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Abstract

Segmenting rare words into subwords has be-
come a commonly used and effective way to
alleviate the open vocabulary problem in Neu-
ral Machine Translation (NMT). The existing
dominant segmentation methods either give
rare words a single segmentation or a fixed seg-
mentation, which leads to a lack of morpholog-
ical diversity in representing words. For rare
words, we first obtain segmentation with dif-
ferent granularities through Byte Pair Encod-
ing (BPE) and BPE-Dropout, and then propose
BPEATT model to dynamically mix the BPE
subwords and BPE-Dropout subwords, which
enhances the encoder’s ability to represent rich
morphological information. Experiments on
six translation benchmarks of different scales
show that our proposed method significantly
outperforms the baseline model and has obvi-
ous advantages over related methods .

1 Introduction

The vocabulary plays a crucial role in the Neural
Machine Translation (NMT) models (Bahdanau
et al., 2015; Luong et al., 2015; Wu et al., 2016;
Vaswani et al., 2017a). However, the open vocabu-
lary problem has always puzzled the MT commu-
nity and seriously affects the quality and readability
of the machine translation. To deal with his prob-
lem, researchers have proposed many segmentation
methods to handle the rare words 2, either perform-
ing on the space-separated words (Arppe et al.,
2005; Bahdanau et al., 2014), or dividing words
into characters (Kim et al., 2016; Lee et al., 2017),
or into subwords (Schuster and Nakajima, 2012;
Sennrich et al., 2016; Kudo and Richardson, 2018).
However, most of segmentation methods give rare
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Generally speaking, rare words should be words whose
word frequency is statistically lower than a certain threshold.
But we claim that if a word is segmented into characters or
subwords, we define the word as a rare word, otherwise it is a
common word.

words a single and fixed segmentation result, which
leads to a lack of morphological diversity in the rep-
resentation of words. To make the model learn the
compositionality of words and be robust to segmen-
tation errors, there are two main lines of research:
either generating word segmentations dynamically,
or combining word segmentations with different
granularities.

Subword Regularization (Kudo, 2018) trained
the NMT model with multiple subword segmen-
tations, which are probabilistically sampled by a
pretrained unigram language model (ULM) dur-
ing training. But it requires a pretrained ULM,
which increases the cost of training the model.
BPE-Dropout (Provilkov et al., 2020) randomly
disturbed the segmentation procedure of the stan-
dard BPE, leading to diverse segmentations for rare
words. However, BPE-dropout has a high probabil-
ity of losing the original BPE segmentation infor-
mation of words during training. He and Haffari
(2020) proposed Dynamic Programming Encoding
(DPE) to utilize segmentation methods with differ-
ent granularities on source and target sentences: the
source sentence is segmented using BPE-Dropout,
and the target sentence is segmented using the DPE
algorithm mixing characters and subwords. But it
is limited to languages and cannot be applied to
Asian languages, such as Chinese.

There are also researchers who mix multiple
segmentation methods with different granulari-
ties. Wu et al. (2020) leveraged the mixed repre-
sentations from different tokenization approaches
for sequence generation tasks where the two dif-
ferent approaches are from the frequency-based
and language-model-based methods. Zhang and
Li (2020) proposed a multiple-grained method
AMBERT to take both sequences of words (fine-
grained segmentation) and sequences of phrases
(coarse-grained segmentation) as inputs and im-
proved natural language understanding (NLU)
tasks. Generally, the previous methods either did



not consider multiple granularities, or output a spe-
cific segmentation fixedly for rare words.

We propose BPEATT model to mix the BPE
segmentation and BPE-Dropout segmentation dy-
namically. For each rare word, we first obtain
BPE subwords and BPE-Dropout subwords, and
then make attention across all subwords, so that
each rare word contains morphological information
with different segmentation granularity. BPEATT
is simple and effective. For each rare word, our
method considers both BPE segmentation and dy-
namic random segmentation, and does not require
pretrained model and on-the-fly operations. Ex-
periments show that BPEATT outperforms BPE,
BPE-Dropout, DPE on three datasets with differ-
ent scales and the model of Wu et al. (2020) on
low-resource datasets.

