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Abstract

Prompt tuning has emerged as a lightweight adaptation
strategy for adapting foundation models to downstream
tasks, particularly in resource-constrained systems. As pre-
trained prompts have become valuable intellectual assets,
combining multiple source prompts offers a promising ap-
proach to enhance generalization to new tasks by leverag-
ing complementary knowledge from diverse sources. How-
ever, naive aggregation of these prompts often leads to
representation collapse due to mutual interference, under-
mining their collective potential. To address these chal-
lenges, we propose HGPrompt, an adaptive framework for
multi-source prompt transfer that learns optimal ensem-
ble weights by jointly optimizing dual objectives: trans-
ferability and stability. Specifically, we first introduce an
information-theoretic metric to evaluate the transferabil-
ity of prompt-induced features on the target task, capturing
the intrinsic alignment between the feature representations.
Additionally, we propose a novel Gradient Alignment Reg-
ularization to mitigate gradient conflicts among prompts,
enabling stable and coherent knowledge transfer from mul-
tiple sources while suppressing interference. Extensive ex-
periments on the large-scale VTAB benchmark demonstrate
that HGPrompt achieves state-of-the-art performance, val-
idating its effectiveness in multi-source prompt transfer.

1. Introduction
With the development of expanding datasets, novel archi-
tectures, and improved training algorithms [7], a significant
number of vision foundation models have been developed
[9, 22, 24]. Transformer-based pre-trained vision mod-
els (PVMs) demonstrate exceptional efficacy across diverse
tasks, including image classification and semantic segmen-
tation. While these models exhibit impressive capability,
adapting them to downstream applications still presents no-
table challenges. Full model fine-tuning becomes impracti-
cal given the substantial parameter volumes and challenges
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Figure 1. Multi-source prompt transfer framework. Task-specific
prompts are tuned via a frozen backbone and statically aggre-
gated for target initialization. Our approach dynamically opti-
mizes source weights through single forward-backward propaga-
tion, learning prompt aggregation via an optimization module.

in low-data scenarios. This paradigm shift has made prompt
tuning [14, 19] a key adaptation strategy. By freezing PVMs
and adding learnable prompt tokens, it achieves competi-
tive performance with only 0.4% parameter updates, signif-
icantly fewer than full fine-tuning.

The increasing sophistication of prompt learning has es-
tablished well-generalized prompts as valuable intellectual
assets [27]. This evolution has fostered a practical ecosys-
tem where users can access provider task-specific prompts
while maintaining data privacy and model integrity. With
the availability of multiple prompts from the prompt pool,
these prompts can be utilized in an ensemble way by con-
currently assembling them and transferring them to a single
pre-trained model (as illustrated in Fig. 1) [26, 35]. How-
ever, simply concatenating or averaging source prompts of-
ten proves suboptimal, as the knowledge encoded in differ-
ent prompts may contribute unevenly to the target task and
can even lead to negative transfer [28].

Previous work [2, 29, 33, 45] predominantly evaluates
source prompt transferability as independent characteris-



tics, failing to treat prompt ensembles as a cohesive system.
These approaches overlook the interactions emerging with
the combination of multiple prompts, whose performance
can significantly enhance or degrade performance depend-
ing on their compatibility. Moreover, existing methods pri-
marily rely on parameter similarity measurement, ignoring
the essential role of prompts in shaping latent feature rep-
resentations [46] and guiding feature extraction processes.
Simply aggregating prompts without consideration of pre-
serving critical task-specific features may result in represen-
tation collapse, where essential discriminative information
is lost. Consequently, two fundamental challenges remain
unresolved: (1) How to systematically evaluate prompt
transferability beyond simplistic parameter similarity met-
rics? (2) How to effectively achieve prompt ensembles that
mitigate conflicts and negative interactions within prompts?

