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Abstract

We conduct a comprehensive investigation into the dynamics of gradient descent using large-
order constant step-sizes in the context of quadratic regression models. Within this frame-
work, we reveal that the dynamics can be encapsulated by a specific cubic map, naturally
parameterized by the step-size. Through a fine-grained bifurcation analysis concerning the
step-size parameter, we delineate five distinct training phases: (1) monotonic, (2) generalized
catapult, (3) periodic, (4) chaotic, and (5) divergent, precisely demarcating the boundaries
of each phase. As illustrations, we provide examples involving phase retrieval and two-
layer neural networks employing quadratic activation functions and constant outer-layers,
utilizing orthogonal training data. Our simulations indicate that these five phases also man-
ifest with generic non-orthogonal data. We also empirically investigate the generalization
performance when training in the various non-monotonic (and non-divergent) phases. In
particular, we observe that performing an ergodic trajectory averaging stabilizes the test
error in non-monotonic (and non-divergent) phases.

1 Introduction

Iterative algorithms like the gradient descent and its stochastic variants are widely used to train deep neural
networks. For a given step-size (or learning rate) parameter η > 0, the gradient descent algorithm is of the
form w(t+1) = w(t) − η∇ℓ(w(t)) where ℓ is the training objective function being minimized, which depends
on the loss function and the neural network architecture and the dataset. Classical optimization theory
operates under small-order step-sizes. In this regime, one can think of the gradient descent algorithm as a
discretization of so-called gradient flow equation given by ẇ(t) = −∇ℓ(w(t)), which could be obtained from
the gradient descent algorithm by letting η → 0. Additionally, assuming that the objective function ℓ has
gradients that are L-Lipschitz, selecting a step-size η < 1/L guarantees convergence to stationarity.

In stark contrast to traditional optimization, recent empirical studies in deep learning have revealed that
training deep neural networks with large-order step-sizes yields superior generalization performance. Unlike
the scenario with small step-sizes, where gradient descent dynamics follow a monotonic pattern, larger step-
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sizes introduce a more intricate behavior. Various patterns like catapult, (also related to edge of stability),
periodicity and chaotic dynamics in neural network training with large step-sizes have been observed em-
pirically, for example, by Lewkowycz et al. (2020), Jastrzebski et al. (2020), Cohen et al. (2021), Lobacheva
et al. (2021), Gilmer et al. (2022), Zhang et al. (2022), Kodryan et al. (2022), Herrmann et al. (2022). A
recent work by Sohl-Dickstein (2024) also empirically observe that the boundary between stable and diver-
gent training behaviour, in terms of hyperparameters (including the step-size parameter), exhibits a fractal
structure. Furthermore, the necessity for step-size schedules to include large-order step-sizes to expedite
convergence and the ensuing chaotic behavior has also been observed empirically outside the deep learning
community by Van Den Doel & Ascher (2012), much earlier.

Faster convergence of gradient descent with iteration-dependent step-size schedules that have specific patterns
(including cyclic and fractal patterns) has been examined empirically by Lebedev & Finogenov (1971), Smith
(2017), Oymak (2021), Agarwal et al. (2021), Goujaud et al. (2022), and Grimmer (2023), with Altschuler &
Parrilo (2023) and Grimmer et al. (2023) proving the state-of-the art remarkable results; see also Altschuler
& Parrilo (2023, Section 1.2) for a historical overview. Notably, the stated faster convergence behavior of
gradient descent requires large order step-sizes, very much violating the classical case. More importantly,
the corresponding optimization trajectory, while being non-monotonic, exhibits intriguing patterns (Van
Den Doel & Ascher, 2012).

Considering the aforementioned factors, gaining insight into the dynamics of gradient descent with large-order
step-sizes emerges as a pivotal endeavor. A precise theoretical characterizing of the gradient descent dynamics
in the large step-size regime for deep neural network, and other such non-convex models, is a formidably
challenging problem. Existing findings (as detailed in Section 1.1) often rely on strong assumptions, even
when attempting to delineate a subset of the aforementioned patterns, and do not provide a comprehensive
account of the entire narrative underlying the training dynamics. Recent research, such as Agarwala et al.
(2023), Zhu et al. (2024), and Zhu et al. (2023b), has pivoted towards comprehending the dynamics of
quadratic regression models based on a local analysis. These models offer a valuable testing ground due
to their ability to provide tractable approximations for various machine learning models, including phase
retrieval, matrix factorization, and two-layer neural networks, all of which exhibit unstable training dynamics.
Despite their seeming simplicity, a fine-grained understanding of their training dynamics is far from trivial.
Building in this direction, the primary aim of our work is to attain a precise characterization of the training
dynamics of gradient descent in quadratic models, thereby fostering a deeper comprehension of the diverse
phases involved in the training process.

Contribution 1. We perform a fine-grained, global theoretical analysis of a cubic-map-based dynam-
ical system (see Equation 2.1), and identify the precise boundaries of the following five phases: (i)
monotonic, (ii) generalized catapult, (iii) periodic, (iv) Li-Yorke chaotic, and (v) divergent. See Fig-
ure 1 for an illustration, and Definition 2 and Theorem 2.1 for formal results. We show in Theorem 3.2
and 3.3, that the dynamics of gradient descent for two non-convex statistical problems, namely phase
retrieval and two-layer neural networks with constant outer layers and quadratic activation functions,
with orthogonal training data is captured by the cubic-map-based dynamical system. We provide
empirical evidence of the presence of similar phases in training with non-orthogonal data.

We also empirically examine the effect of training models in the above-mentioned phases, in particular
the non-monotonic ones, on the generalization error. Indeed, provable model-specific statistical benefits
for training in catapult phase are studied in Lyu et al. (2022) and Ahn et al. (2022). Lim et al. (2022)
proposed to induce controlled chaos in the training trajectory to obtain better generalization. Approaches
to explain generalization with chaotic behavior are examined in Chandramoorthy et al. (2022) based on a
relaxed notion of statistical algorithmic stability. Although our focus is on gradient descent, related notions
of generalization of stochastic gradient algorithms, based on characterizing the fractal-like properties of the
invariant measure they converge to (with larger-order constant step-size choices) have been explored, for
example, in Birdal et al. (2021), Camuto et al. (2021), Dupuis et al. (2023), and Hodgkinson et al. (2022).
Hence, we also conduct empirical investigations into the performance of generalization when training within
the different non-monotonic (and non-divergent) phases and make the following contribution.
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Figure 1: Phases of cubic-map based dynamical system in (2.1) parameterized by a. Sub-figure 1(a) cor-
responds to the monotonic phases, where the dynamics monotonically decays to zero. Sub-figure 1(b)
corresponds to the generalized catapult phase where the dynamics decays to zero but is non-monotonic in a
specific manner. Sub-figure 1(c) corresponds to the periodic phase, where the dynamics decays and settles
in a period-2 orbit (i.e., shuttles between two points) but never decays to zero. Sub-figures 1(d) and 1(e)
correspond to the chaotic phase (see Definition 1) and divergent phases, respectively. Note that the order of
x-axis and y-axis in Sub-figures 1(d) and 1(e) are different from the rest.

Contribution 2. We propose a natural ergodic trajectory averaging based prediction mechanism (see
Section 4.2) to stabilize the predictions when operating in any non-monotonic (and non-divergent)
phase.

1.1 Related works

General results. Lewkowycz et al. (2020) empirically examine the catapult phase particularly in neural
networks with one hidden layer and linear activations, the phase in which the linear approximation of the
model becomes less informative. In this case, they observe that the loss does not have monotonic decrease but
eventually converges when the curvature (maximum of the eigenvalue of the Neural Tangent Kernel (Jacot
et al., 2018)) stabilizes at a value less than 2/(step-size). Similar oscillations with convergence behavior
have been also observed in Cohen et al. (2021), which empirically demonstrate that the sharpness (largest
eigenvalue of the Hessian matrix of the loss) in gradient descent on neural networks training hovers just
above the value 2/(step-size), indicating that gradient descent usually operates in the regime they call
Edge of Stability (EoS). This is also formally studied in Ahn et al. (2022). Damian et al. (2023) propose
self-stabilization as a phenomenological reason for the occurrence of catapults and EoS in gradient descent
dynamics. Kreisler et al. (2023) investigate how gradient descent monotonically decreases the sharpness
of Gradient Flow solutions, specifically in one-dimensional deep neural networks. Although they do not
formally prove the existence of chaos in the dynamics, they conjecture its possibility. Arora et al. (2022)
and Lyu et al. (2022) explore sharpness reduction flows, related to the above findings. Andriushchenko et al.
(2023) prove that large step-sizes in gradient descent can lead to the learning of sparse features. Wu et al.
(2023) investigate the EoS phenomenon for logistic regression. Kong & Tao (2020) theoretically explore the
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chaotic dynamics (and related stochasticity) in gradient descent for minimizing multi-scale functions under
additional assumptions. While being extremely insightful, their results are fairly qualitative and are not
directly applicable to the cubic maps analyzed in our work. As we focus on specific models, our results are
more precise and quantitative.

Specific Models. Zhu et al. (2023b) and Chen & Bruna (2023) studied gradient descent dynamics for
minimizing the functions ℓ(u, v) = (u2v2 − 1)2 and ℓ(u) = (u2 − 1)2, respectively. Both works primarily
focused on characterizing period-2 orbits and hint at the possibility of chaos without rigorous theoretical
justifications. Furthermore, their proofs are relatively ad-hoc and significantly different from ours. Song &
Yun (2024) provided empirical evidence of periodicity and chaos for training a fully-connected neural network
using gradient descent. However, their theoretical results are not applicable to quadratic regression models.
Ahn et al. (2024) examined the Edge of Stability (EoS) between the monotonic and catapult phase for
minimizing ℓ(u, v) = l(uv), where l is convex, even, and Lipschitz. Their analysis is not directly extendable
to the quadratic regression models we consider in this work. See also the discussion below Theorem 2.1 for
important technical comparisons. Wang et al. (2022) analyzed additional benefits (e.g., taming homogeneity)
of gradient descent with large step-sizes for matrix factorization. Ziyin et al. (2022) also studied stochastic
gradient descent with large step-sizes for the case when the loss function ℓ(u) = au2 for a ∈ R. Note in this
case that the point 0 is the minimum when a > 0. However, when a < 0, the point 0 is a maximum. In
this setup, Ziyin et al. (2022) precisely characterize the behaviour of SGD for converging to a minimum or
a maximum, in terms of the step-size parameter, initialization and the noise distribution of the stochastic
gradient.

Agarwala et al. (2023) explored gradient descent dynamics for a class of quadratic regression models and
identified the EoS. Zhu et al. (2023a;b) also studied the catapult phase and EoS for a class of quadratic
regression models. Agarwala & Dauphin (2023) examined the EoS in the context of Sharpness Aware Mini-
mization for quadratic regression models. The above works are related to our work in terms of the model that
they study. However, none of the above works characterize the five distinct phases (with precise boundaries)
like we do, along with precise boundaries. Furthermore, our analysis is distinct (and is also global1) from
the above works and is firmly grounded in the rich literature on dynamical systems.

Dynamical systems. Our results draw upon the rich literature available in the field of dynamical systems.
We refer the interested reader to Alligood et al. (1997), Lasota & Mackey (1998), Devaney (1989), Ott
(2002), and De Melo & Van Strien (2012) for a book-level introduction. Birfurcation analysis of some classes
of cubic maps has been studied, for example, by Skjolding et al. (1983), Rogers & Whitley (1983), Branner
& Hubbard (1988) and Milnor (1992). Some of the above works are rather empirical, and the exact maps
considered in the above works differ significantly from our case.

