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Abstract

The Indexed Minimum Empirical Divergence (IMED) algorithm is a highly effective ap-
proach that offers a stronger theoretical guarantee of the asymptotic optimality compared
to the Kullback–Leibler Upper Confidence Bound (KL-UCB) algorithm for the multi-armed
bandit problem. Additionally, it has been observed to empirically outperform UCB-based
algorithms and Thompson Sampling. Despite its effectiveness, the generalization of this
algorithm to contextual bandits with linear payoffs has remained elusive. In this paper, we
present novel linear versions of the IMED algorithm, which we call the family of LinIMED
algorithms. We demonstrate that LinIMED provides a Õ(d

√
T ) upper regret bound where

d is the dimension of the context and T is the time horizon. Furthermore, extensive em-
pirical studies reveal that LinIMED and its variants outperform widely-used linear bandit
algorithms such as LinUCB and Linear Thompson Sampling in some regimes.

1 Introduction

The multi-armed bandit (MAB) problem (Lattimore & Szepesvári (2020)) is a classical topic in decision
theory and reinforcement learning. Among the various subfields of bandit problems, the stochastic linear
bandit is the most popular area due to its wide applicability in large-scale, real-world applications such
as personalized recommendation systems (Li et al. (2010)), online advertising, and clinical trials. In the
stochastic linear bandit model, at each time step t, the learner has to choose one arm At from the time-
varying action set At. Each arm a ∈ At has a corresponding context xt,a ∈ Rd, which is a d-dimensional
vector. By pulling the arm a ∈ At at time step t, under the linear bandit setting, the learner will receive the
reward Yt,a, whose expected value satisfies E[Yt,a|xt,a] = ⟨θ∗, xt,a⟩, where θ∗ ∈ Rd is an unknown parameter.
The goal of the learner is to maximize his cumulative reward over a time horizon T , which also means
minimizing the cumulative regret, defined as RT := E

[∑T
t=1 maxa∈At

⟨θ∗, xt,a⟩ − Yt,At

]
. The learner needs

to balance the trade-off between the exploration of different arms (to learn their expected rewards) and the
exploitation of the arm with the highest expected reward based on the available data.

1.1 Motivation and Related Work

The K-armed bandit setting is a special case of the linear bandit. There exist several good algorithms such
as UCB1 (Auer et al. (2002)), Thompson Sampling (Agrawal & Goyal (2012)), and the Indexed Minimum
Empirical Divergence (IMED) algorithm (Honda & Takemura (2015)) for this setting. There are three main
families of asymptotically optimal multi-armed bandit algorithms based on different principles (Baudry et al.
(2023)). However, among these algorithms, only IMED lacks an extension for contextual bandits with linear
payoff. In the context of the varying arm setting of the linear bandit problem, the LinUCB algorithm in
Li et al. (2010) is frequently employed in practice. It has a theoretical guarantee on the regret in the order
of O(d

√
T log(T )) using the confidence width as in OFUL (Abbasi-Yadkori et al. (2011)). Although the

SupLinUCB algorithm introduced by Chu et al. (2011) uses phases to decompose the reward dependence
of each time step and achieves an Õ(

√
dT ) (the Õ(·) notation omits logarithmic factors in T ) regret upper

bound, its empirical performance falls short of both the algorithm in Li et al. (2010) and the Linear Thompson
Sampling algorithm (Agrawal & Goyal (2013)) as mentioned in Lattimore & Szepesvári (2020, Chapter 22).
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Problem independent regret bound Regret bound inde-
pendent of K?

Principle that the algo-
rithm is based on

OFUL (Abbasi-Yadkori et al.
(2011))

O(d
√

T log(T )) ✓ Optimism

LinUCB (Li et al. (2010)) Hard to analyze Unknown Optimism
LinTS (Agrawal & Goyal (2013)) O(d 3

2
√

T ) ∧ O(d
√

T log(K)) ✓ Posterior sampling
SupLinUCB (Chu et al. (2011)) O(

√
dT log3(KT )) ✗ Optimism

LinUCB with OFUL’s confidence
bound

O(d
√

T log(T )) ✓ Optimism

Asymptotically Optimal IDS
(Kirschner et al. (2021))

O(d
√

T log(T )) ✓ Information directed
sampling

LinIMED-3 (this paper) O(d
√

T log(T )) ✓ Min. emp. divergence
SupLinIMED (this paper) O(

√
dT log3(KT )) ✗ Min. emp. divergence

Table 1: Comparison of algorithms for linear bandits with varying arm sets

On the other hand, the Optimism in the Face of Uncertainty Linear (OFUL) bandit algorithm in Abbasi-
Yadkori et al. (2011) achieves a regret upper bound of Õ(d

√
T ) through an improved analysis of the confidence

bound using a martingale technique. However, it involves a bilinear optimization problem over the action
set and the confidence ellipsoid when choosing the arm at each time. This is computationally expensive,
unless the confidence ellipsoid is a convex hull of a finite set.

For randomized algorithms designed for the linear bandit problem, Agrawal & Goyal (2013) proposed the
LinTS algorithm, which is in the spirit of Thompson Sampling (Thompson (1933)) and the confidence
ellipsoid similar to that of LinUCB-like algorithms. This algorithm performs efficiently and achieves a regret
upper bound of O(d 3

2
√

T ∧d
√

T log K), where K is the number of arms at each time step such that |At| = K
for all t. Compared to LinUCB with OFUL’s confidence width, it has an extra O(

√
d ∧
√

log K) term for
the minimax regret upper bound.

