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Abstract

Many representative graph neural networks, e.g., GPR-GNN and ChebNet, ap-
proximate graph convolutions with graph spectral filters. However, existing work
either applies predefined filter weights or learns them without necessary constraints,
which may lead to oversimplified or ill-posed filters. To overcome these issues,
we propose BernNet, a novel graph neural network with theoretical support that
provides a simple but effective scheme for designing and learning arbitrary graph
spectral filters. In particular, for any filter over the normalized Laplacian spectrum
of a graph, our BernNet estimates it by an order-K Bernstein polynomial approxi-
mation and designs its spectral property by setting the coefficients of the Bernstein
basis. Moreover, we can learn the coefficients (and the corresponding filter weights)
based on observed graphs and their associated signals and thus achieve the BernNet
specialized for the data. Our experiments demonstrate that BernNet can learn
arbitrary spectral filters, including complicated band-rejection and comb filters,
and it achieves superior performance in real-world graph modeling tasks. Code is
available at https://github. com/ivam-he/BernNet,

1 Introduction

Graph neural networks (GNNs) have received extensive attention from researchers due to their
excellent performance on various graph learning tasks such as social analysis [24, [17, 29], drug
discovery [12, 25]], traffic forecasting [[18] 3} 6], recommendation system [38| [32]] and computer
vision [39, 4]. Recent studies suggest that many popular GNNs operate as polynomial graph spectral
filters [[7, 113} 15 [16} 12} 35]]. Specifically, we denote an undirected graph with node set V' and edge
set F as G = (V, E), whose adjacency matrix is A. Given a signal x = [z] € R"™ on the graph,
where n. = |V is the number of nodes, we can formulate its graph spectral filtering operation as
S wiLFx, wy’s are the filter weights, L = T — D~/2AD~1/2 is the symmetric normalized
Laplacian matrix of GG, and D is the diagonal degree matrix of A. Another equivalent polynomial
filtering operation is Zkl-(zo cxP¥x, where P = D~1/2AD~1/2 is the normalized adjacency matrix
and cy’s are the filter weights.

*Zhewei Wei and Hongteng Xu are the corresponding authors. Work partially done at Gaoling School of
Artificial Intelligence, Beijing Key Laboratory of Big Data Management and Analysis Methods, MOE Key Lab
of Data Engineering and Knowledge Engineering, Renmin University of China, and Pazhou Lab, Guangzhou,
510330, China.
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Figure 1: An illustration of the proposed BernNet.

We can broadly categorize the GNNs applying the above filtering operation into two classes, de-
pending on whether they design the filter weights or learn them based on observed graphs. Some
representative models in these two classes are shown below.

* The GNNs driven by designing filters: GCN [13]] uses a simplified first-order Chebyshev
polynomial, which is proven to be a low-pass filter [[1, 31,134, 41]]. APPNP [14] utilizes
Personalized PageRank (PPR) to set the filter weights and achieves a low-pass filter as
well [15, 41]. GNN-LF/HF [41] designs filter weights from the perspective of graph
optimization functions, which can simulate high- and low-pass filters.

* The GNNs driven by learning filters: ChebNet [7]] approximates the filtering operation
with Chebyshev polynomials, and learns a filter via trainable weights of the Chebyshev
basis. GPR-GNN [3] learns a polynomial filter by directly performing gradient descent on
the filter weights, which can derive high- or low-pass filters. ARMA [2] learns a rational
filter via the family of Auto-Regressive Moving Average filters [21]].

Although the above GNNs achieve some encouraging results in various graph modeling tasks, they
still suffer from two major drawbacks. Firstly, most existing methods focus on designing or learning
simple filters (e.g., low- and/or high-pass filters), while real-world applications often require much
more complex filters such as band-rejection and comb filters. To the best of our knowledge, none
of the existing work supports designing arbitrary interpretable spectral filters. The GNNs driven
by learning filters can learn arbitrary filters in theory, but they cannot intuitively show what filters
they have learned. In other words, their interpretability is poor. For example, GPR-GNN [5] learns
the filter weights wy’s but only proves a small subset of the learnt weight sequences corresponds
to low- or high-pass filters. Secondly, the GNNs often design their filters empirically or learn the
filter weights without any necessary constraints. As a result, their filter weights often have poor
controllability. For example, GNN-LF/HF [41] designs its filters with a complex and non-intuitive
polynomial with difficult-to-tune hyperparameters. The multi-layer GCN/SGC [13} 131] leads to
“ill-posed” filters (i.e., those deriving negative spectral responses). Additionally, the filters learned by
GPR-GNN [3]] or ChebNet [7] have a chance to be ill-posed as well.