2 Analyzing a discrete dynamical system with cubic map

Notations and definitions. We say a sequence {xk}∞
k=0 is increasing (decreasing), if xt+1 ≥ xt (xt+1 ≤ xt)

for any t. Moreover, it is strictly increasing (decreasing) if the equalities never hold. For a real-valued
function f and a set S, define f(S) = {f(x) : x ∈ S}, and f (k)(x) := f(f (k−1)(x)) for any k ∈ N+ with
f (0)(x) = x. The preimage of x under f on S is the set f−1(x) := {y ∈ S : f(y) = x}. We say a property P
holds for almost every x ∈ S or almost surely in S, if the subset {x ∈ S : property P does not hold for x}
is Lebesgue measure zero. A critical point of f is a point x satisfying f ′(x) = 0. We call x0 a period-
k point of f , when f (k)(x0) = x0 and f (i)(x0) ̸= x0 for any 0 ≤ i ≤ k − 1. The orbit of a point x0
denotes the sequence {f (t)(x0)}∞

t=0. A point x0 is called asymptotically periodic if there exists a periodic
point y0 such that limt→∞ |f (t)(x0) − f (t)(y0)| = 0. The stable set of a period-k point x0 is defined as
W s(x0) :=

{
x : limn→∞ f (kn)(x) = x0.

}
.

The stable set of the orbit of a periodic point x0 is the union of the stable sets of all points in the orbit
of x0. A point x0 is an aperiodic point if it is not an asymptotically periodic point and the orbit of x0 is
bounded. We say a fixed point x0 of f is stable if, for any ϵ > 0, there is a δ > 0 such that for any x
satisfying |x − x0| < δ, we have |f (n)(x) − x0| < ϵ for all n ≥ 0. The fixed point x0 is said to be unstable

1Analysis in Wang et al. (2022) and Chen & Bruna (2023) is also global, but not applicable to our model.
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if it is not stable. The fixed point x0 is asymptotically stable if it is stable and there is an δ > 0 such that
limn→∞ f (n)(x) = x0 for all x satisfying |x−x0| < δ. A period-p point x0 and its associated periodic orbit are
asymptotically stable if x0 is an asymptotically stable fixed point of f (p). A point x0 ∈ R

⋃
{+∞, −∞}\S is

called an absorbing boundary point of S for f with period p, for some p ∈ {1, 2}, if there exists an open set
U ⊆ S such that limk→∞ f (pk)(y) → x for all y ∈ U .

We now introduce two quantities that are common in dynamical systems theory to study the stability
properties. The Schwarzian derivative of a three-times continuously differentiable function f is defined (at
non-critical points) as

Sf(x) := (f ′′′(x)/f ′(x)) − 1.5 (f ′′(x)/f ′(x))2
, where f ′(x) ̸= 0.

It is widely used for its sign-preservation property under compositions; see, for example, De Melo & Van Strien
(2012). Specifically, the stability of a fixed point is related to the sign of the Schwarzian derivative at
that point. Positive values may indicate instability, while negative values suggest stability. The Lyapunov
exponent of a given orbit with initialization x0 is defined as

Lf(x0) = lim
n→∞

1
n

n−1∑
i=1

log |f ′(xi)|.

It is another related quantity associated with the stability properties of dynamical systems and is used to
measure the sensitive dependence on initial conditions (Strogatz, 2018). Chaotic systems typically exhibit
positive Lyapunov exponents, reflecting their sensitive dependence on initial conditions. Similarly, a negative
Lyapunov exponent is a characteristic of stable systems. Finally, we also define the sharpness of a loss function
is defined as the maximum eigenvalue of the Hessian matrix of the loss.

Bifurcation analysis. Our main goal in this section is to undertake a bifurcation analysis of the following
discrete dynamics system defined by a cubic map. For a > 0, first define the functions g and f , parameterized
by a, as

ga(z) = z2 + (a − 2)z + 1 − 2a = (z + a)(z − 2) + 1 and fa(z) = zga(z). (2.1)

Next, consider the discrete dynamical system given by

zt+1 = fa(zt) = ztga(zt). (2.2)

Note that for any a, ϵ > 0 and z0 ≥ 2 + ϵ or z0 ≤ −a − ϵ, we will have limt→∞ |zt| = +∞. Hence, we
only study the case when z0 ∈ [−a, 2]. We will show in Section 3 that the dynamics of the training loss for
several quadratic regression models could be captured by (2.2). The parameter a in (2.1) for the models will
naturally correspond to the step-size of the gradient descent algorithm.

We next introduce the precise definitions of the five phase that arise in the bifurcation analysis of (2.1). To
do so, we need the following definition of chaos in the Li-Yorke sense (Li & Yorke, 1975). Li-Yorke chaos
is widely used in the study of dynamical systems and is also directly related to important measures of the
complexity of dynamical systems, like the topological entropy (Adler et al., 1965; Franzová & Smı́tal, 1991).
We also refer to Aulbach & Kieninger (2001) and Kolyada (2004) for its relationship to other notions of
chaos and related history.
Definition 1 (Li-Yorke Chaos (Li & Yorke, 1975)). Suppose we are given a function f(x). If there exists
a compact interval I such that f : I → I, then it is called Li-Yorke chaotic (Li & Yorke, 1975; Aulbach &
Kieninger, 2001) when it satisfies

• For every k = 1, 2, ... there is a periodic point in I having period-k.
• There is an uncountable set S ⊆ I (containing no periodic points), which satisfies for any p, q ∈ S with

p ̸= q, lim supt→∞ |f (t)(p)−f (t)(q)| > 0, lim inft→∞ |f (t)(p)−f (t)(q)| = 0, and for any p ∈ S and periodic
point q ∈ I, lim supn→∞ |f (t)(p) − f (t)(q)| > 0.

To define the 5 phases in particular, we consider the orbit {f (k)(x)}+∞
k=0 generated by a given function f

defined over a set I, in which the initial point x belongs to.
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(a) (b)

Figure 2: Bifurcation diagram and Lyapunov exponent. Initialization z0 = 0.1.

Definition 2. Given a function f(x) defined on a set I, we say the discrete dynamics is in the

• Monotonic phase, when {|f (k)(x)|}∞
k=0 is decreasing and limn→∞ |f (n)(x)| = 0 for almost every x ∈ I.

• Generalized2 catapult phase, when {|f (k)(x)|}∞
k=m is not decreasing for any m and limn→∞ |f (n)(x)| =

0 for almost every x ∈ I. We say such sequences have catapults.
• Periodic phase, when f is not Li-Yorke chaotic, {|f (k)(x)|}∞

k=0 is bounded and does not have a limit for
almost every x ∈ I, and there exists period-2 points in I.

• Chaotic phase, when the function f is Li-Yorke chaotic and {|f (k)(x)|}∞
k=0 is bounded for almost every

x ∈ I.
• Divergent phase3, when limn→∞ |f (n)(x)| = +∞ for almost every x ∈ I.

We emphasize here that our use of the word “phase” refers to the whole sequence {|f (k)(x)|}∞
k=0, and the

categorization is with respect to the different step-sizes. As an illustration, in Figure 1, we plot the five
phases for the parameterized function and its discrete dynamical system defined in (2.1) with initialization
1.9, i.e., xk = f

(k)
a (x0), x0 = 1.9. We have the following main result for different phases of dynamics.

Theorem 2.1. Suppose fa(z) is defined in (2.1). Define zt+1 = fa(zt) with z0 sampled uniformly at random
in (−a, 2). Then there exists a∗ ∈ (1, 2) such that the following holds.

• If a ∈ (0, 2
√

2 − 2], then almost surely limt→∞ |zt| = 0 and |zt| is decreasing, and hence the dynamics is
in the monotonic phase.

• If a ∈ (2
√

2 − 2, 1], then almost surely limt→∞ |zt| = 0 and |zt| have catapults, and hence the dynamics is
in the generalized catapult phase.

• If a ∈ (1, a∗), then there exists a period-2 point in (0, 1). zt ∈ (−a, 2) for all t. If there exists an
asymptotically stable periodic orbit, then the orbit of z0 is asymptotically periodic almost surely, and hence
the dynamics is in the periodic phase.

• If a ∈ (a∗, 2], fa is Li-Yorke chaotic. zt ∈ (−a, 2) for all t. If there exists an asymptotically stable periodic
orbit, then the orbit of z0 is asymptotically periodic almost surely, and hence the dynamics is in the chaotic
phase.

• If a ∈ (2, +∞), then limt→∞ |zt| = +∞ almost surely, and hence the dynamics is in the divergent phase.

From a pure optimization perspective, Phase 1 and 2 are the most relevant, as training loss actually mini-
mized. However, from a generalization perspective, similar to other works (Lyu et al., 2022; Lim et al., 2022;

2Here, we use the term generalized to distinguish from Lewkowycz et al. (2020) who consider the case of a single spike in
the training loss.

3We do not further sub-characterize the divergent phase as it is uninteresting.
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Chandramoorthy et al., 2022) we empirically observe that often times phases 2, 3 and 4 lead to comparatively
improved generalization for various models.

Connections with sharpness and EoS. As we will see in Section 3, the training loss and sharpness of
a special class of quadratic regression models can be written as functions of zt, and hence their dynamics
can be explicitly given by Theorem 2.1. As a byproduct of our theory, we reveal that the EoS phenomenon
happens in the catapult phase and quantify the limit that the sharpness eventually converges to, which
matches the empirical observations in Cohen et al. (2021) and Ahn et al. (2022).

As a direct application of Theorem 2.1, we have the following result characterizing the dynamics generated
by n different functions.
Corollary 1. Suppose fa(z) is defined in (2.1), and we are given 2n positive scalars ai, ρi for 1 ≤ i ≤ n.
Define z

(t+1)
i = fai(z

(t)
i ), L(z(t), ρ) =

∑n
i=1 ρi(z(t)

i )2. Then for almost all z(0) ∈ {z : −ai ≤ zi ≤ 2} we have

• If 0 < max1≤i≤n ai ≤ 1, then limt→∞ L(z(t), ρ) = 0 . Moreover, if 0 < max1≤i≤n ai ≤ 2
√

2 − 2, the
sequence {L(z(t), ρ)}∞

t=0 is decreasing.
• If 1 < max1≤i≤n ai ≤ 2, then {L(z(t), ρ)}∞

t=0 is bounded and does not converge to 0.
• If max1≤i≤n ai > 2, then limt→∞ L(z(t), ρ) = +∞.

We highlight here that even if we know from Theorem 2.1 the dynamics of each individual z
(t)
i , explicitly

characterizing the phase of L(z(t), ρ) is not trivial. To see this, we provide one simple example as follows.

S1 := {S
(n)
1 } =

{
1,

1
2 ,

1
3 ,

1
4 , ...

}
, S2 := {S

(n)
2 } =

{
1,

1
22 ,

1
32 ,

1
42 , ...

}
, S3 := {S

(n)
3 } =

{
1
2 , 1,

1
4 ,

1
3 , ...

}
,

where S3 is obtained by switching the (2i − 1)-th and 2i-th terms in S1. Sequences S1 and S2 are decreasing
to 0, and S3 is in the catapult phase. We can verify that both {S

(n)
1 +S

(n)
3 } and {S

(n)
2 +S

(n)
3 } are converging

to 0 but the former is decreasing while the latter is in the generalized catapult phase. This implies that the
summation of a decreasing sequence and a catapult sequence can be either decreasing or catapult, which
makes analyzing the dynamics of the weighted summation L(z(t), ρ) non-obvious. As we will see in Section
3.1, the above result gives the training dynamics of generalized phase retrieval and a two-layer neural network
with quadratic activation functions on n orthogonal data points.

