance gains from multi-session42

pretraining on a wide range of encoding and decoding tasks, they typically lack fine-grained43

scaling analyses on the benefits of gradually increasing pretraining data (Azabou et al.,44

1



Under review as a conference paper at COLM 2025

a RepeatedSite Brainwidemapb c

d

Time

N
eu

ro
n

Co-smoothing Forward-prediction Inter-region Intra-region

Region 
A

Region 
B

Region 
C

Region 
A

Region 
B

Region 
C

e cfa3SpikesSession cfa3

N
eu

ro
n

Time

Stitcher

Transformer

Reconstruction

…

Tokenization

St
itc

he
r

-0.5s 2.5s

Figure 1: Experimental Setup. (a) Schematic of the visual decision-making task performed
by mice. (b) Planned probe insertion location (black line) for all sessions in the RepeatedSite
dataset. (c) Different probe insertion locations (gray lines) for different sessions in the
Brainwidemap dataset. (d) Four different masking schemes of raw spike counts for model
training. (e) The model architecture. Sub-figures adapted from Laboratory et al. (2021; 2025;
2024); Zhang et al. (2024b). See text for details.

2023; 2024; Zhang et al., 2024b; 2025). Most comparisons are limited to models trained on45

single sessions versus entire datasets with few increments in the middle, making it unclear46

how different sources of heterogeneity impact performance scaling. Moreover, it remains47

unknown whether all pretraining sessions contribute equally to downstream performance48

improvements (see Appendix A for related work). As pretraining scales to thousands of49

sessions and hours of data (Ye et al., 2025; Azabou et al., 2024), understanding the scaling50

behaviors of the model becomes increasingly critical.51

In this work, we systematically investigate how data heterogeneity affects the scaling52

behavior of neural data transformers (NDTs) (Ye & Pandarinath, 2021; Zhang et al., 2024b; Ye53

et al., 2025) using two large-scale datasets released from the International Brain Laboratory54

(Laboratory et al., 2025; 2024). These datasets differ in the consistency of recorded brain55

regions across sessions, offering us an opportunity to study how different levels of brain56

region heterogeneity in pretraining affect scaling. We further examine the effects of implicit57

heterogeneity such as session-to-session variability. Through a proposed session-selection58

procedure, we identify the impact of each pretraining session on downstream performance59

improvements. Our main findings include:60

• We found that greater region-wise heterogeneity in pretraining data led to reduced61

improvements of neuron- and region-level activity prediction performances.62

• To identify implicit heterogeneity, a session-selection procedure based on single-63

session finetuning performances can effectively identify most beneficial single64

sessions for pretraining.65
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• Models trained with as few as five selected sessions outperformed those with66

randomly chosen sessions even when the full dataset was used, demonstrating the67

impact of session-to-session variability in performance scaling.68

Together, these findings suggest that previous claims regarding the scaling benefits of69

pretraining without detailed incremental experiments may be premature, pointing to the70

need for rigorous scaling analyses in future work on neural foundation models to accurately71

assess the promise of large-scale pretraining.72

2 Experimental Setup73

Figure 1 summarizes the experimental setup used throughout our study, which mostly74

follows Zhang et al. (2024b) whose experiments were conducted on a subset of the same75

RepeatedSite dataset we used. We discuss the datasets, training pipeline, and evaluation76

metrics in detail below. More details are included in Appendix B.77

2.1 Datasets78

We used two multi-brain-region, multi-animal/session datasets from the International Brain79

Lab (IBL) collected from mice. Animals performed a visual decision-making task where they80

detected the presence of a visual grating (of varying contrast) to their left or right and rotated81

a wheel to bring the stimulus to the center (Fig. 1(a)). The main difference between the two82

IBL datasets lies in how often brain regions were repeatedly recorded across sessions. In83

the RepeatedSite dataset (henceforth RS), each session attempted to record from the same84

brain regions (Fig. 1(b), black line shows planned electrode insertion position). In contrast,85

the Brainwidemap dataset (henceforth BWM) aimed to cover as many different brain regions as86

possible (Fig. 1(c), gray lines show planned insertion positions), leading to little repetition87

of regions across sessions.88

We used 89 out of 91 sessions in RS, excluding two sessions with fewer than one hundred89

trials. Five out of 89 sessions were held out for finetuning and evaluation. We randomly90

selected 200 sessions out of 460 sessions in BWM for pretraining and 10 sessions for finetuning91

and evaluation. Trials within each session were randomly split into training, validation, and92

test sets using an 8:1:1 ratio. Each trial included three seconds of neural activity, spanning93

from 0.5 seconds before to 2.5 seconds after stimulus onset with 20 ms bins for spike counts.94

