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Abstract

Segmenting rare words into subwords has be-001
come a commonly used and effective way to002
alleviate the open vocabulary problem in Neu-003
ral Machine Translation (NMT). The existing004
dominant segmentation methods either give005
rare words a single segmentation or a fixed seg-006
mentation, which leads to a lack of morpholog-007
ical diversity in representing words. For rare008
words, we first obtain segmentation with dif-009
ferent granularities through Byte Pair Encod-010
ing (BPE) and BPE-Dropout, and then propose011
BPEATT model to dynamically mix the BPE012
subwords and BPE-Dropout subwords, which013
enhances the encoder’s ability to represent rich014
morphological information. Experiments on015
six translation benchmarks of different scales016
show that our proposed method significantly017
outperforms the baseline model and has obvi-018
ous advantages over related methods 1.019

1 Introduction020

The vocabulary plays a crucial role in the Neural021

Machine Translation (NMT) models (Bahdanau022

et al., 2015; Luong et al., 2015; Wu et al., 2016;023

Vaswani et al., 2017a). However, the open vocabu-024

lary problem has always puzzled the MT commu-025

nity and seriously affects the quality and readability026

of the machine translation. To deal with his prob-027

lem, researchers have proposed many segmentation028

methods to handle the rare words 2, either perform-029

ing on the space-separated words (Arppe et al.,030

2005; Bahdanau et al., 2014), or dividing words031

into characters (Kim et al., 2016; Lee et al., 2017),032

or into subwords (Schuster and Nakajima, 2012;033

Sennrich et al., 2016; Kudo and Richardson, 2018).034

However, most of segmentation methods give rare035

1The code will be released upon publication
2Generally speaking, rare words should be words whose

word frequency is statistically lower than a certain threshold.
But we claim that if a word is segmented into characters or
subwords, we define the word as a rare word, otherwise it is a
common word.

words a single and fixed segmentation result, which 036

leads to a lack of morphological diversity in the rep- 037

resentation of words. To make the model learn the 038

compositionality of words and be robust to segmen- 039

tation errors, there are two main lines of research: 040

either generating word segmentations dynamically, 041

or combining word segmentations with different 042

granularities. 043

Subword Regularization (Kudo, 2018) trained 044

the NMT model with multiple subword segmen- 045

tations, which are probabilistically sampled by a 046

pretrained unigram language model (ULM) dur- 047

ing training. But it requires a pretrained ULM, 048

which increases the cost of training the model. 049

BPE-Dropout (Provilkov et al., 2020) randomly 050

disturbed the segmentation procedure of the stan- 051

dard BPE, leading to diverse segmentations for rare 052

words. However, BPE-dropout has a high probabil- 053

ity of losing the original BPE segmentation infor- 054

mation of words during training. He and Haffari 055

(2020) proposed Dynamic Programming Encoding 056

(DPE) to utilize segmentation methods with differ- 057

ent granularities on source and target sentences: the 058

source sentence is segmented using BPE-Dropout, 059

and the target sentence is segmented using the DPE 060

algorithm mixing characters and subwords. But it 061

is limited to languages and cannot be applied to 062

Asian languages, such as Chinese. 063

There are also researchers who mix multiple 064

segmentation methods with different granulari- 065

ties. Wu et al. (2020) leveraged the mixed repre- 066

sentations from different tokenization approaches 067

for sequence generation tasks where the two dif- 068

ferent approaches are from the frequency-based 069

and language-model-based methods. Zhang and 070

Li (2020) proposed a multiple-grained method 071

AMBERT to take both sequences of words (fine- 072

grained segmentation) and sequences of phrases 073

(coarse-grained segmentation) as inputs and im- 074

proved natural language understanding (NLU) 075

tasks. Generally, the previous methods either did 076
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not consider multiple granularities, or output a spe-077