To overcome the above issues, we propose a novel graph neural network called BernNet, which
provides an effective algorithmic framework for designing and learning arbitrary graph spectral
filters. As illustrated in Figure[l] for an arbitrary spectral filter 4 : [0, 2] + [0, 1] over the spectrum
of the symmetric normalized Laplacian L, our BernNet approximates i by a K-order Bernstein
polynomial approximation, i.c., h(\) = Y p_, 6xbf (\). The non-negative coefficients {f; }1_,
of the Bernstein basis {b¥(\)}_ | work as the model parameter, which can be interpreted as
h(2k/K), k = 0,..., K (i.e., the filter values uniformly sampled from [0, 2]). By designing or
learning the 6 s, we can obtain various spectral filters, whose filtering operation can be formulated
as Zf:o O 3% (Ik( )(2I — L)X ~*L*x, where x is the graph signal. We further demonstrate the
rationality of our BernNet from the perspective of graph optimization — any valid polynomial filers,
i.e., those polynomial functions mapping [0, 2] to [0, 1], can always be expressed by our BernNet,
and accordingly, the filters learned by our BernNet are always valid. Finally, we conduct experiments
to demonstrate that 1) BernNet can learn arbitrary graph spectral filters (e.g., band-rejection, comb,
low-band-pass, etc.), and 2) BernNet achieves superior performance on real-world datasets.



2 BernNet

2.1 Bernstein approximation of spectral filters

Given an arbitrary filter function h : [0,2] ~ [0, 1], let L = UAU? denote the eigendecomposition
of the symmetric normalized Laplacian matrix L, where U is the matrix of eigenvectors and A =
diag[\1, ..., Ay is the diagonal matrix of eigenvalues. We use

h(L)x = Uh(A)UTx = Udiag[h(\1), ..., h(An)]UTx (1)

to denote a spectral filter on graph signal x. The key of our work is approximate i (L) (or, equivalently,
h()). For this purpose, we leverage the Bernstein basis and Bernstein polynomial approximation
defined below.

Definition 2.1 ( [10]). (Bernstein polynomial approximation) Given an arbitrary continuous func-
tion f(t) ont € [0, 1], the Bernstein polynomial approximation (of order K) for f is defined as

Zek byt (¢ Zf( ) ( )(1—t>K"“t’“. )

Here, fork =0,..., K, b (t) = (Ik()(l — t)K =¥ is the k-th Bernstein base, and 0y, = f(£) is the
function value at k/ K, which works as the coefficient of b (t).

Lemma 2.1 ([10]). Given an arbitrary continuous function f(t) ont € [0, 1], let px (t) denote the
Bernstein approximation of f(t) as defined in Equation (2). We have px (t) — f(t) as K — oo.

For the filter function £ : [0,2] — [0,1], we let t = 3 and f(t) = h(2t), so that the Bernstein
polynomial approximation becomes applicable, where 0, = f(k/K) = h(2k/K) and b (t) =

v (3) = (Ik{)(l — 23)E=k(3)k for k = 1 ., K. Consequently, we can approximate h(\) by

pr(N/2) = ZkK:o Gk(f)(l - 3Kk (3 ) Zk oesz( )(2 = X)FEAE, and Lemma

ensures that px (A/2) — h(\) as K — co.

Replacing {h(\;)}7, with {px (\;/2)}?,, we approximate the spectral filter 4 (L) in Equation ()
as Udiag[pr (M1/ 2) i (A /2)]UT and derive the proposed BernNet. In particular, given a graph
signal x, the convolutional operator of our BernNet is defined as follows:

z = Udiag[pr (M /2), ..., pr (M /2)]UT x = Z9k K ( ) — L)X *LFx 3)

BernNet

where each coefficient ) can be either set to h(2k/K) to approximate a predetermined filter A,
or learnt from the graph structure and signal in an end-to-end fashion. As a natural extension of
Lemma[2.1] our BernNet owns the following proposition.