Recently, MED-like (minimum empirical divergence) algorithms have come to the fore since these randomized
algorithms have the property that the probability of selecting each arm is in closed form, which benefits
downstream work such as offline evaluation with the inverse propensity score. Both MED in the sub-
Gaussian environment and its deterministic version IMED have demonstrated superior performances over
Thompson Sampling (Bian & Jun (2021), Honda & Takemura (2015)). Baudry et al. (2023) also shows
MED has a close relation to Thompson Sampling. In particular, it is argued that MED and TS can be
interpreted as two variants of the same exploration strategy. Bian & Jun (2021) also shows that probability
of selecting each arm of MED in the sub-Gaussian case can be viewed as a closed-form approximation of the
same probability as in Thompson Sampling. We take inspiration from the extension of Thompson Sampling
to linear bandits and thus are motivated to extend MED-like algorithms to the linear bandit setting and
prove regret bounds that are competitive vis-à-vis the state-of-the-art bounds.

Thus, this paper aims to answer the question of whether it is possible to devise an extension of the IMED
algorithm for the linear bandit problem the varying arm set setting (for both infinite and finite arm sets)
with a regret upper bound of O(d

√
T log T ) which matches LinUCB with OFUL’s confidence bound while

being as efficient as LinUCB. The proposed family of algorithms, called LinIMED as well as SupLinIMED,
can be viewed as generalizations of the IMED algorithm (Honda & Takemura (2015)) to the linear bandit
setting. We prove that LinIMED and its variants achieve a regret upper bound of Õ(d

√
T ) and they perform

efficiently, no worse than LinUCB. SupLinIMED has a regret bound of Õ(
√

dT ), but works only for instances
with finite arm sets. In our empirical study, we found that the different variants of LinIMED perform better
than LinUCB and LinTS for various synthetic and real-world instances under consideration.

Compared to OFUL, LinIMED works more efficiently. Compared to SupLinUCB, our LinIMED algorithm is
significantly simpler, and compared to LinUCB with OFUL’s confidence bound, our empirical performance
is better. This is because in our algorithm, the exploitation term and exploration term are decoupling and
this leads to a finer control while tuning the hyperparameters in the empirical study.
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Compared to LinTS, our algorithm’s (specifically LinIMED-3) regret bound is superior, by an order of
O(
√

d ∧
√

log K). Since fixed arm setting is a special case of finite varying arm setting, our result is more
general than other fixed-arm linear bandit algorithms like Spectral Eliminator (Valko et al. (2014)) and
PEGOE (Lattimore & Szepesvári (2020, Chapter 22)). Finally, we observe that since the index used in
LinIMED has a similar form to the index used in the Information Directed Sampling (IDS) procedure
in Kirschner et al. (2021) (which is known to be asymptotically optimal but more difficult to compute),
LinIMED performs significantly better on the “End of Optimism” example in Lattimore & Szepesvari (2017).
We summarize the comparisons of LinIMED to other linear bandit algorithms in Table 1. We discussion
comparisons to other linear bandit algorithms in Sections 3.2, 3.3, and Appendix B.

2 Problem Statement

Notations: For any d dimensional vector x ∈ Rd and a d × d positive definite matrix A, we use ∥x∥A to
denote the Mahalanobis norm

√
x⊤Ax. We use a∧b (resp. a∨b) to represent the minimum (resp. maximum)

of two real numbers a and b.

The Stochastic Linear Bandit Model: In the stochastic linear bandit model, the learner chooses an
arm At at each round t from the arm set At = {at,1, at,2, . . .} ⊆ R, where we assume the cardinality of each
arm set At can be potentially infinite such that |At| = ∞ for all t ≥ 1. Each arm a ∈ At at time t has a
corresponding context (arm vector) xt,a ∈ Rd, which is known to the learner. After choosing arm At, the
environment reveals the reward

Yt = ⟨θ∗, Xt⟩+ ηt

to the learner where Xt := xt,At is the corresponding context of the arm At, θ∗ ∈ Rd is an unknown coefficient
of the linear model, ηt is an R-sub-Gaussian noise conditioned on {A1, A2, . . . , At, Y1, Y2, . . . , Yt−1} such that
for any λ ∈ R, almost surely,

E [exp(ληt) | A1, A2, . . . , At, Y1, Y2, . . . , Yt−1] ≤ exp
(λ2R2

2

)
.

Denote a∗
t := arg maxa∈At

⟨θ∗, xt,a⟩ as the arm with the largest reward at time t. The goal is to minimize
the expected cumulative regret over the horizon T . The (expected) cumulative regret is defined as

RT = E

[
T∑

t=1
⟨θ∗, xt,a∗

t
⟩ − ⟨θ∗, Xt⟩

]
.

Assumption 1. For each time t, we assume that ∥Xt∥ ≤ L, and ∥θ∗∥ ≤ S for some fixed L, S > 0. We
also assume that ∆t,b := maxa∈At⟨θ∗, xt,a⟩ − ⟨θ∗, xt,b⟩ ≤ 1 for each arm b ∈ At and time t.

3 Description of LinIMED Algorithms

In the pseudocode of Algorithm 1, for each time step t, in Line 4, we use the improved confidence bound of
θ∗ as in Abbasi-Yadkori et al. (2011) to calculate the confidence bound βt−1(γ). After that, for each arm
a ∈ At, in Lines 6 and 7, the empirical gap between the highest empirical reward and the empirical reward
of arm a is estimated as

∆̂t,a =
{

maxj∈At⟨θ̂t−1, xt,j⟩ − ⟨θ̂t−1, xt,a⟩ if LinIMED-1,2
maxj∈At

UCBt(j)−UCBt(a) if LinIMED-3

Then, in Lines 9 to 11, with the use of the confidence width of βt−1(γ), we can compute the in-
dex It,a for the empirical best arm a = arg maxj∈At

µ̂t,a (for LinIMED-1,2) or the highest UCB arm
a = arg maxj∈At

UCBj(a) (for LinIMED-3). The different versions of LinIMED encourage different amounts
of exploitation. For the other arms, in Line 13, the index is defined and computed as

It,a =
∆̂2

t,a

βt−1(γ)∥xt,a∥2
V −1

t−1

+ log 1
βt−1(γ)∥xt,a∥2

V −1
t−1

.
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Algorithm 1 LinIMED-x for x ∈ {1, 2, 3}
1: Input: LinIMED mode x, Dimension d, Regularization parameter λ, Bound S on ∥θ∗∥, Sub-Gaussian

parameter R, Concentration parameter γ of θ∗, Bound L on ∥xt,a∥ for all t ≥ 1 and a ∈ At, Constant
C ≥ 1.