To address these challenges, we introduce an
information-theoretic metric, H-score [38], as a novel
assessment for assessing the transferability of weighted
combinations of prompt-guided feature spaces. Grounded
in information theory, the transferability metric provides
a principled mechanism to quantify cross-prompt synergy
and maximize their discriminability. Unlike conventional
similarity-based assessments, which focus solely on
parameter-space relationships, the metric evaluates the
intrinsic informativeness of prompt-conditioned features.
This approach offers a more explicit and interpretable
transferability measure by directly assessing how well the
combined prompts capture task-relevant information while
minimizing redundancy and interference.

Furthermore, we propose a gradient alignment strat-
egy to address cross-interference between prompts. This
method resolves the problem of unstable optimization direc-
tions stemming from mismatched gradients [17, 40], which
can disrupt training and hinder convergence. By aligning
the gradient directions of all prompts, we ensure they col-
lectively steer the model toward a unified optimization path.
Specifically, we introduce the Gradient Alignment Loss,
a metric that quantifies the variance in gradient directions
across source prompts. Minimizing this loss promotes co-
herence among the source prompts, thereby enhancing their
collaboration and transferability. Building upon these dual
metrics, our framework unifies these objectives through a
novel optimization formulation, advancing beyond conven-
tional heuristic approaches. This approach dynamically bal-
ances feature discriminability with optimization stability,
enabling the model to leverage complementary information
across prompts and suppress interference simultaneously.

Our method achieves state-of-the-art performance
through extensive evaluations on the large-scale VTAB
benchmark [42], consistently outperforming competitive
strategies such as PANDA [45], SPoT, and ATTEMPT. Our
approach establishes new benchmarks across a wide range

of tasks, with robust results in challenging domains like
remote sensing and 3D understanding, demonstrating the
scalability and effectiveness of our optimization strategy.

2. Related Work

2.1. Parameter-efficient Transfer Learning

Parameter-efficient transfer learning has emerged as a crit-
ical research direction for adapting large pre-trained mod-
els. In NLP, various approaches have been proposed, in-
cluding adapter modules [11], bias term tuning [5], and
low-rank adaptation [13]. These methods achieve com-
petitive performance while updating only 1-5% of model
parameters. In computer vision, early parameter-efficient
approaches focused on ConvNets through techniques like
residual adapters [25]. With the recent paradigm shift to-
wards vision Transformers [9], new challenges and oppor-
tunities for model adaptation have emerged. Some NLP
methods, like adapters, have been directly applied to vision
tasks [6]. Meanwhile, more vision-specific solutions have
been explored. For example, Visual Prompt Tuning (VPT)
[16] inserts learnable tokens in the input space, and Visual
Prompting (VP) [3] applies learnable pixel-level perturba-
tions. These methods show that minimal modifications to
input embeddings can effectively adapt vision Transform-
ers with high parameter efficiency.

2.2. Transferability Estimation

Understanding task transferability [41] is essential for
prompt-based methods because prompts act as task-specific
instructions that steer the behavior of a frozen model [10].
Thus, insights from task transferability directly inform the
design and evaluation of prompt transferability. Prior work
on task transferability has proposed various metrics based
on task models and data distributions to estimate transfer-
ability [8, 32] quickly. Several information-theoretic met-
rics have been proposed to estimate task transferability,
which can be adapted to evaluate prompt transferability. For
instance, the H-score [4, 15, 37] uses a maximum correla-
tion framework to measure the discriminability of features,
providing a theoretical foundation for evaluating prompt ef-
fectiveness. Similarly, LEEP [1, 23] and LogME [39] assess
transferability by predicting target task performance based
on source model outputs or features. Recent advances in
optimal transport have also been applied to transferability
estimation. For example, OTCE [30, 31] combines optimal
transport with conditional entropy to measure domain and
task differences between source and target. The study of
task transferability provides a strong theoretical and practi-
cal foundation for understanding prompt transferability.