Proposition 2.1. For an arbitrary continuous filter function h : [0,2] — [0,1], by setting 0, =
h(2k/K),k =0,..., K, the z in Equation (B) satisfies z — h(L)x as K — oo.

Proof. According to the above derivation, we have px (A/2) = ZkK 0O ()1 — )k (’Q\)k =
k

S Ok (5)(2 = N)EEAF, and Lemmaensures that prc(A\/2) — h()) as 0 = h(2k/K)
and K — oo.

Consequently, we have
z = Udiag[pr (M /2), ..., bk (A /2)]UTx — Udiag[h(\1), ..., h(A,)]UTx = h(L)
as 0y = h(2k/K) and K — oc.

2.2 Realizing existing filters with BernNet.

As shown in Proposition [2.1] our BernNet can approximate arbitrary continuous spectral filters with
sufficient precision. Below we give some representative examples of how our BernNet exactly realizes
existing filters that are commonly used in GNNs.



Table 1: Realizing commonly used filters with BernNet.

Filter types Filter h(A) 6O fork=0,..., K Bernstein approximation p K(%) BernNet

All-pass 1 0L =1 1 I

Linear low-pass 1-)\/2 Op =1—k/K 1-)\/2 I-1L

Linear high-pass A2 O =k/K A2 %L

Impulse low-pass  Jp(\) o = 1 and other ; = 0 (1—-X/2)K S (21 - L)X

Impulse high-pass ~ da(\) Ok = landother 8, =0  (A\/2)¥ LK

Impulse band-pass &1 (A) 0r /> = 1 and other 0, = 0 (KI;Z)(I — \/2)K/2(\/2)K/? 2%(152) (21 — L)K/21K/2

* All-pass filter h(\) = 1. Weset 6, = 1 for k = 0,..., K, and the approximation

pi(3) = 1is exactly the same with h()). Accordingly, our BernNet becomes an identity
matrix, which realizes the all-pass filter perfectly.

* Linear low-pass filter h()\) = 1—)\/2. Weset6, = 1—k/K fork = 0,..., K and obtain

pr(3) =1 — X\/2. The BernNet becomes ZkK:o @2%{ (Ik() (2I-L)A~*LF =1- 1L,

which achieves the linear low-pass filter exactly. Note that I — %L = %(I + P) is also the

same as the graph convolutional network (GCN) before renormalization [13].
* Linear high-pass filter 2(\) = A\/2. Similarly, we can set 0, = k/K fork =0,..., K to
get a perfect approximation p K(%) = %, and the BernNet becomes %L.

Note that even for those non-continuous spectral filters, e.g., the impulse low/high/band-pass filters,
our BernNet can also provide good approximations (with sufficient large K).

* Impulse low-pass filter L(\) = 50()\)E] We set 6y = 1 and 0, = 0 for k # 0, and
pr(3) = (1—3)¥. Accordingly, the BernNet becomes & (21— L), deriving an K -layer
linear low-pass filter.

* Impulse high-pass filter 2(\) = d2(N\). We set 0 = 1 and 0, = O for k # K, and
pr(3) = (3)¥. The BernNet becomes 5k L, i.e., an K -layer linear high-pass filter.

* Impulse band-pass filter .(\) = §;(\). Similarly, we set 0 /o = 1 and 6y = 0 for k #
K/2,and pk(3) = (KI§2)(1 — \/2)%/2()\/2)%/2, The BernNet becomes 2%((152) (21 —

L)%/2L%/2, which can be explained as stacking a K /2-layer linear low-pass filter and a
K /2-layer linear high-pass filter. Obviously, K should be an even number in this case.

Table [I| summarizes the design of the BernNet for the filters above. We can find that an appealing
advantage of our BernNet is that its coefficients are highly correlated with the spectral property of the
target filter. In particular, we can determine to pass or reject the spectral signal with \ = % by using

a large or small 8, because each Bernstein base ka (M) corresponds to a “bump” located at % This
property provides useful guidance when designing filters, which enhances the interpretability of our

BernNet.