2: Initialize: V0 = λId×d, W0 = 0d×1(all zeros vector with d dimensions), θ̂0 = V −1
0 W0

3: for t = 1, 2, . . . T do
4: Receive the arm set At and compute βt−1(γ) =

(
R

√
d log( 1+(t−1)L2/λ

γ ) +
√

λS
)2

.
5: for a ∈ At do
6: Compute: µ̂t,a = ⟨θ̂t−1, xt,a⟩ and UCBt(a) = ⟨θ̂t−1, xt,a⟩+

√
βt−1(γ)∥xt,a∥V −1

t−1

7: Compute: ∆̂t,a = (maxj∈At µ̂t,j − µ̂t,a) · 1{x = 1, 2}+ (maxj∈At UCBt(j)−UCBt(a)) · 1 {x = 3}
8: if a = arg maxj∈At

(µ̂t,j · 1{x = 1, 2}+ UCBt(j) · 1{x = 3}) then
9: It,a = − log(βt−1(γ)∥xt,a∥2

V −1
t−1

) · 1{x = 1} (LinIMED-1)

10: +
[

log T ∧
(
− log(βt−1(γ)∥xt,a∥2

V −1
t−1

)
)]
· 1{x = 2} (LinIMED-2)

11: +
[

log C

maxa∈At ∆̂2
t,a

∧
(
− log(βt−1(γ)∥xt,a∥2

V −1
t−1

)
)]
· 1{x = 3} (LinIMED-3)

12: else
13: It,a = ∆̂2

t,a

βt−1(γ)∥xt,a∥2
V

−1
t−1

− log(βt−1(γ)∥xt,a∥2
V −1

t−1
)

14: end if
15: end for
16: Pull the arm At = arg mina∈At

It,a (ties are broken arbitrarily) and receive its reward Yt.
17: Update:
18: Vt = Vt−1 + XtX

⊤
t , Wt = Wt−1 + YtXt, and θ̂t = V −1

t Wt.
19: end for

Then with all the indices of the arms calculated, in Line 16, we choose the arm At with the minimum index
such that At = arg mina∈At

It,a (where ties are broken arbitrarily) and the agent receives its reward. Finally,
in Line 18, we use ridge regression to estimate the unknown θ∗ as θ̂t and update the matrix Vt and the vector
Wt. After that, the algorithm iterates to the next time step until the time horizon T . From the pseudo-code,
we observe that the only differences between the three algorithms are the way that the square gap, which
plays the role of the empirical divergence, is estimated and the index of the empirically best arm. The
latter point implies that we encourage the empirically best arm to be selected more often in LinIMED-2 and
LinIMED-3 compared to LinIMED-1; in other words, we encourage more exploitation in LinIMED-2 and
LinIMED-3. Similar to the core spirit of IMED algorithm Honda & Takemura (2015), the first term of our
index It,a for LinIMED-1 algorithm is ∆̂2

t,a/(βt−1(γ)∥xt,a∥2
V −1

t−1
), this is the term controls the exploitation,

while the second term − log(βt−1(γ)∥xt,a∥2
V −1

t−1
) controls the exploration in our algorithm.

3.1 Description of the SupLinIMED Algorithm

Now we consider the case in which the arm set At at each time t is finite but still time-varying. In particular,
At = {at,1, at,2, . . . , at,K} ⊆ R are sets of constant size K such that |At| = K < ∞. In the pseudocode of
Algorithm 2, we apply the SupLinUCB framework (Chu et al., 2011), leveraging Algorithm 3 (in Appendix A)
as a subroutine within each phase. This ensures the independence of the choice of the arm from past
observations of rewards, thereby yielding a concentration inequality in the estimated reward (see Lemma
1 in Chu et al. (2011)) that converges to within

√
d proximity of the unknown expected reward in a finite

arm setting. As a result, the regret yields an improvement of
√

d ignoring the logarithmic factor. At each
time step t and phase s, in Line 5, we utilize the BaseLinUCB Algorithm as a subroutine to calculate the
sample mean and confidence width since we also need these terms to calculate the IMED-style indices of each
arm. In Lines 6–9 (Case 1), if the width of each arm is less than 1√

T
, we choose the arm with the smaller

IMED-style index. In Lines 10–12 (Case 2), the framework is the same as in SupLinUCB (Chu et al. (2011)),
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Algorithm 2 SupLinIMED
1: Input: T ∈ N, S′ = ⌈log T ⌉, Ψs

t = ∅ for all s ∈ [S′], t ∈ [T ]
2: for t = 1, 2, . . . , T do
3: s← 1 and Â1 ← [K]
4: repeat
5: Use BaseLinUCB (stated in Algorithm 3 in Appendix A) with Ψs

t to calculate the width ws
t,a and

sample mean Ŷ s
t,a for all a ∈ Âs .

6: if ws
t,a ≤ 1√

T
for all a ∈ Âs then

7: choose At = arg mina∈Âs
It,a where It,a is the same index function as in LinIMED algorithm:

8: Calculate the index

It,a =

log(2T ) ∧
(
− log((ws

t,a)2)
)

If a = arg maxb∈Âs
Ŷ s

t,b

( ∆̂s
t,a

ws
t,a

)2 − log((ws
t,a)2) otherwise

where ∆̂s
t,a := max

b∈Âs

Ŷ s
t,b − Ŷ s

t,a .

