
Under review as submission to TMLR

Robust uncertainty estimates with out-of-distribution pseudo-
inputs training

Anonymous authors
Paper under double-blind review

Abstract

Probabilistic models often use neural networks to control their predictive uncertainty. How-
ever, when making out-of-distribution (OOD) predictions, the often-uncontrollable extrapo-
lation properties of neural networks yield poor uncertainty predictions. Such models then
don’t know what they don’t know, which directly limits their robustness w.r.t unexpected
inputs. To counter this, we propose to explicitly train the uncertainty predictor where we are
not given data to make it reliable. As one cannot train without data, we provide mechanisms
for generating pseudo-inputs in informative low-density regions of the input space, and show
how to leverage these in a practical Bayesian framework that casts a prior distribution over
the model uncertainty. With a holistic evaluation, we demonstrate that this yields robust
and interpretable predictions of uncertainty while retaining state-of-the-art performance on
diverse tasks such as regression and generative modelling.

1 Introduction

Neural networks generally extrapolate arbitrarily (Xu et al., 2020), and high quality predictions are limited
to regions of the input space where the networks have been trained. This is to be expected and is only
problematic if the associated predictions are not accompanied with a well-calibrated measure of uncertainty.
If a neural network is used for estimating such a measure of uncertainty, we, however, quickly run into
trouble, as the reported uncertainty then exhibits arbitrary behaviour in regions with no training data.
Alarmingly, these are exactly the regions where evaluating the uncertainty is most important to the safe
deployment of machine learning models in real world applications (Amodei et al., 2016). One potential
solution is to avoid using directly the output of neural networks for predicting uncertainty, and let it emerge
from another mechanism, e.g. an ensemble (Hansen & Salamon, 1990; Lakshminarayanan et al., 2017) or
some notion of Monte Carlo (MacKay, 1992; Gal & Ghahramani, 2016). Here we explore the alternative
view that the networks should simply be trained where there is no data. But can we train without data?
The Bayesian formalism often does so implicitly: most conjugate priors can be seen as additional training
data (Bishop, 2006), e.g. in Gaussian models, a mean prior N (µ0, σ

2
0) can be realised by additional training

data of µ0 with σ2
0 setting the amount of observations. Placing a prior over the output of a neural network

can, thus, be interpreted as additional training data. Unfortunately, this view is not practical as it implies

Figure 1: Pseudo-inputs are generated out of distribution, and there we train towards a prior (grey density).

1

Under review as submission to TMLR

additional data for all possible inputs to a neural network, resulting in infinite data. Our approach is simple:
we locate regions of low data density in input space and implicitly place observations here in output space
by minimising an appropriate KL divergence towards a prior (see Fig. 1). The result is a simple algorithm
that significantly improves uncertainty estimates in both regression and generative modeling.

1.1 Background and related work

The predictive performance of machine learning models has drastically increased in the past decade, but
the quality of the accompanying uncertainties have not followed. Uncertainties are reported as being
miscalibrated (Guo et al., 2017) and overconfident (Lakshminarayanan et al., 2017; Hendrycks & Gimpel,
2016). Some models even see higher likelihoods of out-of-distribution than in-distribution data (Nalisnick
et al., 2019; Nguyen et al., 2015; Louizos & Welling, 2017).

Neural networks commonly output distributions which gives a notion of predictive uncertainty. Classifiers
trained with soft-max is an ever-present example of such. These predictions are generally observed to be
overconfident (Lakshminarayanan et al., 2017; Hendrycks & Gimpel, 2016) and to carry little meaning
outside the support of the training data (Skafte et al., 2019; Lee et al., 2017). The latter is an artifact
of the hard-to-control extrapolation that comes with neural networks (Xu et al., 2021). In general, since
extrapolation is difficult to control, uncertainties predicted by neural networks will exhibit seemingly
arbitrary behavior outside the support of the data, yielding untrustworthy results.

Mean-variance networks for regression (Nix & Weigend, 1994) model the conditional target density as a
Gaussian p(y|x) = N

(
y|µ(x), σ2(x)

)
with mean and variance predicted by neural networks. The predictive

uncertainty is generally accurate in regions near training data, but otherwise unreliable (Hauberg, 2019). To
counter this, Arvanitidis et al. (2017) and Skafte et al. (2019) proposed variance network architectures to
enforce a specified extrapolation value, but these heuristics tend to be difficult to tune, and lack principle.
Mean-variance networks have seen a recent uptake within generative modeling, where they are used as an
encoder distribution in variational autoencoders (VAEs) (Kingma & Welling, 2013; Rezende et al., 2014).