Figure 2. Overview of the framework. Given an input image X , the system generates M distinct feature representations {fi}Mi=1 and
corresponding gradients {gi}Mi=1 through multiple source prompts. These features and gradients are fused using learnable weights α to
produce the final combined feature fα and gradient gα. The Transferability Loss evaluates the fused feature distribution against the target
class label, and the Gradient Alignment Loss measures consistency between individual gradients and their ensemble. Gradient directions
from individual prompts are shown as dotted arrows, while the red arrow represents their weighted combination. The Weight Optimizer
jointly optimizes these dual objectives to determine the optimal source weights α, which subsequently initialize the target prompt.

2.3. Multi-source Prompt Tuning

Prompt-tuning on smaller pre-trained models often under-
performs and is highly sensitive to prompt initialization, as
evidenced by prior studies [14, 19]. To address these limita-
tions, Prompt Transfer (PoT) methods have been proposed
[29, 33], which leverage soft prompts learned on source
tasks to initialize prompts for target tasks, thereby improv-
ing tuning efficiency and performance. SPOT [33] explored
the use of metrics to predict the best source tasks for prompt
transfer, and in parallel, [29] emphasized how prompt-
induced neuron activations play a crucial role in transfer-
ability. In addition to single-task transfer, PoT methods
have been extended to multi-task settings. For example,
ATTEMPT [2] proposed mechanisms to aggregate knowl-
edge from multiple source tasks, using attention mecha-
nisms strategies to initialize target prompts. PANDA [45]
explicitly addresses the issue of prior knowledge forgetting
by distilling task-specific knowledge into the target prompt.

3. Preliminary

3.1. Visual Prompt Tuning

Visual Prompt Tuning (VPT) is a parameter-efficient trans-
fer learning paradigm that adapts pre-trained vision trans-
formers to downstream tasks by learning task-specific
prompt embeddings while keeping the original model pa-
rameters frozen. This approach introduces a small set of
learnable parameters in the form of prompt tokens, which
are prepended to the input sequence, enabling efficient
adaptation to new tasks without modifying the underlying
model architecture. The key advantage of VPT lies in its
ability to leverage the rich representations learned by large-

scale pre-trained models while requiring significantly fewer
trainable parameters compared to full fine-tuning.

Formally, given a pre-trained Transformer with embed-
ding dimension d, we introduce m learnable prompt tokens
P = [p1, . . . , pm] ∈ Rm×d. For an input image X with
patch embeddings E(X) ∈ Rn×d, the combined input se-
quence becomes [P ;E(X)] ∈ R(m+n)×d, where m is the
prompt length and n is the number of image patches. The
model parameters θ remain fixed during training, with gra-
dients only propagating through the prompt embeddings P .
The prediction probability for class y is given by:

Prθ(y|x;P ) =
exp(fy([P ;E(x)]; θ))∑C
i=1 exp(fi([P ;E(x)]; θ))

, (1)

where C denotes the number of classes, and fi(·) represents
the pre-trained model’s logit output for class i. This formu-
lation allows the model to adapt to new tasks by learning
task-specific context through the prompt tokens.

3.2. Multi-Source Prompt Transfer
In many real-world scenarios, we often have access to mul-
tiple source prompts that can be utilized for the target task.
Multi-source prompt transfer aims to harness these related
prompts to enhance performance on the target task. Given
κ source tasks S = {Si}κi=1 along with their corresponding
optimized prompts {Pi}κi=1, our goal is to construct a target
prompt PT for a new task T by optimally combining the
source prompts based on their relevance to the target task.

Let M ≤ κ denote the number of selected source
prompts. We formulate this as learning combination
weights α = (α1, . . . , αM ) that maximize the target task
performance:



max
α

E(x,y)∼DT
[logPθ(y|x;PT )]

s.t. PT =

M∑
i=1

αiPi

M∑
i=1

αi = 1, αi ≥ 0 ∀i

(2)

This formulation ensures that the target prompt is con-
structed as a convex combination of the source prompts,
with the weights αi reflecting the relative importance
of each source task to the target task. The constraints∑M

i=1 αi = 1 and αi ≥ 0 ensure that the combination is
interpretable and each source prompt contributes positively
to the target prompt. The learned weights can also provide
insights into the relationships between the source and tar-
get tasks, potentially revealing task similarities and trans-
ferability.