9: Keep the same index sets at all levels: Ψs′

t+1 ← Ψs′

t for all s′ ∈ [S] . ← Case 1
10: else if ws

t,a ≤ 2−s for all a ∈ Âs then
11: Âs+1 ←

{
a ∈ Âs : Ŷ s

t,a + ws
t,a ≥ maxa′∈Âs

(Ŷ s
t,a′ + ws

t,a′)− 21−s
}

12: s← s + 1 ← Case 2
13: else
14: Choose At ∈ Âs such that ws

t,At
> 2−s

15: Update the index sets at all levels: Ψs′

t+1 ← Ψs′

t ∪{t} if s = s′ ; Ψs′

t+1 ← Ψs′

t if s ̸= s′ ← Case 3
16: end if
17: until an action At is found
18: end for

if the width of each arm is smaller than 2−s but there exist arms with widths larger than 1√
T

, then in Line
11 the “unpromising” arms will be eliminated until the width of each arm is smaller enough to satisfy the
condition in Line 6. Otherwise, if there exist any arms with widths that are larger than 2−s, in Lines 14–15
(Case 3), we choose one such arm and record the context and reward of this arm to the next layer Ψs

t+1.

3.2 Relation to the IMED algorithm of Honda & Takemura (2015)

The IMED algorithm is a deterministic algorithm for the K-armed bandit problem. At each time step t, it
chooses the arm a with the minimum index, i.e.,

a = arg min
i∈[K]

{
Ti(t)Dinf(F̂i(t), µ̂∗(t)) + log Ti(t)

}
, (1)

where Ti(t) =
∑t−1

s=1 1 {At = a} is the total arm pulls of the arm i until time t and Dinf(F̂i(t), µ̂∗(t)) is
some divergence measure between the empirical distribution of the sample mean for arm i and the arm
with the highest sample mean. More precisely, Dinf(F, µ) := infG∈G:E(G)≤µ D(F∥G) and G is the family of
distributions supported on (−∞, 1]. As shown in Honda & Takemura (2015), its asymptotic bound is even
better than KL-UCB (Garivier & Cappé (2011)) algorithm and can be extended to semi-bounded support
models such as G. Also, this algorithm empirically outperforms the Thompson Sampling algorithm as shown
in Honda & Takemura (2015). However, an extension of IMED algorithm with minimax regret bound of
Õ(d
√

T ) has not been derived. In our design of LinIMED algorithm, we replace the optimized KL-divergence
measure in IMED in Eqn. (1) with the squared gap between the sample mean of the arm i and the arm
with the maximum sample mean. This choice simplifies our analysis and does not adversely affect the regret
bound. On the other hand, we view the term 1/Ti(t) as the variance of the sample mean of arm i at time t;
then in this spirit, we use βt−1(γ)∥xt,a∥2

V −1
t−1

as the variance of the sample mean (which is ⟨θ̂t−1, xt,a⟩) of arm

a at time t. We choose ∆̂2
t,a/(βt−1(γ)∥xt,a∥2

V −1
t−1

) instead of the KL-divergence approximation for the index
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since in the classical linear bandit setting, the noise is sub-Gaussian and it is known that the KL-divergence of
two Gaussian random variables with the same variance (KL(N (µ1, σ2),N (µ2, σ2)) = (µ1−µ2)2

2σ2 ) has a closed
form expression similar to ∆̂2

t,a/(βt−1(γ)∥xt,a∥2
V −1

t−1
) ignoring the constant 1

2 .

3.3 Relation to Information Directed Sampling (IDS) for Linear Bandits

Information Directed Sampling (IDS), introduced by Russo & Van Roy (2014), serves as a good principle
for regret minimization in linear bandits to achieve the asymptotic optimality. The intuition behind IDS is
to balance between the information gain on the best arm and the expected reward at each time step. This
goal is realized by optimizing the distribution of selecting each arm π ∈ D(A) (where A is the fixed finite
arm set) with the minimum information ratio such that:

πIDS
t := arg min

π∈D(A)

∆̂2
t (π)

gt(π) ,

where ∆̂t is the empirical gap and gt is the so-called information gain (defined later). Kirschner & Krause
(2018), Kirschner et al. (2020) and Kirschner et al. (2021) apply the IDS principle to the linear bandit
setting, The first two works propose both randomized and deterministic versions of IDS for linear bandit.
They showed a near-optimal minimax regret bound of the order of Õ(d

√
T ). Kirschner et al. (2021) designed

an asymptotically optimal linear bandit algorithm retaining its near-optimal minimax regret properties.
Comparing these algorithms with our LinIMED algorithms, we observe that the first term of the index of
non-greedy actions in our algorithms is ∆̂2

t,a/(βt−1(γ)∥xt,a∥2
V −1

t−1
), which is similar to the choice of informa-

tion ratio in IDS with the estimated gap ∆t(a) := ∆̂t,a as defined in Algorithm 1 and the information ratio
gt(a) := βt−1(γ)∥xt,a∥2

V −1
t−1

. As mentioned in Kirschner & Krause (2018), when the noise is 1-subgaussian
and ∥xt,a∥2

V −1
t−1
≪ 1, the information gain in deterministic IDS algorithm is approximately ∥xt,a∥2

V −1
t−1

, which
is similar to our choice βt−1(γ)∥xt,a∥2

V −1
t−1

. However, our LinIMED algorithms are different from the deter-

ministic IDS algorithm in Kirschner & Krause (2018) since the estimated gap defined in our algorithm ∆̂t,a is
different from that in deterministic IDS. Furthermore, as discussed in Kirschner et al. (2020), when the noise
is 1-subgaussian and ∥xt,a∥2

V −1
t−1
≪ 1, the action chosen by UCB minimizes the deterministic information

ratio. However, this is not the case for our algorithm since we have the second term − log(βt−1(γ)∥xt,a∥2
V −1

t−1
)

in LinIMED-1 which balances information and optimism. Compared to IDS in Kirschner et al. (2021), their
algorithm is a randomized version of the deterministic IDS algorithm, which is more computationally expen-
sive than our algorithm since our LinIMED algorithms are fully deterministic (the support of the allocation
in Kirschner et al. (2021) is two). IDS defines a more complicated version of information gain to achieve
asymptotically optimality. Finally, to the best of our knowledge, all these IDS algorithms are designed for
linear bandits under the setting that the arm set is fixed and finite, while in our setting we assume the arm
set is finite and can change over time. We discuss comparisons to other related work in Appendix B.