In Figures 2(a) and 2(b) we numerically plot a bifurcation diagram for a ∈ (0, 2) and Lyapunov exponent
scatter plot with initialization z0 = 0.1. The main ingredients in proving Theorem 2.1 are the following
Lemmas 1, 2, and 3. Note that by straightforward computations, we have

f ′
a(0) = 1 − 2a ∈ (−1, 1) ⇔ a ∈ (0, 1).

This implies 0 is a asymptotically stable fixed point when a ∈ (0, 1). This type of local stability analysis
is standard in dynamical systems literature (Hale & Koçak, 2012; Strogatz, 2018), and has been used in
analyzing the training dynamics of gradient descent recently (Zhu et al., 2024; Song & Yun, 2024). However,
such results are limited to only local regions. In contrast, the following results provide a global convergence
analysis.
Lemma 1. Suppose 0 < a ≤ 1 and −a ≤ z0 ≤ 2. Then we have

• (i) −a ≤ zt ≤ 2 for any t, and fa does not have a period-2 point on [−a, 2].
• (ii) If z0 is chosen from [−a, 2] uniformly at random, then limt→∞ zt = 0 almost surely. Moreover, if

0 < a ≤ 2
√

2−2, then almost surely |zt+1| ≤ |zt| for all t. If 2
√

2−2 < a ≤ 2, then almost surely {|zt|}∞
t=0

has catapults.

Lemma 2. Suppose 1 < a ≤ 2 and −a ≤ z0 ≤ 2. Then we have

• (i) −a ≤ zt ≤ 2 for any t, and fa(z) has a period-2 point on [0, 1].
• (ii) There exists a∗ ∈ (1, 2) such that for any a ∈ (a∗, 2), fa is Li-Yorke chaotic, and for any a ∈ (1, a∗),

fa is not Li-Yorke chaotic.
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• (iii) If there exists an asymptotically stable orbit and z0 is chosen from [−a, 2] uniformly at random, then
the orbit of z0 is asymptotically periodic almost surely.

Lemma 3. Suppose a > 2. z0 is chosen from [−a, 2] uniformly at random. Then limt→∞ |zt| = +∞ almost
surely.

In Lemma 2, part (iii), we assume the existence of an asymptotically stable periodic point. Note that
such a point must have negative Lyapunov exponent (Strogatz, 2018). It is possible to obtain particular
values for a under which fa(z) has an asymptotically stable orbit. For example, a can be chosen such that
|f ′

a(p)f ′
a(q)| < 1, where p ∈ (0, 1) is a period-2 point with fa(p) = q. In Figure 2(b) we plot the Lyapunov

exponent of fa at the orbit starting from z0 = 0.1. It is interesting to explicitly characterize the set of a
values in (1, 2) such that fa(z) has an asymptotically stable periodic orbit. Furthermore, we conjecture that
a∗ defined in Lemma 2 is the smallest number a ∈ (1, 2) such that (1 − 2a)/3 is a period-3 point. The above
two problems are challenging and left as future work.

3 Applications to quadratic regression models

We now provide illustrative examples based on quadratic or second-order regression models, motivated by
the works of Zhu et al. (2024) and Agarwala et al. (2023). Specifically, we consider a generalized phase
retrieval model and training hidden-layers of 2-layer neural networks with quadratic activation function as
examples.

3.1 Example 1: Generalized phase retrieval

Single Data Point. Following Zhu et al. (2024), it is instructive to study the dynamics with a single
training sample. Consider the following optimization problem on a single data point (X, y):

min
w

{
ℓ(w) = 1

2(g(w; X) − y)2}, where g(w; X) = γ(X⊤w)2

2 + cX⊤w, (3.1)

where γ, c are arbitrary constants. The above model, with γ = 2 and, c = 0 corresponds to the classical phase
retrieval model (also called as a single-index model with quadratic link function). We refer to Jaganathan
et al. (2016) and Fannjiang & Strohmer (2020) for an overview, importance and applications of the phase
retrieval model. We would like to point out that the analysis of seemingly simple models is already non-
trivial and has been done in various ways. For example, single-data-point setting (Zhu et al., 2024; Song
& Yun, 2024), simple-model setting (Lobacheva et al., 2021; Ahn et al., 2024; Kodryan et al., 2022; Zhu
et al., 2023b; Chen & Bruna, 2023; Zhu et al., 2023a), etc. Different from existing works that mostly focus
on asymptotic or local analysis that only hold when certain quantities are sufficiently large or small (small
step-sizes (Lobacheva et al., 2021; Ahn et al., 2024; Zhu et al., 2023b), large network size (Zhu et al., 2024;
2023a)), in the following result we provide a refined global analysis on solving (3.1) that does not contain
any big-O notation.
Theorem 3.1. Suppose we run gradient descent on (3.1) with step-size to be η. Define

e(t) := g(w(t); X) − y, zt := ηγ ∥X∥2
e(t), a =

(
γy + c2

2

)
η ∥X∥2

. (3.2)

Then we have (i) zt+1 = fa(zt) and thus Theorem 2.1 holds for fa and zt; (ii) The sharpness is given by
λmax(∇2ℓ(w(t))) = 3zt+2a

η .

Comparison with existing results. An interesting conclusion from the above theorem is that, under
certain cases the step-size η should depend on the model initialization. For example when e(0) > 0 then we
should have ηγ ∥X∥2

e(0) = z0 < 2, since for z0 > 2 we have limt→ |zt| = ∞ (see, e.g., discussions under
(2.2)). Note that Zhu et al. (2024) studied a related neural quadratic model (see their Eq. (3)). Here, we
highlight that their results do not cover our case. Indeed, defining ηcrit = 2/λmax(∇2ℓ(w(0))), according
to their claim, catapults happen when ηcrit < η < 2ηcrit. In our notation, this condition is equivalent to
2 < 3z0 + 2a < 4. However this cannot happen because if the initialization z0 is sufficiently small, say
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z0 = O(ϵ), then we know the previous condition become 1 − O(ϵ) < a < 2 − O(ϵ). However, according to
Lemmas 1 and 2, we have that for 1 < a < 2 the training dynamics is in the periodic or the chaotic phase
and zt (and thus the loss function) will not converge to 0. Our theory (Lemma 1) suggests that catapults
for quadratic regression model happens for almost every z0 ∈ (−a, 2) provided that 2

√
2 − 2 < a ≤ 1. This

intricate observation reveals that extending the current results on the catapult phenomenon from the model
in Zhu et al. (2024) to our setting is not immediate and is actually highly non-trivial.

Relationship with Sharpness and EoS. We also notice that, interestingly, in the monotonic and catapult
phases (i.e., 0 < a ≤ 1), we have the limiting sharpness satisfy limt→∞ λmax(∇2ℓ(w(t))) = 2a/η = (2γy +
c2) ∥X∥2

. In particular, for the catapult phase (2
√

2−2 < a ≤ 1) the sharpness converges to 2a
η ∈ ( 4

√
2−4
η , 2

η ],
which theoretically and quantitatively explains the empirical observations of EoS in Cohen et al. (2021). More
importantly, the notion of EoS only provides a coarse characterization of the oscillations of the limiting
sharpness at the interface of the monotonic and catapult phase. For the quadratic models that we study,
the limiting sharpness exhibits a more nuanced behaviour as identify in Theorem 3.1, while also recovering
and extending existing results on EoS.

Multiple Orthogonal Data Points. We now consider gradient descent on quadratic regression on
multiple data points that are mutually orthogonal. Suppose we are given a dataset {(Xi, yi)}n

i=1 with
X = (X1, ..., Xn)⊤ satisfying XX⊤ = diag(∥X1∥2

, ..., ∥Xn∥2). Similar orthogonality conditions are widely
used in the literature on sparse linear regression to understand the optimization or statistical properties (Tib-
shirani, 1996; Yuan & Lin, 2006). Consider the optimization problem

min
w

ℓ(w) := 1
n

n∑
i=1

ℓi(w) = 1
2n

n∑
i=1

(g(w; Xi) − yi)2
, (3.3)

where ℓi(w) and g(w; Xi) are as defined in (3.1).
Theorem 3.2. Define the following:

α(t)(Xi) := c(Xi) + γX⊤
i w(t), β(Xi) := yi + (c(Xi))2

2γ
, κn(Xi) := ηγ ∥Xi∥2

n
,

e(t)(Xi) := g(w(t); Xi) − yi, z
(t)
i = κn(Xi)e(t)(Xi), ai = β(Xi)κn(Xi).

If we run gradient descent on solving (3.3) with step-size η, then we have (i) z
(t+1)
i = fai(z

(t)
i ) and thus

Theorem 2.1 hols for fai and z
(t)
i . (ii) The sharpness λmax(∇2ℓ(w(t))) = max1≤i≤n

3z
(t)
i

+2ai

η .

For this setup, the above theorem shows that the loss function is a summation of the loss on each individual
data point. Recall that the training loss takes the form

ℓ(w(t)) = 1
2n

n∑
i=1

(
g(w(t); Xi) − yi

)2
= 1

2n

n∑
i=1

(z(t)
i )2

κ2
n(Xi)

=
n∑

i=1

n(z(t)
i )2

2η2γ2 ∥Xi∥4 .

Setting ρi = n
2η2γ2∥Xi∥4 , we can deduce that the dynamics of ℓ(w(t)) is given by Corollary 1. This leads to

the following Corollary.
Corollary 2. Under the setup in Theorem 3.2, for almost all z(0) ∈ {z : −ai ≤ zi ≤ 2} we have

• If 0 < max1≤i≤n ai ≤ 1, then limt→∞ ℓ(w(t)) = 0 . Moreover, if 0 < max1≤i≤n ai ≤ 2
√

2 − 2, the sequence
{ℓ(w(t))}∞

t=0 is decreasing.
• If 1 < max1≤i≤n ai ≤ 2, then {ℓ(w(t))}∞

t=0 is bounded and does not converge to 0.
• If max1≤i≤n ai > 2, then limt→∞ ℓ(w(t)) = +∞.

Under the orthogonality assumption, the loss functions defined on each data point exhibit a non-interacting
behavior. Removing this orthogonality condition entirely is highly non-trivial. It would be interesting to
extend our setting to the nearly-orthogonal one in Frei et al. (2022), and Kou et al. (2023).
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3.2 Example 2: Neural network with quadratic activation

In this section, we consider the following two layer neural networks with its loss function on data point
(Xi, yi) defined as:

g(u, v; Xi) = 1√
m

m∑
j=1

vjσ
( 1√

d
u⊤

j Xi

)
, ℓi = 1

2 (g(u, v; Xi) − yi)2

where the hidden-layer weights ui ∈ Rd are to be trained and outer-layer weights vi ∈ R are held constant,
which corresponds to the feature-learning setting for neural networks. Also m is the width of the hidden
layer and σ is the activation function. Define U := (u1, ..., um). When the activation function is quadratic
and vi = 1 for all i, the loss function becomes

min
U

ℓ(U) := 1
n

n∑
j=1

ℓj(U) = 1
2n

n∑
j=1

( 1√
md

m∑
i=1

(X⊤
j ui)2 − yj

)2
. (3.4)

As in the previous example, we assume XX⊤ = diag(∥X1∥2
, ..., ∥Xn∥2). We then have the following result

on the gradient descent dynamics of the above problem.
Theorem 3.3. Define the following:

e
(t)
i = 1√

md

m∑
j=1

(X⊤
i u

(t)
j )2 − yi, z

(t)
i = 2η ∥Xi∥2

e
(t)
i√

mdn
, ai = 2η ∥Xi∥2

yi√
mdn

If we run gradient descent on solving problem (3.4) with step-size η, we have z
(t+1)
i = fai

(z(t)
i ) and thus

Theorem 2.1 and Corollary 2 hold for ℓ(U(t)).

