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ABSTRACT

Time-series clustering has gained abundant popularity and has been used in di-
verse scientific areas. However, few researchers take an information fusion per-
spective to combine information from the time and frequency domains to accom-
plish clustering, although these two domains offer distinct and complementary
characteristics of time-series. Motivated by this issue, we propose a trusted and in-
teractive model, which leverages evidence theory to combine time- and frequency-
based clustering results produced by the corresponding contrastive learning mod-
ule. After mathematizing clustering results from the two domains as mass func-
tions, the uncertainty contained in these results can be quantified at the sample-
specific level. The combined result thus promotes clustering reliability, and is op-
timized based on the pseudo-labels generated by k-means in an interactive learn-
ing paradigm. Both theoretical analysis and experimental results on 136 bench-
mark datasets validate the effectiveness of the proposed model in clustering per-
formance. Extensive ablation experiments demonstrate the contribution of com-
bining information from the time and frequency domains and using the interactive
learning paradigm. The embeddings learned are also experimentally shown to
perform well in other downstream tasks.

1 INTRODUCTION

Time-series clustering is an important data mining technology widely applied in different fields,
such as sensor data analysis (Hayashi et al., 2024), anomaly detection (Middlehurst et al., 2024) and
medical field (Zhang et al., 2024), aiming to segment time-series data samples into patterns (called
clusters) with homologous characteristics (Gong et al., 2022). Unlike images, time-series data gen-
erally do not show human-recognizable features to different classes, because the label information
is contained in not only the time domain but also the frequency domain (Zhang et al., 2022).

Related work. Most of the existing time-series clustering methods focus on the time domain, and
can be divided into two categories: raw-data-based methods and feature-based ones (Ma et al.,
2022). Raw-data-based methods perform clustering based on a modified similarity metric, which
quantifies the distance more appropriately between time-series samples (Hayashi et al., 2024; Fer-
reira & Zhao, 2016; Paparrizos & Gravano, 2015; Yang & Leskovec, 2011). Feature-based methods
have recently garnered greater attention, because the raw-data-based ones are not capable of mod-
eling nonlinear temporal dependencies and multiscale (long and short-term) temporal dependencies
(Ma et al., 2019a). Feature-based methods extract first informative features from raw samples in the
time domain, and then the clustering algorithms are conducted on the learned features (Tang et al.,
2021; Fortuin et al., 2020). Some recent works (Zhang et al., 2024; Guijo-Rubio et al., 2021) also
optimize feature extraction and clustering jointly by introducing pseudo-label. For example, authors
in (Péalat et al., 2023) embed the time-series onto the Stiefel manifold to obtain the geometric rep-
resentations of time-series samples. STCN (Ma et al., 2022) adopts a recurrent neural network and a
self-supervised clustering module, which are trained iteratively by contributing to each other. Some
recent works (e.g., (Fortuin et al., 2020; Tonekaboni et al., 2022)) leverage contrastive representation
learning for clustering time-series to further improve the performance. Few of the mentioned meth-
ods take an information fusion perspective to incorporate information from the time and frequency
domains to accomplish clustering, although these two domains offer distinct and complementary
characteristics of time-series. More detailed related work is provided in Appendix A.1.
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Motivation. In fact, the time domain depicts the temporal evolution of signal readouts, while the fre-
quency domain reveals the distribution of signal magnitude across different frequency components
within the entire spectrum (Hyndman & Athanasopoulos, 2018). By explicitly incorporating the
frequency domain, a comprehension of time-series behavior can be attained, encompassing aspects
that are not fully captured by analyzing the time domain alone. Therefore, the first motivation for
this work is incorporating frequency information to enhance the ability to detect clusters. Besides,
the time and frequency domains can be regarded as distinct views of the same data (Cohen, 1995),
and they are interconvertible through Fourier and inverse Fourier Transformation (Brigham, 1988).
Given the temporal dynamics inherent in time-series data, the weights (i.e., quality) of the time and
frequency domains experience fluctuations over time. Then, the second motivation is to dynamically
describe the importance of clustering results derived from both the time and frequency domains.
Finally, to avoid poisoning the final result with the low-quality result from one domain, the last mo-
tivation is to facilitate the appropriate integration of time- and frequency-based clustering results
under the fast-evolving uncertain scenario.

Technical issues. To address the three challenges outlined in the motivation, three technical issues
must be solved.

(1) How to develop frequency-based contrastive augmentations to obtain clustering results?
Despite the universal importance of frequency information in time-series and its pivotal role in
classic signal processing (Soklaski et al., 2022), it is seldom explored in contrastive clustering for
time-series data (Tonekaboni et al., 2022). This is because even a slight perturbation in the frequency
domain could lead to significant alterations in the temporal patterns of the time domain (Flandrin,
1998).

(2) How to quantify uncertainty in clustering results from the time and frequency domains?
Quantifying the uncertainty is practical for enhancing the performance of such a “two-view” time-
series clustering, where the higher the uncertainty of a particular domain, the lower the weight
contributing to the final result. Further, the uncertainty of every domain varies for different time-
series samples.

(3) How to formulate and optimize the fusion of clustering results with uncertainty from the
time and frequency domains? Fusion of the clustering results from the two domains belongs to
the late fusion (Wang et al., 2019; Liu et al., 2018), most of which primarily cater to scenarios
without any uncertainty (Wang et al., 2021). In our model, the fusion module assumes the critical
responsibility of effectively managing uncertainty, all integrated seamlessly within an end-to-end
framework.

Contributions. We introduce a trusted clustering model (named TIC) for time-series data, integrat-
ing results from the time and frequency domains within an interactive learning paradigm (shown in
Fig.1). In summary, the contributions of this paper are:

• We propose to adopt novel augmentations dedicated to clustering the frequency spectrum data,
through contrastive sample discrimination. This could be the first work to leverage contrastive
augmentation in the frequency domain in a time-series clustering problem.

• We represent the clustering results for each sample from the time and frequency domains as two
distinct mass functions (Shafer, 1976), where the sample-specific uncertainty is accurately quan-
tified within the framework of evidence theory (DEMPSTER, 1967). The Dirichlet distribution is
used to mathematize the mass function and to model the class probability distribution from each
domain.

• We propose an interactive framework for time-series clustering, which could be inspiring in mul-
tiple research areas of time-series. The trusted result (obtained by combining mass functions from
the time and frequency domains) and pseudo-labels (derived from k-means) contribute to each
other, allowing interactive model optimization.

2 PRELIMINARIES: EVIDENCE THEORY

Consider a variable ω taking values in a finite set called the frame of discernment Ω =
{ω1, ω2, . . . , ωC}, where C is the number of clusters in a clustering problem. A mass function
(also called a piece of evidence) (Shafer, 1976) is defined as a mapping from 2Ω to [0,1] such that
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∑
A⊆Ωm(A) = 1,m(A) > 0, where 2Ω is the power set of Ω and A denotes various subsets of Ω.

These subsets are called the focal sets of m. The value of m(A) denotes a degree of belief assigned
to the hypothesis “ω ∈ A”. The vacuous mass function verifies

m(Ω) = mΩ = 1 (1)

corresponding to total “ignorance”, representing that ω may belong to any subset of the Ω (includ-
ing the Ω itself). In other words, the value of m(Ω) measures the uncertainty about the values of
variable ω. In this work, only the singleton focal sets ω1, ω2, · · · , ωC and ignorance focal set Ω
are considered, i.e., the mass function is in the form of m = [m(ω1),m(ω2), · · · ,m(ωC),m(Ω)]
(abbreviated as [m1,m2, · · · ,mC ,mΩ]).

Assume that there are 2 mass functions m1 and m2 on the same frame of discernment Ω. The
Dempster’s rule (Shafer, 1976) used to pool the information provided by m1 and m2 is noted as

⊕
and is defined by

m1⊕2(A) =

∑
B∩C=Am1Bm2C

K12
, A ̸= ∅ & A ⊆ Ω (2)

where B and C are also the focal sets, and K12 = 1 −
∑

B∩C=∅m1Bm2C is a normalizing factor.
Dempster’s rule is commutative and associative (Shafer, 1976).
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Figure 1: Overview of the proposed TIC model. TIC has three modules, a time-based contrastive
module (colored yellow), a frequency-based contrastive module (colored blue), and an interactive
learning module (colored red).

3 THE PROPOSED METHOD: TIC

Notions and problem formulation. We are given a time-series dataset T = {x1, x2, · · · , xn} of n
unlabeled time-series samples, and sample xi hasK channels and L time-steps. The goal is to group
these n samples into C (a given value) clusters, which can be denoted by the framework of discern-
ment Ω = {ω1, ω2, · · · , ωC} (defined in Section 2). Without loss of generality, in the following, we
focus on univariate (single-channel) time-series datasets, while noting that our TIC method can also
accommodate multi-variate time-series. Superscript̃ denotes contrastive augmentations, xi ≡ xTime

i

denotes the input time-series and xFreq
i denotes the frequency spectrum of xi.