4 Theorem Statements

Theorem 1. Under Assumption 1, the assumption that ⟨θ∗, xt,a⟩ ≥ 0 for all t ≥ 1 and a ∈ At, and the
assumption that

√
λS ≥ 1, the regret of the LinIMED-1 algorithm is upper bounded as follows:

RT ≤ O
(
d
√

T log
3
2 (T )

)
.

A proof sketch of Theorem 1 is provided in Section 5.
Theorem 2. Under Assumption 1, and the assumption that

√
λS ≥ 1, the regret of the LinIMED-2 algorithm

is upper bounded as follows:

RT ≤ O
(
d
√

T log
3
2 (T )

)
.

6



Under review as submission to TMLR

Theorem 3. Under Assumption 1, the assumption that
√

λS ≥ 1, and that C in Line 11 is a constant, the
regret of the LinIMED-3 algorithm is upper bounded as follows:

RT ≤ O
(
d
√

T log(T )
)
.

Theorem 4. Under Assumption 1, the assumption that L = S = 1, the regret of the SupLinIMED algorithm
(which is applicable to linear bandit problems with K <∞ arms) is upper bounded as follows:

RT ≤ O

(√
dT log3(KT )

)
.

The upper bounds on the regret of LinIMED and its variants are all of the form Õ(d
√

T ), which, ignoring the
logarithmic term, is the same as OFUL algorithm (Abbasi-Yadkori et al. (2011)). Compared to LinTS, it has
an advantage of O(

√
d∧
√

log K). Also, these upper bounds do not depend on the number of arms K, which
means it can be applied to linear bandit problems with a large arm set (including infinite arm sets). One
observes that LinIMED-2 and LinIMED-3 do not require the additional assumption that ⟨θ∗, xt,a⟩ ≥ 0 for all
t ≥ 1 and a ∈ At to achieve the Õ(d

√
T ) upper regret bound. It is difficult to prove the regret bound for the

LinIMED-1 algorithm without this assumption since in our proof we need to use that ⟨θ∗, Xt⟩ ≥ 0 for any
time t to bound the F1 term. On the other hand, LinIMED-2 and LinIMED-3 encourage more exploitations
in terms of the index of the empirically best arm at each time without adversely influencing the regret
bound; this will accelerate the learning with well-preprocessed datasets. The regret bound of LinIMED-3,
in fact, matches that of LinUCB with OFUL’s confidence bound. In the proof, we will extensively use
a technique known as the “peeling device” (Lattimore & Szepesvári, 2020, Chapter 9). This analytical
technique, commonly used in the theory of bandit algorithms, involves the partitioning of the range of some
random variable into several pieces, then using the basic fact that P(A ∩ (∪∞

i=1Bi)) ≤
∑∞

i=1 P(A ∩ Bi), we
can utilize the more refined range of the random variable to derive desired bounds.

Finally, Theorem 4 says that when the arm set is finite, we can use the framework of SupLinUCB (Chu et al.,
2011) with our LinIMED index It,a to achieve a regret bound of the order of Õ(

√
dT ), which is

√
d better

than the regret bounds yielded by the family of LinIMED algorithms (ignoring the logarithmic terms). The
proof is provided in Appendix F.

5 Proof Sketch of Theorem 1

We choose to present the proof sketch of Theorem 1 since it contains the main ingredients for all the theorems
in the preceding section. Before presenting the proof, we introduce the following lemma and corollary.
Lemma 1. (Abbasi-Yadkori et al. (2011, Theorem 2)) Under Assumption 1, for any time step t ≥ 1 and
any γ > 0, we have

P
(
∥θ̂t−1 − θ∗∥Vt−1 ≤

√
βt−1(γ)

)
≥ 1− γ.

This lemma illustrates that the true parameter θ∗ lies in the ellipsoid centered at θ̂t−1 with high probability,
which also states the width of the confidence bound.

The second is a corollary of the elliptical potential count lemma in Abbasi-Yadkori et al. (2011):
Corollary 1. (Corollary of Lattimore & Szepesvári (2020, Exercise 19.3)) Assume that V0 = λI and ∥Xt∥ ≤
L for t ∈ [T ], for any constant 0 < m ≤ 2, the following holds:

T∑
t=1

1

{
∥Xt∥2

V −1
t−1
≥ m

}
≤ 6d

m
log

(
1 + 2L2

λm

)
.

We remark that this lemma is slightly stronger than the classical elliptical potential lemma since it reveals
information about the upper bound of frequency that ∥Xt∥2

V −1
t−1

exceeds some value m. Equipped with this
lemma, we can perform the peeling device on ∥Xt∥2

V −1
t−1

in our proof of the regret bound, which is a novel
technique to the best of our knowledge.
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Proof. First we define a∗
t as the best arm in time step t such that a∗

t = arg maxa∈At
⟨θ∗, xt,a⟩, and use

x∗
t := xt,a∗

t
denote its corresponding context. Let ∆t := ⟨θ∗, x∗

t ⟩−⟨θ∗, Xt⟩ denote the regret in time t. Define
the following events:

Bt :=
{
∥θ̂t−1 − θ∗∥Vt−1 ≤

√
βt−1(γ)

}
, Ct :=

{
max
b∈At

⟨θ̂t−1, xt,b⟩ > ⟨θ∗, x∗
t ⟩ − δ

}
, Dt :=

{
∆̂t,At

≥ ε
}

.

where δ and ε are free parameters set to be δ = ∆t√
log T

and ε = (1− 2√
log T

)∆t in this proof sketch.