The orthogonal assumption that XX⊤ = diag(∥X1∥2
, ..., ∥Xn∥2), helps decouple the loss function across the

samples and makes the evolution of the overall loss non-interacting (across the training samples). In order to
relax this assumption, it is required to analyze bifurcation analysis of interacting dynamical systems, which
is extremely challenging and not well-explored (Xu et al., 2021). In Section C.2, we present empirical results
showing that similar phases exists in the general non-orthogonal setting as well. Theoretically characterizing
this is left as an open problem.

4 Experimental investigations

Before we proceed, we remark that the original PDF files for all the figures are provided as a part of the
supplementary material for the sake of easier visualization. The naming convention is as follows: (i) each sub-
folder correspond to the respective figure numbers and (ii) each file within a sub-folder is named according to
matrix conventions. For e.g., file 1x3.pdf in sub-folder Figure 1 corresponds to Figure 1(c), and file 1x1.pdf
in sub-folder Figure 3 corresponds to Figure 3.

4.1 Gradient descent dynamics with orthogonal data for model (3.4)

Experimental setup. We now conduct experiments to evaluate the developed theory. We consider gradient
descent for training the hidden layers of a two-layer neural network with orthogonal training data, described in
Section 3.2. Recall that d, m, and n represents the dimension, hidden-layer width, and number of data points
respectively. We set d = 100, m ∈ {5, 10, 25}, n = 80. We generate the ground-truth matrix U∗ ∈ Rd×m

where each entry is sampled from the standard normal distribution. The training data points collected in
the data matrix, denoted as X ∈ Rn×d, are the first n rows of a randomly generated orthogonal matrix. The
labels are generated via the model in Section 3.2, i.e., yi = 1√

md

∑m
j=1

(
X⊤

i uj

)2 + εi where εi is scalar noise
sampled from a zero-mean normal distribution, with variances equal to 0, 0.25, 1 in different experiments.

We set the step-size η such that max1≤i≤n ai defined in Theorem 3.2 belongs to the intervals of the first
four phases. In particular, we choose 0.3, 0.9, 1, 1.2, 1.8 for m = 5, 10 and 0.3, 0.9, 1, 1.2, 1.6 for m = 25

10
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Figure 3: Test loss with and without averaging: The chaotic versions of purple and red lines correspond to the
test error without averaging. The corresponding smooth versions refer to the test error with averaging. The
plot demonstrates the benefit of ergodic trajectory averaging based predictions (according to Definition 3),
as the averaging based predictions become more stable across the iterations. Numbers 3, 4 denote different
stepsize choices (see Section 4.2 for details).

(for each m, 0.9 and 1 are both in the catapult phase, and we pick 1 since it is the largest step-size choice
allowed in the catapult phase). The numbers 0, 1, 2, 3, 4 of the plot labels correspond to these step-size
choices respectively. In Figure 4 we present the training loss curves in log scale and the sharpness curves for
m = 25. The horizontal axes denote the number of steps of gradient descent. In Section C.1, we also provide
additional simulation results for different hidden-layer widths. From the training loss curves (left column)
and the sharpness curves (middle column) we can clearly observe the four phases4 thereby confirming our
theoretical results.

4.2 Prediction based on ergodic trajectory averaging

A main take-away from our analysis and experiments so far is that gradient descent with large step-size effec-
tively resembles a randomized gradient descent procedure with a special type of noise, i.e., the randomness
here is with respect to the orbit it converges to (in the non-monotonic phases).5 Recall that this viewpoint
is also put-forward is several works, in particular Kong & Tao (2020). Hence, a natural approach is to do
perform ergodic trajectory averaging to reduce the fluctuations (see right column in Figure 4).
Definition 3. For any given point X ∈ Rd, and any training iteration count t, the ergodic trajectory
averaging based prediction, ŷ, for the point X is given by ŷ := 1

t

∑t
i=1 g(w(i); X), where w(i) corresponds to

the training trajectory of the gradient descent algorithm trained with step-size η.

Another way to think about the above prediction strategy is that the ergodic average approximates, in the
limit, expectation with respect to the invariant distribution (supported on the orbit to which the trajectory
converges to). In particular, Figure 4 right column, for the orthogonal setup, we see that as the noise
increases, training in the chaotic regime and performing ergodic trajectory averaging provides a fast decay
of training loss. A disadvantage of the ergodic averaging based prediction strategy described above is the
test-time computational cost increases by O(t), per test point.

Figure 3 plots the testing loss for the model in (3.4), when trained with two values of large step-sizes
(η = 48, 60). We observe that the ergodic trajectory averaging prediction smooths out the more chaotic
testing loss. However, we also remark that from the plots in Figure 106, operating with slightly smaller
step-size choice (η = 36) achieves the best testing error curves. See Section C.2 for additional observations.

4Here, we do not plot the divergent phase here for simplicity.
5One way to show this formally is by connecting large step-size GD with slow-fast deterministic systems; see, for exam-

ple, Chevyrev et al. (2020); Lim et al. (2022).
6Figure 10 provides a detailed comparison across various step-sizes, for different noise variances.
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Figure 4: Hidden layer width = 25, with orthogonal data points. Rows from top to bottom represent different
levels of noise – mean-zero normal distribution with variance 0, 0.25, 1 respectively. The vertical axes are in
log scale for the training loss curves. The second column is about the sharpness of the training loss functions.
Numbers 0, 1, 2, 3, 4 denote different stepsize choices (see Section 4.1 for details).

In the literature, ways of artificially inducing controlled chaos in the gradient descent trajectory has been
proposed to obtain improved testing accuracy; see, for example, Lim et al. (2022). We believe the ergodic
trajectory averaging based prediction methodology discussed above may prove to be fruitful to stabilize the
testing loss in such cases as well. A detailed investigation of provable benefits of the ergodic trajectory
averaging predictor, is beyond the scope of the current work, and we leave it as intriguing future work.

Additional Experiments. We also provide the following additional simulation results in the appendix:
(i) Section C.2 corresponds to non-orthogonal training data. We also include testing loss plots, and (ii)
Section C.3 corresponds to training the hidden-layer weights of a two-layer neural network with ReLU
activation functions and non-orthogonal inputs.

Take-away points from experiments. The main take-away points from the above experiments are the fol-
lowing: (i) in the case of orthogonal data, the experiments confirm the theoretical results in Section 3, (ii)
in the case of non-orthogonal data, the experiments show that similar phases (including the chaotic phases)
exists in the training dynamics, and (iii) ergodic averaging based prediction stabilizes the test error along
the GD trajectory.
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5 Conclusion

Unstable and chaotic behavior is frequently observed when training deep neural networks with large-order
step-sizes. Motivated by this, we presented a fine-grained theoretical analysis of a cubic-map based dynamical
system. We show that the gradient descent dynamics is fully captured by this dynamical system, when
training the hidden layers of a two-layer neural networks with quadratic activation functions with orthogonal
training data. Our analysis shows that for this class of models, as the step-size of the gradient descent
increases, the gradient descent trajectory has five distinct phases (from being monotonic to chaotic and
eventually divergent). We also provide empirical evidence that show similar behavior occurs for generic
non-orthogonal data. Our results also indicate a subtle interplay on the relation between step-size and
the initialization provided to the gradient descent algorithm in terms determining which phase the training
trajectory will operate in. Finally, we empirically examined the impact of training in the different phases,
on the generalization error.

Immediate future works include: (i) developing a theoretical characterization of the training dynamics with
generic non-orthogonal training data, which involves undertaking non-trivial bifurcation analysis of interact-
ing dynamical systems, (ii) moving beyond quadratic activation functions and two-layer neural networks, and
(iii) developing tight generalization bounds when training with large-order step-sizes. Overall, our contribu-
tions make concrete steps towards developing a fine-grained understanding of the gradient descent dynamics
when training neural networks with iterative first-order optimization algorithms with large step-sizes.
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Jack K Hale and Hüseyin Koçak. Dynamics and bifurcations, volume 3. Springer Science & Business Media,
2012.

Luis Herrmann, Maximilian Granz, and Tim Landgraf. Chaotic dynamics are intrinsic to neural network
training with SGD. In Advances in Neural Information Processing Systems, 2022.

Liam Hodgkinson, Umut Simsekli, Rajiv Khanna, and Michael Mahoney. Generalization bounds using lower
tail exponents in stochastic optimizers. In Proceedings of the 39th International Conference on Machine
Learning, pp. 8774–8795, 2022.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. Advances in neural information processing systems, 31, 2018.

Kishore Jaganathan, Yonina C Eldar, and Babak Hassibi. Phase retrieval: An overview of recent develop-
ments. Optical Compressive Imaging, pp. 279–312, 2016.

Stanislaw Jastrzebski, Maciej Szymczak, Stanislav Fort, Devansh Arpit, Jacek Tabor, Kyunghyun Cho, and
Krzysztof Geras. The break-even point on optimization trajectories of deep neural networks. In The 8th

International Conference on Learning Representations, 2020.

Maxim Kodryan, Ekaterina Lobacheva, Maksim Nakhodnov, and Dmitry P Vetrov. Training scale-invariant
neural networks on the sphere can happen in three regimes. Advances in Neural Information Processing
Systems, 35:14058–14070, 2022.

Sergiı Kolyada. Li-Yorke sensitivity and other concepts of chaos. Ukrainian Mathematical Journal, 56(8),
2004.

Lingkai Kong and Molei Tao. Stochasticity of deterministic gradient descent: Large learning rate for multi-
scale objective function. Advances in Neural Information Processing Systems, 33:2625–2638, 2020.

Yiwen Kou, Zixiang Chen, and Quanquan Gu. Implicit bias of gradient descent for two-layer relu and leaky
relu networks on nearly-orthogonal data. arXiv preprint arXiv:2310.18935, 2023.

Itai Kreisler, Mor Shpigel Nacson, Daniel Soudry, and Yair Carmon. Gradient descent monotonically de-
creases the sharpness of gradient flow solutions in scalar networks and beyond. In Proceedings of the 40th

International Conference on Machine Learning, 2023.

Andrzej Lasota and Michael C Mackey. Chaos, fractals, and noise: stochastic aspects of dynamics, volume 97.
Springer Science & Business Media, 1998.

VI Lebedev and SA Finogenov. Ordering of the iterative parameters in the cyclical Chebyshev iterative
method. USSR Computational Mathematics and Mathematical Physics, 11(2):155–170, 1971.

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The large learning
rate phase of deep learning: The catapult mechanism. preprint arXiv:2003.02218, 2020.

Tien-Yien Li and James A Yorke. Period three implies chaos. The American Mathematical Monthly, 82(10):
985–992, 1975.

Soon Hoe Lim, Yijun Wan, and Umut Simsekli. Chaotic regularization and heavy-tailed limits for determin-
istic gradient descent. Advances in Neural Information Processing Systems, 35:26590–26602, 2022.

Ekaterina Lobacheva, Maxim Kodryan, Nadezhda Chirkova, Andrey Malinin, and Dmitry P. Vetrov. On the
periodic behavior of neural network training with batch normalization and weight decay. In Advances in
Neural Information Processing Systems, 2021.