Time-based contrastive module. For the sample xTime
i in one mini-batch, a set of augmentations

XTime
i is generated through a time-based augmentation bank BTime : xTime

i → XTime
i including

jittering, scaling, time-shifts and other common techniques (Eldele et al., 2021). Note that the
augmentations in one mini-batch are produced using diverse techniques from the augmentation bank,
to expose the model to complex temporal dynamics and obtain robust embeddings.

xTime
i and a randomly selected augmentation x̃Time

i ∈ XTime
i are fed into the encoder, denoted by

HT(·). The corresponding embeddings gTime
i = HT(xTime

i ) and g̃Time
i = HT(x̃

Time
i ) are obtained.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Intuitively, embedding gTime
i should be close to the embedding g̃Time

i , but far away from the em-
beddings gTime

j and g̃Time
j produced from another sample xTime

j in the same mini-batch. Therefore,
the positive pair is (xTime

i , x̃Time
i ) and the negative pairs are (xTime

i , xTime
j ) and (xTime

i , x̃Time
j ). The

normalized temperature-scaled cross-entropy loss associated with xTime
i is defined as (Chen et al.,

2020)

LTime
i = − log

exp(sim(gTime
i , g̃Time

i ))/τ∑
xj 1i ̸=j exp(sim(gTime

i , HT(xj))/τ)
, (3)

where sim(a,b) = aTb/∥a∥∥b∥ is the cosine similarity, τ is a temporal hyperparameter to adjust
scale, 1 is an indicator function equaling to 1 when i ̸= j and 0 otherwise, and xj denotes the sample
(or its augmented sample) different from xi in the same mini-batch. Minimization of LTime enforces
encoder HT(·) to bring embeddings w.r.t. positive pairs closer together, and push embeddings w.r.t.
negative pairs farther apart.

Frequency-based contrastive module. Although the frequency spectrum is informative, few meth-
ods leverage the frequency-based contrastive augmentation for clustering time-series (Tonekaboni
et al., 2022). In this module, we use the Fourier Transformation (Brigham, 1988) to generate the
frequency spectrum xFreqi for sample xTime

i .

As shown in (Flandrin, 1998; Zhang et al., 2022), a minor perturbation in the frequency domain can
lead to significant changes in the corresponding time domain. To mitigate this issue, we manipu-
late the amplitude to generate frequency-based augmentation. More concretely, the augmentation
bank BFreq : xFreqi → XFreq

i , where XFreq
i is a set of frequency-based augmentations, includes the

upgrade or downgrade of amplitude. We randomly select β (the number of components to be manip-
ulated) frequency components, and change each of their amplitudes from the original value Amporig
to γAmporig, 0 ≤ γ < 1 (downgrade) or to γAmporig, γ > 1,Amporig < γAmporig ≤ Ampmax
(upgrade), where γ is a pre-defined coefficient and Ampmax is the maximum amplitude. Similar
to the time-based contrastive module, the positive pair is (xFreqi , x̃Freq

i ) and the negative pairs are
(xFreq

i , xFreqj ) and (xFreqi , x̃Freqj ).

After generating an augmentation x̃Freqi ∈ XFreq
i , we feed the frequency spectrum xFreqi and x̃Freq

i

into the encoder HF(·), and obtain the embeddings gFreq
i and g̃Freqi . The frequency-based loss for

sample xFreqi is calculated as

LFreq
i = − log

exp(sim(gFreq
i , g̃Freqi ))/τ∑

xj 1i ̸=j exp(sim(gFreqi , HF(xj))/τ)
. (4)

Uncertainty quantification. As shown in Fig.1, the embeddings gTime
i and gFreq

i are fed into
the fully connected (FC) layers to obtain the clustering results in time and frequency domains.
Taking the time domain as an example, the FCT converts the continuous embeddings to vectors
pT = [pT1 , p

T
2 , · · · , pTC ], which describes the probability of C mutually exclusive events after being

normalized through the softmax operator, and can be regarded as the parameters of a multinomial
distribution (Bishop & Nasrabadi, 2006). By replacing these parameters with the parameters of a
Dirichlet distribution, the clustering result from the FCT can be represented as a distribution over
possible softmax outputs instead of a point estimation of one softmax output (Sensoy et al., 2018).
That is, a Dirichlet distribution parametrized over the pT,i = [pTi1, p

T
i2, · · · , pTiC ] represents the den-

sity of such a probability assignment w.r.t to sample xTime
i . Therefore, it can model the second-

order probabilities and uncertainty for the clustering result of xTime
i (Jsang, 2018). The definition of

Dirichlet distribution is given in Definition 1.

Definition 1 The Dirichlet distribution is a probability density function for a categorical distribu-
tion p. It can be characterized by C parameters α = [α1, α2, · · · , αC ] and is given by:

Dir(p|α) =

{
1

B(α)

∏C
c=1 p

αc−1
c for p ∈ SC ,

0 otherwise,
(5)

where SC is the C-dimensional unit simplex SC = {p|
∑C

c=1 pc = 1, 0 ≤ p1, p2 · · · , pC ≤ 1} and
B(α) is the C-dimensional multinomial beta function.

4
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In the clustering problem investigated in this paper, Subjective logic (Jsang, 2018) is used to as-
sociate the parameters α = [α1, α2, · · · , αC ] of a Dirichlet distribution with the output p =
[p1, p2, · · · , pC ], where the Dirichlet distribution is considered as the conjugate prior of the cor-
responding multinomial distribution (Bishop & Nasrabadi, 2006). Inspired from (Sensoy et al.,
2018), the parameter αc is calculated as

αc = pc + 1. (6)

Then, the mass function m = [m1,m2, · · · ,mC ,mΩ] is determined as mc =
pc

S = αc−1
S c = 1, 2, · · · , C,

mΩ = C
S ,

(7)

where S =
∑C

c=1(pc + 1) =
∑C

c=1 αc is the Dirichlet strength (Jsang, 2018), and the value of mΩ

quantifies the uncertainty of the clustering result (as discussed in Section 2). From Eq.(7), it can be
inferred that the higher value of pc, the more belief mass is assigned to mc. Besides, the lower value
of the sum of pc, the higher uncertainty mΩ for the clustering result. For clarity, we give a specific
example to explain the above formulation.

Combining the clustering results. After computing the mass functions mTime
i and mFreq

i from
time and frequency domains, we use Dempster’s rule to combine these two mass functions

mComb
i = mTime

i ⊕ mFreq
i , (8)

where mComb
i is the combined mass function w.r.t. sample xi. According to Eq.(2), the specific

calculation is

mComb
ic =

mTime
ic ·mFreq

ic +mTime
iΩ ·mFreq

ic +mTime
ic ·mFreq

iΩ

1−
∑

r ̸=vm
Time
ir ·mFreq

iv

mComb
iΩ =

mTime
iΩ ·mFreq

iΩ

1−
∑

r ̸=vm
Time
ir ·mFreq

iv

.

(9)

According to Eq.(7), the combined output for xi is calculated as

pComb
ic = mComb

ic · SComb
i and αComb

ic = pComb
ic + 1, (10)

where SComb
i = C

mComb
iΩ

. The time- and frequency-based clustering results are appropriately fused
using Subjective logic and Dempster’s rule.

Remark 1. More intuitions: why the combined clustering results are trusted? The produced
mass value mComb

iΩ allows the TIC model to assess the reliability of clustering results so as to avoid
risky decisions. Besides, Dempster’s rule has the following advantages: (1) the mass function
mComb obtained by combining a certain mass function (with small mΩ) with an uncertain one (with
big mΩ) is still certain. This means that as long as the clustering results from either domain are
trusted, then the combined clustering results are trusted, even if the results from the other domain
have significant uncertainty. (2) the mComb obtained by combining two uncertain mass function
(with large mΩ) remains uncertain. This means that if the clustering results from both the time and
frequency domains are untrusted, the combined clustering results are necessarily untrusted. And
users can abandon the results to avoid risks when facing this case. In order to analyze theoretically
these advantages, we give the following mathematized propositions, where the combined mass func-
tion, the mass functions from the time and frequency domains are abbreviated as mCo, mT and mF.
Since mT and mF are equally important in the combination, the following Propositions still hold
despite the exchange of the superscripts T and F. The corresponding proofs are shown in Appendix
A.2.

Proposition 1 A large mT
Ω does not lead to a large mCo

Ω , when one of mF
c is large and mF

Ω is small.
In particular, mCo is identical to mT, if mF is totally uncertain (i.e., mF

Ω = 1).