4. Methodology
To address cross-interference and unstable optimization in
multi-source prompt transfer, we propose a dual-objective
framework that maximizes feature discriminability and en-
sures gradient coherence. The framework integrates two
key modules: the transferability loss, an information-
theoretic metric for evaluating prompt-conditioned feature
informativeness, and the Gradient Alignment Loss, which
aligns gradient directions to stabilize optimization. By
jointly optimizing these objectives, our approach mitigates
cross-interference, refines the feature space, and leverages
the collective potential of prompts for robust transfer.

4.1. Measuring Prompt Ensemble Transferability
To overcome the limitations of previous prompt ensemble
strategies in efficiency or overlook of prompt interactions,
we adopt an information theoretical metric to coherently
measure the ensemble transferability of prompts. Specifi-
cally, we introduce a theoretically grounded metric of cross-
prompt transferability based on H-score[38]. Unlike con-
ventional assessments designed by assuming the relevance
between transferability and parameter similarity, our pro-
posed metric focuses on the intrinsic informativeness of
prompt-conditioned features, explicitly revealing the effec-
tiveness of prompt ensembles on the target task.

Given a frozen visual encoder fθ and M source prompts
{Pi}Mi=1 pre-trained on different tasks, we construct fea-
tures for a target task through a linear combination of
source-specific features, where for an input image X ∈ X ,
the feature extraction process given the i-th source prompt
is defined as:

fPi
(X) = fθ ([x0;Pi;E(X)]) ∈ Rh. (3)

Figure 3. Heatmap visualizing the cosine similarity of gradients
across different prompts.

E(X) ∈ Rn×d denotes the image patch embeddings, x0 ∈
Rd the [CLS] token, and h the feature dimension. The fused
feature representation is obtained by a weighted fusion of
these source-specific features:

fα(X) =

M∑
i=1

αifPi
(X), (4)

where α = (α1, ..., αM ) are learnable combination weights
satisfying

∑M
i=1 αi = 1 and αi ≥ 0 for all i.

To evaluate the quality of the derived feature, we employ
the H-score based metric, which measures the discrimina-
tive power of the feature representation. Given the fused
features, our metric is defined as:

H(α) = tr
(
cov(fα(X))−1cov

(
EX|Y [fα(X)|Y ]

))
. (5)

In this formulation, cov(fα(X)) captures the global vari-
ability of the features across all inputs. At the same time,
the conditional expectation EX|Y [fα(X)|Y ] represents the
label-conditioned average of the features. The covariance of
this conditional expectation measures how informative the
features are for distinguishing different labels. A high score
value indicates that the prompt successfully conditions the
model to produce task-effective features, thereby implying
superior transferability. Leveraging this metric, we provide
a principled and interpretable evaluation for prompt trans-
ferability, enabling a capture of interior prompt interactions
that naive similarity measures usually overlook.

4.2. Gradient Alignment Regularization
Each prompt encodes task-specific knowledge. However,
directly aggregating these prompts often leads to subopti-
mal performance due to two critical challenges: (1) cross-
interference between prompts, where independent evalua-
tion fails to account for their synergistic or conflicting in-
teractions, and (2) unstable optimization directions, where
mismatched gradients from different prompts induce con-
flicting updates, as illustrated in Fig.3. To address these



issues, we propose aligning the gradient directions of all
prompts, ensuring they collectively guide the model toward
a unified optimization trajectory.