2 Methodology

We introduce BPEATT model, a fusion method
of mixed granularity segmentation. Note that our
algorithm relies on the native BPE segmentation
and BPE-Dropout segmentation.

2.1 Definitions

We represent a sentence in source language
as X=(£L‘1,~ B R 7 PR 7 PR ,.T|X‘) where x;
means the i*" word in X. Then BPE and BPE-
Dropout segmentations of x; are denoted by func-
tions BPE(z;) and BPE-Dropout(x;,p) respec-
tively. We discard the merging operation with the
probability p for BPE-Dropout.

Algorithm 1 Generating MGS

Input: The source sentence X
Output: MGS
MGS < NULL String
fori =1,2,...,|X|do
B + BPE(z;)
if B equals x; then
MGS += (l‘l)
else
C' < BPE-Dropout(z;, p)
MGS += (B, C)
end if
end for

2.2 Mixed Granularity Sequence

We elaborate on how to generate the Mixed Gran-
ularity Sequence (MGS) for X. Assume that z;
is a rare word and x; is a common word, the se-
quence of subwords generated by the BPE model is

b
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Figure 1: An illustration of the BPEATT architecture.
MGS represents the input sequence and the 5" word is
a rare word. Black box, blue box and orange box rep-
resent common words, BPE subwords, BPE-Dropout
subwords respectively. Note that the example sequence
here only contains one rare word. In fact, a sequence
may contain multiple rare words. In this case, DSA
shares the weight among rare words. We ignore the
residuals in the figure.

the k" subword of B, and the sequence of sub-
words produced by the BPE-Dropout model is

‘c
i

the k" subword of C. Then z; will be replaced
by the combination of B and C, and the MGS can
be denoted as (z1,---,B,C,--- ,xj,--+ ,xx]|).
The procedure is described in Algorithm 1.

2.3 Architecture

C= (:Ufl, R AR ) where 27 denotes

To make the encoder get more morphological in-
formation from the subword units, we utilize the
Self-Attention with Dynamic Mask (denoted as
Dynamic Self-Attention) to fuse information as
depicted in Figure 1.

The embedding sequence of Mixed Granularity
is called Mixed Granularity Embedding (noted as
MGE). For the rare word z;, we represent the
embedding sequence of all subword units as e}

)

Due to the different number of subwords in dif-
ferent rare words, we propose to use Dynamic
Self-Attention (abbreviated as DSA). DSA is ac-
tually the same as the self-attention mechanism
in Vaswani et al. (2017b), except that it only acts
on the subword units of rare words, which means
e; is used as Q, K and V respectively. The fusion
representation sequence h; of the rare word z; is
calculated by h; = DSA (e}, €7, el). Our extra ex-
periments show that DSA may cause a slight loss
of information in the original BPE subword units,
so residual connection is conducted to compen-
sate for this>. Finally, we leverage Add & cMask

T by bBl e

3We also tried to stack more layers in DSA, but under the



operations to ignore the representations of BPE-
Dropout subwords and produce the final output
H = (hy,--+ ,h;,---) as shown in Figure 1.

’ei’\B\ ®B3IBI) . € R @)

hi={

{ o
where R is the set of rare words extracted from the
training set. @ means the element-wise addition
between two vectors. We then feed H into the orig-
inal encoder of Transformer, and the subsequent
model is exactly the same as Vaswani et al. (2017b).

3 Experiments

3.1 Configurations

Datasets. We conduct experiments on 4 WMT
translation benchmarks which are WMTO09
En—Hu, WMT14 En—De, WMTI14 De—En
and WMT20 Zh—En respectively, and 3 low-
resource IWSLT 14 translation benchmarks, which
are En—De, En—Ro and En—Pt-br respectively.
Case-sensitive 4-gram BLEU (Papineni et al.,
2002) is calculated by SacreBLEU (Post, 2018)%.
The details of datasets and settings are described in
Appendix.

Systems. We train the baseline on datasets seg-
mented using the standard BPE model (Sennrich
et al., 2016). Both BPE-Dropout (Provilkov et al.,
2020) and DPE (He and Haffari, 2020) reuse the vo-
cabularies of baseline. We apply BPE-Dropout on
the source and target sides with the dropout prob-
ability p = 0.1. For DPE, we follow all settings
in He and Haffari (2020). For the low-resource
datasets, we train the model of Wu et al. (2020)
(denoted as SGMR) by using the open source code.