Proposition 2 The mCo
Ω is monotonically increasing with mT

Ω and mF
Ω.

5
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Interactive learning module. As shown in the lower left part of Fig.1, we concatenate the embed-
dings [gTime; gFreq] produced from the encoders HT(·) and HF(·). These concatenated embeddings
of n samples are fed into k-means every t epochs and update the pseudo-labels to calculate the
interactive loss LInte.

For sample xi, its one-hot pseudo-label vector is denoted as yi with yic = 1 and yiv = 0 for
all v ̸= c. In the interactive learning module, we modify the conventional cross-entropy Lce

i =

−
∑C

c=1 yic log(p
Comb
ic ) as

L
′ce
i =

∫ [ C∑
c=1

−yic log(pic)

]
1

B(αi)

C∏
c=1

pαic−1
ic dpi =

C∑
c=1

yic (ψ(Si)− ψ(αic)) (11)

where ψ(·) is the digamma function, Si is the Dirichlet strength w.r.t. xi and we omit superscript
Comb for brevity. Such a modification enforces the parameters αComb

i of the combined Dirichlet
distribution to be optimized based on the pseudo-label vector yi, i.e., enforces a large pComb

ic to be
produced from the yic = 1 in yi. To further shrink the pComb

iv w.r.t. yiv to 0, the following KL
divergence is considered

KL[Dir(pi|α̃i)∥Dir(pi|1)] = log

(
Γ(
∑C

c=1 α̃ic)

Γ(C)
∏C

c=1 Γ(α̃ic)

)
+

C∑
c=1

(α̃ic − 1)[ψ(α̃ic)− ψ(

C∑
v=1

α̃iv)],

(12)
where α̃i = yi + (1− yi)⊙ αi is the adjusted parameters of Dirichlet distribution, 1 is quite a flat
Dirichlet distribution and Γ(·) is the gamma function. Thus, the interactive loss for xi is

LInte
i = L

′ce
i + ιKL[Dir(pi|α̃i)∥Dir(pi|1)], (13)

where ι is the balance hyperparameter. In summary, the sample-specific loss of TIC model is

LTIC
i = LInte

i + LTime
i + LFreq

i . (14)

Embeddings

Pseudo-labels Trusted result

Encoders

k-means FC layers

Interactive 

Minimizing  Inte

Minimizing     ,   Time Freq

Figure 2: Illustration of the learning process in TIC. When minimizing contrastive loss LTime and
LFreq, the learned embeddings (gTime and gFreq) affect the output of the FC layers (trusted clustering
result), as shown by the blue arrow. When minimizing LInte, the TIC model enforces the trusted
clustering result to be “close” to the pseudo-labels, which are generated by inputting the embeddings
into k-means. In the way of backward propagation, the trusted clustering result also affects the
embedding learning, as shown by the red arrow. The parameter learning in FC layers and encoders
(HT(·),HF(·)) contribute to each other interactively.

Remark 2. More intuitions about the interactive process. In Fig.2, we show the three main com-
ponents in TIC model. The embedding learned affects the trusted clustering result when minimizing
the contrastive loss LTime and LFreq. The pseudo-labels are produced by inputting the embeddings
into k-means and are considered when minimizing LInte. In this way, the trusted clustering result
affects the embedding learning when performing backward propagation. This allows the parameter
learning of FC layers and encoders to contribute to each other interactively. Besides, considering
the interactive loss avoids the class collision issue, where each sample is identified as a cluster in
the embedding space (shown in Fig.3(a)) (Arora et al., 2019). This is because every positive pair
consists only of the sample and its augmentation, without considering any other samples that may
belong to the same cluster, when calculating the contrastive losses. The pseudo-labels in interac-
tive loss are generated by k-means, where the concatenated embeddings [gTime; gFreq] are treated as
the input. Therefore, some basic information about clusters is included in the interactive loss and
improves the clustering performance (shown in Fig.3(b)). We demonstrate quantitatively the above
conclusion in Fig.4(b).
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4 EXPERIMENTS

In this section, we conduct some experiments to answer the following research questions (RQs):

• RQ1 (Comparison experiments): How does the clustering performance of TIC compare with
that of other state-of-the-art time-series clustering algorithms?

• RQ2 (Ablation study): How do the various components of TIC contribute to its performance?
• RQ3 (Embedding evaluation): How about using the learned embedding for other downstream

tasks (e.g., classification, anomaly detection)?
• RQ4 (Hyperparameter sensitivity): what about the hyperparameter sensitivity of TIC?

(a) (b)

Figure 3: Illustration of the embedding space with (a) and without (b) the interactive loss. Because
only the augmentation of each sample is considered when determining positive pairs, it may cause
the class collision issue in the embedding space (shown in (a)), i.e., each cluster consists of only one
sample (Arora et al., 2019). Optimizing the LInte allows k-means to provide some basic information
about the clusters and TIC to achieve better performance (shown in (b)).

Benchmark datasets. We use 136 benchmark (widely used in related work e.g., (Paparrizos & Gra-
vano, 2015; Zhang et al., 2022)) time-series datasets to evaluate the TIC model. Eight datasets are
collected from the real-world and the remaining 128 ones are from the UCR database (Chen et al.,
2015). Eight real-world datasets are multi-variate or univariate, and their application scenarios in-
clude EEG and ECG analyses, and mechanical faulty detection. The description of these benchmark
datasets is shown in Table 1. More details about the datasets are shown in Appendix A.3.

Table 1: Specific description for the 136 benchmark datasets. The detailed description of the 128
UCR datasets can be found in (Chen et al., 2015). #Sam, #Clu and #Cha denote the number of
samples, clusters and channels, respectively.

Dataset #Sam #Clu #Cha Length
EMG 204 3 1 1,500
ECG 43,673 4 1 1,500
HAR 10,299 6 9 128

Gesture 560 8 3 315
FD-A 8,184 3 1 5,120
FD-B 13,640 3 1 5,120

SleepEEG 371,055 5 1 200
Epilepsy 11,500 2 1 178

UCR (128 datasets) [40, 16,637] [2, 60] 1 [15, 2,844]

Baselines. To answer RQ1, we consider the following 10 time-series clustering methods, i.e., DTCR
(Ma et al., 2019b), k-shape (Paparrizos & Gravano, 2015), SOM-VAE (Fortuin et al., 2020), STCN
(Ma et al., 2022), TMEK (Tang et al., 2021), TNC (Tonekaboni et al., 2022), TS3Cch (Guijo-Rubio
et al., 2021), UMAP (Péalat et al., 2023), USSL (Zhang et al., 2019) and VLSC (Duan & Guo, 2023)
in the comparison experiment.

To answer RQ3, we evaluate the embeddings learned by TIC on the other downstream tasks (i.e.,
classification and anomaly detection). The included baselines are 8 unsupervised representation
learning methods, i.e., activity2vec (Aggarwal et al., 2019), BTSF (Yang & Hong, 2022), CLOCS
(Kiyasseh et al., 2021), MHCCL (Meng et al., 2023), TFC (Zhang et al., 2022), Triplet (Franceschi
et al., 2019), TS2Vec (Yue et al., 2022) and TSTCC (Eldele et al., 2022). More details of the
baselines are shown in Appendix A.4.

Implementation details. In our TIC model, we use two 2-layer Transformer (Vaswani et al., 2017)
as backbones for encodersHT(·) andHF(·). FCT and FCF contain three fully-connected layers with
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hidden dimensions d1 = L (time-series length), d2 = 128 and d3 = C (number of clusters), where
the softmax layer is replaced with the RELU to ensure that the network outputs are non-negative
values. These two FC modules do not share any parameters. The full spectrum (symmetrical) is used
to guarantee that xTime and xFreq have the same number of dimensions, when transforming the time
domain to frequency domain. The Adam optimizer with a learning rate of {0.0001, 0.0002, 0.0003}
and 2-norm penalty coefficient of 0.0005 is used. We use the batch size of {8, 16, 32, 64, 128}
according to the dataset size, and use the training epoch of 100. We set β = 1, γ ∈ {0.5, 1.2} for
the frequency augmentation and τ = 0.2 in loss functions (3) and (4). The balance hyperparameter
ι in Eq.(13) is gradually increased to prevent TIC model from paying too much attention to the KL
divergence in the initial training stage. The pseudo-labels are updated every t = 20 epochs. We
use the code provided in the corresponding paper, and the hyperparameters are finely tuned within
the configuration provided therein based on the unsupervised metric Davies-Bouldin Index for fair
comparison. The supervised ARI, NMI, ACC metrics are considered. All models are implemented
with PyTorch on an NVIDIA A100 Tensor Core GPU. In Appendix A.5, the statistical comparison
result derived from the Friedman test and Nemenyi test is provided.