The data from each session is thus a three-dimensional (trials × timesteps × neurons) tensor95

of integer spike counts.96

2.2 Training pipeline97

Multi-masking scheme During training, input spike count vectors were masked in one98

of four ways, as illustrated in Figure 1(d): (1) Co-smoothing: selected neurons’ activities99

are masked; (2) Forward-prediction: all neurons’ selected timesteps are masked; (3) Inter-100

region: all neurons’ activities in a selected brain region are masked; (4) Intra-region: selected101

neurons in a selected brain region, along with all other neurons in other brain regions, are102

masked. Models were trained to reconstruct masked input from the unmasked (Devlin103

et al., 2019) by maximizing the log likelihood of the Poisson distribution, with the model104

outputs as the predicted firing rates. We also applied causal attention in NDT if inputs were105

masked with forward-prediction to ensure no future neural activities were used to predict106

the present. Zhang et al. (2024b) showed that this multi-masking scheme significantly107

outperforms a scheme using forward-prediction masks alone in spike prediction tasks.108

Model architecture We used the neural data transformer (NDT) architecture by Ye &109

Pandarinath (2021) that has been widely applied to neural encoding and decoding tasks (Le110

& Shlizerman, 2022; Ye et al., 2025; Zhang et al., 2025). NDT also achieves state-of-the-art111

performance on the IBL dataset we used (Zhang et al., 2024b; 2025). Since different ses-112

sions have different numbers of neurons recorded, a session-specific linear layer (encoding113

“stitcher”) maps raw spike counts to spike embeddings (Fig. 1(e) left) whose dimensions114
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Figure 2: Scaling Behavior of NDT Models. Plots show pretrained NDT models’ finetuning
performances as the number of pretraining sessions increases. (a) Performances of each
neural activity prediction task on RS data. Black dashed lines show the baseline models’
performances. (b) Same as (a) but on BWM data. (c) Percentage improvements of models
pretrained with more sessions over the 20-session model. (d) Choice decoding performances
on RS (left) and BWM (right). Red dashed line shows the chance prediction accuracy. (e)
Forward-prediction performance examples on individual heldout sessions from RS (first
panel) and BWM (second & third panels).

are shared across sessions (Pandarinath et al., 2018). A session embedding and a masking115

scheme embedding are also appended to input sequences. Lastly, another session-specific116

linear layer (decoding stitcher) maps the output of the transformer back to reconstructed117

spike rates (Fig. 1(e) right).118

2.3 Evaluation119

Baseline To show the effect of scaling up pretraining data, we directly trained single-120

session models on the training set of each heldout session as the baseline models.121

Metrics The bits-per-spike metric (BPS) is widely used to evaluate neural activity predic-122

tion performance (Rieke et al., 1999; Pei et al., 2021; Zhang et al., 2024b; 2025):123

bits-per-spike
(
λ̂, X

)
=

1
nsp log 2

(
L
(
X; λ̂

)
−L

(
X; λ̄

))
, (1)

where λ̂ is the predicted spike rates by the model, X is the true spike counts, nsp is the total124

spike count of X, L is the log likelihood function of Poisson, and λ̄ is the mean firing rate125

of X. The BPS metric essentially evaluates the goodness-of-fit statistics of a model over the126
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null model, normalized by the spike counts. Changes in BPS directly reflect changes in127

model log likelihood L
(
X; λ̂

)
when evaluated on the same dataset, as other terms remain128

constant. For all experiments, we report the metrics on the test sets of the heldout sessions129

after finetuning models to their training sets.130

Tasks Each masking scheme used for training corresponds to a leave-one-out evaluation131

task of activity prediction, namely: (1) Co-smoothing: Activities of each neuron were132

predicted from all other neurons; (2) Forward-prediction: The model predicted neural133

activities in continuous, non-overlapping windows of 200 ms at a time (10 timesteps) given134