Then the expected regret RT = E
∑T

t=1 ∆t can be partitioned by events Bt, Ct, Dt such that:

RT = E
T∑

t=1
∆t · 1 {Bt, Ct, Dt}︸ ︷︷ ︸

=:F1

+E
T∑

t=1
∆t · 1

{
Bt, Ct, Dt

}
︸ ︷︷ ︸

=:F2

+E
T∑

t=1
∆t · 1

{
Bt, Ct

}
︸ ︷︷ ︸

=:F3

+E
T∑

t=1
∆t · 1

{
Bt

}
︸ ︷︷ ︸

=:F4

.

For F1, from the event Ct and the fact that ⟨θ∗, x∗
t ⟩ = ∆t + ⟨θ∗, Xt⟩ ≥ ∆t (here is where we use that

⟨θ∗, xt,a⟩ ≥ 0 for all t and a), we obtain maxb∈At
⟨θ̂t−1, xt,b⟩ > (1 − 1√

log T
)∆t. For convenience, define

Ât := arg maxb∈At
⟨θ̂t−1, xt,b⟩ as the empirically best arm at time step t, where ties are broken arbitrarily,

then use X̂t to denote the corresponding context of the arm Ât. Therefore from the Cauchy–Schwarz
inequality, we have ∥θ̂t−1∥Vt−1∥X̂t∥V −1

t−1
≥ ⟨θ̂t−1, X̂t⟩ > (1− 1√

log T
)∆t. This implies that

∥X̂t∥V −1
t−1
≥

(1− 1√
log T

)∆t

∥θ̂t−1∥Vt−1

. (2)

On the other hand, we claim that ∥θ̂t−1∥Vt−1 can be upper bounded as O(
√

T ). This can be seen from the
fact that ∥θ̂t−1∥Vt−1 = ∥θ̂t−1− θ∗ + θ∗∥Vt−1 ≤ ∥θ̂t−1− θ∗∥Vt−1 + ∥θ∗∥Vt−1 . Since the event Bt holds, we know
the first term is upper bounded by

√
βt−1(γ), and since the largest eigenvalue of the matrix Vt−1 is upper

bounded by λ + TL2 and ∥θ∗∥ ≤ S, the second term is upper bounded by S
√

λ + TL2. Hence, ∥θ̂t−1∥Vt−1

is upper bounded by O(
√

T ). Then one can substitute this bound back into Eqn. (2), and this yields

∥X̂t∥V −1
t−1
≥ Ω

( 1√
T

(
1− 1√

log T

)
∆t

)
. (3)

Furthermore, by our design of the algorithm, the index of At is not larger than the index of the arm with
the largest empirical reward at time t. Hence,

It,At =
∆̂2

t,At

βt−1(γ)∥Xt∥2
V −1

t−1

+ log 1
βt−1(γ)∥Xt∥2

V −1
t−1

≤ log 1
βt−1(γ)∥X̂t∥2

V −1
t−1

. (4)

In the following, we set γ as well as another free parameter Γ as follows:

Γ = d log
3
2 T√

T
and γ = 1

t2 , . (5)

If ∥Xt∥2
V −1

t−1
≥ ∆2

t

βt−1(γ) , by using Corollary 1 with the choice in Eqn. (5), the upper bound of F1 in this case

is O
(
d
√

T log T
)
. Otherwise, using the event Dt and the bound in (3), we deduce that for all T sufficiently

large, we have ∥Xt∥2
V −1

t−1
≥ Ω

( ∆2
t

βt−1(γ) log(T/∆2
t )

)
. Therefore by using Corollary 1 and the “peeling device”

(Lattimore & Szepesvári, 2020, Chapter 9) on ∆t such that 2−l < ∆t ≤ 2−l+1 for l = 1, 2, . . . , ⌈Q⌉ where

8
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Q = − log2 Γ and Γ is chosen as in Eqn. (5). Now consider,

F1 ≤ O(1) + E
T∑

t=1
∆t · 1

{
∥Xt∥2

V −1
t−1
≥ Ω

( ∆2
t

βt−1(γ) log(T/∆2
t )

)}

≤ O(1)+TΓ+ E
T∑

t=1

⌈Q⌉∑
l=1

∆t · 1
{
∥Xt∥2

V −1
t−1
≥Ω

( ∆2
t

βt−1(γ) log(T/∆2
t )

)}
1

{
2−l <∆t≤2−l+1}

≤ O(1) + TΓ + E
T∑

t=1

⌈Q⌉∑
l=1

2−l+1 · 1
{
∥Xt∥2

V −1
t−1
≥ Ω

( 2−2l

βt−1(γ) log(T · 22l)

)}

≤ O(1)+TΓ+E
⌈Q⌉∑
l=1

2−l+1O

(
22ldβT (γ) log(22lT ) log

(
1+ 2L2 · 22lβT (γ) log(T · 22l)

λ

))
(6)

≤ O(1) + TΓ +
⌈Q⌉∑
l=1

2l+1 ·O
(

dβT (γ) log( T

Γ2 ) log
(

1 +
L2βT (γ) log( T

Γ2 )
λΓ2

))

≤ O(1) + TΓ + O

(
dβT (γ) log( T

Γ2 )
Γ log

(
1 +

L2βT (γ) log( T
Γ2 )

λΓ2

))
, (7)

where in Inequality (6) we used Corollary 1. Substituting the choices of Γ and γ in (5) into (7) yields the
upper bound on E

∑T
t=1 ∆t · 1 {Bt, Ct, Dt} · 1

{
∥Xt∥2

V −1
t−1

<
∆2

t

βt−1(γ)
}

of the order O(d
√

T log
3
2 T ). Hence

F1 ≤ O(d
√

T log
3
2 T ). Other details are fleshed out in Appendix C.2.