Which uncertainty? A commonly called-upon dichotomy (Der Kiureghian & Ditlevsen, 2009) is that the
uncertainty of a model’s prediction can be decomposed into the uncertainty of the model (epistemic) and of
the data (aleatoric). The epistemic uncertainty can be lowered by increasing the amount of data, simplifying
the model or otherwise reducing the complexity of the learning problem. The aleatoric uncertainty, on the
other hand, is a property of the world, and cannot be changed; no prediction should ever be more certain
than the uncertainty displayed by the associated data.

Bayesian methods are often used to quantify uncertainty due to their explicit formulation of uncertainty.
Gaussian processes (GPs) (Rasmussen & Williams, 2005) provide an elegant framework that provide state-of-
the-art uncertainty estimates, but, alas, the corresponding mean predictions are often not up to the standards
of neural networks. GPs are tightly linked to Bayesian neural networks (BNNs) (Neal, 2012) that place a prior
over the network weights and seek the corresponding posterior. Despite advances in variational and Laplace ap-
proximations (Graves, 2011; Kingma & Welling, 2013; Blundell et al., 2015; Daxberger et al., 2021), expectation
propagation (Hernández-Lobato & Adams, 2015; Hasenclever et al., 2017), or Monte Carlo methods (Welling &
Teh, 2011; Springenberg et al., 2016), training BNNs remains difficult. Furthermore, the predictive uncertainty
seems dependent on the degree of approximation and is thus controlled by the available compute power.

Ensemble methods have long been used to produce aggregated predictions with uncertainty estimates
(Hansen & Salamon, 1990; Breiman, 1996). Deep ensembles (Lakshminarayanan et al., 2017), a collection
of differently initialized networks trained on the same data, are generally reported as state-of-the-art for
uncertainty quantification in deep models (Thagaard et al., 2020; Ovadia et al., 2019). As the models in the
ensemble are trained on overlapping data, they are correlated, which influence the ensemble uncertainty in
ways that remains unclear (Breiman, 2001). Monte-Carlo dropout (Gal & Ghahramani, 2016) casts dropout
training (Srivastava et al., 2014) as an ensemble model. It is computationally cheap, but experiments (Ovadia
et al., 2019; Skafte et al., 2019) show that the increased correlation of ensemble elements causes overconfidence.

Robustness to distribution shift is part of a well-behaved uncertainty predictor (Ovadia et al., 2019)
and must be evaluated accordingly. For out-of-distribution detection, Liang et al. (2017) proposes a

2

Under review as submission to TMLR

Figure 2: Noise contrastive priors improve uncertainty estimates, but overregularize the mean. BBB+NCP∗

indicates Bayes by backprop with greater NCP regularisation

pre-processing perturbation step inspired by adversarial attacks (Goodfellow et al., 2014b) that helps
distinguish in-distribution and out-of-distribution inputs. Hendrycks et al. (2018) used a Generative
Adversarial Network (GAN) (Goodfellow et al., 2014a) to generate out-of-distribution pseudo-inputs that
appear in a regularizing term in the loss function, called outlier exposure, to enhance the predictor’s ability
to discriminate out-of-distribution inputs (Lee et al., 2017; Dai et al., 2017).

Out-of-distribution pseudo-inputs can improve uncertainty estimates. Deep ensembles trained to
maximise diversity on such pseudo-inputs can display high uncertainty outside of their training support
(Jain et al., 2020), under the strong assumption that uniformly distributed pseudo inputs can accurately
capture the out-of-distribution support. High entropy priors on predictions, pprior(y|x), conditioned on
OOD pseudo-inputs sampled from pprior(x), have also successfully regularised the uncertainty predictions
of Bayesian models (Hafner et al., 2018; Malinin & Gales, 2018). But these negatively affect the mean
predictions compared to contemporary regularisation techniques (Srivastava et al., 2014; Ioffe & Szegedy,
2015).

1.2 Robust uncertainty estimates

Notation. Let the observed variable x ∈ X follow the data generating distribution pdata(x), only known
through the training dataset of N i.i.d samples Dtrain = {xn}N

n=1. In the case of supervised learning, the
observed variables x = (x, y), with x ∈ Rd being the input and y ∈ Rd′ the target for the model, follow the
joint decomposition pdata(x, y) = pdata(y|x)pdata(x). The proposed probabilistic model pθ(x), whose weights
are indicated by θ, aims to accurately emulate pdata(x).