3.2 Effect of Multi-granularity Candidates

To explore whether richer subwords information
can benefit BPEATT model, we randomly select
39,402 sentence-pairs from the training set as
validation set to explore the influence of multi-
granularity segmentation from two perspectives.

Number of Multi-granularity Candidates. As
shown in Figure 2(a), more candidates cannot bring
further improvement to the model, but still brings
benefits to the baseline. Based on this, we only use
one BPE-Dropout segmentation candidate.

base setting, the performance is roughly the same as using

only one layer.
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Figure 2: Experiments on the WMT14 En—De valida-
tion set we randomly sample from the training set. (a)
The horizontal axis represents the number of the BPE-
Dropout segmentation candidates for one rare word. 0
indicates the baseline. (b) The red curve means that
common words with a word frequency lower than freq
are considered as rare words and segmented by BPE-
Dropout; The blue curve indicates that common words
are treated as rare words with the probability of prob.

Ratio of Rare Words in Training Set. We try
to increase the number of words in the training set
to be segmented to see if the model can enrich the
morphological representation of the words. In ad-
dition to original rare words, for one thing, we treat
a word whose frequency is lower than the thresh-
old freq as a new rare word; and for another, we
randomly select the new rare words with a prob-
ability prob from all words. The two strategies
for increasing rare words did not improve BPEATT
model, so we do not increase the rare words in the
training set, the results are showed in Figure 2(b).

3.3 Main Results

Table 1 shows the results on WMT datasets. It
can be seen that our proposed BPEATT consis-
tently performs better than standard BPE, BPE-
Dropout and DPE. BPEATT outperforms the stan-
dard BPE by 0.55, 0.88 and 0.62 BLEU points on
WMT09 En—Hu, WMT14 En—De and De—En
test sets respectively. On the WMT20 Zh—En
test set BPEATT improves the baseline by 0.66
BLEU points on average. Besides, on the WMT
datasets BPEATT gains about 0.41 and 0.57 BLEU
score over DPE and BPE-Dropout on average. We
have also reproduced BPE-Dropout and DPE on
IWSLT14 low-resource datasets. As shown in Ta-
ble 2, BPEATT outperforms the baseline system
and all related methods on the En—De and En—Ro
test sets. On the En—Pt-br test set, it is also supe-
rior to all other methods, except for BPE-Dropout.

4 Analysis and Discuss
4.1 Robustness Across Domains

In order to figure out how BPEATT performs when
the data distribution on the test set is quit differ-



Model WMT09 WMT14 WMT20 Zh—En
En—Hu || En—De | De—En || newstest2018 | newstest2019 | newstest2020 | Avg.
BPE 12.91* 27.507 30.80" 23.37 24.157 25.291 24.27
BPE-Dropout 12.94* 28.01 30.83" 23.38 24.19° 25.35* 24.31
DPE 13.38 28.15 31.10 23.42 24251 25.39* 24.35
BPEATT 13.46 28.38 31.42 23.74 25.12 26.02 24.96

Table 1: Overview of BLEU scores on WMT datasets. Bold indicates the best BLEU score. "

"and "*" indicate

statistically significent difference with p < 0.01 and p < 0.05 from BPEATT respectively computed via Collins et al.

(2005).
Model IWSLT14 Model Test Sets
En—De | En—Ro | En—Pt-br Cochrane NHS 24 Batch3
BPE 28.49 28.55 39.48 BPE 29.15 29.37 3247
BPE-Dropout 28.43 28.77 39.86 BPE-Dropout || 30.2471:9% | 294110-04 | 37 591012
DPE 28.60 28.73 39.59 BPEATT 31.3212:17 | 30.54T1-14 | 36507403
SGMR 28.65 28.42 39.55
BPEATT 28.65 28.97 39.74 Table 3: The performance of the three models trained

Table 2: The results of five systems on the IWSLT14
datasets. Bold indicates the best BLEU score.