For F2, since Ct and Dt together imply that ⟨θ∗, x∗
t ⟩ − δ < ε + ⟨θ̂t−1, Xt⟩, then using the choices of δ and

ε, we have ⟨θ̂t−1 − θ∗, Xt⟩ > ∆t√
log T

. Substituting this into the event Bt and using the Cauchy–Schwarz
inequality, we have

∥Xt∥2
V −1

t−1
≥ ∆2

t

βt−1(γ) log T
.

Again applying the “peeling device” on ∆t and Corollary 1, we can upper bound F2 as follows:

F2 ≤ TΓ + O

(
dβT (γ) log T

Γ

)
log

(
1 + L2βT (γ) log T

λΓ2

)
. (8)

Then with the choice of Γ and γ as stated in (5), the upper bound of the F2 is also of order O(d
√

T log
3
2 T ).

More details of the calculation leading to Eqn. (8) are in Appendix C.3.

For F3, this is the case when the best arm at time t does not perform sufficiently well so that the empirically
largest reward at time t is far from the highest expected reward. One observes that minimizing F3 results in a
tradeoff with respect to F1. On the event Ct, we can again apply the “peeling device” on ⟨θ∗, x∗

t ⟩−⟨θ̂t−1, x∗
t ⟩

such that q+1
2 δ ≤ ⟨θ∗, x∗

t ⟩ − ⟨θ̂t−1, x∗
t ⟩ < q+2

2 δ where q ∈ N. Then using the fact that It,At ≤ It,a∗
t
, we have

log 1
βt−1(γ)∥Xt∥2

V −1
t−1

<
q2δ2

4βt−1(γ)∥x∗
t ∥2

V −1
t−1

+ log 1
βt−1(γ)∥x∗

t ∥2
V −1

t−1

. (9)

On the other hand, using the event Bt and the Cauchy–Schwarz inequality, it holds that

∥x∗
t ∥V −1

t−1
≥ (q + 1)δ

2
√

βt−1(γ)
. (10)

If ∥Xt∥2
V −1

t−1
≥ ∆2

t

βt−1(γ) , the regret in this case is bounded by O(d
√

T log T ). Otherwise, combining Eqn. (9)
and Eqn. (10) implies that

∥Xt∥2
V −1

t−1
≥ (q + 1)2δ2

4βt−1(γ) exp
(
− q2

(q + 1)2

)
.

9
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Using Corollary 1, we can now conclude that F3 is upper bounded as

F3 ≤ TΓ + O

(
dβT (γ) log T

Γ

)
log

(
1 + L2βT (γ) log T

λΓ2

)
. (11)

Substituting Γ and γ in Eqn. (5) into Eqn. (11), we can upper bound F3 by O(d
√

T log
3
2 T ). Complete

details are provided in Appendix C.4.

For F4, using Lemma 1 with the choice of γ = 1/t2 and Q = − log Γ, we have

F4 = E
T∑

t=1
∆t · 1

{
Bt

}
≤ TΓ + E

T∑
t=1

⌈Q⌉∑
l=1

∆t · 1
{

2−l < ∆t ≤ 2−l+1}
1

{
Bt

}
≤ TΓ +

T∑
t=1

⌈Q⌉∑
l=1

2−l+1P
(
Bt

)
≤ TΓ +

T∑
t=1

⌈Q⌉∑
l=1

2−l+1γ < TΓ + π2

3 .

Thus, F4 ≤ O(d
√

T log
3
2 T ). In conclusion, with the choice of Γ and γ in Eqn. (5), we have shown that the

expected regret of LinIMED-1 RT =
∑4

i=1 Fi is upper bounded by O(d
√

T log
3
2 T ).

For LinIMED-2, the proof is similar but the assumption that ⟨θ∗, xt,a⟩ ≥ 0 is not required. For LinIMED-3,
by directly using the UCB in Line 6 of Algorithm 1, we improve the regret bound to match the state-of-the-art
O(d
√

T log T ), which matches that of LinUCB with OFUL’s confidence bound.

6 Empirical Studies

This section aims to justify the utility of the family of LinIMED algorithms we developed and to demonstrate
their effectiveness through quantitative evaluations in simulated environments and real-world datasets such
as the MovieLens dataset. We compare our LinIMED algorithms with LinTS and LinUCB with the choice
λ = L2. We set βt(γ) = (R

√
3d log(1 + t) +

√
2)2 (here γ = 1

(1+t)2 and L =
√

2) for the synthetic dataset
with varying and finite arm set and βt(γ) = (R

√
d log((1 + t)t2) +

√
20)2 (here γ = 1

t2 and L =
√

20)
for the MovieLens dataset respectively. The confidence widths

√
βt(γ) for each algorithm are multiplied

by a factor α and we tune α by searching over the grid {0.05, 0.1, 0.15, 0.2, . . . , 0.95, 1.0} and report the
best performance for each algorithm; see Appendix G. Both γ’s are of order O( 1

t2 ) as suggested by our
proof sketch in Eqn. (5). We set C = 30 in LinIMED-3 throughout. The sub-Gaussian noise level is
R = 0.1. We choose LinUCB and LinTS as competing algorithms since they are paradigmatic examples of
deterministic and randomized contextual linear bandit algorithms respectively. We also included IDS in our
comparisons for the fixed and finite arm set settings. Finally, we only show the performances of SupLinUCB
and SupLinIMED algorithms but only in Figs. 1 and 2 since it is well known that there is a substantial
performance degradation compared to established methodologies like LinUCB or LinTS (as mentioned in
Lattimore & Szepesvári (2020, Chapter 22) and also seen in Figs. 1 and 2.

