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ABSTRACT

Model merging has emerged as an efficient strategy for constructing multitask
models by integrating the strengths of multiple available expert models, thereby
reducing the need to fine-tune a pre-trained model for all the tasks from scratch.
Existing data-independent methods struggle with performance limitations due to
the lack of data-driven guidance. Data-driven approaches also face key challenges:
gradient-based methods are computationally expensive, limiting their practicality
for merging large expert models, whereas existing gradient-free methods often
fail to achieve satisfactory results within a limited number of optimization steps.
To address these limitations, this paper introduces PSO-Merging, a novel data-
driven merging method based on the Particle Swarm Optimization (PSO). In this
approach, we initialize the particle swarm with a pre-trained model, expert mod-
els, and sparsified expert models. We then perform multiple iterations, with the
final global best particle serving as the merged model. Experimental results on
different language models show that PSO-Merging generally outperforms base-
line merging methods, offering a more efficient and scalable solution for model
merging.

1 INTRODUCTION

In recent years, numerous powerful pre-trained Large Language Models (LLMs) have emerged,
serving as the foundation for solving various language-related tasks (Brown et al., 2020; [Touvron
et al.l 2023} Jiang et al.l 2023} |Grattafiori et al., 2024} |Chung et al. [2024; [DeepSeek-Al et al.,
2024). To unlock the abilities of these LLMs on downstream tasks, post-training techniques such
as fine-tuning, reinforcement learning with human feedback (RLHF), direct preference optimization
(DPO), and Group Relative Policy Optimization (GRPO) are commonly employed (Rafailov et al.,
2024; |Ouyang et al., 2022 DeepSeek-Al et al.| [2025). However, post-training is time-consuming
and often requires substantial GPU and data resources.

Constructing a multitask model by performing post-training on the base model is highly resource-
intensive. Fortunately, there are numerous open-source expert models available in the community
that have undergone post-training on various downstream tasks. Thus, an alternative approach for
building a multitask model is to merge post-trained expert models directly (L1 et al.| [2023a). By
merging expert models in the parameter space, the capabilities of multiple downstream tasks can
be consolidated into a single model. Model merging offers the benefit of simplicity and efficiency,
demanding less data and fewer GPU resources compared to training.

Existing model merging methods can be broadly categorized based on whether they rely on data
guidance. Data-independent approaches, which are often simpler, typically involve operations such
as scaling, rescaling, pruning, or weighted merging of task vectors while addressing potential con-
flicts during the integration process (Yadav et all) [2023; [Yu et al., 2024a; [Ilharco et all [2023).
However, in the absence of data-specific guidance, these methods often struggle to achieve opti-
mal performance due to their limited ability to adapt to the nuances of specific tasks. On the other
hand, data-guided methods typically rely on gradient-based calculations to guide the merging pro-
cess (Matena & Raffel| 2022 |Yang et al.| 2023). These approaches face significant challenges when
applied to scenarios involving a large number of expert models with substantial parameter sizes,
as the computational overhead and complexity become prohibitive. To avoid the need for gradient
computation, |Akiba et al.| (2024)) propose leveraging the Covariance Matrix Adaptation Evolution
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Strategy (CMA-ES) to search for optimal merging weights based on existing methods. While this
approach offers a gradient-free, data-driven alternative, it involves sampling in the solution space,
where many samples are discarded in each iteration due to low evaluation scores. As a result, it
requires a substantial number of iterative steps to achieve satisfactory results, making it inefficient.

In real-world scenarios, data for the target domain is at least available in limited quantities. The
ideal model merging method should efficiently and fully utilize this data as guidance, while avoid-
ing extensive computations. The Particle Swarm Optimization (PSO) (Kennedy & Eberhart, |1995)
was originally proposed to search for the optimal solution to a target problem. It does not require
gradient computation, instead relying on an evaluation function to assess the objective score, which
can optionally incorporate data as guidance. This approach minimizes the need for extensive calcu-
lations. In each iteration, PSO guides each solution by leveraging information from other solutions,
allowing it to more accurately identify the direction toward optimal solutions, which enhances its
efficiency. As a result, PSO is particularly well-suited for an ideal model merging method.