cific segmentation fixedly for rare words.078

We propose BPEATT model to mix the BPE079

segmentation and BPE-Dropout segmentation dy-080

namically. For each rare word, we first obtain081

BPE subwords and BPE-Dropout subwords, and082

then make attention across all subwords, so that083

each rare word contains morphological information084

with different segmentation granularity. BPEATT085

is simple and effective. For each rare word, our086

method considers both BPE segmentation and dy-087

namic random segmentation, and does not require088

pretrained model and on-the-fly operations. Ex-089

periments show that BPEATT outperforms BPE,090

BPE-Dropout, DPE on three datasets with differ-091

ent scales and the model of Wu et al. (2020) on092

low-resource datasets.093

2 Methodology094

We introduce BPEATT model, a fusion method095

of mixed granularity segmentation. Note that our096

algorithm relies on the native BPE segmentation097

and BPE-Dropout segmentation.098

2.1 Definitions099

We represent a sentence in source language100

as X=
(
x1, · · · , xi, · · · , xj , · · · , x|X|

)
where xi101

means the ith word in X . Then BPE and BPE-102

Dropout segmentations of xi are denoted by func-103

tions BPE(xi) and BPE-Dropout(xi,p) respec-104

tively. We discard the merging operation with the105

probability p for BPE-Dropout.

Algorithm 1 Generating MGS
Input: The source sentence X
Output: MGS

MGS← NULL String
for i = 1, 2, ..., |X| do

B← BPE(xi)
if B equals xi then

MGS += (xi).
else

C ← BPE-Dropout(xi, p)
MGS += (B,C)

end if
end for

106
2.2 Mixed Granularity Sequence107

We elaborate on how to generate the Mixed Gran-108

ularity Sequence (MGS) for X . Assume that xi109

is a rare word and xj is a common word, the se-110

quence of subwords generated by the BPE model is111

B=
(
xb1i , · · · , xbki , · · · , xb|B|i

)
where xbki denotes112

Figure 1: An illustration of the BPEATT architecture.
MGS represents the input sequence and the 5th word is
a rare word. Black box, blue box and orange box rep-
resent common words, BPE subwords, BPE-Dropout
subwords respectively. Note that the example sequence
here only contains one rare word. In fact, a sequence
may contain multiple rare words. In this case, DSA
shares the weight among rare words. We ignore the
residuals in the figure.

the kth subword of B, and the sequence of sub- 113

words produced by the BPE-Dropout model is 114

C=
(
xc1i , · · · , xcki , · · · , xc|C|i

)
where xcki denotes 115

the kth subword of C. Then xi will be replaced 116

by the combination of B and C, and the MGS can 117

be denoted as
(
x1, · · · , B,C, · · · , xj , · · · , x|X|

)
. 118

The procedure is described in Algorithm 1. 119

2.3 Architecture 120

To make the encoder get more morphological in- 121

formation from the subword units, we utilize the 122

Self-Attention with Dynamic Mask (denoted as 123

Dynamic Self-Attention) to fuse information as 124

depicted in Figure 1. 125

The embedding sequence of Mixed Granularity 126

is called Mixed Granularity Embedding (noted as 127

MGE). For the rare word xi, we represent the 128

embedding sequence of all subword units as eri 129

eri =
(
eb1i , · · · , eb|B|

i , ec1i , · · · , ec|C|
i

)
(1) 130

Due to the different number of subwords in dif- 131

ferent rare words, we propose to use Dynamic 132

Self-Attention (abbreviated as DSA). DSA is ac- 133

tually the same as the self-attention mechanism 134

in Vaswani et al. (2017b), except that it only acts 135

on the subword units of rare words, which means 136

eri is used as Q, K and V respectively. The fusion 137

representation sequence h̃i of the rare word xi is 138

calculated by h̃i = DSA (eri , e
r
i , e

r
i ). Our extra ex- 139

periments show that DSA may cause a slight loss 140

of information in the original BPE subword units, 141

so residual connection is conducted to compen- 142

sate for this3. Finally, we leverage Add & cMask 143

3We also tried to stack more layers in DSA, but under the
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operations to ignore the representations of BPE-144