ent from that on the training set. We use the three
methods of BPE, BPE-Dropout and BPEATT to
train three models on the WMT14 En—De training
set in the news domain, and then use these three
models to respectively translate two test sets in the
biomedical domain and one test set in the IT do-
main. The results are listed in Table 3. Compared
with the baseline and related methods, the bene-
fits of BPEATT on the test set in the biomedical
domain are much greater than the benefits of the
test set in the news domain (such as 2.17>0.88 and
1.14>0.88) and the IT domain (such as 4.03>0.88).
Question about why BPEATT gains more when
the difference in data distribution is relatively large
may be asked. We counted the proportion of words
segmented by BPE and BPE-Dropout in the test set,
and found that the proportions in the three test sets
of newstest2014, NHS 24 and Cochrane are about
7.8%, 4.5% and 8.7%, respectively. We roughly
guess that the more rare words on the test set, our
model can capture more diverse morphological in-
formation of rare words, which is more useful for
the model to understand and translate rare words.

)

—e— newstest2018
—e— newstest2019
—e— newstest2020

'%oicans 16k 20k 25k 30k 32k 34k
Figure 3: Comparison results of different BPE opera-

tions acting on the test set. no_cans means no extra
BPE-Dropout segmentation candidates in test set.

on the WMT14 En—De training set in the news domain
on the test set in the biomedical and IT domain. The
score after the arrow 7 indicates the increase in BLEU
compared to standard BPE.

4.2 Impact of the Number of BPE Operations
According to our experience, the larger the number
of BPE operation, the larger the number of words to
be segmented, and the finer the granularity of word
segmentation. So we try to control the number of
rare words in the test set by adjusting the number
of the BPE operation.

We train 6 BPE models with the number of BPE
operations of 16k, 20k, 25k, 30k, 32k and 34k. 32k
BPE model and the corresponding BPE-dropout
strategy are employed to process the training set.
Then we all BPE models and corresponding BPE-
dropout strategies to process the test set. Note that
the number of BPE-dropout operation equals that
of BPE operation. Interestingly, too many or too
few rare words on the test set will damage our
model, the best effect is achieved only when the
number of BPE operations applied to the test set
are roughly the same as that applied to the training
set. For BPEATT, it is not that the more words that
are segmented, the greater the benefit.

5 Conclusion

We propose BPEATT to act on rare words to alle-
viate the open vocabulary problem. Comparative
experiments show that our method is significantly
better than related word segmentation methods. An-
alytical experiments verify that BPEATT can learn
more morphological information of rare words, and
the the benefits are more significant in test scenar-
ios with greater differences in data distribution.
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A Appendix
A.1 Dataset

We conduct our experiments on small-scale,
medium-scale and large-scale datasets and ex-
plore the generalization of BPEATT for differ-
ent languages. Table 4 details the size of cor-
pus. For WMT20 Chinese—English (denoted
as ZH—EN), the validation set is newstest2017
and the testsets are newstest2018, newstest2019
and newstest2020. We use newstest2013 and
newstest2014 as the validation set and test
set for WMT14 English—German (denoted as
En—De). To compare with BPE-Dropout
we use lowercased dataset for En—De transla-
tion. For small-scale tasks, we have WMT(09
English—Hungarian (denoted as EN—HU) and
lowercased IWSLT-2014 datasets (Cettolo et al.,
2015) for English—German, English—Romanian
(denoted as EN—RO) and English—Portuguese-
Brazil(denoted as EN—Pt-Br). For EN—HU,
newstest2008 and newstest2009 are used as val-
idation set and test set respectively. For IWSLT-
2014 datasets, we seperate 7k language pairs from
the training set as validset and concatenate the
dev2010, tst2010, tst2011, tst2012 for the test
set. The Biomedical test sets are from HimL test
sets 2017 >. And the IT test set called Batch3 is
from WMT16 IT-Domain. Noted that, the test set
of BPEATT need to have the same preprocessing
operation as training set.