previous ground truth activities, starting from stimulus onset to 2.2 seconds after stimulus135

onset (110 timesteps in total); (3) Inter-region: Activities of all neurons in each region were136

predicted from all other regions; (4) Intra-region: Activities of each neuron in a region were137

predicted from all other neurons in that region. Repeat for each region.138

3 Data heterogeneity limits NDT models’ scaling behavior139

As mentioned, the difference in brain region overlaps between RS and BWM provides a natural140

setting to study how pretraining data heterogeneity affects model scaling behavior. BWM141

sessions contain neural activity from largely non-overlapping brain regions, resulting in142

greater single-neuron and brain-region heterogeneity compared to RS. We hypothesize that143

increased heterogeneity in BWM will reduce the scaling benefits from pretraining on more144

sessions.145

We conducted our scaling analysis as follows. Using the RS dataset, we pretrained NDT146

models on 20, 40, 60, and 84 sessions, then finetuned them to each of five heldout sessions.147

For BWM, we pretrained models on 20, 40, 60, 80, 100, 150 and 200 sessions (out of 460 total),148

then finetuned them on ten heldout sessions. During finetuning, a new session embedding149

and two session-specific stitchers were learned from scratch while the mask embedding and150

the core NDT parameters were initialized from pretraining.151

3.1 Performance scaling is weaker in BWM than RS152

Before analyzing whether pretrained models’ performances scale with more pretraining153

data, we first confirm they indeed outperformed baseline models (Appendix C). Next, we154

investigate whether the task performances scale with increased pretraining data. Figure 2(a)155

and (b) show the evaluation results of models trained on RS and BWM data, respectively.156

Although performance generally improved with more pretraining data, the scaling effects157

were relatively modest. Figure 2(c) illustrates the percentage performance gains relative to158

the 20-session model, with the largest improvement of 4.2% observed on the intra-region159

task on RS using more than four times the amount of data. Notably, performance gains160

reduced across the co-smoothing, inter-region, and intra-region tasks on BWM compared to161

RS. For co-smoothing in particular, scaling benefits were negligible in BWM. In contrast, the162

forward-prediction performance scaled consistently on the two datasets. However, the163

forward-prediction performance also plateaued around 80 pretraining sessions, suggesting164

a potential upper limit on the performance improvements achievable through pretraining165

given the current scope of data. These results support our hypothesis that greater brain166

region heterogeneity in BWM limits the effectiveness of pretraining, particularly on single-167

neuron and region-level tasks.168

To probe the quality of the NDT’s internal representations, we trained a logistic regres-169

sion classifier on the output of the third intermediate transformer block (out of five, see170

Appendix B) to predict the animals’ decisions. Previous work typically performed such171

decoding analyses using reconstructed spikes rather than models’ internal representations172

(Pei et al., 2021; Zhang et al., 2024b). Under the latter setup, improvements in choice decod-173

ing performance could reflect better spike reconstruction rather than better representations174

of choice-related latent states underlying the data. With our setup, decoding accuracies175

are higher in RS than BWM (Appendix C). Figure 2(d) shows the changes in classification176

accuracy with increasing amounts of pretraining data. There was no clear scaling of decod-177

ing performance on either dataset. Taken together, these results highlight the importance178
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of investigating the scaling behaviors of pretrained models with more fine-grained data179

increments.180

We also observed large cross-session variabilities in the finetuning performances. Fig. 2(e)181

shows the forward-prediction performance of three heldout sessions (see Appendix D for182

all sessions). In addition to the substantial differences in absolute bits-per-spike values,183

their scaling trends deviate from the session averages (second panel in Fig. 2(a) & (b)).184

Such variability indicates a more implicit form of data heterogeneity that comes from185

individual differences among animals. Given this observation and our previous findings on186

the pretrained models’ limited scaling behavior, a natural question arises: Can we identify187

more beneficial sessions than others in the pretraining dataset for improving scaling188

performance? We answer this question in the next section.189

4 Identifying more beneficial single sessions for performance scaling190

We hypothesize that each pretraining session exhibits varying degrees of distribution shift191

relative to a heldout session. We call this implicit data heterogeneity, which arises from subtle192

individual differences among animals and sessions that are harder to identify than explicit193

sources of heterogeneity such as task design and brain regions. We expect that models194

pretrained on sessions “closer” to the heldout sessions will achieve higher performances195

more data-efficiently than models pretrained with randomly selected sessions.196

To test this, we conducted our experiments on the RS dataset, which allows us to control the197

brain region heterogeneity as discussed in the last section. We trained NDT models with198

only forward-prediction masking to focus on this evaluation task, which exhibits the most199

consistent scaling behavior on the two datasets (Fig. 2(c)). For more fine-grained scaling200

analysis, we pretrained models on 1, 2, 3, 4, 5, 10, 20, 30, 40, and all 84 sessions.201