2.3 Learning complex filters with BernNet

Besides designing the above typical filters, our BernNet can express more complex filters, such
as band-pass, band-rejection, comb, low-band-pass filters, etc. Moreover, given the graph signals
before and after applying such filters (i.e., the x’s and the corresponding z’s), our BernNet can learn
their approximations in an end-to-end manner. Specifically, given the pairs {x,z}, we learn the
coefficients {Hk}fzo of the BernNet by gradient descent. More implementation details can be found
at the experimental section below. Figure [2]illustrates the four complex filters and the approximations
we learned (The low-band pass filter is h(\) = Ijo,0.5/(A) + exp (—100(X — 0.5)2)1(0‘5@)()\) +
exp (—50(A — 1.5)%) I} 9)(A), where In(A) = 1 when X € Q, otherwise Io(\) = 0). In general,
our BernNet can learn a smoothed approximation of these complex filters, and the approximation
precision improves with the increase of the order K. Note that although the BernNet cannot pinpoint
the exact peaks of the comb filter or drop to O for the valleys of comb or low-band-pass filters due to
the limitation of K, it still significantly outperforms other GNNs for learning such complex filters.

"The impulse function 8, (\) = 1if A = z, otherwise d(\) = 0
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Figure 2: Illustrations of four complex filters and their approximations learnt by BernNet.

3 BernNet in the Lens of Graph Optimization

In this section, we motivate BernNet from the perspective of graph optimization. In particular, we
show that any polynomial filter that attempts to approximate a valid filter has to take the form of
BernNet.

3.1 A generalized graph optimization problem

Given a n-dimensional graph signal x, we consider a generalized graph optimization problem
min f(z) = (1 - )z’ y(L)z + af|z — x||3 C)

where « € [0, 1) is a trade-off parameter, z € R™ denotes the propagated representation of the input
graph signal x, and (L) denotes an energy function of L, determining the rate of propagation [28].
Generally, () operates on the spectral of L, and we have (L) = Udiag[y(\1), ..., 7(An)]UT.

We can model the polynomial filtering operation of existing GNNs with the optimal solution of
Equation (@). For example, if we set (L) = L, then the optimization function (@) becomes
f(z) = (1 — a)z"Lz + a||z — x||3, a well-known convex graph optimization function proposed by

Zhou et al. [40]]. f(z) takes the minimum when the derivative 8f(z) =2(1—a)Lz+2a(z —x) =0,
which solves to

z'=a(I-(1-a)I-L Z (1—a)* Zal—akPk
k=0 k=0

By taking a suffix sum ZkK:o a(1 — a)¥P*x, we obtain the polynomial filtering operation for
APPNP [[14]. Zhu et al. [41] further show that GCN [13]], DAGNN [19], and JKNet [36]] can be
interpreted by the optimization function (@) with v(L) = L.

The generalized form of Equation (@) allows us to simulate more complex polynomial filtering
operation. For example, let @ = 0.5 and (L) = e** — I, a heat kernel with ¢ as the temperature

parameter. Then f(z) takes the minimum when the derivative 222 = (¢ — 1)z 4z — x = 0,
which solves to

7z* =e thx = ¢ tI-Plx = Z e*tEka.
k=0 ’

By taking a suffix sum Z et 2 P*x, we obtain the polynomial filtering operation for the heat
kernal based GNN such as GDC [[LS]] and GraphHeat [34].

3.2 Non-negative constraint on polynomial filters

A natural question is that, does an arbitrary energy function (L) correspond to a valid or ill-posed
spectral filter? Conversely, does any polynomial filtering operation Zszo wiL*x correspond to the
optimal solution of the optimization function (@) for some energy function v(L)?

As it turns out, there is a “minimum requirement” for the energy function v(L); (L) has to be
positive semidefinite. In particular, if v(L) is not positive semidefinite, then the optimization



function f(z) is not convex, and the solution to LE:) = 0 may corresponds to a saddle point.
Furthermore, without the positive semidefinite constraint on (L), f(z) may goes to —oc as we set z
to be a multiple of the eigenvector corresponding to the negative eigenvalue.

Non-negative polynomial filters. Given a positive semidefinite energy function (L), we now
consider how the corresponding polynomial filtering operation Z}i{:o wyLFx should look like.