RQ1. Comparison experiment. We show the comparison results between TIC and the 10 time-
series clustering baselines in Table 5, where the ARI clustering metric are used (Rand, 1971). We
recall that the larger the metrics, the better the clustering performance. After being fed to the correct
number C of clusters, each algorithm is run 5 times and the results are recorded in the form of
mean±std.deviation. In particular, the average ARI and the corresponding average std. deviations on
the 128 UCR datasets are reported. The results w.r.t. NMI, ACC and running time are provided in
Appendix A.6.

Table 2: ARI of different algorithms on benchmark datasets. The •/◦ indicates whether TIC is
statistically superior/inferior to a certain comparing baseline based on the paired t-test at a 0.05
significance level. The statistics of win/tie/loss are shown in the last row of each sub-table. The best
and the second-best results, between which the performance gaps are shown in the row named “gap”
in each sub-table, are colored blue and red.

ARI EMG ECG HAR Gesture FD-A FD-B SleepEEG Epilepsy UCR
DTCR .782±.02• .812±.01• .584±.02• .874±.03• .882±.02• .801±.01• .571±.01• .872±.02• .634±.02•
k-shape .684±.02• .578±.01• .765±.03 .723±.02• .860±.01• .811±.02• .806±.01• .909±.02• .802±.03•
SOM-VAE .845±.03• .812±.02• .774±.01 .921±.01 .824±.03• .732±.02• .816±.02• .931±.01• .813±.02•
STCN 1±0 .730±.02• .669±.02• .825±.01• .879±.02• .803±.01• .815±.02• .770±.01• .541±.02•
TMEK .651±.02• .706±.02• .690±.01• .807±.01• .682±.02• .782±.01• .741±.02• .901±.02• .642±.01•
TNC .751±.01• .805±.02• .693±.01• .851±.02• .780±.03• .593±.01• .741±.02• .725±.01• .707±.01•
TS3Cch .703±.02• .813±.02• .706±.01• .852±.01• .711±.02• .682±.01• .865±.01 .939±.02• .851±.02
UMAP .859±.01• .791±.01• .643±.02• .852±.02• .725±.01• .785±.01• .863±.01 .972±.02 .848±.01•
USSL .876±.01• .745±.01• .621±.02• .597±.02• .622±.03• .592±.03• .802±.02• .925±.02• .710±.01•
VLSC 1±0 .805±.01• .611±.02• .823±.02• .654±.02• .498±.01• .796±.01• .942±.02 .757±.01•
TIC (ours) 1±0 .879±.01 .796±.01 .931±.01 .939±.01 .853±.02 .896±.01 .980±.01 .883±.01
gap .124 .066 .022 .010 .057 .042 .031 .008 .032
win/tie/loss 8/2/0 10/0/0 8/2/0 9/1/0 10/0/0 10/0/0 8/2/0 8/2/0 9/1/0

Overall, our TIC model wins 80 and has tied performance on 10 out of 90 trials, when it is statis-
tically compared with 10 baselines based on three metrics. On average, our TIC model claims a
large performance gap of 0.043 over the best baselines. Concretely, the largest performance gap is
0.0124 on the EMG dataset and the smallest one is 0.008 on the Epilepsy dataset. Only on the EMG
dataset, STCN and VLSC yield the totally correct clustering result, and achieve the equal ARI with
TIC. One potential explanation is that EMG is a simple dataset with only 3 clusters and 204 samples,
and thus it may be easy to be modeled. On the ECG dataset, TIC outperforms the strongest base-
lines by a large margin of 0.066. Because ECG includes four clusters consisting of 43,673 samples
that lead to a more complex clustering task, a combination of clustering information in the time and
frequency domains results in better performance. In summary, the better performance of TIC model
can be attributed to (1) Both time-domain and frequency-domain contrastive losses are considered;
(2) Quantification of sample-specific uncertainty reduces the wrong assignment in clustering deci-
sion; (3) Dempster’s rule appropriately combines the time- and frequency-based clustering results;
(4) the class collision issue can be improved by including the interactive loss LInte in LTIC. The
ablation study (more results shown in Appendix A.7) experimentally demonstrates the four points
above.

RQ2. Ablation study. We conduct ablation studies to evaluate the importance of every com-
ponent in the developed TIC model. Concretely, we compare TIC model with its 3 variants:
W/o LTime/LFreq: the loss function LTime/LFreq is removed from the LTIC, i.e., the time-
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based/frequency-based contrastive module is removed; W/o LInte: the loss function LInte is re-
moved from the LTIC, i.e., k-means does not provide pseudo-labels for the training.

Table 3: ARI values (mean±std.deviation) of different variants of TIC.

ARI EMG ECG HAR Gesture FD-A FD-B SleepEEG Epilepsy UCR Average
W/o LTime .958±.01 .815±.02 .702±.01 .846±.02 .859±.02 .745±.02 .687±.02 .899±.01 .756±.01 0.807
W/o LFreq .934±.01 .827±.01 .754±.01 .798±.02 .547±.02 .609±.01 .781±.02 .854±.01 .716±.01 0.758
W/o LInte .042±.03 .121±.02 .098±.01 .057±.03 .069±.02 .210±.01 .009±.02 .147±.02 .059±.01 0.090
TIC (Full model) 1±0 .879±.01 .796±.01 .931±.01 .939±.01 .853±.02 .896±.01 .980±.01 .883±.01 0.906

The results of the ablation study are reported in Table 3. As can be seen, removing LTime and LFreq

leads to performance degradation (average ARI) of 0.912 − 0.807 = 0.105 and 0.912 − 0.758 =
0.154, respectively. In particular, on the datasets {FD-A, FD-B} with a high sampling frequency of
64k Hz, removing LFreq cause more pronounced performance degradation, e.g., the ARI values of
W/o LTime and LFreq are 0.859 and 0.547 on FD-A dataset. One can conclude that the time- and
frequency-based contrastive modules have almost the same contribution to the whole TIC model.
The variant W/o LInte has the lowest ARI on all the datasets. This is because every positive pair
consists only of the sample and its augmentation after removing the LInte, i.e., losing the basic
clustering information provided by pseudo-labels. In this case, the class collision issue seriously
degrades the clustering performance as discussed in Remark 2. In Fig.4(b), we further show the
cosine distances among samples belonging to different clusters. One can see that considering the
interactive loss LInte (with LInte in Fig.4(b)) can increase the inter-cluster cosine distance with a
remarkable gap of 20.4% (i.e., from 1.965 to 2.365 on ECG dataset). It shows that minimizing the
LInte indeed increases the distinctiveness of learned embeddings and bring forward better cluster
performance.

(a) Cosine distance
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Figure 4: Cosine distance (a) between time- and frequency-based embeddings of the same sample
considering the combination (With comb, i.e., full TIC model) and without the combination (W/o
Comb) of results from time and frequency domains. The lower distance denotes better encoder
learning, because gtime

i and gtime
i are closer in embedding space. Cosine distance (b) among the

concatenated embeddings [gtime
i ;gtime

i ] of samples belonging to different clusters. The larger inter-
cluster distance represents a better clustering result.

RQ3. Embedding evaluation. We evaluate the embedding learned by TIC model by performing
two other downstream tasks: classification and anomaly detection. The results w.r.t. anomaly detec-
tion are shown in Appendix A.8. We follow the same protocol as (Franceschi et al., 2019; Tonek-
aboni et al., 2022), where a multi-class SVM with RBF kernel and a linear classifier are trained on
top of the embeddings learned by different models. The 5-fold cross-validation is adopted to train
the SVM and the linear classifier. In TIC, the time- and frequency-based embeddings are concate-
nated [gTime; gFreq]. Beyond the aforementioned unsupervised representation learning methods, we
consider a K-nearest neighbor classifier (K = 5) equipped with DTW metric (KNNDTW) as another
baseline. The evaluation results are summarized in Table 4, where the results w.r.t the linear classifier
and SVM are shown in the first and second sub-tables. As can be seen, TIC achieves the best perfor-
mance (colored blue) in 13 out of 18 cases and the second-best performance in another 5 cases. In
particular, TIC shows the highest accuracy of 0.9654 when training an SVM classifier, which yields
a margin of 4.3% over the best baseline activity2vec (0.9257). It shows that TIC adequately lever-
ages the information from time and frequency domains to provide more fine-grained embeddings
for discriminant. Besides, almost all the unsupervised representation learning baselines have higher
accuracy than KNNDTW, illustrating the dominance of neural networks in representation learning.
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Table 4: Accuracy (mean±std.deviation) of different methods on benchmark datasets. The results w.r.t
the linear classifier and the multi-class SVM are shown in the first and second sub-tables. KNNDTW

denotes a K-nearest neighbor classifier equipped with DTW metric.