4.1 Ranking pretraining sessions by single-session finetuning performances202
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Figure 3: Schematic of the ranking process. (a)
Pretraining stage: We trained 84 single-session mod-
els, each consisting of a transformer and two session-
specific stitchers. (b) Finetuning stage: For each pre-
trained model, we trained two new stitchers on the
heldout session’s training set, keeping the transformer
weights frozen. Models were ranked by their bits-per-
spike metric on the heldout session’s validation set.

First, we propose using single-203

session finetuning performances204

as an estimate of the “closeness”205

between the data distributions of206

a pretraining session and a held-207

out session. Figure 3 illustrates208

this process: during the pretrain-209

ing stage, we trained 84 single-210

session models, one for each pre-211

training session (Fig. 3(a)). Dur-212

ing the finetuning stage, for a213

particular heldout session, we214

trained two new stitchers (for en-215

coding and decoding) for each216

of the pretrained transformers217

while keeping the transformers’218

weights frozen (Fig. 3(b)). This en-219

sures the finetuning performance220

maximally depends on the fea-221

tures learned from the pretrain-222

ing session, as the only adjustable223

weights were the input/output linear layers that map the raw spike counts to the frozen224

feature space and back. Lastly, we report each model’s forward-prediction performance on225

the heldout session’s validation set, yielding 84 metric values – one per pretraining session.226

The pretraining stage (Fig. 3(a)) was performed once, while the finetuning and ranking227

stage (Fig. 3(b)) were repeated for each heldout session. See Appendix E for the ranked228

single-session finetuning performances.229
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Figure 4: Scaling performances under different session orders. (a) Forward-prediction
performances of each heldout session as we increased pretraining sessions according to
random (blue), ranked (green), or reverse-ranked (orange) order. The error bars show
the standard deviation over three seeds (ranked/reverse-ranked) or three shuffled orders
(random). Black dashed lines show the baseline models’ performance (averaged over three
seeds). (b) Same as (a) but with the total number of trials as the x-axis. Linear regressions
were fitted with logarithmic x values and dashed lines show extrapolated predictions.
Shading shows the standard deviations. Red stars show the performances of the models
pretrained with all pretraining sessions. (c) Percentage improvements of models pretrained
with more sessions over the 1-session model.

We conducted our data scaling experiments by incrementally selecting more pretraining ses-230

sions in three session-selection orders: random, ranked (based on the procedure above), and231

reverse-ranked. To reduce variance, we used three random seeds for both ranking sessions232

and training models in the scaling analysis, including the baseline models that were directly233

trained on the heldout sessions. For the random order, we used three different shuffles234

of the session list. The transformers’ weights were frozen for all finetuning experiments235

across data orders to be consistent with the ranking procedure. We limited experiments to a236

maximum of 40 pretraining sessions (except for the full 84-session case) since more selected237

sessions overlap as we exhaust the pretraining data.238

4.2 Pretraining on five top-ranked sessions outperforms all random sessions239

Figure 4(a) shows the performances of our scaling analysis on each heldout session’s240

test set with different session orders (see Appendix G for qualitative examples). The241

results clearly show that in all heldout sessions, models pretrained with ranked session242

order outperform those trained with randomly chosen sessions. Importantly, the models243

pretrained with reverse-ranked sessions achieved worse performances than random-order244

models, proving the validity of our ranking procedure based on single-session finetuning.245

Notably, the performance differences in ranked, random, and reverse-ranked settings are246

more pronounced in low-data regimes (fewer than ten sessions). Since the number of trials247

was different among sessions, we also plotted the model performances in Figure 4(a) against248

the total number of trials from the pretraining sessions for fairer comparisons. As shown in249
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Table 1: Percentage improvements over baseline with different session selection procedures.
Session selection order (best of all experiments)