Recall that we assume v(L) = Udiag[y()\1), ..., 7¥(A,)]UT. By the positive semidefinite constraint,
we have ~v(A) > 0 for A € [0, 2]. Since the objective function f(z) is convex, it takes the minimum
when ( ) = =2(1 - a)y(L)z + 2a (z — x) = 0. Accordingly, the optimum z* can be derived as
o o

at+(l—a)y(M) et (1-a)y(An)
Let h(\) = m denote the exact spectral filter, and g(\) = Ziio wipA\F denote a polyno-
mial approximation of A(\) (e.g. the sufﬁx sum of h(A)’s taylor expansion). Since y(\) > 0 when
A €[0,2], wehave 0 < h(A) < W =1 for A € [0, 2]. Consequently, it is natural to assume

the polynomial filter g(\) = Ek:o wpAF also satisfies 0 < g(\) < 1.
Constraint 3.1. Assuming the energy function v(L) is positive semidefinite, a polynomial filter
g(A) = ZkK:O wi \F approximating the optimal solution to Equation (@) has to satisfy

a (oI + (1 —a)y(L) "' x = Udiag U'x. 5

K
0<g(\) = Zk:o wpA¥ <1, YA €0,2]. (6)

While Constraint[3.T|seems to be simple and intuitive, some of the existing GNN may not satisfies this
constraint. For example, GCN uses z = Px = (I — L) x, which corresponds to a polynomial filter
g(A\) = 1 — X that takes negative value when A > 1, violating Constraint As shown in [31]], the
renormalization trick P = (I + D)_l/ I+A) I+ D)_l/ ? shrinks the spectral and thus reliefs

the problem. However, g(\) may still take negative value as the maximum eigenvalue of L=I-P
is still larger than 1.

3.3 Non-negative polynomials and Bernstein basis

Constraint|3.1|motivates us to design polynomial filters g(\) = Zszo wiA¥ such that 0 < g(\) < 1
when A € ]0,2]. The g(\) < 1 part is trivial, as we can always rescale each wy, by a factor of

lef:o |wy,|2¥. The g(A\) > 0 part, however, requires more elaboration. Note that we can not simply
setwy > 0foreach k =0..., K, since it is shown in [5] that such polynomials only correspond to
low-pass filters.

As it turns out, the Bernstein basis has the following nice property: a polynomial that is non-negative
on a certain interval can always be expressed as a non-negative linear combination of Bernstein basis.
Specifically, we have the following lemma.

Lemma 3.1 ([23])). Assume a polynomial p(x) = Zf:o Or® satisﬁes p(z) > 0forxz € [0, 1]. Then
there exists a sequence of non-negative coefficients Oy, k =0, ..., K, such that

Zekbk Z%( ) x)K—kgh

Lemma suggests that to approximate a valid filter, the polynomial filter g(\) has to be a non-
negative linear combination of Bernstein basis. Specifically, by setting = A/2, the filter g()) that
satisfies g(A) > 0 for A € [0, 2] can be expressed as

o= (3) = kfje;( ()= wea

Consequently, any valid polynomial filter that approximate the optimal solution of (@) with positive
semidefinite energy function (L) has to take the following form: z = Y Or 5w (%) (21 —

L)X —*L*x. This observation motivates our BernNet from the perspective of graph optimization —
any valid polynomial filers, i.e., the g : [0,2] — [0, 1], can always be expressed by BernNet, and
accordingly, the filters learned by our BernNet are always valid.



Table 2: Average sum of squared error and R? score in parentheses.
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Figure 3: A input image and the filtering results.

(f) Comb

Low-pass High-pass Band-pass Band-rejection Comb
exp(—10A?) 1 —exp(—10A%) exp(—=10(A —1)?) 1 —exp(—10(A —1)?) | sin(m )|
GCN 3.4799(.9872)  67.6635(.2364) 25.8755(.1148) 21.0747(.9438) 50.5120(.2977)
GAT 2.3574(.9905)  21.9618(.7529) 14.4326(.4823) 12.6384(.9652) 23.1813(.6957)
GPR-GNN  0.4169(.9984) 0.0943(.9986) 3.5121(.8551) 3.7917(.9905) 4.6549(.9311)
ARMA 1.8478(.9932) 1.8632(.9793) 7.6922(.7098) 8.2732(.9782) 15.1214(.7975)
ChebNet 0.8220(.9973) 0.7867(.9903) 2.2722(.9104) 2.5296(.9934) 4.0735(.9447)
BernNet 0.0314(.9999) 0.0113(.9999) 0.0411(.9984) 0.9313(.9973) 0.9982(.9868)

4 Related Work

Graph neural networks (GNN5s) can be broadly divided into spectral-based GNNs and spatial-based
GNNs s [33].