In this work, we propose PSO-Merging, a novel model merging method inspired by the traditional
PSO. Unlike the traditional approach of randomly initializing the particle swarm in PSO, our method
initializes the particle swarm by using each expert model as the starting point. Moreover, we adopt
the widely utilized sparsification technique, initially introduced to address parameter conflicts during
the merging process. In our method, this technique also enables the generation of a larger number
of particles, thereby facilitating a more favorable convergence toward high-quality solutions. After
several rounds of the PSO optimization process, we use the final global best particle as the resulting
merged model.

We evaluate our method on multiple model architectures, including Flan-T5, LLaMA, and Mistral.
Experimental results illustrate that our approach outperforms baseline methods in terms of average
scores and achieves significant improvements on certain tasks. Moreover, our experimental anal-
ysis demonstrates that PSO-Merging exhibits rapid convergence, and significantly outperforms the
baseline methods in merging scenarios involving up to four large expert models.

2 METHODOLOGY

In this section, we first give a problem formulation of merging to enhance multitask capability (M-
MTC) (Lu et al., 2024])), then we introduce PSO-Merging, our novel model merging method based
on the PSO. Finally, we provide a brief intuitive explanation of why PSO-Merging works.

2.1 PROBLEM FORMULATION

Assume we have a task set T = {7y, 72, -+, 7, } of size n. We begin with a pre-trained model
parameterized by 8y € R?, where d denotes the number of parameters. This model then undergoes
post-training on each task in 7" to adapt and specialize for the specific task. Specifically, for a
task 7, the pre-trained model is fine-tuned on its corresponding dataset to become an expert in 7,
parameterized by 6;. The goal of M-MTC is to merge the set of experts ©@ = {61,05,--- ,0,} into
a unified model Oy,ergeq With multitask capability that performs well on 7'

2.2 PSO-MERGING

An overview of PSO-Merging is demonstrated as Figure|l} Our method can be roughly divided into
two stages: initialization and iterative updates.

Initialization The traditional PSO begins with a randomly initialized solution set ®jyigia1 =
{9;0), 050), cee 9,(,9)} of size m. However, at this stage, we initialize the solution set ©;;,;;;4; With
the original experts along with the sparsified experts, which are acquired by the sparsification mech-
anism. The sparsification mechanism is widely employed in model merging to mitigate parameter
conflicts (Yadav et al.| 2023; |Yu et al., [2024a; |Deep et al., [2024). In our approach, we utilize spar-
sification not only to address parameter conflicts but also to increase the number of particles (initial
solutions). A larger particle pool enables PSO to converge more effectively toward an optimal so-
lution. For simplicity, we adopt the sparsification strategy from DARE. Specifically, for parameters

0; and a drop rate p, the sparsified parameters 6, are obtained as follows:
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Figure 1: An overview of PSO-Merging. We begin by sparsifying all fine-tuned LLM experts. The
swarm consists of the pre-trained model, the fine-tuned LLM experts, and the sparsified fine-tuned
LLM experts. The update cycle consists of three steps: fitness evaluation, velocity calculation, and
stepping. The axes in the figure represent the parameter space. The numbers in the fitness evaluation
present each particle’s fitness score, corresponding to the average multitask score in our work. The
black arrows indicate the stepping direction of each particle. For simplicity, we omit the momentum
term in the velocity calculation.

m! ~Bernoulli(p), i=1,2,...,d, (D
m' =[m!,mb, .- mb] € RY, 2)
6, =(1-m") © (8, — 0y)/(1 - p) + b, 3)
where © represents element-wise multiplication, and 8, denotes the pre-trained parameters.
For the expert set @ = {01, 92, . ,%}, by using the sparsification technique, we acquire the
sparsified expert set o= {01, 92, -++,0,}. To maximize the use of existing resources to increase

the number of particles, we also include the pre-trained model in the initial solutions. So our initial
solution set can be represented as