Linear EMG ECG HAR Gesture FD-A FD-B SleepEEG Epilepsy UCR
KNNDTW .8452±.089 .6712±.053 .7152±.065 .5746±.031 .6784±.053 .3462±.078 .6745±.043 .8756±.074 .7127±.054
activity2vec .9587±.011 .7853±.036 .9258±.073 .6547±.026 .8964±.039 .6578±.038 .8941±.085 .9245±.004 .9123±.030
BTSF .9578±.057 .8514±.034 .9463±.068 .8637±.079 .8875±.068 .7123±.029 .8745±.075 .9521±.056 .8654±.028
CLOCS .8924±.049 .7546±.056 .8954±.038 .4852±.023 .8456±.087 .7214±.036 .8875±.074 .9485±.029 .8745±.054
MHCCL .9643±.022 .7765±.031 .9164±.034 .7756±.055 .8382±.064 .7936±.051 .9145±.029 .9654±.005 .7363±.098

TFC .9854±.007 .9087±.045 .9245±.054 .7955±.024 .8657±.048 .8834±.038 .8921±.051 .9478±.025 .7982±.069
Triplet .9338±.077 .8937±.064 .9054±.029 .6953±.044 .8542±.055 .8377±.047 .8999±.035 .9785±.009 .8032±.013
TS2Vec .8687±.035 .8546±.054 .4887±.067 .8365±.081 .8922±.039 .8643±.059 .8456±.062 .9087±.029 .8266±.002
TSTCC .9485±.014 .7481±.011 .8804±.025 .7685±.024 .8547±.039 .8598±.011 .8300±.007 .9158±.009 .7591±.003
TIC (ours) .9785±.057 .9132±.056 .9571±.084 .8795±.067 .9215±.069 .8965±.027 .9013±.039 .9874±.055 .9251±.036
SVM EMG ECG HAR Gesture FD-A FD-B SleepEEG Epilepsy UCR
KNNDTW .8452±.089 .6712±.053 .7152±.065 .5746±.031 .6784±.053 .3462±.078 .6745±.043 .8756±.074 .7127±.054
activity2vec .9651±.035 .8324±.067 .9257±.054 .6871±.036 .9031±.089 .6982±.056 .8874±.074 .9483±.036 .9245±.057
BTSF .9687±.045 .8789±.037 .9128±.061 .8843±.039 .8992±.066 .7536±.052 .8905±.037 .9569±.045 .8763±.079
CLOCS .9214±.066 .7895±.074 .9214±.056 .5123±.081 .8517±.036 .7541±.063 .8907±.046 .9681±.039 .8852±.028
MHCCL .9695±.035 .7854±.076 .9237±.046 .7986±.048 .8736±.078 .8065±.031 .8943±.032 .9533±.067 .7629±.054

TFC .9743±.085 .9316±.037 .9158±.045 .8214±.061 .8702±.047 .9317±.036 .8795±.026 .9538±.054 .8369±.091
Triplet .9502±.045 .9125±.067 .9056±.057 .8506±.075 .8722±.049 .8697±.094 .8907±.056 .9654±.048 .8537±.033
TS2Vec .8794±.024 .8874±.079 .5638±.047 .8574±.067 .9201±.043 .8932±.046 .8645±.033 .9268±.076 .8437±.070
TSTCC .9542±.036 .7896±.033 .9214±.096 .7982±.019 .8964±.056 .8609±.087 .8514±.076 .9235±.044 .7978±.021
TIC (ours) .9855±.065 .9236±.049 .9654±.037 .9025±.081 .9187±.064 .9222±.074 .9098±.026 .9745±.037 .9391±.056
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Figure 5: ARI in every epoch with updating pseudo-labels every 40 epochs and without update (a).
ARI decreases slightly each time the pseudo-labels are updated by k-means at 40th and 80th epochs
(shown by black circles). ARI with different t is shown in (b). The frequent updating of pseudo-
labels (t = 10) degrades the clustering performance of TIC model.

RQ4. Sensitivity of the hyperparameter t. As shown in Fig.1, TIC model updates the pseudo-
labels generated by k-means every t epochs. In Fig.5(a), we show the ARI of TIC in every epoch
with t = 40 and without update for the Gesture dataset. It can be seen that the clustering results
generated by k-means keep being improved (ARI=0.347 with epoch ∈ [1, 39], ARI=0.623 with
epoch ∈ [40, 79], ARI=0.714 with epoch ∈ [80, 99]) because the embedding learning is constantly
optimized. This leads to basic clustering information of higher quality being considered in the
interaction loss. Although the ARI of TIC decreases temporarily at each update of the pseudo-label
(epoch = 40 and epoch = 80), the final ARI with t = 40 is higher than the one without updates.
Fig.5(b) shows the ARI of TIC model with different t. Frequent updating (t = 10) of pseudo-
labels degrades the performance of TIC, even making it lower than the case of no updating, as the
embedding learning is destabilized. we also provide the visualization of the clustering results and
the effects of various data augmentation techniques in Appendix A.9 and A.10.

5 CONCLUSION

This paper proposes a trusted and interactive clustering model for time-series data, named TIC,
leveraging evidence theory to combine time- and frequency-based information. TIC optimizes the
contrastive loss from time and frequency domains, and an interactive loss calculated based on the
pseudo-labels. Uncertainty in time- and frequency-based clustering results are quantified by mass
functions that are combined by Dempster’s rule to produce the trusted clustering results. Experimen-
tal results show the superior clustering performance of TIC brought by the combination of clustering
results from time and frequency domains, as well as the consideration of interactive loss. The em-
bedding learned by TIC is also shown to perform well on the classification and anomaly detection
tasks.
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A APPENDIX

A.1 RELATED WORK

We review time-series clustering methods, contrastive learning methods toward time-series data and
uncertain learning methods, respectively.

A.1.1 TIME-SERIES CLUSTERING

Time-series clustering methods can be roughly classified into two families: raw-data-based methods
and feature-based methods.

Raw-data-based methods. These methods primarily modify the distance metric to accommodate
the specific characteristics of time-series data. K-DBA (Petitjean et al., 2011) combines k-means and
dynamic time warping (DTW) (Itakura, 1975) to achieve improved alignment. To reveal the tempo-
ral dynamics, K-SC method (Yang & Leskovec, 2011) utilizes a similarity metric that is invariant to
scaling and shifting. K-Shape (Paparrizos & Gravano, 2015) considers the shapes of time-series by
employing a normalized cross-correlation metric. The mentioned methods often exhibit sensitivity
to outliers and noise because they consider all time-step points (Ma et al., 2019b).

Feature-based methods. Feature-based methods typically involve two stages, where the input time-
series samples are transformed into informative features first and clustering algorithms are then con-
ducted on these features (Tang et al., 2021; Fortuin et al., 2020). In conjunction with k-means, TNC
(Tonekaboni et al., 2022) ensures the distribution of signals from the neighborhood is distinguish-
able from the distribution of non-neighboring signals. Authors in (Tang et al., 2021) map the raw
time-series space into multiple kernel spaces via elastic distance measure functions and resort to
a self-paced learning paradigm to group time-series samples. Authors in (Péalat et al., 2023) em-
bed the time-series onto the Stiefel manifold to obtain the geometric representations of time-series
samples. STCN (Ma et al., 2022) optimizes the feature extraction and clustering simultaneously,
through a recurrent neural network and a self-supervised clustering module. However, almost all the
feature-based methods do not adopt an information fusion perspective to incorporate both time and
frequency domain information for the purpose of clustering.

A.1.2 CONTRASTIVE LEARNING TOWARD TIME-SERIES DATA

Contrastive learning is a well-known form of self-supervised learning and aims to train an encoder
that maps original inputs into an embedding space. The objective is to bring positive sample pairs
closer together, while pushing negative sample pairs (comprising the original augmentation and
an alternative augmentation of a different input sample) apart (Chen et al., 2020). Compared to
CV (Changpinyo et al., 2021) and NLP (Devlin et al., 2018), contrastive learning in the context of
time-series data has been less explored, mainly due to the difficulty of capturing crucial invariance
properties specific to time-series. TF-C (Zhang et al., 2022) expects that time-based and frequency-
based representations of the same sample are located close together in the time-frequency space, and
embeds the time-based neighborhood of a sample close to its frequency-based neighborhood. BTSF
(Yang & Hong, 2022) utilizes sample-level augmentation with a dropout on a time-series sample,
and devises the iterative bilinear temporal-spectral fusion to generate discriminative embeddings.
CoST (Woo et al., 2021) comprises both time domain and frequency domain contrastive losses to
learn seasonal representations for long sequence time-series forecasting. In addition to these three
methods involving both time and frequency domains, other methods mainly focus on the augmen-
tations implemented in time domain, such as transformation invariance (e.g., SimCLR (Tang et al.,
2020; Chen et al., 2020)) and contextual invariance (e.g., TS2vec (Yue et al., 2022) and TS-TCC
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(Eldele et al., 2021)). In previous works, the loss information from the time- and frequency-domain
is captured in a compositional way, e.g., TF-C simply sums the loss functions from the two domains
and the consistency loss function, and BTSF solely implements the data augmentation in the time do-
main. To the best of our knowledge, this work is the first one that directly combines time-frequency
domain information to leverage information fusion for time-series clustering.