Spectral-based GNNs design spectral graph filters in the spectral domain. ChebNet [7]] uses Chebyshev
polynomial to approximate a filter. GCN simplifies the Chebyshev filter with the first-order
approximation. GraphHeat uses heat kernel to design a graph filter. APPNP utilizes
Personalized PageRank (PPR) to set the filter weights. GPR-GNN [3] learns the polynomial filters
via gradient descent on the polynomial coefficients. ARMA [2]] learns a rational filter via the family
of Auto-Regressive Moving Average filters [21]. AdaGNN [9] learns simple filters across multiple
layers with a single parameter for each feature channel at each layer. As aforementioned, these
methods mainly focus on designing low- or high-pass filters or learning filters without any constraints,
which may lead to misspecified even ill-posed filters.

On the other hand, spatial-based GNNs directly propagate and aggregate graph information in the
spatial domain. From this perspective, GCN can be explained as the aggregation of the one-hop
neighbor information on the graph. GAT [30] uses the attention mechanism to learn aggregation
weights. Recently, Balcilar et al. [1]] bridge the gap between spectral-based and spatial-based GNNs
and unify GNNs in the same framework. Their work shows that the GNNs can be interpreted as
sophisticated data-driven filters. This motivates the design of the proposed BernNet, which can learn
arbitrary non-negative spectral filters from real-world graph signals.

5 Experiments

In this section, we conduct experiments to evaluate BernNet’s capability to learn arbitrary filters as
well as the performance of BernNet on real datasets. All the experiments are conducted on a machine
with an NVIDIA TITAN V GPU (12GB memory), Intel Xeon CPU (2.20 GHz), and 512GB of RAM.

5.1 Learning filters from the signal

We conduct an empirical analysis on 50 real images with the resolution of 100x100 from the Image
Processing Toolbox in Matlab. We conduct independent experiments on these 50 images and report
the average of the evaluation index. Following the experimental setting in [1]], we regard each image
as a 2D regular 4-neighborhood grid graph. The graph structure translates to an 10,000 x 10, 000
adjacency matrix while the pixel intensity translates to a 10, 000-dimensional signal vector.



Table 3: Dataset statistics.

Cora CiteSeer PubMed Computers Photo Chameleon Squirrel Actor Texas Cornell

Nodes 2708 3327 19717 13752 7650 22717 5201 7600 183 183
Edges 5278 4552 44324 245861 119081 31371 198353 26659 279 277
Features 1433 3703 500 767 745 2325 2089 932 1703 1703
Classes 7 6 5 10 8 5 5 5 5 5

For each of the 50 images, we apply 5 different filters (low-pass, high-pass, band-pass, band-rejection
and comb) to the spectral domain of its signal. The formula of each filter is shown in Table [2} Recall
that applying a low-pass filter exp(—10A2) to the spectral domain L = Udiag [\1,...,A,] UT
means applying Udiag [exp(—10A?),...,exp(—10A2)] U to the graph signal. Figureshows the
one of the input image and the corresponding filtering results.

In this task, we use the original graph signal as the input and the filtering signal to supervise the
training process. The goal is to minimize the square error between output and the filtering signal
by learning the correct filter. We evaluate BernNet against five popular GNN models: GCN [13],
GAT [30]], GPR-GNN [5], ARMA [2] and ChebNet [[7]]. To ensure fairness, we use two convolutional
units and a linear output layer for all models. We train all models with approximately 2k trainable
parameters and tune the hidden units to ensure they have similar parameters. Following [1]], we
discard any regularization or dropout and simply force the GNN to learn the input-output relation.
For all models, we set the maximum number of epochs to 2000 and stop the training if the loss does
not drop for 100 consecutive times and use Adam optimization with a 0.01 learning rate without
decay. Models do not use the position information of the picture pixels. We use a mask to cover
the edge nodes of the picture, so the problem can be regarded as a simple regression problem. For
BernNet, we use a two-layer model, with each layer sharing the same set of 6, for k =0, ..., K and
set K = 10. For GPR-GNN, we use the officially released code (see the supplementary materials for
URL and commit numbers) and set the order of polynomial filter K = 10. Other baseline models
are based on Pytorch Geometric implementation [11]]. The more detailed experiments setting can be
found in the Appendix.