Oinitial = OUO U {6} 4

Iterative Updates In this stage, we perform iterative updates for several steps to approach a good
solution. Each update cycle consists of three main steps: fitness evaluation, velocity calculation,
and position updating. Traditional Particle Swarm Optimization (PSO) defines the fitness function
of a solution as the score of a specific task being solved. However, in our M-MTC scenario, we
redeﬁne the fitness function to represent the average score across all tasks, expressed as f(0) =
71) ., score;(@). The velocity of each solution (similar to a gradient) is determined by its own
personal best position and the global best position. The velocity formula of solution ¢ on step ¢ can
be represented as:

vt(z) w - 'vt(Z Dyeor- (0(1_%) - 9,51_1)) +cgTy- (49(Z H o 0(Z 1)) )

gbest t,pbest
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where c; and ¢, are parameters used to adjust how much PSO concerns the global and personal in-
formation. r; and ry are random variables that follow the uniform distribution, specifically, 1,7y ~
U(0,1). w is a parameter that controls the momentum of the movement. The personal best position

. remax. . (0@
until step ¢ are defined as 0" = Ot(a gmax;<if (07))

Ot(i)best and the global best position 0" b phest

P gbest
e(i) _ e(i)

gbest argmax, f (OEj;best ),pbest

[}

Then we update each solution according to its own velocity:
0" = 00" v, 6)

After iterating for S steps starting with ®jyjtia1, We choose the final global best particle as our

merged LLM, denoted as Omerged = 0;§ist.

2.3 AN INTUITIVE EXPLANATION FOR WHY PSO-MERGING WORKS

Expanding Equation[6] we obtain the following expression:

0251) =G -Te aéi)_eslt) tceoT2e Oifp_ble)st + (1 —C1T1—C2 T2) : eigi_l) +w- vgi_l)a (N

. . —1 . . . .
where, when ignoring the momentum term w - vgl ), the equation represents a linear combination

of 871, 0&;513 and Bt(f;ble)st. Previous studies have demonstrated the effectiveness of this linear
combination (Ilharco et al.,2023)). Intuitively, iterating multiple times allows us to find a more opti-
mal linear combination, guided by the data, thereby improving the merged model. The momentum
term further helps balance exploration and exploitation by maintaining a particle’s velocity, enabling
it to escape local optima and enhancing the overall global search capability (Kennedy & Eberhart,

1995).

Earlier studies have shown that the sparsification mechanism can help mitigate parameter conflicts
(Yu et al.| 2024a)). Since our initial particle swarm includes sparsified models (which contribute to
the initial states 9,50) and subsequently influence Gélb)est and Hi_l;))best throughout iterations), the search
process benefits from exploring regions influenced by this initial sparsification. This helps mitigate

parameter conflicts when forming the combined parameters 9,@.

3 EXPERIMENTS

In this section, we present the experimental results obtained using four different base language
models: Flan-T5-Base (Chung et al.| 2024), Llama-3-8B (Grattafiori et al., |2024), Llama-2-13B
(Touvron et al.l |2023), and Mistral-7B-v0.3 (Jiang et al., 2023)). The results demonstrate that our
method achieves performance superior to the baseline methods, thereby proving its effectiveness
and highlighting its advantages.

3.1 BASELINES
We choose the following model merging methods as our baseline methods.

Task Arithmetic This method involves scaling each task vector by a factor and then combining
them with the pre-trained model (Ilharco et al., [2023]).

DARE-Linear Each task vector is first sparsified randomly and rescaled before being merged into
the pre-trained model (Yu et al.|[2024a).

TIES-Merging This method retains the top-k parameters based on absolute values, resolves sign
conflicts among different task vectors, and then integrates them into the pre-trained model (Yadav
et al., [2023).
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DARE-TIES Task vectors are initially sparsified randomly and rescaled, followed by resolving
sign conflicts across task vectors before merging them with the pre-trained model (Yu et al.} [2024a;
Yadav et al., 2023)).