Tasks Training set | Validation set Test set
WMT20 Zh—En 40M 2k 4k/2k/2k
WMT14 En<>De 4M 3k 3k
WMT09 En<Hu 0.6M 2k 2.5k
IWSLT14 En—De 0.18M 7Tk 6.7k

IWSLT14 En—Ro 0.18M 7k 5.5k
IWSLT14 En—Pt-br 0.18M 7k 5.3k

Table 4: Sizes of the datasets

A.2 Setting

32k BPE operations are applied for WMTO09
En—Hu, WMT14 En—De and De—En, 37k for
WMT20 Zh—En. But for IWSLT14 datasets,
we leverage 10k BPE operations. We preprocess
all the datasets with the Moses toolkits®. The
joint vocabulary sizes of the WMT’ EN-DE and
IWLST datasets are 32k and 10k respectively. The

Shttps://www.himl.eu/test-sets
*https://github.com/moses-smt/
mosesdecoder

dropout rate (Srivastava et al., 2014) is 0.3 for
IWSLT14 datasets and WMT14 En—De and 0.1
for others’ datasets. The model is optimized with
Adam (Kingma and Ba, 2015) (0.9, 0.98). Label
smoothing (Pereyra et al., 2017) is also used with
weight 0.1.

For WMT’s datasets, we leverage Transformer-
base following Vaswani et al. (2017b) and for
IWSLT’s datasets, all the models are based on trans-
former_iwslt_de_en.

We use beam search (Sutskever et al., 2014) with
beam size 5 and the length penalty with 0.6 for
WMT datasets and 1.0 for IWSLT datasets.

A.3 Case Study

Table 5 demonstrates the effects of BPEATT on two
sentences. For the example 1, there are Sadingding,
yinyuéfénggé two rare words in the sentence, the
baseline model translates them to "its" and "mu-
sic style" respectively. However BPEATT trans-
late the rare words correctly. In the example 2,
the underline sentence Dégud gidomin keldiménst
- saixishuo has many rare word peices appearing
simultaneously in one sentence which causes heavy
confusion. On the contrary, BPEATT has the abil-
ity to handle the missing translation caused by
rare words. The relationship between context and
single-tokenization can contribute to missing trans-
lation. However, fusion with multi-granularity seg-
mentation contains more sub-word information.
Therefore BPEATT is expert in fusing information
and achieves better performance to the simultane-
ous appearance of rare words.


https://www.himl.eu/test-sets
https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder

Source-1
BPE [BPE-Dropout]

Reference-1

Sadingding pingjie¢ ditede ymyuefenggé jiaméng hudnqgid changpian

Sading@ @ ding [Sa@ @ ding@ @ ding] pingji¢ ditede yinyue @ @ fenggé [yinyue @ @
feng@ @ g¢] jiaméng huanqid changpian

Sa Dingding, with her unique musical style, joined Universal Music Group

BPE-1 With its unique music style , he joined Universal

BPE-Dropout-1 With his unique musical style, he joined Universal Records.

BPEATT-1 Sa Dingding joined Universal Records in a unique musical style

Source-2 Dégud gidomin keldiménst - saixishud : " rigud wonéng zai naer chénggdng, wo yihou

BPE [BPE-Dropout]

Reference-2
BPE-2
BPE-Dropout-2

BPEATT-2

zai rénhédifang dounéng chénggong " ta yinyong deshi géshou fiildnke xinatela gésong
nityuéshi de géci

Dégué gidomin keldi@ @ ménsi [ke@ @ 141@ @ mén@ @ si] - saix1@ @ shuod [s2i@ @
X1@ @ shud] : " rigud wonéng zai naer chénggong, wo yihou zai rénhédifang dounéng
chénggong " ta yinyong deshi géshou fildnke x1@ @ natela [x1I@ @ na@ @ tela] gésong
nitiyuéshi de géci

The German expatriate Clemens Sage said: "If I can succeed there, I can succeed any-
where." He quoted a song written by singer Frank Sinatra to praise New York City.

"If I can do it there, I can do it anywhere," he said, quoting singer Frank Sinatra’s lyrics to
the praises of New York City .

"If I can succeed there, I can do it anywhere," he said, quoting singer Frank Sinatra’s lyrics
to the praises of New York City .

"If T can succeed there, I can succeed anywhere in the future," said German diaspora
Clemens Sage, who quoted singer Frank Sinatra as praising New York City lyrics.

Table 5: Two examples of BPEATT translation. Red font indicates the rare words. Bold font indicates output by
the proposed BPEATT model. The wave indicates the missing translation parts of the BPE/BPE-Dropout model’s
output.