Table [2|shows the average of the sum of squared error (lower the better) and the R? scores (higher
the better). We first observe that GCN and GAT can only handle low-pass filters, which concurs with
the theoretical analysis in [1]]. GPR-GNN, ARMA and ChebNet can learn different filters from the
signals. However, BernNet consistently outperformed these models by a large margin on all tasks
in terms of both metrics. We attribute this quality to BernNet’s ability to tune the coefficients 6 ’s,
which directly correspond to the uniformly sampled filter values.

5.2 Node classification on real-world datasets

We now evaluate the performance of BernNet against the competitors on real-world datasets. Fol-
lowing [S]], we include three citation graph Cora, CiteSeer and PubMed (27, 37]], and the Amazon
co-purchase graph Computers and Photo [20]. As shown in [3]] these 5 datasets are homophilic graphs
on which the connected nodes tend to share the same label. We also include the Wikipedia graph
Chameleon and Squirrel [26]], the Actor co-occurrence graph, and webpage graphs Texas and Cornell
from WebKBE] [22]. These 5 datasets are heterophilic datasets on which connected nodes tend to have
different labels. We summarize the statistics of these datasets in Table[3l

Following [3]], we perform full-supervised node classification task with each model, where we
randomly split the node set into train/validation/test set with ratio 60%/20%/20%. For fairness, we
generate 10 random splits by random seeds and evaluate all models on the same splits, and report the
average metric for each model.

We compare BernNet with 6 baseline models: MLP, GCN [13]], GAT [30], APPNP [14], ChebNet [7],
and GPR-GNN [3]]. For GPR-GNN, we use the officially released code (see the supplementary
materials for URL and commit numbers) and set the order of polynomial filter K = 10. For other
models, we use the corresponding Pytorch Geometric library implementations [[11]. For BernNet, we

*http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo- 11/www/wwkb/
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Figure 4: Filters learnt from real-world datasets by BernNet.

Table 4: Results on real world benchmark datasets: Mean accuracy (%) + 95% confidence interval.

GCN GAT APPNP MLP ChebNet GPR-GNN BernNet
Cora 87141101 88.031079 88.141073 76.96+095 86.67+0s2 88.57+060 88.5240095
CiteSeer 79.861067 80.521971 80471074 T76.581088 79.111075  80.121083  80.091079
PubMed 86.741007 87.041024 88.121031 85941020 87951028 884641033 88.4810.41
Computers  83.324033 83.324030 85324037 82.854+038 87.544043 86.851025 87.641044

Photo 88.261073  90.94106s 88.511031 84.724034 93.77+032 93.851028 93.631035
Chameleon 59.614251 63.134195 51.84418 46.8541151 59.284125 67.284+100 68.294158
Actor 33231116 33.934047 39.6610s55 40.1910s6 37.61+0s90 39.92 1067 41.79 1.0
Squirrel 46.78i0,37 44.49i0433 34.7li0,57 31.03i1,13 40.55i0,42 50.15i],92 51.35:(:0.73
Texas 77384328 80.824213 90984164 91454114 86224045 92954131 93124065
Cornell 65904443 78214205 91.814196 90.8241635 83934213 91371181 92131164

use the following propagation process:

7 = EK eki <K> (21 — L)E=FLE £ (X) @)
2K \ k ’
k=0

where f(X) is a 2-layer MLP with 64 hidden units on the feature matrix X. Note that this propagation
process is almost identical to that of APPNP or GPR-GNN. The only difference is that we substitute
the Generalized PageRank polynomial with Bernstein polynomial. We set the K = 10 and use
different learning rate and dropout for the linear layer and the propagation layer. For all models, we
optimal leaning rate over {0.001,0.002,0.01,0.05} and weight decay {0.0,0.0005}. More detailed
experimental settings are discussed in Appendix.

We use the micro-F1 score with a 95% confidence interval as the evaluation metric. The relevant
results are summarized in Table[d] Boldface letters indicate the best result for the given confidence
interval. We observe that BernNet provides the best results on seven out of the ten datasets. On the
other three datasets, BernNet also achieves competitive results against SOTA methods.