DELLA-Merging Parameters are pruned based on their magnitudes, with different pruning prob-
abilities assigned accordingly. Post-pruning, the process follows the same steps as TIES-Merging
(Deep et al.} 2024).

RankMean This approach determines merging weights for parameters across expert models based
on their relative rank in terms of weight change magnitude. The parameters in each module are then
aggregated through a weighted average using these coefficients (Perin et al.,[2024).

Evo We adopt the parameter-space merging component of |Akiba et al.| (2024)’s method. This
approach uses CMA-ES to search for optimal merging parameters based on existing methods. We
use Task Arithmetic as the base method and employ CMA-ES to explore the merging weights.

Adamerging This method directly treats the merging weights as trainable parameters, optimizing
them by minimizing entropy on unlabeled test samples as a surrogate objective function.

Fisher-Merging This approach leverages labeled data from each task to estimate a diagonal ap-
proximation of the Fisher matrix, which is then interpreted as the importance of the corresponding
task-specific expert.

RegMean This method combines multiple models by minimizing the difference in their predic-
tions on training data, often using inner product matrices.

3.2 IMPLEMENTATION DETAILS

We conducted experiments using four distinct base language models: Flan-T5-Base, Llama-2-13B,
Llama-3-8B, and Mistral-7B-v0.3. In our approach, we set the parameters ¢c; = 2, co = 2, and
w = 0.2. We set the total optimization steps S = 50 for the Flan-T5-Base experiments and .S = 5
for other experiments. For the Evo baseline, to ensure a fair comparison, we set the number of
evaluation iterations to n * S in all experiments, where n denotes the number of experts and S
corresponds to the number of iterations in PSO-Merging. This aligns the evaluation count with that
of PSO-Merging. However, in the actual implementation, the number of evaluation iterations in Evo
slightly exceeds the set value. For the sparsification component, we applied a drop rate of p = 0.8
in all methods that incorporate sparsification including ours. For all baseline methods that include a
fixed scaling term, we choose the scaling term to be either % or 1.0, where n is the number of expert
models. We report the result with the higher average score.

Table 1: Multitask performance when merging experts based on Flan-T5-Base.

Method COLA MNLI MRPC QNLI QQP RTE SST2 STSB AVG
Task Arithmetic 69.13 62.65 79.41 89.80 83.86 81.23 91.74 7322 78.88
DARE-Linear 69.51 63.79 79.66 89.88 83.89 8123 91.74 69.83 78.69
TIES-Merging 69.22 59.39 77.70 89.33 8336 80.51 91.28 68.38 77.40
DARE-TIES 69.32 62.50 79.66 89.77 83.83 8159 9128 71.10 78.63
DELLA-Merging  69.32 64.40 79.90 89.90 83.82 8195 91.06 7596 79.54
Rankmean 69.13 56.45 76.23 88.45 82.12 80.14 91.17 6221 7574
Evo 70.85 82.91 75.74 89.35 7391 80.87 9220 69.70 79.44
Adamerging 69.89 77.17 79.90 89.80 81.73 79.06 9140 66.05 79.38
Fisher-Merging 69.32 54.03 76.72 84.64 8357 77.62 88.07 7435 76.04
RegMean 69.13 26.64 75.25 79.33  77.17 61.73 86.01 48.14 6543
PSO-Merging 68.17 83.80 80.64 89.53 8356 81.23 91.06 7194 81.24

Flan-TS5-Base Experiments Following the experimental settings of previous work (Tang et al.,
2024), we selected eight text-to-text generation tasks from the General Language Understanding
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Table 2: Multitask performance when merging experts based on Llama-2-13B, Llama-3-8B, and
Mistral-7B-v0.3.