Practical problems in variance estimation. Gaussian likelihoods in the form of pθ(x) =
N
(
x|µθ(x), σ2

θ(x)
)

are widely adopted to model continuous covariates. Real world data cannot be
expected to be homoscedastic, i.e constant throughout input space, and thus the predictive uncertainty, σθ(x),
most often uses neural networks to map continuously the observed x onto the parameter space. Beyond
the well-known unreliable extrapolation properties of neural networks, this parametrisation of predictive
uncertainty is hamstrung by serious defects. Firstly, the predictive variance scales the learning rates of
the mean and variance updates by 1/2σ2

θ(x), resulting in a bias for data regions with low uncertainty (Nix &
Weigend, 1994). Secondly, the maximisation of the modelled likelihood is particularly sensitive to scarce data,
as local gradient updates for the variance point towards the then undefined maximum likelihood estimate
(MLE) (Skafte et al., 2019). Lastly, such model’s likelihood is ill-defined (Mattei & Frellsen, 2018b), as it
can without bound increase when the variance estimates collapse towards a detrimental 0. Overall, the naive
maximisation of model likelihood is insufficient to generate robust and well-behaved uncertainty estimates,
and practical implementations rely on an arbitrary lower threshold of the predictive variance.

Ensembles. The arbitrariness of the extrapolation of single mean-variance networks precludes any guarantees
of robust uncertainty estimates. Previous contributions thus adopt a mixture of Gaussians as their predictive
density. Whether discrete (Lakshminarayanan et al., 2017; Gal & Ghahramani, 2016; Jain et al., 2020) or

3

Under review as submission to TMLR

continuous (Hafner et al., 2018), they commonly result in variance predictions expressed as a function of
the mean. As shown in Fig. 2, this dependency creates a trade-off that limits the ability to improve the
robustness of the uncertainty predictions without sacrificing some of the model’s mean predictive power.

Student-t likelihood. Skafte et al. (2019) notably adopts a Gamma distributed precision, λ ∼ Γ(α, β),
as the conjugate of an unknown precision for a Gaussian, to yield a non-standard Student-t distributed
marginal likelihood1. This infinite mixture of Gaussians is known to offer a more robust likelihood, especially
in the scarce data regime (Gelman et al., 2013),

pθ(x) = T
(

x|ν = 2α, µ̂ = µ, σ̂ =
√
β/α

)
. (1)

Its variance Var[x] = (β/α) ·(α/(α− 1)) is explicitly decomposed into an aleatoric β/α and an epistemic term1

α/(α− 1) (Jørgensen, 2020, p16), and offers a direct verification of whether a model knows what it knows.

Variational variance (VV). Stirn & Knowles (2020) assumes a latent model precision λ. It is generated by
a prior p(λ) and its posterior is approximated variationally by the family of Gamma distributions, conditioned
on the inputs to reflect heteroscedasticity. Through amortized variational inference (AVI) (Kingma &
Welling, 2013) neural networks fϕ map to the posterior parameters from data, q(z|fϕ(x)). As such, variational
variance preserves the modelling capacity and robustness of the Student-t marginal likelihood, without
modifying its parameter architecture, while the definition of a prior over the precision induces a more robust
training objective. Assuming the precision is the unique latent code, the evidence lower bound (ELBO),

L(q; x) = Eq(λ) [log p(x|λ)] −DKL (q(λ|x) || p(λ)) (2)

= 1
2

(
ψ(α) − log β − log(2π) − α

β
(x − µ)2

)
−DKL (q(λ|x) || p(λ)) ,

(3)

takes the form of a regularised log-likelihood. It penalises predicted variances that would unrealistically get
arbitrarily close to either the detrimental limits of 0 or ∞, reducing the concerns regarding the ill-definition
of the objective. Additionally, the scaling effect of the learning rates of the likelihood parameters is reduced.
Naturally, the effect of the regularisation will be highly dependent on the prior selected. Here, because we
are mostly interested in enforcing a constant desired uncertainty extrapolation, we adopt an homoscedastic
Gamma distributed prior, p(λ) = Γ(λ|a, b), that matches the level of uncertainty observed in data.

2 Out-of-distribution pseudo-inputs

2.1 Dissipative loss

In variational variance, due to AVI, the uncertainty is controlled by α and β, the independent parameter
maps of the posterior distribution, Var[x] = β(x)/(α(x) − 1). The unreliable extrapolation properties of
NNs therefore directly challenge the robustness of the method’s uncertainty estimates outside of its training
support.

Inspired by outlier exposure (Hendrycks et al., 2018) and noise contrastive priors (Hafner et al., 2018), we
include deliberately generated out-of-distribution pseudo-inputs, {x̂k}K

k=1 where x̂k ∼ pout(x), in the training
of our variational objective to constrain the extrapolation of the posterior parametrisation. The optimal
variational objective q∗ is chosen such that it minimises our proposed dissipative loss over the combined
dataset D = Dtrain ∪ Dout, where Dout = {x̂k}K

k=1,

L(q; D) = −
[
Lin(q; Dtrain) + Lout(q; Dout)

]
. (4)

The in-distribution component of the loss function Lin(q; D) naturally arises as the standard ELBO over the
training set. The out-of-distribution component Lout(q; D) operates on a fundamentally different source of
data. As the only information available for the pseudo-inputs is that they are OOD, we assert for them a

1See Sec. I. of the supplementary materials.