A.1.3 UNCERTAINTY-BASED LEARNING

Some efforts (Gal & Ghahramani, 2016; Lakshminarayanan et al., 2017; Charpentier et al., 2020)
have been made to enable the neural network to estimate the uncertainty of the output. Evidential
network (Sensoy et al., 2018) incorporates subjective logic to model the Dirichlet distribution. Post-
Net (Malinin et al., 2019) utilizes normalizing flow and Bayesian loss during training to estimate
uncertainty. TMC (Han et al., 2021) and ETMC (Han et al., 2022) introduce a variational Dirich-
let distribution to characterize the distribution of the class probabilities in multi-view classification.
Ensemble distribution distillation (Malinin et al., 2019) leverages the predictions of multiple mod-
els to estimate the uncertainty. Authors in (Kopetzki et al., 2021) apply median smoothing to the
Dirichlet model and enhance the capability of the model to handle adversarial examples. Unlike the
above methods, our method is perhaps the first attempt to estimate the uncertainty of the outputs
from a neural network oriented to the clustering problem. Further, we fuse the output with uncer-
tainty estimation from the time and frequency domains to obtain trusted clustering results under the
framework of evidence theory.

A.2 PROOFS OF PROPOSITIONS 1 AND 2

Proposition 1: A large mT
Ω does not lead to a large mCo

Ω , when one of mF
c is large and mF

Ω is small.
In particular, mCo is identical to mT, if mF is totally uncertain (i.e., mF

Ω = 1).

Proof:

mCo
c =

mT
c m

F
Ω +mF

cm
T
Ω +mT

c m
F
c

mF
Ωm

T
Ω +

∑C
v=1m

T
vm

F
v + (1−mT

Ω)m
F
Ω + (1−mF

Ω)m
T
Ω

=
mT

c m
F
Ω +mF

cm
T
Ω +mT

c m
F
c∑C

v=1m
T
vm

F
v +mT

Ω +mF
Ω −mF

Ωm
T
Ω

Considering the worst case with mF
Ω = 1,mF
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Proposition 2: The mCo
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As can be seen, mCo
Ω increases as mT

Ω and mF
Ω increase. □

A.3 DESCRIPTION OF DATASETS

ECG (Clifford et al., 2017) is from the 2017 PhysioNet Challenge focusing on classifying ECG
recordings, where single-lead ECG measures four different underlying conditions of cardiac ar-
rhythmias. EMG (Goldberger et al., 2000) consists of single-channel Electromyograms (EMGs)
recorded from the tibialis anterior muscle of three healthy volunteers suffering from myopathy and
neuropathy. HAR (Anguita et al., 2013) contains recordings of 30 health volunteers performing
daily activities, including walking, walking upstairs, walking downstairs, sitting, standing, and ly-
ing. Gesture (Liu et al., 2009) contains accelerometer measurements of eight simple gestures that
differ based on the paths of hand movement. FD-A/FD-B (Lessmeier et al., 2016) corresponds to

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Faulty Detection Condition A (FD-A) and Faulty Detection Condition B (FD-B), which are gener-
ated by an electromechanical drive system that monitors the condition of rolling bearings and detects
their failures. SleepEEG (Kemp et al., 2000) are collected from 82 healthy subjects and contains
153 whole-night sleeping electroencephalography (EEG) recordings. Epilepsy (Andrzejak et al.,
2001) contains single-channel EEG measurements from 500 subjects and the corresponding brain
activity is recorded for 23.6 seconds. The details about the UCR datasets can be found in (Chen
et al., 2015).

A.4 DESCRIPTION OF BASELINES

Baselines. To answer Q1, we consider the following 10 time-series clustering methods in the com-
parison experiment.

• DTCR (Ma et al., 2019b): it integrates the temporal reconstruction and k-means objective into the
seq2seq model. By proposing a fake-sample generation strategy and auxiliary classification task,
it can learn cluster-specific temporal representations.

• k-shape (Paparrizos & Gravano, 2015): it relies on a scalable iterative refinement procedure and
uses a normalized cross-correlation measure to consider the shapes of time-series.

• SOM-VAE (Fortuin et al., 2020): it overcomes the non-differentiability in discrete representa-
tion learning and presents a gradient-based version of the traditional self-organizing map (SOM)
algorithm.

• STCN (Ma et al., 2022): it optimizes the feature extraction and clustering simultaneously, where
an RNN conducts the reconstruction of time-series and a self-supervised module to obtain the
clustering result.

• TMEK (Tang et al., 2021): it maps the raw time-series space into multiple kernel spaces via
elastic distance measure functions, and resorts to the tensor-constraint-based self-representation
subspace clustering approach.

• TNC (Tonekaboni et al., 2022): it uses the local smoothness of a signal’s generative process to
define neighborhoods in time-series. By using a de-biased contrastive objective, it learns time-
series representations that are input to k-means to produce the clusteri.ng results.

• TS3Cch (Guijo-Rubio et al., 2021): it consists of two stages, where a least squares polynomial
technique is first used to segment the time-series and the hierarchical clustering is applied to all
the mapped segmentations.

• UMAP (Péalat et al., 2023): it embeds the time-series onto higher-dimensional spaces and is in
conjunction with HDBSCAN algorithm (Campello et al., 2013) to obtain the results.

• USSL (Zhang et al., 2019): it integrates the shapelet learning, shapelet regularization, spectral
analysis and pseudo-label to automatically learn shapelets to group time-series samples.

• VLSC (Duan & Guo, 2023): it minimizes the inner time-series clustering error under time-series
cover constraints, where the time-series lengths can be variable.

To answer Q3, we evaluate the embeddings learned by TIC on the other downstream tasks (i.e.,
classification and anomaly detection). The included baselines are 8 unsupervised representation
learning methods for time-series.

• activity2vec (Aggarwal et al., 2019): it learns the representations with three components, the co-
occurrence and magnitude of the activity levels in a time-series sample, neighboring context of
the time-series, and promoting subject-invariance with adversarial training.

• BTSF (Yang & Hong, 2022): it utilizes the sample-level augmentation with a simple dropout
on the time-series dataset and devise the iterative bilinear temporal-spectral fusion to encode the
affinities of abundant time-frequency pairs.

• CLOCS (Kiyasseh et al., 2021): it encourages the time-series representations across space, time,
and patients to be similar to one another for the physiological data.

• MHCCL (Meng et al., 2023): it exploits semantic information obtained from the hierarchical
structure consisting of multiple latent partitions for multivariate time-series.
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• TFC (Zhang et al., 2022): it learns the representations of time-series by positing that embedding
a time-based neighborhood of a sample should be close to its frequency-based neighborhood.

• Triplet (Franceschi et al., 2019): it learns general-purpose representations by combining an en-
coder based on causal dilated convolutions with a novel triplet loss employing time-based negative
sampling.

• TS2Vec (Yue et al., 2022): it performs contrastive learning in a hierarchical way over augmented
context views and obtains a contextual representation for each timestamp.

• TSTCC (Eldele et al., 2022): it proposes time-series-specific weak and strong augmentations and
learns discriminative representations in a contextual contrasting module.

A.5 MORE STATISTICAL TEST

We also compare the performance of methods using the Friedman test and Nemenyi test by setting
the significant level to 0.05, which is shown in the Fig.6. TIC significantly outperforms the baselines
except for SOM-VAE and TS3Cch in all cases.
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Figure 6: Comparison between TIC and other baselines with the Nemenyi test. The lowest (best)
ranks are to the right, and thus methods on the right sides are considered to be better. The groups of
baselines that are not significantly different from TIC and are connected by red.

A.6 NMI, ACC AND RUNNING TIME RESULTS

Overall, our TIC model wins 235 and has tied performance on 34 out of 270 trials, when it is
statistically compared with 10 baselines based on all the three metrics. Compared to the baselines,
TIC consumes comparative runtime but achieves the best clustering accuracy.