More interestingly, this experiment also shows BernNet can learn complex filters from real-world
datasets with only the supervision of node labels. Figure [ plots some of the filters BernNet learnt in
the training process. On Actor, BernNet learns an all-pass-alike filter, which concurs with the fact
that MLP outperforms all other baselines on this dataset. On Chameleon and Squirrel, BernNet learns
two comb-alike filters. Given that BernNet outperforms all competitors by at least 1% on these two
datasets, it may suggest that comb-alike filters are necessary for Chameleon and Squirrel. Figure [5|
shows the Coefficients 6 learnt from real-world datasets by BernNet. When comparing Figures
and [5] we observe that the curves of filters and curves of coefficients are almost the same. This is
because BernNet’s coefficients are highly correlated with the spectral property of the target filter,
which indicates BernNet Bernnet has strong interpretability.

Finally, we present the train time for each method in Table [5] BernNet is slower than other methods
due to its quadratic dependence on the degree K. However, compared to the SOTA method GPR-
GNN, the margin is generally less than 2, which is often acceptable in practice. In theory, both
ChebNet [7] and GPR-GNN [5] are linear time complexity related to propagation step K, but BernNet
is quadratic time complexity related to K. Delgado et al. [8] show that Bernstein approximation can
be evaluated in linear time related to / using the corner cutting algorithm. However, BernNet can
not use this algorithm directly, because we need to multiply signal x. How to convert BernNet to
linear complexity will be a problem worth studying in the future.
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Figure 5: Coefficients 6, learnt from real-world datasets by BernNet.
Table 5: Average running time per epoch (ms)/average total running time (s).
GCN GAT APPNP MLP ChebNet GPR-GNN BernNet
Cora 4.59/1.62  9.56/2.03  7.16/2.32 3.06/0.93  6.25/1.76 9.94/2.21 19.71/5.47
CiteSeer 4.63/1.95 9.93/2.21  7.79/2777 2.95/1.09  8.28/2.56 11.16/2.37  22.36/6.32
PubMed 5.12/1.87 16.16/3.41 8.21/2.63 2.91/1.61 18.04/3.03 10.45/2.81 22.02/8.19
Computers ~ 5.72/2.52  30.91/7.85 9.19/3.48 3.47/1.31 20.64/9.64 16.05/4.38  28.83/8.69
Photo 5.08/2.63 19.97/5.41 8.69/4.18 3.67/1.66 13.25/7.02 13.96/3.94  24.69/7.37
Chameleon 4.93/0.99 13.11/2.66 7.93/1.62 3.14/0.63 10.92/2.25 10.93/2.41 22.54/4.75
Actor 5.43/1.09 11.94/2.45 8.46/1.71 3.82/0.77  7.99/1.62 11.57/2.35  23.34/5.81
Squirrel 5.61/1.13  22.76/491 8.01/1.61 3.41/0.69 38.12/7.78 9.87/5.56 25.58/9.23
Texas 4.58/0.92  9.65/1.96  7.83/1.63 3.19/0.65 6.51/1.34 10.45/2.16  23.35/4.81
Cornell 4.83/097 9.79/1.99  8.23/1.68 3.25/0.66  5.85/1.22 9.86/2.05  22.23/5.26

6 Conclusion

This paper proposes BernNet, a graph neural network that provides a simple and intuitive mechanism
for designing and learning an arbitrary spectral filter via Bernstein polynomial approximation.
Compared to previous methods, BernNet can approximate complex filters such as band-rejection and
comb filters, and can provide better interpretability. Furthermore, the polynomial filters designed and
learned by BernNet are always valid. Experiments show that BernNet outperforms SOTA methods
in terms of effectiveness on both synthetic and real-world datasets. For future work, an interesting
direction is to improve the efficiency of BernNet.

Broader Impact

The proposed BernNet algorithm addresses the challenge of designing and learning arbitrary spectral
filters on graphs. We consider this algorithm a general technical and theoretical contribution, without
any foreseeable specific impacts. For applications in bioinformatics, computer vision, and natural
language processing, applying the BernNet algorithm may improve the performance of existing GNN
models. We leave the exploration of other potential impacts to future work.
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