Heldout session Random Ranked Reverse-ranked Ranked (top 5 sessions)

84 5.74% 11.08% 2.54% 8.69%
85 11.33% 18.87% 9.39% 16.92%
86 3.13% 4.78% 0.89% 3.39%
87 8.37% 8.43% 3.30% 8.43%
88 19.12% 26.60% 10.95% 22.44%
Average 9.54% 13.95% 5.42% 11.97%

Figure 4(b), the same performance differences hold among the different session-selection250

orders given the same number of trials. We fit the models’ performances using linear251

regression (with logarithmic input). In contrast to the success of “scaling laws” in machine252

learning (Kaplan et al., 2020; Hoffmann et al., 2022; Muennighoff et al., 2023), the actual253

pretraining performance using the entire 84 RS sessions (Fig. 4(b) red stars) is consistently254

lower than the extrapolated performance (Fig. 4(b) dashed lines), indicating limited scaling255

effects for the neural IBL data with the NDT model. This further supports our hypothesis256

that differences in pretraining and finetuning data distributions greatly affect the promises257

of neural data scaling.258

Table 1 summarizes the best percentage improvements over the baseline models for each259

session selection order, along with the performance of models pretrained on five top-ranked260

sessions. On average, models using rank-ordered session data achieved a 4% greater im-261

provement over the baseline than models using random-ordered session data. Remarkably,262

models trained on just five ranked sessions outperformed the best models trained on ran-263

domly selected sessions, indicating an over 8× gain in data efficiency (compared to 40264

random session models, which outperformed the models trained on all sessions (Fig. 4(b)).265

However, this also implies a reduced scaling effect compared to randomly selected sessions.266

Figure 4(c) demonstrates that the percentage performance gains using more pretraining267

data relative to using one pretraining session under each session selection order. The scaling268

effects when using the ranked sessions were clearly weaker than when using random or269

reverse-ranked sessions. Indeed, models with five ranked sessions already achieved 86% of270

the best model performances with all 40 ranked sessions (Table 1), suggesting that most of271

the pretraining benefit is concentrated in the top few sessions. The top sessions in different272

rankings were also sufficiently different based on the finetuning session used (Appendix F).273

Taken together, our analysis suggests that apparent scaling benefits in multi-session datasets274

can be highly sensitive to the specific sessions selected, due to substantial individual differ-275

ences across sessions. Thus, it is extremely important for studies that claim scaling benefits276

to show detailed experimental results with fine-grained data increments.277

5 Conclusion278

Our results show that data heterogeneity in multi-session electrophysiology datasets fun-279

damentally limits performance improvements expected from increasing pretraining data.280

Future work can focus on (1) scaling experiments with other architectures beyond NDT and281

different learning objectives, including supervised approaches; (2) different modalities of282

neural data such as calcium imaging and local field potentials 1, and (3) more computation-283

ally efficient session selection strategies. In conclusion, our results show that pretraining284

neural encoding models with more sessions does not naturally lead to improved down-285

stream performance. We strongly advocate for rigorous scaling analyses in future work on286

neuroscience foundation models to account for data heterogeneity effects.287

1Concurrent work on motor decoding by Ye et al. (2025) reports that the benefits from pretraining
the model on 2000 hours of data are virtually nonexistent when finetuning datasets exceed 100 minutes,
supporting our hypothesis that data heterogeneity issues extend beyond our dataset.
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A Related Work552

A.1 Foundation models in neuroscience553

Foundation models represent a paradigm shift in artificial intelligence, allowing large-scale554

models pretrained on internet-scale data to be efficiently adapted to various downstream555

tasks through finetuning. These models demonstrate remarkable capability to learn ver-556

satile representations via self-supervised objectives and adapt effectively to downstream557

tasks (Radford et al., 2018; 2019; Wei et al., 2021; OpenAI et al., 2024; Radford et al., 2021;558

Dosovitskiy et al., 2020; Kirillov et al., 2023; Reed et al., 2022). Motivated by these advances,559

the neuroscience community has begun adopting similar approaches, starting with non-560

invasive human neural data across modalities (Cui et al., 2024; Thomas et al., 2022; labs at561