Method AlpacaEval MBPP GSMS8K AVG

Task Arithmetic 82.48 16.80 54.13 51.14

m DARE-Linear 69.36 4.00 29.80 34.38
@ TIES-Merging 64.82 32.80 59.06 52.23
A DARE-TIES 73.40 8.20 32.52 38.04
£ DELLA-Merging 74.38 9.20 36.24  39.94
‘5“ Rankmean 55.13 30.80 57.54 47.82
Evo 61.08 32.60 56.86 50.18
PSO-Merging 80.11 26.00 64.37 56.82

Task Arithmetic 63.79 31.00 56.56 50.45

o DARE-Linear 60.98 8.00 53.75 40.91
% TIES-Merging 73.72 45.40 57.54 58.89
o DARE-TIES 71.69 49.20 59.97 60.29
€ DELLA-Merging 61.22 4.60 56.18 40.67
f Rankmean 40.96 49.40 50.72 47.03
Evo 55.74 49.00 56.10 51.95
PSO-Merging 80.01 51.40 51.93 61.12

Task Arithmetic 57.72 42.40 50.72 50.28

P DARE-Linear 57.26 41.40 50.42 49.69
x TIES-Merging 72.08 36.40 51.86 53.45
@ DARE-TIES 57.84 43.00 50.19 50.34
= DELLA-Merging 57.58 42.40 51.25 50.41
% Rankmean 51.14 42.20 50.87 48.07
= Evo 60.66 51.93 41.80 51.47
PSO-Merging 71.33 41.20 53.53 55.35

Evaluation (GLUE) benchmark (Wang et al., 2018): CoLA, MNLI, MRPC, QNLI, QQP, RTE, SST-
2, and STSB. The expert models were sourced from HuggingFaceE] For evaluation, we report Spear-
man’s p for STSB and exact match accuracy for the other tasks.

Llama-2-13B, Llama-3-8B, and Mistral-7B-v0.3 Experiments In accordance with the experi-
mental settings of prior research (Yu et al., [2024a), we conducted experiments on merging three
specialized experts: an instruction-following expert, a mathematical reasoning expert, and a code-
generating expert. For Llama-2-13B, the three experts were WizardLM-13B-v1.2, WizardMath-
13B-v1.0, and Llama-2-13B-Code-Alpaca. For Llama-3-8B and Mistral-7B-v0.3, we trained cor-
responding experts tailored to each base model. Detailed training procedures are described in Ap-
pendix |Al For evaluation, we assess instruction-following ability using the win rate on AlpacaEval
(L1 et al.,|[2023b), mathematical reasoning ability using zero-shot accuracy on GSMS8K (Cobbe et al.,
2021)), and code-generating ability using pass@1 on MBPP (Austin et al.,2021). We use Llama-
3.1-70B under the Ollamg-| framework as the judge for the AlpacaEval task. We use xFindeIEI (Yu
et al.| [2024b) to extract the answer for the GSM8K task.

3.3 EXPERIMENTAL RESULTS

In the Flan-T5-Base experiment setup, we randomly selected 50 samples from the training set of
each task to form the optimization set, which was used to calculate the fitness. The evaluation results
are summarized in Table[I] Remarkably, our method outperforms all baseline methods significantly
on the MNLI task and demonstrates a clear advantage in average score across all tasks.

For the experiments with Llama-2-13B, Llama-3-8B, and Mistral-7B-v0.3, the dataset for each task
was partitioned into an optimization set and a test set, with a 1:10 ratio. Comprehensive dataset
statistics are provided in Appendix [B| The evaluation results are shown in Tables 2| Notably, our
method demonstrates a substantial improvement over all baseline approaches, achieving the highest

"https://huggingface.co/collections/tanganke/flan-t5-base-models-fine-tuned-on-glue-benchmark-
664£30d7966303d9a0a90bb6