To establish the theoretical foundation for gradient align-
ment in prompt ensembles, we analyze how combining mul-
tiple prompts geometrically shapes the model’s optimiza-
tion trajectory, inspired by [18, 20, 21]. Consider augment-
ing a base prompt Pi with an additional source prompt Pj .
The first-order Taylor expansion reveals how the model’s
output f(x;Pi) evolves under this ensemble:

f(x;Pi + αjPj)− f(x;Pi) ≈ αj∇Pi
f(x;Pi)

⊤Pj , (6)

where ∇Pif captures the directional sensitivity of the
model to prompt interactions. Extending this to an ensem-
ble of M prompts with convex weights α, the combined
prompt PT =

∑M
i=1 αiPi induces an output shift governed

by the weighted gradient contributions:

∆f ≈
M∑
i=1

αi∇Pi
f(x;Pi)

⊤Pi. (7)

This formulation exposes a critical dependency: misaligned
gradients across prompts (∇Pi

f ) create conflicting contri-
butions to the ensemble’s feature space, destabilizing opti-
mization.

To ensure coherent parameter updates across multiple
source prompts, we propose a gradient alignment mecha-
nism that enforces directional consistency in the optimiza-
tion process. Given a batch of training samples (X,Y ),
let L(fPi

(X), Y ) denote the task loss for the i-th source
prompt. For each source prompt Pi, we compute its nor-
malized gradient direction:

ĝi =
∇Pi
L(fPi

(X), Y )

∥∇Pi
L(fPi

(X), Y )∥2
. (8)

The ensemble gradient is defined as:

gα =

M∑
i=1

αiĝi ∈ Rp×d, (9)

reflecting the collective optimization direction. The gradi-
ent alignment regularization is formulated as follows:

Lalign(α) =
1

M

M∑
i=1

(1− ⟨ĝi, ĝα⟩) , (10)

where ĝα = gα/∥gα∥2 is the normalized consensus gra-
dient, and ⟨·, ·⟩ denotes the Frobenius inner product. This
loss quantifies directional incoherence by measuring devi-
ations between individual gradients and the ensemble gra-
dient. Minimizing this loss enforces geometric consistency
across prompts, ensuring their gradients cooperatively steer
the model toward shared minima.

Algorithm 1 Ensemble weight optimization with gradient
regularization

Input: Target data DT = {(xi, yi)}Ni=1, source prompts
{Pj}Mj=1, learning rate η, trade-off parameter λ

Output: Optimal weights α∗

1: Initialize α = {α1, α2, . . . , αM} with
∑M

j=1 αj = 1
2: for epoch = 1 to K do
3: µy(α) = EX|Y [fα(X)|Y = y]
4: H(α) = tr(cov(fα)−1cov({µy}))
5: Compute normalized gradient directions: {ĝj}Mj=1

via Eq.(10)
6: Evaluate gradient alignment loss: Lalign(α) via

Eq.(11)
7: Compute total loss: L(α) = −H(α) + λLalign(α)
8: Update weights: α← α− η∇αL
9: end for

From a statistical perspective, the ensemble’s Fisher In-
formation Matrix (FIM) decomposes into:

Iens =

M∑
i=1

αiI(Pi) +
∑
i ̸=j

αiαjCov(ĝi, ĝj), (11)

where I(Pi) = E[ĝiĝ⊤i ] encodes individual prompt sensi-
tivity. The cross-term Cov(ĝi, ĝj) captures gradient interac-
tions: misaligned directions increase covariance terms, ill-
conditioning the FIM and destabilizing training [36]. By
minimizing the alignment loss Lalign, we suppress these
covariance terms, thereby conditioning Iens to ensure sta-
ble convergence. This geometric alignment ensures that
all prompts collectively refine the feature space in a coher-
ent manner, avoiding destructive interference while ampli-
fying complementary knowledge. In our formulation, the
alignment loss quantifies the variance in gradient directions
across source prompts, and minimizing it enhances the co-
herence of the aggregated gradient. This synergy-aware
training approach not only stabilizes optimization but also
unlocks the full potential of prompt-based learning by fos-
tering collaborative and consistent knowledge transfer.