A.7 MORE ABLATION STUDY

We conduct other ablation studies to evaluate the importance of using the Dempster’s rule in the
developed TIC model. Concretely, we compare TIC model with the following variants:

• TIC+: Dempster’s rule is replaced by the addition + to combine the mass functions mTime and
mFreq. For example, if mTime

i = [0.8, 0.1, 0.1],mFreq
i = [0.7, 0.2, 0.1], the mComb

i is calculated
asmComb

i1 = 0.8+0.7
0.8+0.7+0.1+0.2+0.1+0.1 = 0.75,mComb

i2 = 0.1+0.2
2 = 0.15 andmComb

iΩ = 0.1+0.1
2 =

0.1;

• TIC-cau/TIC-bol/TIC-tri: Dempster’s rule is replaced by other combination rule, i.e., the cau-
tious conjunctive rule (Denœux, 2008), the bold conjunctive rule (Denœux, 2008), the parametric
triangular-norm-based rule (Su et al., 2018), which do not rely on the assumption that the items of
evidence are independent of each other;
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Table 5: NMI, ACC (mean±std.deviation) and running time of different algorithms on benchmark
datasets. The •/◦ indicates whether TIC is statistically superior/inferior to a certain comparing
baseline based on the paired t-test at a 0.05 significance level. The statistics of win/tie/loss are
shown in the last row of each sub-table. The best and the second-best results, between which the
performance gaps are shown in the row named “gap” in each sub-table, are colored blue and red.

NMI EMG ECG HAR Gesture FD-A FD-B SleepEEG Epilepsy UCR
DTCR .802±.02• .745±.01• .653±.02• .766±.02• .862±.01• .822±.02◦ .492±.02• .802±.02• .663±.02•
k-shape .752±.02• .591±.01• .745±.01• .734±.02• .836±.02• .756±.03 .692±.02• .834±.03• .843±.03•
SOM-VAE .892±.03• .632±.02• .822±.02• .888±.01 .789±.03• .682±.02• .722±.02• .929±.01• .825±.03•
STCN 1±0 .745±.03• .669±.02• .793±.01• .894±.02 .726±.03• .833±.02• .802±.01• .639±.02•
TMEK .696±.02• .653±.02• .738±.01• .859±.01• .721±.02• .730±.01• .793±.03• .952±.02 .703±.01•
TNC .743±.01• .746±.02• .654±.01• .833±.02• .751±.02• .652±.01• .799±.02• .854±.01• .738±.01•
TS3Cch .752±.01• .726±.01• .753±.02• .871±.02 .754±.04• .752±.03• .921±.01 .949±.01 .874±.01
UMAP .863±.01• .720±.01• .610±.02• .827±.02• .714±.04• .746±.03• .840±.01• .954±.01 .882±.01
USSL .842±.01• .702±.01• .496±.02• .568±.02• .652±.02• .705±.03• .900±.02• .895±.01• .736±.02•
VLSC 1±0 .734±.01• .578±.02• .724±.02• .630±.03• .339±.02• .754±.01• .831±.02• .731±.01•
TIC (ours) 1±0 .786±.01 .887±.01 .898±.02 .900±.01 .784±.02 .942±.01 .965±.02 .891±.01
gap .108 .040 .065 .010 .006 .038 .021 .011 .009
win/tie/loss 8/2/0 10/0/0 10/0/0 8/2/0 9/1/0 8/1/1 9/1/0 7/3/0 8/2/0
ACC EMG ECG HAR Gesture FD-A FD-B SleepEEG Epilepsy UCR
DTCR .792±.02• .841±.01• .621±.02• .892±.03• .906±.02• .938±.01 .620±.01• .921±.02• .657±.02•
k-shape .715±.02• .669±.01• .802±.03• .856±.02• .925±.01• .837±.02• .840±.01• .931±.02• .831±.03•
SOM-VAE .885±.03• .879±.02• .839±.01• .940±.01 .862±.02• .781±.02• .874±.02• .952±.02• .841±.01•
STCN 1±0 .785±.02• .805±.02• .839±.01• .919±.03• .846±.02• .826±.02• .810±.01• .605±.02•
TMEK .742±.02• .795±.02• .800±.01• .863±.01• .752±.02• .822±.01• .793±.03• .954±.02• .678±.01•
TNC .838±.01• .921±.02 .726±.01• .896±.02• .821±.03• .675±.01• .820±.03• .829±.01• .771±.01•
TS3Cch .798±.02• .842±.02• .732±.01• .889±.01• .796±.03• .726±.01• .933±.01 .950±.02• .895±.02
UMAP .876±.01• .846±.01• .705±.02• .909±.02• .731±.02• .863±.01• .921±.01• .988±.03 .867±.01
USSL .932±.01• .822±.01• .734±.02• .619±.02• .658±.04• .639±.03• .885±.01• .978±.01 .751±.01•
VLSC 1±0 .846±.01• .687±.02• .879±.02• .786±.03• .602±.02• .941±.01 .977±.02 .742±.01•
TIC (ours) 1±0 .935±.01 .869±.01 .959±.01 .982±.01 .950±.02 .957±.01 .997±.01 .914±.02

gap .068 .014 .030 .019 .057 .012 .016 .009 .019
win/tie/loss 8/2/0 9/1/0 10/0/0 9/1/0 10/0/0 9/1/0 8/2/0 7/3/0 8/2/0
Time EMG ECG HAR Gesture FD-A FD-B SleepEEG Epilepsy UCR
DTCR 1.65 412.2 113.2 8.5 213.2 324.3 3486.3 143.7 154.3
k-shape 0.32 541.1 132.7 14.3 300.9 452.9 3688.2 168.3 217.8
SOM-VAE 2.51 365.8 101.7 7.2 196.2 331.1 3348.2 121.9 169.8
STCN 0.85 5421.1 2117.3 3.4 1837.6 2913.2 27986.3 2684.9 186.9
TMEK 1.89 432.4 99.4 6.3 145.7 217.3 2987.6 119.3 197.9
TNC 2.07 500.7 145.3 5.2 164.8 213.7 3114.7 192.3 208.9
TS3Cch 1.54 472.1 123.6 10.9 151.8 207.9 3864.3 143.5 178.3
UMAP 1.25 625.1 200.6 7.6 275.9 423.9 3004.7 287.9 190.6
USSL 2.09 587.3 132.4 4.7 167.3 246.4 3654.8 169.3 183.7
VLSC 1.74 584.6 241.1 5.6 272.2 384.3 3845.1 300.8 223.7
TIC (ours) 2.09 576.3 135.3 6.8 206.2 312.9 3884.9 249.9 199.8

• TIC-comc/TIC-GC/TIC-yage/TIC-dubo/TIC-RCR: Dempster’s rule is replaced by other combi-
nation rule, i.e., the COMC rule (Ma et al., 2019c), the GC rule (Du & Zhong, 2021), Yager’s rule
(Yager, 1987), Dubois-Prade’s rule (Dubois & Prade, 1988), the RCR rule (Florea et al., 2009)
which have their own ways to deal with the high-conflicted mass functions.

Table 6: ARI values (mean±std.deviation) of different variants of TIC.

ARI EMG ECG HAR Gesture FD-A FD-B SleepEEG Epilepsy UCR Average
TIC× .845 .729 .711 .921 .895 .803 .832 .893 .873
TIC+ .839 .698 .687 .909 .910 .821 .850 .869 .867
TIC-cau .965 .873 .783 .924 .924 .839 .892 .931 .832
TIC-bol .981 .869 .789 .920 .867 .841 .882 .965 .809
TIC-tri 1 .879 .772 .915 .926 .839 .889 .978 .867
TIC-comc .987 .872 .754 .928 .927 .828 .902 .963 .856
TIC-GC .979 .871 .768 .916 .913 .819 .856 .952 .873
TIC-yage 1 .869 .781 .924 .918 .834 .883 .980 .830
TIC-dubo .981 .853 .789 .916 .904 .842 .879 .980 .815
TIC-RCR 1 .874 .792 .904 .919 .836 .882 .958 .871
TIC (Full model) 1 .879 .796 .931 .939 .853 .896 .980 .883

Compared to the full model, the average ARI of TIC× and TIC+ decrease by 0.912−0.834 = 0.078
and 0.912− 0.833 = 0.079. This suggests that it is more reasonable to use Dempster’s rule to fuse
the clustering results from time and frequency domains. The potential reasons for this result are
twofold: (1) as shown in Eq.(9), Dempster’s rule includes the mTime

ic ·mFreq
ic (multiplication term)

and mTime
ic ·mFreq

ic +mTime
iΩ ·mFreq

ic (addition term); (2) Dempster’s rule considers additionally the
uncertainty mTime

iΩ and mFreq
iΩ (in term mTime

iΩ ·mFreq
ic +mTime

ic ·mFreq
iΩ ), when calculating mComb

ic .
To further illustrate the contribution of combining the results from time and frequency domains, we
show the cosine distance between gtime

i and gFreqi of the same sample in Fig.4(a). “W/o Comb”
means that the cosine distance is calculated between the frequency embeddings learned from “W/o
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LTime” and the time embeddings learned from “W/o LFreq”. One can find that the cosine distance
is smaller by combining the results from time and frequency domains. It means that combining the
results from these two domains indeed enforces the time- and frequency-based embeddings closer
to each other. Taking the FD-A dataset as an example, the average cosine distance decreases from
1.924 to 1.557, i.e., 19.1% by considering the combination.