Dropout subwords and produce the final output145

H = (h1, · · · , hi, · · · ) as shown in Figure 1.146

hi =

{
ei xi /∈ R(
eb1i ⊕ h̃b1

i , · · · , eb|B|
i ⊕ h̃

b|B|
i

)
xi ∈ R

(2)147

where R is the set of rare words extracted from the148

training set. ⊕ means the element-wise addition149

between two vectors. We then feed H into the orig-150

inal encoder of Transformer, and the subsequent151

model is exactly the same as Vaswani et al. (2017b).152

153
3 Experiments154

3.1 Configurations155

Datasets. We conduct experiments on 4 WMT156

translation benchmarks which are WMT09157

En→Hu, WMT14 En→De, WMT14 De→En158

and WMT20 Zh→En respectively, and 3 low-159

resource IWSLT14 translation benchmarks, which160

are En→De, En→Ro and En→Pt-br respectively.161

Case-sensitive 4-gram BLEU (Papineni et al.,162

2002) is calculated by SacreBLEU (Post, 2018)4.163

The details of datasets and settings are described in164

Appendix.165

Systems. We train the baseline on datasets seg-166

mented using the standard BPE model (Sennrich167

et al., 2016). Both BPE-Dropout (Provilkov et al.,168

2020) and DPE (He and Haffari, 2020) reuse the vo-169

cabularies of baseline. We apply BPE-Dropout on170

the source and target sides with the dropout prob-171

ability p = 0.1. For DPE, we follow all settings172

in He and Haffari (2020). For the low-resource173

datasets, we train the model of Wu et al. (2020)174

(denoted as SGMR) by using the open source code.175

3.2 Effect of Multi-granularity Candidates176

To explore whether richer subwords information177

can benefit BPEATT model, we randomly select178

39, 402 sentence-pairs from the training set as179

validation set to explore the influence of multi-180

granularity segmentation from two perspectives.181

Number of Multi-granularity Candidates. As182

shown in Figure 2(a), more candidates cannot bring183

further improvement to the model, but still brings184

benefits to the baseline. Based on this, we only use185

one BPE-Dropout segmentation candidate.186

base setting, the performance is roughly the same as using
only one layer.

4BLEU+case.mixed+numrefs.1+smooth.exp+
tok.13a+version.1.5.1
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Figure 2: Experiments on the WMT14 En→De valida-
tion set we randomly sample from the training set. (a)
The horizontal axis represents the number of the BPE-
Dropout segmentation candidates for one rare word. 0
indicates the baseline. (b) The red curve means that
common words with a word frequency lower than freq
are considered as rare words and segmented by BPE-
Dropout; The blue curve indicates that common words
are treated as rare words with the probability of prob.