4.3. Optimization Procedure
The final objective function integrates feature discrim-

inability and gradient alignment through a weighted combi-
nation:

L(α) = −H(α) + λLalign(α), (12)

Where λ is a hyperparameter that balances the trade-off be-
tween maximizing the H-score and minimizing the Gradient
Alignment Loss, this formulation ensures that the optimiza-
tion process simultaneously enhances the discriminative
power of the aggregated features while maintaining con-
sistent gradient directions across different source prompts.



The optimization problem can be efficiently solved using
gradient-based methods, leveraging the convexity of α to
ensure reliable convergence, as detailed in Algorithm 1.

5. Experiments

We evaluate the proposed approach for a wide range of
downstream recognition tasks with pre-trained Transformer
backbones. We first describe our experimental setup in
Section 5.1, including the pre-trained backbone and down-
stream tasks and a brief introduction to alternative transfer
learning methods.

5.1. Setup

Datasets. We experiment on a collection of 13 datasets
from V-tab-1k [42]. VTAB is a collection of dieverse visual
classification tasks, which encompasses three distinct cate-
gories of tasks: Natural, featuring images taken with con-
ventional cameras; Specialized, containing data acquired
through specialized devices, such as medical imaging or
satellite sensors; and Structured, which demands spatial
reasoning, like counting objects.

Implementation Details. We implement all experiments
on NVIDIA A800-80GB GPUs. For a fair compari-
son, all methods use a ViT-B/16 backbone pre-trained on
ImageNet-21k, and the number of prompt tokens is set to
50. We follow the original configurations, e.g. number of
image patches divided, existence of [CLS], etc. We train
the prompt on all the source tasks for 10 epochs for source
prompt training. We use 2000 samples from each source
task for each target task to compute the transferability loss
and gradient alignment loss. Following [42], we use the
provided 800-200 split of the train set to determine hyperpa-
rameters and run the final evaluation using the full training
data.

Baselines. We compare our approach to three recent
prompt tuning methods: (1) Visual prompt tuning (VPT
[16]), where target prompt embeddings are initialized by
random (2) SPoT [34], where target prompts are initialized
by source prompt embeddings trained on other tasks; (3)
ATTEMPT [2], which mixes pre-trained source prompts
and target prompts via attention mechanism. (4) PANDA
[45], which uses a new metric to predict transferability and
employs knowledge distillation. (5) Adapter [12], which
inserts new MLP modules with residual connection in the
side Transformers layers. (6) SIDETUNE [43], which
trains a ”side network and linear interpolate between pre-
trained features and side-tuned features before fed into the
head. (7) PARTIAL-k [44], which fine-tunes the last k lay-
ers of backbones while freezing the others. (8) MLP-k,
which utilizes a multilayer perceptron (MLP) with k lay-

ers, instead of a linear, as classification head. (9) BIAS [5],
which fine-tunes only the bias terms of a pre-trained back-
bone.

5.2. Main Results
Our experimental evaluation across 13 diverse vision tasks,
as detailed in Tab. 1, demonstrates HGPrompt’s superiority
over 13 baselines using a ViT-B/16 backbone pre-trained
on ImageNet-21k. The proposed method achieves state-
of-the-art performance with an average accuracy of 59.6%,
surpassing prior multi-source prompt transfer approaches.
HGPrompt excels in fine-grained recognition tasks, achiev-
ing top results on Flowers102 and Oxford Pets. It also out-
performs all baselines in texture analysis on DTD and main-
tains competitive performance on CIFAR100. Notably, the
method establishes new state-of-the-art results in geometric
reasoning tasks, including sNORB-Azimuth and dSprite-
Orientation, with significant improvements in complex vi-
sual reasoning tasks like Clevr-Count. However, perfor-
mance bottlenecks emerge in specific domains. The 32.1%
accuracy on SVHN suggests limitations in handling low-
resolution digit recognition. While SPoT retains an advan-
tage in SVHN, HGPrompt exhibits a more balanced and ro-
bust performance across all task categories, highlighting its
effectiveness.