Reality Labs et al., 2024). More recent work trained large attention-based models on invasive562

rodent and nonhuman primate data, such as POYO (Azabou et al., 2023), POYO+ (Azabou563

et al., 2024), and NDT model series (Ye & Pandarinath, 2021; Ye et al., 2023; 2025). Using564

calcium imaging data, Wang et al. (2025) explored combining recurrent architectures with565

attention modules for predicting neural activities from visual stimuli and locomotion.566

More specifically, NDT models scaled attention-based models to multi-session spiking data567

by incorporating context embeddings and learning a shared latent space across sessions,568

enabling transfer to new recording conditions (Ye et al., 2023; 2025). Azabou et al. (2023)569

extended the multi-subject pretraining paradigm to primate data and proposed single-570

spike tokenization through a PerceiverIO architecture (Jaegle et al., 2021). Zhang et al.571

(2024b) employed multiple spike masking schemes on the IBL RS dataset, upon which we572

based our work. Similarly, Zhang et al. (2025) proposed a novel multimodal training and573

masking method, demonstrating improved performance from multi-session training over574

single-session models.575

A.2 Scaling behavior in foundation models for neuroscience576

Foundation models in NLP have been empirically shown to follow scaling laws, where577

performance improves predictably with more data and parameters (Kaplan et al., 2020; Hoff-578

mann et al., 2022). In neuroscience, similar scaling effects have been explored through many579

pretraining studies. Azabou et al. (2023) used primate data from motor and premotor cor-580

tices and demonstrated that pretraining on over 100 hours of data enables rapid adaptation581

to unseen sessions. Azabou et al. (2024) extended their model to rodent visual cortex data582

and presented benefits of pretraining on over a thousand sessions. Using the IBL dataset,583

Zhang et al. (2024a) showed that reduced-rank regression models trained on hundreds of584

sessions across diverse brain regions outperform session-specific models, indicating benefits585

from multi-session data. Zhang et al. (2025) similarly reported performance gains from586

their multi-task masking strategies when pretrained across multiple sessions. While these587

results suggest that pretraining on multi-session data is generally beneficial, they often lack588

fine-grained analyses of how performance trends evolve with incremental pretraining data.589

As shown by our results in Fig. 4, scaling behaviors of the model may drastically vary when590

pretrained on different subsets of the pretraining dataset. Therefore, it may be misleading591

to conclude that the model enjoys scaling benefits with just a few data increments. In fact,592

recent studies have begun to observe limited scaling effects in foundation models for motor593

decoding when finetuning data exceeds 100 minutes (Ye et al., 2025), similar to our results.594

B Experimental setup details595

In this section, we detail our experimental setup introduced in Section 2.596

B.1 Model architecture597

Our model follows the architecture of Zhang et al. (2024b). At each time step t, a raw598

spike count vector xt ∈ RNi from session i (with Ni neurons recorded) is projected via a599

session-specific linear layer to a spike token with dimension d. Another linear layer with600
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Softsign activation maps the spike tokens to embeddings. A session embedding and a601

masking scheme embedding were appended to the spike embedding sequence. Learned602

position embeddings are added to the input embeddings, making up the final input to the603

transformer block. Lastly, another session-specific linear layer maps the transformer output604

back to the spike count vectors of dimension Ni for session i.605

B.2 Hyperparameter selection606

We tuned learning rates, dropout rates, weight decay rates, and batch sizes using small-scale607

experiments on single- and ten-session models. Optimal values were chosen based on test608

losses from pretraining sessions in RS. Other hyperparameter values were inherited from the609

implementation of Zhang et al. (2024b). Table 2 summarizes the hyperparameters we used610

for all experiments. We increased the spike token dimension to 1024 for BWM experiments to611

account for higher numbers of neurons. We used seed 42 for all experiments in Section 3,612

and seeds 10, 20, and 42 for experiments in Section 4 that required three seeds.613

The two session-specific linear layers contain approximately 1.2 million parameters on614

average per session. The number of parameters in NDT (shared across sessions) is roughly615

12 million with the values in Table 2, which achieved better performance than smaller 8616

million models and larger 24/38 million models on RS. We did not run larger models on BWM617

due to computing resource constraints.618

B.3 Compute619

All models were trained on a single Nvidia A40 or L40 GPU. Single-session training and620

finetuning take about one hour to train on average. The full 84-session model on RS621

takes about 3.5 days, while the full 200-session model on BWM takes about a week to train.622