“https://ollama.com/

*https://huggingface.co/IAAR-Shanghai/xFinder-qwen1505


https://huggingface.co/collections/tanganke/flan-t5-base-models-fine-tuned-on-glue-benchmark-664f30d7966303d9a0a90bb6
https://huggingface.co/collections/tanganke/flan-t5-base-models-fine-tuned-on-glue-benchmark-664f30d7966303d9a0a90bb6
https://ollama.com/
https://huggingface.co/IAAR-Shanghai/xFinder-qwen1505
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Figure 2: The score variations on the optimization set for all particles with different w values. The
legend indicates the expert used to initialize each particle and specifies whether the expert has been
sparsified. All lines represent scores on the optimization set. CODE denotes the code-generation
expert, LM refers to the instruction-following expert, and MATH represents the mathematical rea-
soning expert.

Table 3: Multitask performance when merging experts based on Llama-3-8B of four tasks.

Method AlpacaEval MBPP GSMSK SciQ AVG
Task Arithmetic 50.63 50.20 51.86 8220 58.72
DARE-Linear 61.19 37.00 55.12 79.30 58.15
TIES-Merging 53.37 49.00 54.13 82.60 59.78
DARE-TIES 50.49 49.60 53.22 82.80 59.03
DELLA-Merging 51.60 49.20 53.15 82.30 59.06
Rankmean 35.62 48.20 47.23 72.30 50.84
Evo 55.74 49.60 50.87 82.90 59.78
PSO-Merging 80.89 50.60 49.58 76.80 64.47

average score across all experimental settings. Due to the considerable memory demands associated
with gradient computations (Adamerging, Fisher-Merging) or the necessity of retaining intermedi-
ate activations (RegMean), precluding their effective application with large-scale models like those
explored here, we did not compare against these baselines.

4 ANALYSIS

In this section, we explore the impact of some hyper-parameters in our method. Additionally, we
validated the effectiveness of our method in scenarios involving the fusion of more experts. All the
analysis experiments were conducted under the Llama-3-8B experimental settings.

4.1 IMPACT OF THE MOMENTUM COEFFICIENT w

We present the optimization process for different choices of w in Figure 2] When w = 0.0, most
particles converge to high scores, but two particles remain unoptimized. As w increases beyond 0.2,
almost all particles fail to optimize, with the situation worsening as w grows larger. Notably, when
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Table 4: Multitask performances when setting ;pitia1 = © and Ojpitial = e.

Method AlpacaEval MBPP GSMS8K AVG
PSO-Merging(®initial = O, 3 particles) 80.85 49.80 47.84 59.50
PSO-Merging(®initial = 0,3 particles) 81.46 50.00 50.27 60.57
PSO-Merging(®initias = © UO U {60}, 7 particles) 80.01 51.40 51.93 61.12

w = 0.2, all particles successfully converge to comparably high scores, indicating that setting the
momentum parameter w = 0.2 is a reasonable choice.

4.2 PERFORMANCE IN MERGING MORE EXPERTS

We conducted the four-task experiment to explore the performance of PSO-Merging when merging
more experts. We incorporated an additional task, SciQ (Welbl et al., 2017) in this experiment. The
results are presented in Table 3] demonstrating that PSO-Merging outperforms all methods when
merging four experts.

4.3 CONVERGENCE BEHAVIOR OF PSO-MERGING

In this section, we investigate the convergence behav- ‘\?\'W@‘W
ior of PSO-Merging. We present in Figure [3]the vari- *

ation in the fitness scores of the seven particles in the
optimization set over 40 optimization steps. Addi-
tionally, we illustrate the change in the fitness score of € 50
the global best particle on the test set throughout the .
optimization process. The plot demonstrates that all a0
particles converge rapidly within 10 steps on the opti- —— particle_6: MATH sparsified
mization set, with the majority converging within the o o Frerained
first 5 steps. Notably, PSO-Merging achieves satis- 55 1 5 3 5 % 3 @
factory performance on the test set within just 5 steps. o

60

—— Particle_1: CODE
Particle_2: LM

—— Particle_3: MATH

—— Particle_4: CODE _sparsified

—— Particle_5: LM_sparsified

Figure 3: The score variations on both the
4.4 EFFECT OF NUMBER OF PARTICLES optimization set and the test set over the
course of 40 optimization steps. Test_score
denotes the score of the global best particle
on the test set. All other lines represent the
scores of different particles on the optimiza-
tion set.