Ratio of Rare Words in Training Set. We try 187

to increase the number of words in the training set 188

to be segmented to see if the model can enrich the 189

morphological representation of the words. In ad- 190

dition to original rare words, for one thing, we treat 191

a word whose frequency is lower than the thresh- 192

old freq as a new rare word; and for another, we 193

randomly select the new rare words with a prob- 194

ability prob from all words. The two strategies 195

for increasing rare words did not improve BPEATT 196

model, so we do not increase the rare words in the 197

training set, the results are showed in Figure 2(b). 198

3.3 Main Results 199

Table 1 shows the results on WMT datasets. It 200

can be seen that our proposed BPEATT consis- 201

tently performs better than standard BPE, BPE- 202

Dropout and DPE. BPEATT outperforms the stan- 203

dard BPE by 0.55, 0.88 and 0.62 BLEU points on 204

WMT09 En→Hu, WMT14 En→De and De→En 205

test sets respectively. On the WMT20 Zh→En 206

test set BPEATT improves the baseline by 0.66 207

BLEU points on average. Besides, on the WMT 208

datasets BPEATT gains about 0.41 and 0.57 BLEU 209

score over DPE and BPE-Dropout on average. We 210

have also reproduced BPE-Dropout and DPE on 211

IWSLT14 low-resource datasets. As shown in Ta- 212

ble 2, BPEATT outperforms the baseline system 213

and all related methods on the En→De and En→Ro 214

test sets. On the En→Pt-br test set, it is also supe- 215

rior to all other methods, except for BPE-Dropout. 216

2174 Analysis and Discuss 218

4.1 Robustness Across Domains 219

In order to figure out how BPEATT performs when 220

the data distribution on the test set is quit differ- 221
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Model WMT09 WMT14 WMT20 Zh→En
En→Hu En→De De→En newstest2018 newstest2019 newstest2020 Avg.

BPE 12.91∗ 27.50† 30.80∗ 23.37 24.15† 25.29† 24.27
BPE-Dropout 12.94∗ 28.01 30.83∗ 23.38 24.19† 25.35∗ 24.31

DPE 13.38 28.15 31.10 23.42 24.25† 25.39∗ 24.35
BPEATT 13.46 28.38 31.42 23.74 25.12 26.02 24.96

Table 1: Overview of BLEU scores on WMT datasets. Bold indicates the best BLEU score. "†" and "*" indicate
statistically significent difference with p < 0.01 and p < 0.05 from BPEATT respectively computed via Collins et al.
(2005).

Model IWSLT14
En→De En→Ro En→Pt-br

BPE 28.49 28.55 39.48
BPE-Dropout 28.43 28.77 39.86

DPE 28.60 28.73 39.59
SGMR 28.65 28.42 39.55

BPEATT 28.65 28.97 39.74

Table 2: The results of five systems on the IWSLT14
datasets. Bold indicates the best BLEU score.

ent from that on the training set. We use the three222

methods of BPE, BPE-Dropout and BPEATT to223

train three models on the WMT14 En→De training224

set in the news domain, and then use these three225

models to respectively translate two test sets in the226

biomedical domain and one test set in the IT do-227

main. The results are listed in Table 3. Compared228

with the baseline and related methods, the bene-229

fits of BPEATT on the test set in the biomedical230

domain are much greater than the benefits of the231

test set in the news domain (such as 2.17>0.88 and232

1.14>0.88) and the IT domain (such as 4.03>0.88).233

Question about why BPEATT gains more when234

the difference in data distribution is relatively large235

may be asked. We counted the proportion of words236

segmented by BPE and BPE-Dropout in the test set,237

and found that the proportions in the three test sets238

of newstest2014, NHS 24 and Cochrane are about239

7.8%, 4.5% and 8.7%, respectively. We roughly240

guess that the more rare words on the test set, our241

model can capture more diverse morphological in-242

formation of rare words, which is more useful for243

the model to understand and translate rare words.244

no_cans 16k 20k 25k 30k 32k 34k21.5
22.0
22.5
23.0
23.5
24.0
24.5
25.0
25.5
26.0
26.5

newstest2018
newstest2019
newstest2020

Figure 3: Comparison results of different BPE opera-
tions acting on the test set. no_cans means no extra
BPE-Dropout segmentation candidates in test set.

Model Test Sets
Cochrane NHS 24 Batch3

BPE 29.15 29.37 32.47
BPE-Dropout 30.24↑1.09 29.41↑0.04 32.59↑0.12

BPEATT 31.32↑2.17 30.54↑1.14 36.50↑4.03

Table 3: The performance of the three models trained
on the WMT14 En→De training set in the news domain
on the test set in the biomedical and IT domain. The
score after the arrow ↑ indicates the increase in BLEU
compared to standard BPE.