6.1 Experiments on a Synthetic Dataset in the Varying Arm Set Setting

We perform an empirical study on a varying arm setting. We evaluate the performance with different
dimensions d and different number of arms K. We set the unknown parameter vector and the best context
vector as θ∗ = x∗

t = [ 1√
d−1 , . . . , 1√

d−1 , 0]⊤ ∈ Rd. There are K − 2 suboptimal arms vectors, which are all
the same (i.e., repeated) and share the context [(1 − 1

7+zt,i
) 1√

d−1 , . . . , (1 − 1
7+zt,i

) 1√
d−1 , (1 − 1

7+zt,i
)]⊤ ∈ Rd

where zt,i ∼ Uniform[0, 0.1] is iid noise for each t ∈ [T ] and i ∈ [K − 2]. Finally, there is also one “worst”
arm vector with context [0, 0, . . . , 0, 1]⊤. First we fix d = 2. The results for different numbers of arms such
as K = 10, 100, 500 are shown in Fig. 1. Note that each plot is repeated 50 times to obtain the mean and
standard deviation of the regret. From Fig. 1, we observe that LinIMED-1 and LinIMED-2 are comparable
to LinUCB and LinTS, while LinIMED-3 outperforms LinTS and LinUCB regardless of the number of the
arms K. Second, we set K = 10 with the dimensions d = 2, 20, 50. Each trial is again repeated 50 times and
the regret over time is shown in Fig. 2. Again, we see that LinIMED-1 and LinIMED-2 are comparable to
LinUCB and LinTS, LinIMED-3 clearly perform better than LinUCB and LinTS.
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(a) K = 10 (b) K = 100 (c) K = 500

Figure 1: Simulation results (expected regrets) on the synthetic dataset with different K’s

(a) d = 2 (b) d = 20 (c) d = 50

Figure 2: Simulation results (expected regrets) on the synthetic dataset with different d’s

The experimental results on synthetic data demonstrate that the performances of LinIMED-1 and LinIMED-
2 are largely similar but LinIMED-3 is slightly superior (corroborating our theoretical findings). More
importantly, LinIMED-3 outperforms both the LinTS and LinUCB algorithms in a statistically significant
manner, regardless of the number of arms K or the dimension d of the data.

6.2 Experiments on the “End of Optimism” instance

Algorithms based on the optimism principle such as LinUCB and LinTS have been shown to be not asymp-
totically optimal. A paradigmatic example is known as the “End of Optimism” (Lattimore & Szepesvari,
2017; Kirschner et al., 2021)). In this two-dimensional case in which the true parameter vector θ∗ = [1; 0],
there are three arms represented by the arm vectors: [1; 0], [0; 1] and [1 − ε; 2ε], where ε > 0 is small. In
this example, it is observed that even pulling a highly suboptimal arm (the second one) provides a lot of
information about the best arm (the first one). We perform experiments with the same confidence parameter
βt(γ) = (R

√
3d log(1 + t)+

√
2)2 as in Section 6.1 (where the noise level R = 0.1, dimension d = 2). We also

include the asymptotically optimal IDS algorithm (Kirschner et al. (2021) with the choice of ηs = βs(δ)−1;
this is suggested in Kirschner et al. (2021). Each algorithm is run over 10 independent trials. The regrets of
all competing algorithms are shown in Fig. 3 with ε = 0.05, 0.01, 0.02 and for a fixed horizon T = 106.

From Fig. 3 we observe that the LinIMED algorithms perform much better than LinUCB and LinTS and
LinIMED-3 is comparable to IDS in this “End of Optimism” instance. In particular, LinIMED-3 performs
significantly better than LinUCB and LinTS even when ε is of a moderate value such as ε = 0.02. We surmise
that the reason behind the superior performance of our LinIMED algorithms on the "End of Optimism"
instance is that the first term of our LinIMED index is ∆̂2

t,a/(βt−1(γ)∥xt,a∥2
V −1

t−1
), which can be viewed as an

approximate and simpler version of the information ratio that movtivates the design the IDS) algorithm.

11
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(a) ε = 0.005 (b) ε = 0.01 (c) ε = 0.02

Figure 3: Simulation results (expected regrets) on the “End of Optimism” instance with different ε’s

(a) K = 20 (b) K = 50 (c) K = 100

Figure 4: Simulation results (CTRs) of the MovieLens dataset with different K’s

6.3 Experiments on the MovieLens Dataset
The MovieLens dataset (Cantador et al. (2011)) is a widely-used benchmark dataset for research in recom-
mendation systems. We specifically choose to use the MovieLens 10M dataset, which contains 10 million
ratings (from 0 to 5) and 100,000 tag applications applied to 10,000 movies by 72,000 users. To preprocess
the dataset, we choose the best K ∈ {20, 50, 100} movies for consideration. At each time t, one random user
visits the website and is recommended one of the best K movies. We assume that the user will click on the
recommended movie if and only if the user’s rating of this movie is at least 3. We implement the three versions
of LinIMED, LinUCB, LinTS and IDS on this dataset. Each trial is repeated over 100 runs and the averages
and standard deviations of the click-through rates (CTRs) as functions of time are reported in Fig. 4. One
observes that LinIMED variants significantly outperform LinUCB and LinTS for all K ∈ {20, 50, 100} when
time horizon T is sufficiently large. LinIMED-1 and LinIMED-2 perform significantly better than IDS when
k = 20, 50, LinIMED-3 perform significantly better than IDS when k = 50, 100. Furthermore, by virtue of
the fact that IDS is randomized, the variance of IDS is higher than that of LinIMED.

7 Future Work
In the future, a fruitful direction of research is to further modify the LinIMED algorithm to make it also
asymptotically optimal; we believe that in this case, the analysis would be more challenging, but the theo-
retical and empirical performances might be superior to our three LinIMED algorithms. In addition, one can
generalize the family of IMED-style algorithms to generalized linear bandits or neural contextual bandits.
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