Kaifeng Lyu, Zhiyuan Li, and Sanjeev Arora. Understanding the generalization benefit of normalization
layers: Sharpness reduction. Advances in Neural Information Processing Systems, 35:34689–34708, 2022.

John Milnor. Remarks on iterated cubic maps. Experimental Mathematics, 1(1):5–24, 1992.

15



Published in Transactions on Machine Learning Research (04/2024)

Helena Engelina Nusse. Asymptotically periodic behaviour in the dynamics of chaotic mappings. SIAM
Journal on Applied Mathematics, 47(3):498–515, 1987.

Edward Ott. Chaos in dynamical systems. Cambridge university press, 2002.

Samet Oymak. Provable super-convergence with a large cyclical learning rate. IEEE Signal Processing
Letters, 28:1645–1649, 2021.

Thomas D Rogers and David C Whitley. Chaos in the cubic mapping. Mathematical Modelling, 4(1):9–25,
1983.

David Singer. Stable orbits and bifurcation of maps of the interval. SIAM Journal on Applied Mathematics,
35(2):260–267, 1978.

Henrik Skjolding, Bodil Branner-Jørgensen, Peter L Christiansen, and Helge E Jensen. Bifurcations in
discrete dynamical systems with cubic maps. SIAM Journal on Applied Mathematics, 43(3):520–534,
1983.

Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter conference on
applications of computer vision (WACV), pp. 464–472. IEEE, 2017.

Jascha Sohl-Dickstein. The boundary of neural network trainability is fractal. arXiv preprint
arXiv:2402.06184, 2024.

Minhak Song and Chulhee Yun. Trajectory alignment: Understanding the edge of stability phenomenon via
bifurcation theory. Advances in Neural Information Processing Systems, 36, 2024.

Steven H Strogatz. Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and
engineering. CRC press, 2018.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 58(1):267–288, 1996.

Kees Van Den Doel and Uri Ascher. The chaotic nature of faster gradient descent methods. Journal of
Scientific Computing, 51:560–581, 2012.

Yuqing Wang, Minshuo Chen, Tuo Zhao, and Molei Tao. Large learning rate tames homogeneity: Conver-
gence and balancing effect. In The 10th International Conference on Learning Representations, 2022.

Jingfeng Wu, Vladimir Braverman, and Jason D Lee. Implicit bias of gradient descent for logistic regression
at the edge of stability. preprint arXiv:2305.11788, 2023.

Can Xu, Xuan Wang, Zhigang Zheng, and Zongkai Cai. Stability and bifurcation of collective dynamics in
phase oscillator populations with general coupling. Physical Review E, 103(3):032307, 2021.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal of the
Royal Statistical Society Series B: Statistical Methodology, 68(1):49–67, 2006.

Jingzhao Zhang, Haochuan Li, Suvrit Sra, and Ali Jadbabaie. Neural network weights do not converge to
stationary points: An invariant measure perspective. In Proceedings of the 39th International Conference
on Machine Learning, pp. 26330–26346, 2022.

Libin Zhu, Chaoyue Liu, Adityanarayanan Radhakrishnan, and Mikhail Belkin. Catapults in SGD: Spikes in
the training loss and their impact on generalization through feature learning. preprint arXiv:2306.04815,
2023a.

Libin Zhu, Chaoyue Liu, Adityanarayanan Radhakrishnan, and Mikhail Belkin. Quadratic models for under-
standing neural network dynamics. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=PvJnX3dwsD.

16

https://openreview.net/forum?id=PvJnX3dwsD


Published in Transactions on Machine Learning Research (04/2024)

Xingyu Zhu, Zixuan Wang, Xiang Wang, Mo Zhou, and Rong Ge. Understanding edge-of-stability training
dynamics with a minimalist example. In The 11th International Conference on Learning Representations,
2023b.

Liu Ziyin, Botao Li, James B Simon, and Masahito Ueda. SGD with a Constant Large Learning Rate
Can Converge to Local Maxima. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=9XhPLAjjRB.

17

https://openreview.net/forum?id=9XhPLAjjRB


Published in Transactions on Machine Learning Research (04/2024)

Supplementary Material for “From Stability to Chaos: Analyzing Gradient
Descent Dynamics in Quadratic Regression”

A Proofs of Main Results

A.1 Proofs of results in Section 2

We first present several technical results required to prove our main results.
Lemma 4. Let f(x) be a polynomial. If all the roots of f ′(x) are real and distinct, then we have

Sf(x) = f ′′′(x)
f ′(x) − 3

2

(
f ′′(x)
f ′(x)

)2
< 0 for all x ∈ I with f ′(x) ̸= 0.

Proof. See, e.g., the proof of Proposition 11.2 in Devaney (1989).

Lemma 5. Suppose we are given a real-valued continuous function f(x) : R → R and a bounded closed
interval I ⊆ R with x0 ∈ I. Define xk := f (k)(x0). If the sequence {xk}∞

k=0 is monotonic, then one of the
following holds.

• (i) {xk}∞
k=0 ⊊ I, i.e., there exists xt /∈ I for some t.

• (ii) {xk}∞
k=0 ⊆ I, and limt→∞ f (t)(x0) exists and is a fixed point of f(x) in I.

Proof. If (i) holds, then the conclusion is true. When (i) does not hold, then {xk}∞
k=0 ⊆ I. Since this sequence

is monotonic and included in a bounded closed interval, we know its limit exists and is in I. Moreover, we
have

lim
t→∞

xt = lim
t→∞

xt+1 = lim
t→∞

f(xt) = f( lim
t→∞

xt),

where the last equality holds since f is continuous. Clearly limt→∞ xt is a fixed point of f .

The following lemma characterizes the basic properties of the cubic function fa defined in (2.1).
Lemma 6. Suppose a > 0. Then fa(z) has the following properties.

• (i) The local minimum and maximum of fa(z) are at z = 1 and z = 1−2a
3 respectively, and

fa(1) = −a, fa

(
1 − 2a

3

)
= (2a − 1)(2a2 + 7a − 4)

27 = 4a3 + 12a2 − 15a + 4
27 .

• (ii) fa(z) is monotonically increasing on [−a, 1−2a
3 ], monotonically decreasing on [ 1−2a

3 , 1], and
monotonically increasing on [1, 2].

• (iii) For any −a ≤ z ≤ 2, we have −a ≤ fa(z) ≤ max
{

fa

( 1−2a
3
)

, 2
}

. Moreover, fa

( 1−2a
3
)

≤ 2 if
and only if a ≤ 2.

Proof. Note that we have

f ′
a(z) = 3z2 + 2(a − 2)z + (1 − 2a) = (z − 1)(3z + 2a − 1). (A.1)

which implies 1 and 1−2a
3 are critical points of fa(z). Moreover, by f ′′

a (z) = 6z + 2a − 4 we know f ′′
a (1) > 0

and f ′′
a ( 1−2a

3 ) < 0. Hence, they are local minimum and maximum respectively. The rest of (i) is true by
calculation. (ii) is true by noticing the expression of f ′

a(z) in (A.1). (iii) is a direct conclusion of (i) and (ii)
since for −a ≤ z ≤ 2 we have

−a = min {fa(1), fa(−a)} ≤ fa(z) ≤ max
{

fa

(
1 − 2a

3

)
, fa(2)

}
.
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By (i) and some calculation we know

fa

(
1 − 2a

3

)
− 2 = 4a3 + 12a2 − 15a − 50

27 = (2a + 5)2(a − 2)
27 .

This proves the rest of (iii).

Lemma 7. Suppose 2
√

2 − 2 < a ≤ 1. Define five subintervals of [−a, 2] as follows.

I1 =
[

−a,
2 − a −

√
a2 + 4a

2

]
, I2 =

[
2 − a −

√
a2 + 4a

2 , 0
]

,

I3 = [0, 0.25] , I4 =
[

0.25,
2 − a +

√
a2 + 4a

2

]
, I5 =

[
2 − a +

√
a2 + 4a

2 , 2
]

.

Then we have

• (i) fa(I1) ⊆ I1 = I2, fa(I4) = I1 ∪ I2, fa(I5) = I3 ∪ I4 ∪ I5.

• (ii) fa(I2) ⊆ I3, fa(I3) ⊆ I2.

Proof. We first prove (i). By Lemma 6 we know fa(z) is increasing on I1, achieving its local minimum at
z = 1 on I4, increasing on I5, then we know

fa(I1) =
[

fa(−a), fa

(
2 − a −

√
a2 + 4a

2

)]
= [−a, 0] = I1 ∪ I2.

fa(I4) =
[

fa(1), max
{

fa(0.25), fa

(
2 − a +

√
a2 + 4a

2

)}]
= [−a, 0] = I1 ∪ I2.

fa(I5) =
[

fa

(
2 − a +

√
a2 + 4a

2

)
, fa(2)

]
= [0, 2] = I3 ∪ I4 ∪ I5.

This completes the proof of (i).

To prove (ii), observe that when a ∈ (2
√

2 − 2, 1] we have 2−a−
√

a2+4a
2 < 1−2a

3 < 0. By Lemma 6 we know
the local maximum of fa over I2 =

[
2−a−

√
a2+4a

2 , 0
]

is achieved at 1−2a
3 , this together with the fact that

fa(0) = fa

(
2−a−

√
a2+4a

2

)
= 0 implies

fa (I2) =
[
fa(0), fa

(
1 − 2a

3

)]
=
[
0,

4a3 + 12a2 − 15a + 4
27

]
⊆ [0, 0.25],

where the last subset inclusion is true since

(4a3 + 12a2 − 15a + 4)′ = 12a2 + 24a − 15 > 0, ∀a ∈ (2
√

2 − 2, 1].

This implies when a ∈ (2
√

2 − 2, 1],

4a3 + 12a2 − 15a + 4
27 ≤ (4a3 + 12a2 − 15a + 4)|a=1

27 = 5
27 < 0.25.

On the other hand, we know from Lemma 6 that on I3 = [0, 0.25](⊆
[ 1−2a

3 , 1
]
) fa is decreasing. Hence,

fa(I3) = [fa(0.25), fa(0)] =
[
− 7

16a + 9
16 , 0

]
⊆

[
2 − a −

√
a2 + 4a

2 , 0
]

= I2.
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where the last subset inclusion is true since

fa(0.25) = − 7
16a + 9

16 >
2 − a −

√
a2 + 4a

2 , ∀a ∈ (2
√

2 − 2, 1].

This completes the proof of (ii).

See Figure 5(a) for a visualization of the subintervals I1, ..., I5 for a = 1 and an example of the orbit on it.
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Figure 5: From left to right: cubic function f1(z) with different regions diveded by subintervals and a
trajectory of {zi}5

i=0, cubic function f1.2(z) with two period-2 point, cubic function f1.6(z) with a period-
3 point, and cubic function f2.1(z) with a diverging orbit. We have the cubic curve and the identical
mapping line as the solid curves. We use four colored dashed lines in Figure 5(a) to represent the boundaries
that are orthogonal to the endpoints of I2 and I4 defined in Lemma 7 respectively. The triangle markers
represent some terms of a certain orbit, in which horizontal and vertical dotted lines visualize the transitioning
trajectory between consecutive terms in an orbit.

Lemma 8. Suppose 0 < a ≤ 1 and −a ≤ z0 ≤ 2. Then we have

• (i) −a ≤ zt ≤ 2 for any t, and fa does not have a period-2 point on [−a, 2].