4.2 Impact of the Number of BPE Operations 245

According to our experience, the larger the number 246

of BPE operation, the larger the number of words to 247

be segmented, and the finer the granularity of word 248

segmentation. So we try to control the number of 249

rare words in the test set by adjusting the number 250

of the BPE operation. 251

We train 6 BPE models with the number of BPE 252

operations of 16k, 20k, 25k, 30k, 32k and 34k. 32k 253

BPE model and the corresponding BPE-dropout 254

strategy are employed to process the training set. 255

Then we all BPE models and corresponding BPE- 256

dropout strategies to process the test set. Note that 257

the number of BPE-dropout operation equals that 258

of BPE operation. Interestingly, too many or too 259

few rare words on the test set will damage our 260

model, the best effect is achieved only when the 261

number of BPE operations applied to the test set 262

are roughly the same as that applied to the training 263

set. For BPEATT, it is not that the more words that 264

are segmented, the greater the benefit. 265

5 Conclusion 266

We propose BPEATT to act on rare words to alle- 267

viate the open vocabulary problem. Comparative 268

experiments show that our method is significantly 269

better than related word segmentation methods. An- 270

alytical experiments verify that BPEATT can learn 271

more morphological information of rare words, and 272

the the benefits are more significant in test scenar- 273

ios with greater differences in data distribution. 274
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A Appendix409

A.1 Dataset410

We conduct our experiments on small-scale,411

medium-scale and large-scale datasets and ex-412

plore the generalization of BPEATT for differ-413

ent languages. Table 4 details the size of cor-414

pus. For WMT20 Chinese→English (denoted415

as ZH→EN), the validation set is newstest2017416

and the testsets are newstest2018, newstest2019417

and newstest2020. We use newstest2013 and418

newstest2014 as the validation set and test419

set for WMT14 English→German (denoted as420

En→De). To compare with BPE-Dropout421

we use lowercased dataset for En→De transla-422

tion. For small-scale tasks, we have WMT09423

English→Hungarian (denoted as EN→HU) and424

lowercased IWSLT-2014 datasets (Cettolo et al.,425

2015) for English→German, English→Romanian426

(denoted as EN→RO) and English→Portuguese-427

Brazil(denoted as EN→Pt-Br). For EN→HU,428

newstest2008 and newstest2009 are used as val-429

idation set and test set respectively. For IWSLT-430

2014 datasets, we seperate 7k language pairs from431

the training set as validset and concatenate the432

dev2010, tst2010, tst2011, tst2012 for the test433

set. The Biomedical test sets are from HimL test434

sets 2017 5. And the IT test set called Batch3 is435

from WMT16 IT-Domain. Noted that, the test set436

of BPEATT need to have the same preprocessing437

operation as training set.438

Tasks Training set Validation set Test set
WMT20 Zh→En 40M 2k 4k/2k/2k
WMT14 En↔De 4M 3k 3k
WMT09 En↔Hu 0.6M 2k 2.5k
IWSLT14 En→De 0.18M 7k 6.7k
IWSLT14 En→Ro 0.18M 7k 5.5k