To validate the impact of the number of particles
in PSO-Merging and the effect of the sparsification
mechanism, we conducted experiments using two dif-
ferent configurations: Ojpitia1 = O and Ojpitial =
©. The results, presented in Table show that merg-
ing only the original experts yields the lowest score while merging only the sparsified experts
achieves a higher score. This suggests that the sparsification mechanism effectively reduces pa-
rameter conflicts between the models. Furthermore, when ®yjtia = © U ® U {6}, the score is the
highest, indicating that a larger number of particles facilitates the creation of a better-merged model.

4.5 EFFICIENCY COMPARED WITH GRADIENT-BASED METHODS

Fisher Merging necessitates computing per-example gradients across all parameters for each ex-
pert, incurring a memory cost comparable to training on N examples (around 28GB per 7B model),
making it impractical for merging multiple large models. RegMean, requiring the retention of inter-
mediate activations for all merging models during optimization, also presents a significant memory
overhead. Similarly, Adamerging, while training only merging weights, requires loading all models
simultaneously (e.g., 42GB for three 7B models). In contrast, PSO-Merging operates solely on in-
ference, requiring less memory, exemplified by its 14GB requirement in the same three 7B model
scenario.
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5 RELATED WORK

Model Merging In recent years, model merging has gained significant attention as a versatile ap-
proach in machine learning research. [Lu et al.|(2024) categorizes current studies on model merging
into two main directions: merging to achieve a relatively optimal solution (M-ROS) and merging
to enhance multitask capability (M-MTC). Our work focuses on M-MTC, aiming at constructing
multitask models, and we provide an overview of related studies in this scenario. These methods are
categorized into data-independent methods and data-guided methods.

For data-independent methods, [Ilharco et al.| (2023) introduced the concept of a Task Vector, defined
as the difference between the parameters of a post-trained model and its corresponding pre-trained
model. By multiplying these task vectors with the merging weights and summing them, a merged
task vector is obtained. This vector, when combined with the pre-trained parameters, produces the
final merged model. Building on this framework, TIES-Merging (Yadav et al., [2023)) improves the
process by pruning low-magnitude parameters and resolving sign disagreements prior to merging,
thereby enhancing its effectiveness. To address parameter conflicts among task vectors, |Yu et al.
(2024a) proposed DARE, a method that randomly sparsifies and rescales task vectors to reduce task
vector redundancy. Alternatively, |Deep et al.| (2024) introduced DELLA-Merging, which replaces
the pruning mechanism of TIES-Merging by employing a probabilistic distribution based on the
magnitude rank of task vector parameters. Rankmean (Perin et al.|[2024) computes module-specific
merging weights for each expert model based on magnitude ranks.

For data-guided methods, Fisher Merging (Matena & Raffel, |2022)) uses some labeled data for each
task to estimate the diagonal approximate Fisher matrix, which is treated as the importance of the
task-specific expert. Then the diagonal approximate Fisher matrix is applied to merge the models
as the merging weights. Adamerging (Yang et all 2023) treats the merging weights as trainable
parameters directly, using entropy minimization on unlabeled test samples as a surrogate objective
function to optimize the merging weights. To eliminate the need to calculate the gradients, |Akiba
et al.| (2024) propose to use CMA-ES to search for optimal merging weights. However, it requires
sampling within the solution space, where many samples are discarded in each iteration because of
poor evaluation scores. Consequently, it demands a large number of iterations to obtain satisfactory
results, which makes it inefficient. Model Swarms (Feng et al.| [2024) is another iterative model
merging method.