5.3. Task Transferability Patterns
Fig. 4 illustrates the prompt weights computed in the 13
downstream tasks for four MPT methods. Our proposed
metric excels in precisely capturing intrinsic prompt trans-
ferability between functions—for example, semantically re-
lated tasks such as dsp-Loc (Object location) and dspr-
Ori (Object orientation) exhibit significantly higher mutual
transferability. In contrast, SPoT does not show any appear-
ant structure in the pairwise prompt transferability, unlike
the other three methods that shows self-transfers(diagonal)
are more effective than cross-task transfer in general. AT-
TEMPT and PANDA, on the other hand, produce sparser
score distributions, with limited emphasis on specific task
pairs such as Clevr-Dist (Distance estimation) and Clevr-
Count (Object counting). While these methods capture
some task affinities, their overall patterns lack the granular-
ity and consistency observed in our approach. In summary,
our method is the only approach that effectively captures
task transferability, demonstrating its superiority in model-
ing prompt transferability.

5.4. Alation Studies
The ablation study in Tab.2 highlights the contributions
of each component in the framework. Without H-score
or Gradient Loss, the model relies on average weighted
source prompts, achieving an average accuracy of 64.4%.
Introducing the H-score loss alone improves accuracy to
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Linear 61.7 58.6 96.6 83.9 32.7 83.9 30.6 12.2 20.3 12.6 18.2 32.1 28.6 44.0
PARTIAL-1 [44] 64.4 60.3 97.5 86.0 36.3 87.8 32.5 16.5 21.8 31.3 39.2 41.3 32.1 49.8
MLP-2 39.3 43.0 88.5 76.3 28.0 80.4 29.7 12.5 20.3 24.5 30.8 31.5 29.5 41.1
MLP-3 41.9 46.2 90.5 78.4 30.3 83.9 30.7 14.1 21.5 25.9 33.1 33.8 30.2 43.1
MLP-5 38.1 44.1 90.8 79.1 28.8 81.2 30.5 13.9 20.4 22.5 33.2 33.0 29.1 41.9
MLP-9 38.6 46.1 92.1 81.2 28.0 84.2 31.0 14.7 22.9 19.7 33.2 39.0 28.3 43.0
Adapter [12] 73.8 61.7 97.5 86.6 32.7 85.3 29.4 11.9 19.5 22.4 20.8 40.1 35.1 47.4
SIDETUNE [43] 53.5 58.7 93.4 77.2 17.6 37.2 26.7 10.6 15.1 13.2 13.6 20.3 19.4 35.1
BIAS [5] 70.8 57.5 97.2 85.1 45.3 89.7 31.2 13.5 23.2 63.3 39.7 49.1 54.5 56.2
VPT [16] 56.0 57.4 97.3 82.5 61.4 88.9 40.7 15.3 14.1 42.8 37.5 34.8 51.0 52.3
SPoT [34] 75.6 63.7 97.7 86.3 70.4 92.1 37.3 19.4 23.3 65.0 36.0 41.5 52.8 58.5
ATTEMPT [2] 67.8 62.1 96.1 85.1 69.0 91.0 36.2 17.9 23.5 61.2 35.0 43.5 51.2 56.9
PANDA [45] 74.1 61.3 96.5 86.2 71.2 90.8 37.8 19.4 24.0 67.7 37.3 42.8 53.9 58.7
HGPrompt 75.2 64.3 97.9 87.3 65.1 92.5 38.2 20.2 25.1 68.2 38.4 49.3 52.5 59.6

Table 1. Performance comparison across diverse vision tasks using a Vision Transformer (ViT-B/16) backbone pre-trained on ImageNet-
21k. The second-best results are underlined, while the best results are highlighted in bold. All reported values represent the average
accuracy obtained from three independent runs, with the highest average accuracy achieved by our method.

(a) SPoT (b) ATTEMPT (c) PANDA (d) HGPrompt

Figure 4. The four heatmaps illustrate the prompt weights between various downstream tasks across different MPT methods.