Compared with TIC-cau and TIC-bol, TIC performs better on all the benchmark datasets. The rea-
sons are: the cautious conjunctive rule uses the intersection operation and loses useful information;
the bold conjunctive rule uses the union operation and takes into account confusing information
when making a decision. Comparing TIC with TIC-tri, TIC-tri only has the same ARI as TIC in 2
cases but has lower ARI on the other 7 cases. It is because that the parametric triangular-norm-based
rule is more sensitive to the hyper-parameters, and reasonable hyper-parameter values are difficult
to choose in both of the time and frequency domains. This also suggests that the mass functions
associated with the clustering results from the time and frequency domains are independent of each
other in the time series clustering problem studied in our paper. Besides, only TIC-comc in the 5
variants aiming to tackle high-conflict have higher ARI than TIC on SleepEEG dataset, because the
conflict values between the results of time and frequency domains are small.

Other 5 variants

• TIC-SVM, TIC-LR, TIC-FC and TIC-LSTM: the outputs from time- and frequency- domains are
treated as features to train SVM, Logistic Regression, fully connected layers, and LSTM;

• TIC-max: the maximum probability given in networks from time- and frequency- domains is
chosen as the final output probability.

are considered to show that using evidence theory to combine the results from time and frequency
domains are superior to other fusion methods. As shown in Table 7, Using evidence theory has the
best ARI in 7 of 9 cases, showing that fusing the results via evidence theory is better than other
methods.

Table 7: ARI values (mean±std.deviation) of different variants of TIC.

ARI EMG ECG HAR Gesture FD-A FD-B SleepEEG Epilepsy UCR Average
TIC-SVM .987 .875 .779 .930 .928 .842 .882 .962 .869
TIC-LR 1 .839 .782 .929 .928 .844 .885 .974 .870
TIC-FC 1 .860 .769 .934 .932 .859 .876 .980 .863
TIC-LSTM .993 .853 .739 .945 .917 .851 .879 .974 .876
TIC-max .976 .842 .754 .928 .921 .809 .882 .956 .879
TIC (Full model) 1 .879 .796 .931 .939 .853 .896 .980 .883

A.8 EMBEDDING EVALUATION: TIME-SERIES ANOMALY DETECTION.

We evaluate how TIC performs on a sample-level anomaly detection task, which aims to detect ab-
normal time-series samples. We build two subsets of FD-B and ECG datasets. The former contains
1000 samples where 900 undamaged bearings are considered “normal” and 100 damaged samples
are “outliers”; while the latter has 2000 samples where 1800 normal sinus rhythm recordings are
considered “normal” and 200 atrial fibrillation recordings are “outliers”. We randomly select half
of the “normal” samples as the training data, of which the embeddings learned by different models
are used to train the one-class SVM. The time- and frequency-based embeddings learned by TIC are
also concatenated [gTime; gFreq]. In Table 8, we report the performance on the anomaly detection
task in terms of Precision, Recall, F1-score and AUROC. TIC achieves the best performance in 6
out of 8 cases. On the ECG dataset, TIC outperforms the second-best model (i.e., activity2vec)
by a margin of 3.3% in AUROC. It shows that TIC can effectively detect the abnormal samples in
mechanical devices and ECGs.

A.9 EFFECT OF AUGMENTATION

As shown in Section 3, data augmentations are adopted in both the time- and frequency-based con-
trastive modules. We explore the effects of augmentation techniques in these two modules sepa-
rately. In each trial, the corresponding setting is changed while the other ones are the same as the
default settings.
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Table 8: Performance on time-series anomaly detection. The subsets of FD-B (1000 samples) and
ECG (2000 samples) are used. These two subsets are highly imbalanced (90% normal samples and
10% abnormal samples).

FD-B Precision Recall F1-score AUROC
activity2vec .8054±.034 .7145±.037 .7432±.023 .7911±.029
BTSF .6854±.015 .6274±.017 .6653±.021 .6741±.014
CLOCS .8412±.025 .7465±.028 .8222±.019 .8126±.021
MHCCL .6210±.043 .5745±.036 .6009±.040 .6123±.023
TFC .8547±.037 .7698±.029 .8274±.019 .8602±.033
Triplet .7321±.034 .6547±.045 .6987±.043 .7201±.031
TS2Vec .6813±.022 .6134±.027 .6423±.019 .6731±.015
TSTCC .6354±.019 .4517±.066 .4968±.056 .8022±.044
TIC (ours) .8641±.025 .7652±.013 .8359±.024 .8563±.033
ECG Precision Recall F1-score AUROC
activity2vec .7584±.011 .6124±.036 .7022±.073 .7598±.026
BTSF .7752±.027 .7124±.034 .7413±.022 .7581±.029
CLOCS .4861±.049 .4035±.056 .4491±.038 .4727±.023
MHCCL .5689±.015 .4875±.019 .5471±.024 .5563±.023
TFC .7654±.037 .7035±.029 .7503±.019 .7429±.033
Triplet .5789±.027 .5067±.023 .5417±.028 .5561±.019
TS2Vec .6857±.015 .6138±.019 .6587±.021 .6701±.020
TSTCC .7345±.031 .6538±.024 .6993±.016 .7235±.019
TIC (ours) .7958±.021 .7216±.024 .7645±.026 .7856±.019

In the time-based contrastive module, we fix the augmentation as jittering, scaling and time-shift
for all samples, instead of randomly choosing one augmentation from the augmentation bank BTime

(consisting of these three augmentations) for each sample. The comparison result is shown in the
rightmost sub-table of Table 9. As can be seen, random selection covers diverse augmentations
that allow the encoder HT(·) to learn better and more robust embedding gTime, which improves the
clustering performance.
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Figure 7: T-SNE visualization of the concatenated embedding [gTime
i ; gFreqi ] for EMG dataset in

different epochs. As the learning proceeds, the embeddings from the same cluster are gradually
grouped together.

We consider three types of change in frequency-based augmentations. (1) We explore the number of
components manipulated, where the results are shown by the sub-table titled by Components in Table
9. One can find that the performance of TIC model tends to deteriorate when perturbing multiple
frequency components. This degradation is attributed to the substantial changes in the time-domain
of augmented samples. Consequently, these augmented samples become readily distinguishable by a
contrastive module, resulting in suboptimal contrastive encoders. (2) We then explore the adjustment
size of amplitude in sub-table Amplitude of Table 9. As can be seen, manipulating the amplitude does
not significantly affect the performance of TIC model. (3) In sub-table Bands of Table 9, we explore
the band that the manipulated component belongs to. The Low-/high-frequency band corresponds
to the first/second half of the frequency spectrum, and contributes to slow/fast variations in the
time domain. In a physiological time-series dataset (e.g., SleepEEG), the low band contains most
information and manipulating a low-frequency component leads to higher ARI. On the contrary,
high-band components are more informative than low-band ones in a mechanical time-series dataset
(e.g., FD-A). Thus, perturbing high-band components outperform low-band augmentations.

A.10 VISUALIZATION OF CLUSTERING RESULTS

Figure 7 shows the t-SNE Van der Maaten & Hinton (2008) plot of the embeddings for EMG dataset
learned by TIC model. For each sample, we concatenate the embeddings [gTime

i ; gFreqi ]. As the
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Table 9: ARI with different augmentation techniques. Terms Components, Amplitudes and Bands
refer to the frequency-based augmentations. Components means how many components are ma-
nipulated, Amplitude means the adjustment size of amplitude and Bands means the perturbation is
performed on a low- or a high-frequency component. Time domain means the augmentation x̃Time

i
are randomly selected from the bank BTime

i {Jittering, Scaling Shift} or a fixed augmentation tech-
nique.

ARI Components Amplitude Bands Time domain
β = 1 β = 3 β = 5 γ = 0.1 γ = 0.5 γ = 0.9 γ = 1.1 Low High Random Jittering Scaling Shift

SleepEEG 0.8961 0.8751 0.8245 0.8952 0.8961 0.8934 0.8942 0.8994 0.8802 0.8961 0.8726 0.8542 0.8793
FD-A 0.9392 0.9157 0.9013 0.9406 0.9392 0.9410 0.9375 0.9321 0.9457 0.9392 0.9103 0.9261 0.9245

learning proceeds, the embeddings learned by TIC from the same cluster are gradually grouped
together. In particular, samples clearly form 3 clusters at epoch = 99, corresponding to the ARI=1
of TIC shown in Table 5. The visualization results further demonstrate the well embedding ability
of our model.
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