Particle Swarm Optimization Particle Swarm Optimization (PSO) (Kennedy & Eberhart, [1995)
is a stochastic optimization algorithm inspired by the collective intelligence observed in natural
phenomena such as bird flocking and fish schooling. In PSO, a population of particles represents
potential solutions, each navigating the search space by adjusting its position based on its own
experiences and the best solutions discovered by the entire swarm. This cooperative mechanism
allows particles to efficiently explore the search space, while also honing in on regions of interest
through shared information. The method excels at balancing exploration and exploitation, enabling
rapid convergence to optimal or near-optimal solutions.

6 CONCLUSION

In this work, we introduce PSO-Merging, a novel model merging method that adapts traditional
Particle Swarm Optimization (PSO) to the model merging scenario. We first demonstrate the strong
applicability of PSO for model merging tasks. To further enhance its effectiveness, we incorporate a
widely used sparsification mechanism, which mitigates parameter conflicts and allows the utilization
of a larger number of linearly independent particles. Building on these insights, PSO-Merging
leverages task-specific data to produce merged models with superior performance. We also provide
an intuitive explanation of its effectiveness. Extensive experiments under various settings show that
PSO-Merging achieves effective merging of multiple expert models and consistently outperforms
baseline methods. Additionally, our analysis explores the influence of key hyperparameters and
confirms the potential of PSO-Merging in scenarios involving the merging of a greater number of
experts.
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A  TRAINING DETAILS FOR EXPERTS BASED ON LLAMA-3-8B AND
MISTRAL-7B-v0.3

In this section, we describe the training processes used to develop four domain-specific experts
based on Llama-3-8B and Mistral-7B-v(.3. All training was conducted on 4 RTX 3090 GPUs. The
training hyperparameters include a gradient accumulation step size of 32, a per-device training batch
size of 1, and a learning rate of 5 X 10~%. The datasets used for training, the number of epochs, and
the corresponding expert models are outlined below. Our training was conducted using the Hugging
Face Transformers framework.

Instruction-following expert We fine-tuned Llama-3-8B and Mistral-7B-v0.3 on the Infinity-
Instrucﬂ dataset for 1 epoch to create the instruction-following expert. This dataset provides high-
quality instruction-response pairs, enabling the model to excel in general instruction-following tasks.

Mathematical reasoning expert To develop the mathematical reasoning expert, we fine-tuned
Llama-3-8B and Mistral-7B-v0.3 on the MathInstruclE] dataset for 1 epoch. This dataset focuses
on math-related problems and solutions, allowing the model to specialize in solving mathematical
reasoning tasks.

Ynttps://huggingface.co/datasets/BAAI/Infinity-Instruct
*https://huggingface.co/datasets/TIGER-Lab/MathInstruct
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Table 5: The statistics of datasets used in our experiments. The label in parentheses indicates which
split the current split is derived from in the source data.

Dataset Training Split Optimization Split Testing Split
Infinity-Instruct 659,808 (train) - -
AlpacaEval - 73(eval) 732(eval)
Mathlnstruct 262,039(train) - -
GSMS8K - 131(train) 1,319(test)
CodeAlpacaPython 8,477 (train) - -
MBPP - 50(train) 500(test)
SciQ 11,679(train) 100(validation) 1,000(test)

Code-generating expert The code-generating expert was obtained by fine-tuning Llama-3-8B
and Mistral-7B-v0.3 on the CodeAlpacaPython’|dataset for 5 epochs. This dataset contains Python-
specific programming problems and solutions, which help the model specialize in code generation.

Science exam question-answering expert . For science-related question answering, we fine-
tuned Llama-3-8B and Mistral-7B-v(.3 on the Sci(i] dataset for 5 epochs. The dataset consists of
multiple-choice science questions, enabling the model to perform well in science exam scenarios.

B DATASET STATISTICS

The data statistics for training, optimization, and testing are listed in Table 5]

®https://huggingface.co/datasets/Abzu/CodeAlpacaPython
"nttps://huggingface.co/datasets/allenai/sciq
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