• (ii) If z0 is chosen from [−a, 2] uniformly at random, then limt→∞ zt = 0 almost surely. Moreover,
if 0 < a ≤ 2

√
2 − 2, then almost surely |zt+1| ≤ |zt| for all t. If 2

√
2 − 2 < a ≤ 2, then almost surely

{|zt|}∞
t=0 has catapults.

Proof. The boundedness of each iterate (i.e., zt ∈ [−a, 2]) can be proved by using simple induction and
Lemma 6, 0 < a ≤ 1, and −a ≤ z0 ≤ 2. To prove the rest of (i), by (2.1) we know a period-2 point is a
solution of

f (2)
a (z) = z, fa(z) ̸= z

which are equivalent to

ga(z)ga(zga(z)) = 1, z /∈ {−a, 0, 2}. (A.2)

Hence it suffices to prove (A.2) do not have a solution. Define

ha(z) = ga(z) − 1 = (z + a)(z − 2) < 0, ∀z ∈ (−a, 2).

We have

ga(z)ga(zga(z)) − 1
=ha(z) + ha(z)ha(zga(z)) + ha(zga(z))
=ha(z)(1 + ha(zga(z))) + (z + a + zha(z))(z − 2 + zha(z))
=ha(z)(1 + ha(zga(z))) + ha(z) + (z(z − 2) + z(z + a))ha(z) + z2h2

a(z)
=ha(z)(ha(zga(z)) + z2ha(z) + 2z2 + (a − 2)z + 2). (A.3)
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We have

ha(zga(z)) + z2ha(z) + 2z2 + (a − 2)z + 2
=(zga(z) + a)(zga(z) − 2) + z2(z + a)(z − 2) + 2z2 + (a − 2)z + 2
=z2(z2 + (a − 2)z + 1 − 2a)2 + (a − 2)z(z2 + (a − 2)z + 1 − 2a) − 2a

+ z2(z + a)(z − 2) + 2z2 + (a − 2)z + 2
=z6 + (2a − 4)z5 + (a2 − 8a + 7)z4 − (4a2 − 12a + 8)z3 + (5a2 − 10a + 7)z2

− (2a2 − 6a + 4)z + 2 − 2a

=(z2 + (a − 1)z + 1 − a)(z4 + (a − 3)z3 + (3 − 3a)z2 + (2a − 2)z + 2). (A.4)

Observe that

z2 + (a − 1)z + (1 − a) ≥ (1 − a) − (a − 1)2

4 = (3 + a)(1 − a)
4 ≥ 0, ∀a ∈ (0, 1]. (A.5)

The equalities hold if and only if z = 0, a = 1. We also have

z4 + (a − 3)z3 + (3 − 3a)z2 + (2a − 2)z + 2 > 0, ∀z ∈ {0, 1, 2}
z4 + (a − 3)z3 + (3 − 3a)z2 + (2a − 2)z + 2

=z(z − 1)(z − 2)
(

a + z + 1
z

+ 1
z2 − 3z + 2

)
, ∀z /∈ {0, 1, 2}.

For different z we can verify the following inequalities via basic algebra or Young’s inequality:

z(z − 1)(z − 2) < 0,

(
a + z + 1

z
+ 1

z2 − 3z + 2

)
< 1 + 2 + 1

2 + 1
−0.25 < 0, ∀z ∈ (1, 2).

z(z − 1)(z − 2) > 0,

(
a + z + 1

z
+ 1

z2 − 3z + 2

)
> 0 + 1 + 1 + 0 > 0, ∀z ∈ (0, 1).

z(z − 1)(z − 2) < 0,

(
a + z + 1

z
+ 1

z2 − 3z + 2

)
< 1 − 1 − 1 + 1

2 < 0, ∀z ∈ (−a, 0).

Thus we may conclude that

z4 + (a − 3)z3 + (3 − 3a)z2 + (2a − 2)z + 2 > 0, ∀z ∈ (−a, 2). (A.6)

By (A.3), (A.4), (A.5), (A.6), we know ga(z)ga(zga(z)) − 1 ̸= 0 if z /∈ {−a, 0, 2}. Hence fa does not have a
period-2 point on [−a, 2].

To prove the first part in (ii) (the limit converges to 0 almost surely), we will prove

(1) lim
t→∞

zt ∈ {−a, 0, 2}, (2) The set S such that the orbit with z0 ∈ S has measure 0. (A.7)

We now consider two cases – a ∈ (0, 2
√

2 − 2] and a ∈ (2
√

2 − 2, 1].

Case 1: a ∈ (0, 2
√

2 − 2]. Note that we have

|ga(zt)| = |z2
t + (a − 2)zt + 1 − 2a| ≤ max

(
|ga(−a)|, |ga(2)|, |ga

(
1 − a

2

)
|
)

= 1,

where the last equality holds since ga(−a) = ga(2) = 1 and |ga

(
1 − a

2
)

| = a2+4a
4 ≤ 1 for any a ∈ (0, 2

√
2−2].

Hence, we know

|zt+1| = |fa(zt)| = |ztga(zt)| ≤ |zt|, ∀zt ∈ [−a, 2] (A.8)
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Hence limt→∞ |zt| exists.

lim
t→∞

|zt| = lim
t→∞

|zt+1| = lim
t→∞

|zt||ga(zt)|

Hence, we know

lim
t→∞

|zt| = 0, or lim
t→∞

|zt| ≠ 0, lim
t→∞

|ga(zt)| = 1.

If limt→∞ |zt| ≠ 0, then we have two subcases

• Sub-case 1: limt→∞ zt exists. We can verify that

lim
t→∞

zt = lim
t→∞

zt+1 = fa( lim
t→∞

zt)

and thus limt→∞ zt is one of the fixed points of fa(z) ∈ {−a, 0, 2}.

• Sub-case 2: limt→∞ zt does not exist. Since limt→∞ |zt| exists, we know there exists an infinite
subsequence (denoted as A1) of {zt}∞

t=0 with some limit c and the complement of the sequence, as
another infinite subsequence (denoted as A2), has limit −c for some constant c > 0. Hence, we can
pick a sequence of the subscripts k1 < k2 < ... < kn < ... such that zk1 , ..., zkn

, ... belong to A1 and
zk1+1, ..., zkn+1, ... belong to A2. Moreover, we have

c = lim
i→∞

zki = − lim
i→∞

zki+1 = − lim
i→∞

zkiga(zki) = −cga(c)

This implies that ga(c) = −1, i.e.,

c2 + (a − 2)c + 2 − 2a = 0.

From its discriminant (a−2)2 −4(2−2a) = a2 +4a−4 ≤ 0 for a ∈ (0, 2
√

2−2] where equality holds
only at 2

√
2 − 2, we know a = 2

√
2 − 2 and thus c = 2 −

√
2. However, we can apply the similar

trick and pick another sequence k̃1 < k̃2 < ... < k̃n < ... such that zk̃1
, ..., zk̃n

, ... belong to A2 and
zk̃1+1, ..., zk̃n+1, ... belong to A1. This implies

−c = lim
i→∞

zk̃i
= − lim

i→∞
zk̃i+1 = − lim

i→∞
zki

ga(zki
) = −(−c)ga(−c)

which gives

c2 − (a − 2)c + 2 − 2a = 0.

This contradicts with a = 2
√

2 − 2 and c = 2 −
√

2. This means case 2 does not exist.

Hence, we know |zt| is decreasing (not necessarily strictly) and limt→∞ zt ∈ {−a, 0, 2}.

Case 2: a ∈ (2
√

2 − 2, 1]. We divide the interval [−a, 2] into the following five parts:

I1 =
[

−a,
2 − a −

√
a2 + 4a

2

]
, I2 =

[
2 − a −

√
a2 + 4a

2 , 0
]

,

I3 = [0, 0.25] , I4 =
[

0.25,
2 − a +

√
a2 + 4a

2

]
, I5 =

[
2 − a +

√
a2 + 4a

2 , 2
]

.

Recall that by Lemma 7 we have:

fa(I1) = I1 ∪ I2, fa(I2) ⊆ I3, fa(I3) ⊆ I2, fa(I4) = I1 ∪ I2, fa(I5) = I3 ∪ I4 ∪ I5.

22



Published in Transactions on Machine Learning Research (04/2024)

We have the following conclusion. Observe that fa is continuous, and

zt+1 − zt = fa(zt) − zt = zt(zt + a)(zt − 2) ≥ 0, ∀zt ∈ I1 =
[

−a,
2 − a −

√
a2 + 4a

2

]
,

zt+1 − zt = fa(zt) − zt = zt(zt + a)(zt − 2) ≤ 0, ∀zt ∈ I5 =
[

2 − a +
√

a2 + 4a

2 , 2
]

.

We know if the sequence {zt}∞
t=0 visits I5, by Lemma 5 we know either limt→∞ zt = 2 or there exists M > 0

such that zt /∈ I5 for any t ≥ M . Then if the sequence visits I1 then by Lemma 5 either limt→∞ zt = −a or
there exists M̃ > M > 0 such that zt ∈ I2 ∪ I3 for any t ≥ M̃ , since fa(I1) ⊆ I1 ∪ I2 and fa(I2 ∪ I3) ⊆ I2 ∪ I3.
Hence, the proof is reduced to the case when z0 ∈ I2∪I3. For the case when z0 ∈ I2∪I3 =

[
2−a−

√
a2+4a

2 , 0.25
]
.

The key observation is to show that in this interval

|zt+2| ≤ |zt|. (A.9)

Recall that by Lemma 7 (ii) we have

fa (I2) ⊆ I3, fa(I3) ⊆ I2. (A.10)

To prove (A.9), we know it holds when zt = 0. When zt ̸= 0, by (A.10) we know f
(2)
a (zt) and zt have the

same sign provided zt ∈ I2 ∪ I3 =
[

2−a−
√

a2+4a
2 , 0.25

]
. This together with

f (2)
a (z) = fa(z)ga(fa(z)) = zga(z)ga(zga(z))

implies that ga(z)ga(zga(z)) ≥ 0 when z ∈
[

2−a−
√

a2+4a
2 , 0

)
∪ (0, 0.25]. Thus we know

|zt+2| = |ztga(zt)ga(ztga(zt))| = |zt|ga(zt)ga(ztga(zt)).

Thus to prove (A.9) it suffices to show ga(z)ga(zga(z)) − 1 ≤ 0, which is true by combining (A.3), (A.4),
(A.5), and (A.6). This completes the proof of (1) in (A.7). To prove (2) in (A.7), we first notice that
fa(z) − z = z(z + a)(z − 2) > 0 for any z ∈ (−a, 0), and thus zt+1 > zt for any zt near −a. Hence,
limt→∞ zt = −a if and only if there exists t such that zt = −a. This implies that f

(t)
a (z0) = −a for some t.

Similarly, fa(z) − z < 0 for any z ∈ (0, 2), which implies zt+1 < zt for any zt near 2. Hence, limt→∞ zt = 2
if and only if z0 = 2. Define

S =
∞⋃

n=0
f (−n)

a (−a) ∪ {2}

where f
(−n)
a (−a) denotes the preimage of −a under f

(n)
a . Clearly, each preimage is a finite set, and thus S

is countable. Hence, we know as long as z0 ∈ [−a, 2]\S, we have limt→∞ zt = 0. Since S is a countable set
and z0 is chosen uniformly at random, we know limt→∞ zt = 0 almost surely.