IWSLT14 En→Pt-br 0.18M 7k 5.3k

Table 4: Sizes of the datasets

A.2 Setting439

32k BPE operations are applied for WMT09440

En→Hu, WMT14 En→De and De→En, 37k for441

WMT20 Zh→En. But for IWSLT14 datasets,442

we leverage 10k BPE operations. We preprocess443

all the datasets with the Moses toolkits6. The444

joint vocabulary sizes of the WMT’ EN-DE and445

IWLST datasets are 32k and 10k respectively. The446

5https://www.himl.eu/test-sets
6https://github.com/moses-smt/

mosesdecoder

dropout rate (Srivastava et al., 2014) is 0.3 for 447

IWSLT14 datasets and WMT14 En→De and 0.1 448

for others’ datasets. The model is optimized with 449

Adam (Kingma and Ba, 2015) (0.9, 0.98). Label 450

smoothing (Pereyra et al., 2017) is also used with 451

weight 0.1. 452

For WMT’s datasets, we leverage Transformer- 453

base following Vaswani et al. (2017b) and for 454

IWSLT’s datasets, all the models are based on trans- 455

former_iwslt_de_en. 456

We use beam search (Sutskever et al., 2014) with 457

beam size 5 and the length penalty with 0.6 for 458

WMT datasets and 1.0 for IWSLT datasets. 459

A.3 Case Study 460

Table 5 demonstrates the effects of BPEATT on two 461

sentences. For the example 1, there are Sàdı̌ngdı̌ng, 462

yı̄nyuèfēnggé two rare words in the sentence, the 463

baseline model translates them to "its" and "mu- 464

sic style" respectively. However BPEATT trans- 465

late the rare words correctly. In the example 2, 466

the underline sentence Déguó qiáomín kèláiménsı̄ 467

· sāixı̄shuō has many rare word peices appearing 468

simultaneously in one sentence which causes heavy 469

confusion. On the contrary, BPEATT has the abil- 470

ity to handle the missing translation caused by 471

rare words. The relationship between context and 472

single-tokenization can contribute to missing trans- 473

lation. However, fusion with multi-granularity seg- 474

mentation contains more sub-word information. 475

Therefore BPEATT is expert in fusing information 476

and achieves better performance to the simultane- 477

ous appearance of rare words. 478
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Source-1 Sàdı̌ngdı̌ng píngjiè dútède yı̄nyuèfēnggé jiāméng huánqiú chàngpiàn
BPE [BPE-Dropout] Sàdı̌ng@@ dı̌ng [Sà@@ dı̌ng@@ dı̌ng] píngjiè dútède yı̄nyuè@@ fēnggé [yı̄nyuè@@

fēng@@ gé] jiāméng huánqiú chàngpiàn
Reference-1 Sa Dingding, with her unique musical style, joined Universal Music Group
BPE-1 With its unique music style , he joined Universal
BPE-Dropout-1 With his unique musical style, he joined Universal Records.
BPEATT-1 Sa Dingding joined Universal Records in a unique musical style

Source-2
:::::
Déguó

::::::
qiáomín

:::::::::::::::::
kèláiménsı̄ · sāixı̄shuō : " rúguǒ wǒnéng zài nàer chénggōng, wǒ yı̌hòu

zài rènhédìfāng dōunéng chénggōng " tā yı̌nyòng deshì gēshǒu fúlánkè xı̄nàtèlā gēsòng
niǔyuēshì de gēcí

BPE [BPE-Dropout] Déguó qiáomín kèlái@@ ménsı̄ [kè@@ lái@@ mén@@ sı̄] · sāixı̄@@ shuō [sāi@@
xı̄@@ shuō] : " rúguǒ wǒnéng zài nàer chénggōng, wǒ yı̌hòu zài rènhédìfāng dōunéng
chénggōng " tā yı̌nyòng deshì gēshǒu fúlánkè xı̄@@ nàtèlā [xı̄@@ nà@@ tèlā] gēsòng
niǔyuēshì de gēcí

Reference-2
:::
The

::::::
German

::::::::
expatriate

:::::::::::
Clemens Sage

:::
said: "If I can succeed there, I can succeed any-

where." He quoted a song written by singer Frank Sinatra to praise New York City.
BPE-2 "If I can do it there, I can do it anywhere," he said, quoting singer Frank Sinatra’s lyrics to

the praises of New York City .
BPE-Dropout-2 "If I can succeed there, I can do it anywhere," he said, quoting singer Frank Sinatra’s lyrics

to the praises of New York City .
BPEATT-2 "If I can succeed there, I can succeed anywhere in the future,"

:::
said

::::::
German

:::::::
diaspora

:::::::::::
Clemens Sage, who quoted singer Frank Sinatra as praising New York City lyrics.

Table 5: Two examples of BPEATT translation. Red font indicates the rare words. Bold font indicates output by
the proposed BPEATT model. The wave indicates the missing translation parts of the BPE/BPE-Dropout model’s
output.
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