Finetuning jobs in Section 4 are significantly faster since we only train the two linear stitchers,623

with each taking about 20 minutes to finish on average.624

C Pretraining offers performance improvements across tasks over625

baseline models626

Table 3 presents the evaluation metrics achieved by the baseline models and the best627

pretrained-then-finetuned models on RS and BWM, averaged over all heldout sessions. Pre-628

training improves performance on both datasets, though gains are smaller for co-smoothing629

and choice decoding tasks than others. Notably, co-smoothing metrics are higher than630

intra-region in RS but not in BWM, suggesting that models trained on RS data benefited631

more from cross-region information. This is consistent with the distinct recording strategies632

of the two datasets.633

D Cross-session variabilities in scaling behaviors634

Here, we show detailed experimental results of the scaling analysis in Section 3. Figure 5 and635

Figure 6 show the finetuning performances on each heldout session in RS and BWM, respec-636

tively. As discussed in Section 3, there exist large cross-session variabilities in the finetuning637

performances among heldout sessions. These results suggest differential contributions of638

different sessions in pretraining, which we investigated in Section 4.639

E Finetuning results from the session-selection procedure640

Here, we show the results of the session-selection procedure described in Section 4.1. Fig-641

ure 7 shows the single-session finetuning performances on the validation set of each heldout642

session, sorted from high to low. As the figure shows, there exist large differences between643

the best and worst single-session finetuning performances, which are more noticeable in644

Sessions 84, 85, and 88 than in others.645
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Table 2: Hyperparameter values across experiments
Hyperparameter Value

Model
Spike token dim 668
Embedding dim 512
Feedforward dim 1024
# attention heads 8
# transformer blocks 5
Dropout rate 0.2

Training
Optimizer AdamW Loshchilov & Hutter (2018)
Learning rate 1e-4
Learing rate scheduler OneCycle Smith & Topin (2018)
Weight decay 0.01
Batch size 16
Gradient clipping 1
# Epochs 1000
Masking ratio 0.3

Table 3: Evaluation metrics of baseline and best pretrained models on RS and BWM. Higher
values indicate better performance.

RS BWM

Task Baseline Pretrained Baseline Pretrained

Co-smoothing (BPS) 0.765 0.774 0.693 0.711
Forward-prediction (BPS) 0.256 0.275 0.309 0.334
Inter-region (BPS) 0.659 0.689 0.604 0.640
Intra-region (BPS) 0.644 0.663 0.688 0.724
Choice decoding (accuracy) 0.839 0.841 0.781 0.823

F Session-specificity of the rankings646

Here, we examine how session-specific the rankings were. Figure 8 shows the number of647

sessions shared in all five top-k ranking of the heldout sessions. The top 20 sessions were648

highly session-specific: no session appeared in the top five for all held-out sessions, and only649

three were shared in the top 23. In contrast, rankings became increasingly similar beyond650

23 sessions, with 43 sessions shared in all five top 53 rankings. These results suggest that651

only a small number of top-ranked sessions have a strong impact on performance, while652

the remaining pretraining sessions are more consistent across held-out sessions and affect653

model performance less significantly.654

G Qualitative comparison on forward-prediction performances655

Here, we qualitatively compare the forward-prediction results on some example neurons656

from Session 84. As shown in Figure 9, predictions made by the models trained on five top-657

ranked sessions (green) match the ground truth activity dynamics (blue) much better than658

those trained by five reverse-ranked sessions (orange). Neurons were randomly selected659

from the 100 most active ones.660
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Figure 5: Pretrained models’ finetuning performances on each heldout session in RS. Black
dashed lines show the baseline models’ performances.
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Figure 6: Pretrained models’ finetuning performances on each heldout session in BWM.
Black dashed lines show the baseline models’ performances.
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Figure 7: Single-session finetuning performances on the validation set of the heldout
sessions from the session-selection procedure. Black dashed lines show the baseline
models’ performances.
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Figure 9: Qualitative comparison of forward-prediction performances between ranked
and reverse-ranked models. Ground truth activities and predictions are averaged over
trials. Shading shows standard error of the mean.
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