For the rest of (ii), we have already proved in (A.8) that {|zt|}∞
t=0 is decreasing when 0 < a ≤ 2

√
2 − 2. To

see {|zt|}∞
t=0 has catapults when 2

√
2 − 2 < a ≤ 1, we consider the following intervals

J1 = [−a, 0] = I1 ∪ I2, J2 =
[

0, min
{

2 − a +
√

a2 + 4a − 4
2 , 0.25

}]
⊆ I3,

where we have a2 + 4a − 4 > 0 for a > 2
√

2 − 2 so J2 is well-defined. Notice that

0 < z <
2 − a +

√
a2 + 4a − 4
2 ⇔ ga(z) < −1, z > 0.
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Hence we know for any zt ∈ J2, we will have

|zt+1| = |ztga(zt)| > |zt|. (A.11)

On the other hand, notice that 0 is in the orbit if and only if z0 /∈ S0, where S0 is defined as

S0 =
∞⋃

n=0
f (−n)

a (0)

where f−n
a (z) denotes the set of preimage of z under f

(n)
a . Note that each preimage is finite and thus S0 is

countable. Hence, we know almost surely the orbit will not contain 0, and recall that by Lemma (7) (ii) and
limt→∞ zt = 0, we know there are infinitely many t such that t ∈ J2, and thus (A.11) holds for infinitely
many t almost surely. By definition 2, we know {|zt|} has catapults almost surely.

The following theorem indicates that, fa is chaotic provided that a > a∗ where a∗ ∈ (1, 2)
Lemma 9. Suppose 1 < a ≤ 2 and −a ≤ z0 ≤ 2. Then we have

• (i) −a ≤ zt ≤ 2 for any t, and fa(z) has a period-2 point on [0, 1].

• (ii) There exists a∗ ∈ (1, 2) such that for any a ∈ (a∗, 2), fa is Li-Yorke chaotic, and for any
a ∈ (1, a∗), fa is not Li-Yorke chaotic.

• (iii) If there exists an asymptotically stable orbit and z0 is chosen from [−a, 2] uniformly at random,
then the orbit of z0 is asymptotically periodic almost surely.

Proof. The boundedness of zt is a direct result of Lemma 6 (iii). To prove the rest of (i), we notice that for
a ∈ (1, 2]

ga(0)ga(0ga(0)) = (1 − 2a)2 > 1, ga(1)ga(1ga(1)) = −a < −1.

By continuity of ga(zga(z)) we know there exists a point z0 ∈ (0, 1) such that ga(z0ga(z0)) = 1. This indicates
that f (2)(z0) = z0ga(z0ga(z0)) = z0 but clearly fa(z0) ̸= z0 since (0, 1) does not contain any fixed point of
fa.

To prove (ii), notice that

f1

(
1 − 2 × 1

3

)
= 5

27 < 1 < 2 = f2

(
1 − 2 × 2

3

)
.

By continuity of fa

( 1−2a
3
)

(with respect to a) there exists c ∈ (1, 2) such that

fc

(
1 − 2c

3

)
= (2c − 1)(2c2 + 7c − 4)

27 = 1. (A.12)

Moreover we have

fc(−c) = −c <
1 − 2c

3 , fc

(
1 − 2c

3

)
= 1 >

1 − 2c

3 .

Hence by continuity of fc(z), we can pick z0 ∈
(
−c, 1−2c

3
)

such that fc(z0) = 1−2c
3 . We have

−c < z0 <
1 − 2c

3 = fc(z0). (A.13)

By (A.12), (A.13), and Lemma 6 (i), we have

f (3)
c (z0) = f (2)

c

(
1 − 2c

3

)
= fc(1) = −c ≤ z0, (A.14)

fc(z0) = 1 − 2c

3 < 1 = fc(1) = f (2)
c (z0) . (A.15)
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Combining (A.13), (A.14), (A.15) we can easily verify that

f (3)
c (z0) ≤ z0 < fc(z0) < f (2)

c (z0).

By Theorem B.1 (i.e., Theorem 1 in Li & Yorke (1975)), we know fc is Li-Yorke chaotic. Moreover, for any
a ∈ (c, 2], we know

fa

(
1 − 2a

3

)
= (2a − 1)(2a2 + 7a − 4)

27 >
(2c − 1)(2c2 + 7c − 4)

27 = fc

(
1 − 2c

3

)
= 1,

which together with fa(0) = 0 < 1 implies we can pick y0 such that

1 − 2a

3 < y0 < 0, fa(y0) = 1.

Similarly, we have

fa(−a) = −a <
1 − 2a

3 < y0, fa

(
1 − 2a

3

)
> 1 > y0

which implies we can pick x0 such that

−a < x0 <
1 − 2a

3 , fa(x0) = y0.

Now we know

f (3)
a (x0) < x0 < fa(x0) < f (2)

a (x0).

By Theorem B.1 (i.e., Theorem 1 in Li & Yorke (1975)), we know fa is Li-Yorke chaotic. Hence, we know c
defined in (A.12) satisfies that for any a ∈ (c, 2], fa is Li-Yorke chaotic. Hence, we know

a∗ = inf
a∈(1,2)

{a : fb is Li-Yorke chaotic for any b ∈ [a, 2].}

where the set is not empty, since we have proven c belongs to the above set. This completes the proof of (ii).

To prove (iii), we notice that if fa(z) has an asymptotically stable periodic orbit, by Theorem B.2 (i.e.,
Theorem 2.7 in Singer (1978)) and the fact that fa(x) has negative Schwarzian derivative at non-critical
points (Lemma 4) and we know there exists a critical point c of fa(z) such that the orbit of c converges to
this asymptotically stable orbit. Notice that by Lemma 6 we know c = 1 or 1−2a

3 . c = 1 can be excluded
since fa(1) = −a, and −a is an unstable period-1 point. Hence, we know c = 1−2a

3 is asymptotically periodic.
By Theorems B.3 and B.4 (i.e., Theorem B and Corollary in Nusse (1987)), we know almost surely z0 will
not converge to any periodic orbit if z0 is chosen from [−a, 2] uniformly at random. This completes the
proof.

Remarks:

• See Figure 5(b) for a pair of period-2 points when a = 1.2, and Figure 5(c) for a period-3 orbit when
a = 1.6. The triangle markers denote the periodic points.

• By Theorem B.2 (i.e., Theorem 2.7 in Singer (1978)) and the fact that −a is an unstable period-1 point
we know fa(z) has at most one asymptotically stable periodic orbit.

Lemma 10. Suppose a > 2. z0 is chosen from [−a, 2] uniformly at random. Then limt→∞ |zt| = +∞ almost
surely.
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Proof. Notice that by Lemma 6 we know

fa

(
1 − 2a

3

)
= 4a3 + 12a2 − 15a + 4

27 >
(4a3 + 12a2 − 15a + 4)|a=2

27 = 2, ∀a > 2,

where the inequality holds since 4a3 + 12a2 − 15a + 4 is increasing on (2, ∞). Moreover, we have

fa(z) − z = z(z + a)(z − 2) > 0, ∀z ∈ (2, ∞).

Hence we know for the initialization at the critical point z0 = 1−2a
3 , we have z1 > 2, and the whole sequence

is increasing. On the other hand, all fixed points of fa(z) are no greater than 2, we know zt will diverge to
+∞. For another critical point z0 = 1 we know its orbit converges to the periodic orbit of z0 = −a, which
is an unstable period-1 point. Hence, we know from Theorem B.2 (i.e., Theorem 2.7 in Singer (1978)) that
there does not exist an asymptotically stable periodic orbit, otherwise the orbit of one critical point must
converge to it. Hence, by Theorems B.3 and B.4 (i.e., Theorem B and Corollary in Nusse (1987)) we know
limt→∞ |zt| = +∞ almost surely provided z0 uniformly chosen from (−a, 2), i.e., almost all points in [−a, 2]
converge to the absorbing boundary point +∞.

A.2 Proofs of results in Section 3

Proof of Theorem 3.1. Define

α(t) := c + γX⊤w(t), β := y + c2

2γ
, κ := ηγ ∥X∥2

.

To prove (i), we observe that

∇wg(w; X) = (c + γ(X⊤w))X

Let weights at time t be w(t). Thus, the gradient descent takes the form

w(t+1) = w(t) − η(g(w(t); X) − y)(c + γX⊤w(t))X = w(t) − ηe(t)α(t)X.

Simple calculation gives

e(t) = (α(t))2

2γ
− β (A.16)

and

α(t+1) = (1 − ηγ ∥X∥2
e(t))α(t) = (1 − κe(t))α(t).

Hence

e(t+1) − e(t) = 1
2γ

(
(α(t+1))2 − (α(t))2

)
=
(

(1 − κe(t))2 − 1
) (α(t))2

2γ

which together with (A.16) implies

κe(t+1) = κe(t)(κe(t) + βκ)
(

κe(t) − 2
)

+ κe(t).

By definition of a and zt in (3.2) we know a = βκ and zt = κe(t). We know (i) holds.

To compute the largest eigenvalue of the Hessain matrix (i.e., the sharpness defined in EoS literature) of the
loss in (ii), we notice that the gradient of the loss function takes the form

∇ℓ(w) = (g(w; X) − y)∇wg(w; X).
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Hence

∇2ℓ(w) = ∇wg(w; X)∇wg(w; X)⊤ + (g(w; X) − y)∇2
wg(w; X) = (α2 + γe)XX⊤,

where we overload the notation and define

α = c + γX⊤w, e = g(w; X) − y.

The sharpness is given by

λmax(∇2ℓ(w(t))) = ((α(t))2 + γe(t)) ∥X∥2 = (3γe(t) + 2γy + c2) ∥X∥2 = 3zt + 2a

η
.

Proof of Theorem 3.2. The gradient descent takes the form

w(t+1) = w(t) − η

2n

n∑
i=1

∇ℓi(w(t)) = w(t) − η

n

n∑
i=1

e(t)(Xi)α(t)(Xi)Xi.

Similarly to (A.16), for each error term e(t)(Xi) we have

e(t)(Xi) = (α(t)(Xi))2

2γ
− β(Xi), (A.17)

and

α(t+1)(Xi) = γX⊤
i w(t+1) + c(Xi)

=γ

X⊤
i w(t) − η

n

n∑
j=1

e(t)(Xj)α(t)(Xj)X⊤
i Xj

+ c(Xi)

=α(t)(Xi) − γη

n

n∑
j=1

e(t)(Xj)α(t)(Xj)X⊤
i Xj

=α(t)(Xi) − γη

n

n∑
j=1

(
α(t)(Xj)3

2γ
− β(Xj)α(t)(Xj)

)
X⊤

i Xj

We overload the notation and set

X = (X1, ..., Xn)⊤
, #(X) = (#(X1), ..., #(Xn))⊤

, ∀# ∈ {α(t), e(t), a, β}.

We can obtain

α(t+1)(X) = α(t)(X) − η

n
XX⊤

(
α(t)(X)3

2 − γβ(X) ⊙ α(t)(X)
)

, (A.18)

where ⊙ denotes the Hadamard product.

As XX⊤ = diag(∥X1∥2
, ..., ∥Xn∥2), we can rewrite (A.18) as the following non-interacting version for each

data point:

α(t+1)(Xi) =α(t)(Xi) − η ∥Xi∥2

2n

(
α(t)(Xi)3 − 2γβ(Xi)α(t)(Xi)

)
=
(

1 − γη ∥Xi∥2

n
e(t)(Xi)

)
α(t)(Xi).

27



Published in Transactions on Machine Learning Research (04/2024)

This together with (A.17) implies

e(t+1)(Xi) − e(t)(Xi) = 1
2γ

(
(α(t+1)(Xi))2 − (α(t)(Xi))2

)
=
(

−2γη ∥Xi∥2

n
e(t)(Xi) + γ2η2 ∥Xi∥4

n2 (e(t)(Xi))2

)(
e(t)(Xi) + β(Xi)

)
=κn(Xi)e(t)(Xi)

(
κn(Xi)e(t)(Xi) − 2

)(
e(t)(Xi) + β(Xi)

)
By definition of z

(t)
i and ai we know

z
(t+1)
i = z

(t)
i (z(t)

i + ai)(z(t)
i − 2) + z

(t)
i = fai

(z(t)
i ).