66.7%, demonstrating its effectiveness in enhancing fea-
ture discriminability through information-theoretic opti-
mization. The Gradient Loss alone achieves 66.4% accu-
racy and stabilizes optimization by aligning gradient direc-
tions. Combining both components yields the best per-
formance (67.6%), proving their complementary roles in
achieving optimal results.

5.5. Visualization of Learned Features

To analyze the effect of prompt ensemble on the learned
representation of the target test data, we present t-SNE vi-
sualizations of ViT feature embeddings in four different
source prompt setups in Fig.5. In each experiment, three
source prompts, pre-trained on CIFAR-100, DTD and Pets

datasets respectively, are used to initialize prompts, while
our method initializes the target prompt by ensembling
these three source prompts. The target domain features used
for visualization are computed on the Eurosat dataset. As
shown in Fig.5.D, our prompt ensemble method shows bet-
ter class discriminability than single source prompt transfer.
Instead of scattered clusters, objects from the same category
form tightly grouped regions with clear separation bound-
aries despite the vit model never being exposed to EuroSAT
images during training. The visualization underscores the
effectiveness of our method in constructing a coherent and
well-structured feature space for transfer learning.



Table 2. Ablation Study on Framework Components

H-score Gradient Loss Cifar100 DTD Flowers Pets SVHN Euro DMLab sN-A Average

× × 71.5 61.1 93.5 83.8 63.2 89.8 35.5 16.8 64.4
✓ × 74.3 63.2 97.1 86.5 64.1 91.4 37.1 19.5 66.7
× ✓ 74.1 62.9 96.8 86.2 63.8 91.1 36.8 19.2 66.4
✓ ✓ 75.2 64.3 97.9 87.3 65.1 92.5 38.2 20.2 67.6

Figure 5. t-SNE Visualization of Feature Embeddings with varied
source prompt initialization on EuroSAT (10 Classes). Each color
corresponds to a distinct land cover class.

Figure 6. Accuracy changes as λ varies from 0.1 to 10.

5.6. Parameter Analysis

To investigate the effect of parameter λ, the coefficient of
the alignment regularizer in the total loss function Eq.12, we
analyze the model performance in four benchmark data sets:
Cifar100, SVHN, Clevr-Dist and Clevr-Count, randomly
selected to represent various task domains, as λ varies from

0.1 to 10. Fig.6 illustrates the accuracy trends for each
dataset under varying λ, revealing consistent sensitivity pat-
terns.

For Cifar100, accu3racy steadily increases as λ rises
from 0.1 to 1.0, stabilizing around 75% for λ ≥ 1.0. How-
ever, the other three datasets exhibit a decline in accuracy
beyond λ = 1.0. A critical inflection point occurs at
λ = 1.0 (marked by a red dashed line), where all datasets
exhibit either peak performance or trend reversals. This ob-
servation suggests that equal weighting of the H-score and
gradient alignment regularization generally provide a robust
initialization for prompt ensemble tuning. These findings
validate the necessity of our dual-objective formulation in
balancing feature discriminability and gradient coherence
for effective prompt-based transfer learning.

6. Conclusion

In this work, we presented a novel framework for multi-
source prompt transfer that addresses the inherent limita-
tions of existing approaches by explicitly optimizing the
aggregation of multiple-source prompts. Our methodology
determines optimal source weights by maximizing the H-
score and minimizing gradient variance, effectively mea-
suring the transferability of the source prompt ensemble.
This dual-level evaluation, encompassing feature-level and
gradient-level analysis, directly addresses the limitations
of existing methods by accounting for cross-interference
among prompts and their collective impact on latent fea-
ture distributions. Looking forward, future research could
explore the extension of our framework to even more di-
verse sets of source prompts, as well as its application to
other modalities beyond vision. Overall, our contributions
lay a solid foundation for advancing multi-source prompt
transfer, offering both theoretical and practical insights in
enhancing foundation model adaptability.
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