The sharpness is given by

∇2ℓ(w(t)) = 1
n

n∑
i=1

(
∇wg(w(t); Xi)∇wg(w(t); Xi)⊤ + (g(w(t); Xi) − yi)∇2

wg(w(t); Xi)
)

= 1
n

n∑
i=1

(
(α(t)(Xi))2 + γe(t)(Xi)

)
XiX

⊤
i

= 1
n

n∑
i=1

(3γe(t)(Xi) + 2γyi + c2(Xi))XiX
⊤
i .

Therefore we know

∇2ℓ(w(t))Xi = 1
n

(3γe(t)(Xi) + 2γyi + c2(Xi)) ∥Xi∥2
Xi = 3z

(t)
i + 2ai

η
Xi, for all 1 ≤ i ≤ n.

which means we find n eigenvalues and eigenvectors pairs
(

3z
(t)
1 +2a1

η , X1

)
, ...,

(
3z(t)

n +2an

η , Xn

)
. Note that

∇2ℓ(w(t)) is a sum of n rank-1 matrices, and we have found n orthogonal eigenvalues. Hence we know
λmax(∇2ℓ(w(t))) = max1≤i≤n

3z
(t)
i

+2ai

η . This completes the proof.

Proof of Theorem 3.3. Define

A(t) = 2η√
mdn

n∑
j=1

e
(t)
j XjX⊤

j .

Note that we have

∇ℓ
(t)
j (U(t)) =

(
1√
md

m∑
i=1

(X⊤
j u

(t)
i )2 − yj

)(
2√
md

XjX⊤
j U(t)

)
= 2√

md
e

(t)
j XjX⊤

j U(t).

This implies that the gradient descent update takes the form

U(t+1) = U(t) − η

n

n∑
j=1

∇ℓ
(t)
j (U(t)) = U(t) − 2η√

mdn

n∑
j=1

e
(t)
j XjX⊤

j U(t) =
(

I − A(t)
)

U(t).

Also we have

e
(t+1)
j − e

(t)
j = 1√

md

m∑
i=1

(
(X⊤

j u
(t+1)
i )2 − (X⊤

j u
(t)
i )2

)
= 1√

md
X⊤

j

(
U(t+1)(U(t+1))⊤ − U(t)(U(t))⊤

)
Xj
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and

U(t+1)(U(t+1))⊤ =

I − 2η√
mdn

n∑
j=1

e
(t)
j XjX⊤

j

U(t)(U(t))⊤

I − 2η√
mdn

n∑
j=1

e
(t)
j XjX⊤

j

 .

Hence we know

e
(t+1)
j − e

(t)
j

= 1√
md

(
X⊤

j A(t)A(t)(A(t))⊤A(t)Xj − 2X⊤
j A(t)U(t)(U(t))⊤Xj

)
= 1√

md

(
4η2

md2n2 (e(t)
j )2 ∥Xj∥4

X⊤
j U(t)(U(t))⊤Xj − 4η√

mdn
e

(t)
j ∥Xj∥2

X⊤
j U(t)(U(t))⊤Xj

)
=
(

4η2 ∥Xj∥4

md2n2 (e(t)
j )2 − 4η ∥Xj∥2

√
mdn

e
(t)
j

)(
e

(t)
j + yj

)
,

where the second equality uses XX⊤ = diag(∥X1∥2
, ..., ∥Xn∥2). By definition of z

(t)
i and ai we know

z
(t+1)
i = fai

(z(t)
i ).

Hence we know the training dynamics of this model can be captured by the cubic map as well.

B Auxiliary results

Theorem B.1 (Theorem 1 in Li & Yorke (1975)). Let I be a compact interval and let f : I → I be
continuous. Assume there is a point a ∈ I for which the points b = f(a), c = f (2)(a) and d = f (3)(a) satisfy

d ≤ a < b < c (or d ≥ a > b > c).

Then f is Li-Yorke chaotic.
Theorem B.2 (Theorem 2.7 in Singer (1978)). Let I be a compact interval and let f : I → I be a three
times continuously differentiable function. If the Schwarzian derivative of f satisfies

Sf(x) = f ′′′(x)
f ′(x) − 3

2

(
f ′′(x)
f ′(x)

)2
< 0 for all x ∈ I with f ′(x) ̸= 0.

Then the stable set of every asymptotically stable orbit of f contains a critical point of f .
Theorem B.3 (Theorem B in Nusse (1987)). Let I be an interval and let f : I → I be a three times
continuously differentiable function having at least one aperiodic point on I and satisfying:

• (i) f has a nonpositive Schwarzian derivative, i.e.,

Sf(x) = f ′′′(x)
f ′(x) − 3

2

(
f ′′(x)
f ′(x)

)2
≤ 0 for all x ∈ I with f ′(x) ̸= 0.

• (ii) The set of points, whose orbits do not converge to an (or the) absorbing boundary point(s) of I for f
is a nonempty compact set.

• (iii) The orbit of each critical point for f converges to an asymptotically stable periodic orbit of f or to
an (or the) absorbing boundary point(s) of I for f .

• (iv) The fixed points of f (2) are isolated.

Then we have

• (1) The set of points whose orbits do not converge to an asymptotically stable periodic orbit of f or to an
(or the) absorbing boundary point(s) of I for f has Lebesgue measure 0;
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• (2) There exists a positive integer p such that almost every point x in I is asymptotically periodic with
f (p)(x) = x, provided that f(I) is bounded.

Theorem B.4 (Corollary in Nusse (1987)). Assume that f : R → R is a polynomial function having at least
one aperiodic point and satisfying the following conditions:

• (i) The orbit of each critical point of f converges to an asymptotically stable periodic orbit of f or to an
(or the) absorbing boundary point(s) for f;

• (ii) Each critical point of f is real.

Then f satisfies the assumptions (i)-(iv) of Theorem B.3.

C Experimental investigations

C.1 Additional experiments for the orthogonal case

For this section, we follow the same experimental setup as described in Section 4.1. Only the hidden-layer
width is changed. Specifically, in Figures 6 and 7 we plot the training loss, sharpness of training loss and
the trajectory-averaging training in various phases.
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Figure 6: Hidden-layer width =5, with orthogonal data points. Rows from top to bottom represent different
levels of noise – mean-zero normal distribution with variance 0, 0.25, 1. The vertical axes are in log scale for
the training loss curves. The second column is about the sharpness of the training loss functions. Numbers
0, 1, 2, 3, 4 denote different stepsize choices (see Section 4.1 for details).
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Figure 7: Hidden-layer width =10, with orthogonal data points. Rows from top to bottom represent different
levels of noise – mean-zero normal distribution with variance 0, 0.25, 1. The vertical axes are in log scale for
the training loss curves. The second column is about the sharpness of the training loss functions. Numbers
0, 1, 2, 3, 4 denote different stepsize choices (see Section 4.1 for details).

31



Published in Transactions on Machine Learning Research (04/2024)

C.2 Non-orthogonal data

We next investigate the case when orthogonality condition does not hold. The setup is the same as described
in Section 4.1 except that n = 5000 and each entry of the data matrix X ∈ Rn×d is now sampled from
a standard normal distribution. We also generate 500 data points from the same distribution for testing.
Note that our theory in this work is only applicable for orthogonal data. hence, for these experiments with
non-orthogonal data, we first tune the step-size to be as large as possible, say ηmax, so that the training does
not diverge and then run the experiments for i+1

5 ηmax with i = 0, ..., 4. Hence, the step-sizes for loss and
sharpness curves 0, 1, 2, 3, 4 are chosen to be 10, 20, 30, 40, 50 for m = 5, 10 and 12, 24, 36, 48, 60 for m = 25.

In Figures 8, 9 and 10 we plot the training loss and the testing loss (with and without ergodic trajectory
averaging) in log scale. Notably different phases (including the periodic and catapult phases) characterized
theoretically for the case of orthogonal data, also appear to be present for the non-orthogonal case. We also
make the following intriguing conclusions:

• As a general trend, training roughly in the generalized catapult phase and predicting without doing the
ergodic trajectory averaging appears to have the best test error performance.

• In some cases (especially the one with high noise variance), when testing after training in the periodic
phase, the test error goes down rapidly in the initial few iterations. Correspondingly, ergodic trajectory
averaging after training in the periodic phase, helps to obtain better test error decay compared to ergodic
trajectory averaging after training in the catapult phase. However, as mentioned in the previous point,
training roughly in the generalized catapult phase and predicting without doing the ergodic trajectory
averaging performs the best.

• As discussed in Lim et al. (2022), in various cases, artificially infusing control chaos help to obtain better
test accuracy. Given our empirical observations and the results in Lim et al. (2022), it is interesting
to design controlled chaos infusion in gradient descent and perform ergodic training averaging to obtain
stable and improved test error performance.

Obtaining theoretical results corroborating the above-mentioned observations is challenging future work.
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Figure 8: Hidden-layer width=5, with non-orthogonal data points. Rows from top to bottom represent
different levels of noise – mean-zero normal distribution with variance 0, 0.25, 1. The vertical axes are in log
scale for loss curves. Numbers 0, 1, 2, 3, 4 denote different stepsize choices (see Section C.2 for details).
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Figure 9: Hidden-layer width=10, with non-orthogonal data points. Rows from top to bottom represent
different levels of noise – mean-zero normal distribution with variance 0, 0.25, 1. The vertical axes are in log
scale for loss curves. Numbers 0, 1, 2, 3, 4 denote different stepsize choices (see Section C.2 for details).
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Figure 10: Hidden-layer width=25, with non-orthogonal data points. Rows from top to bottom represent
different levels of noise – mean-zero normal distribution with variance 0, 0.25, 1. The vertical axes are in log
scale for loss curves. Numbers 0, 1, 2, 3, 4 denote different stepsize choices (see Section C.2 for details).
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C.3 Two-layer Neural Network with ReLU

While our main focus in this work is for quadratic activation functions, it is also instructive to examine
the dynamics with other activation function, in particular the ReLU activation. Hence, we follow the
experimental setup from Section C.2, except that the activation function is now ReLU and repeat our
experiments. For this case, the step-sizes manually chosen to be 60, 120, 180, 240, 300 for loss/sharpness
curves 0, 1, 2, 3, 4, respectively.
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Figure 11: Hidden-layer width=5 with ReLU activation. Rows from top to bottom represent different levels
of noise – mean-zero normal distribution with variance 0, 0.25, 1. The vertical axes are in log scale for loss
curves. The last column is about the sharpness of the training loss functions. Numbers 0, 1, 2, 3, 4 denote
different stepsize choices (see Section C.3 for details).
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Figure 12: Hidden-layer width=10 with ReLU activation. Rows from top to bottom represent different levels
of noise – mean-zero normal distribution with variance 0, 0.25, 1. The vertical axes are in log scale for loss
curves. The last column is about the sharpness of the training loss functions. Numbers 0, 1, 2, 3, 4 denote
different stepsize choices (see Section C.3 for details).
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From Figures 11 and 12, (in particular from the sharpness plots), we observe various non-monotonic patterns,
roughly including periodic and chaotic patterns. Obtaining a precise theoretical characterization of the
training dynamics for this setting is extremely interesting as future work.
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