4

Under review as submission to TMLR

Figure 3: Predictive uncertainty of VV for different pseudo-inputs
distributions. Training data is generated uniformly with Var[x] ∝
exp

(
−0.5(||x||/s)2).

Figure 4: Graphical model
for variational variance regres-
sion.

constant, non-informative likelihood p(x̂|λ) = c, that has thus no influence on optimisation. This is similar to
censoring (Lee & Wang, 2003) where different likelihoods are used for observations with different properties.
This simplifies the pseudo-inputs generation process, which no longer depends on modelling a likelihood, as is
done by e.g Hafner et al. (2018), where the prior on targets is chosen as Gaussian data augmentation. As a
result, the dissipative loss becomes,

L(q; D) = −
∑

x∈Dtrain

Eq(λ|x) [pθ(x|λ)]−DKL(q(λ|x) || p(λ))

+
∑

x̂∈Dout

DKL(q(λ|x̂) || p(λ)). (5)

It shares the same motivating intuition as the confidence loss of Lee et al. (2017), which pushes a soft-max
classifier towards the uniform distribution on OOD pseudo-inputs, and completes variational variance with
a principled mechanism to learn robust variance estimates with the desired extrapolation properties. The
predictor is indeed forced to match our high-entropy uncertainty prior expectations on out-of-distribution
samples while learning the low-entropy covariate dependent distribution, hence the name of dissipative. The
reliance of the model’s predictive uncertainty on its mean predictions implies that it is primordial here to
safeguard its generative performance. Previous contributions adopting a similar dual loss function (Lee et al.,
2017; Jain et al., 2020; Hafner et al., 2018) contaminate the uncertainty regularisation with mean predictions,
forcing joint learning of both loss terms and jeopardising the model mean predictive power. Conversely, the
dissipative loss guarantees its conservation with the implementation of a split training procedure (Skafte
et al., 2019); its modularity allows the application of the out-of-distribution regularisation only after the
model’s mean has been trained, which we view as a key conceptual advantage of our proposal.

2.2 Pseudo-input generators (PIGs)

Minimising the posterior KL divergence OOD requires an efficient sampling procedure of pseudo-inputs. As
exposed in Fig. 3, their generation should leverage a-priori knowledge about pdata(x) to resolve the undefined
nature of pout(x). In this simple regression case, we show the predictive uncertainty of variational variance
models trained on artificial heteroscedastic data. We use a prior uncertainty level that matches the maximum
of the data uncertainty. As anticipated, without pseudo-inputs, the model extrapolates uncertainty to a
constant, arbitrary level, and only the introduction of pseudo-inputs near the training data results in the
desired uncertainty extrapolation. Reassuringly, this suggests that we do not need to regularise our model’s
extrapolation in the entire out-of-distribution space, as suggested by Jain et al. (2020). Instead, we can focus
on the simpler task of generating pseudo-inputs in low-density regions of the input space that neighbours
training data, as they can enforce correct extrapolation in the rest of the out-of-distribution space. Lee
et al. (2017) gives supporting arguments for classification, and empirical results shows that this intuition
generalises to higher dimension experiments2.

Recent contributions have relied on GANs for generating a useful representation of pout(x) (Lee et al.,
2017; Dai et al., 2017). Although conceptually intuitive, GANs incur a heavy computational burden and

2Further experiments are in appendix II..1.

5

Under review as submission to TMLR

induce serious practical challenges as a result of the instability of their training (Shrivastava et al., 2017).
Furthermore, as one need to understand what is in-distribution to model what it is not, we instead propose
to directly leverage the information at hand about the data.

Algorithm 1 Pseudo-Input Generator (PIG)
Input: pdata(x), number of PIGs K, tolerance, max_iterations
Draw initial PIGs: ∀k ∈ [1,K], x̂k ∼ pdata(x)
Initialize: iterations = 0, ϵ = ∞
repeat

compute ∀k ∈ [1,K],∇xp(x)(x̂k)
ϵ = maxk∈[1,K](||δ∇xp(x)(x̂k)||2)
∀k ∈ [1,K], x̂k = x̂k − δ∇xp(x)(x̂k)
iterations + = 1

until (iterations < max_iterations) & (ϵ > tolerance)

Algorithm 1 generates pseudo-inputs with simple steps using the data density. Pseudo-inputs are initially
drawn from pdata(x), and their positions iteratively updated with gradient descent to minimise their likelihood
under pdata(x), similarly to reversed adversarial steps (Goodfellow et al., 2014b). In practice, we see little
sensitivity of the model uncertainty on the chosen hyperparameters and on the number of pseudo-inputs3.

Remarkably, this modular procedure can run prior to training, in parallel for all x̂k with automatic differenti-
ation, and thus results in limited additional complexity for the optimisation4. It relies on the availability of a
differentiable density estimate of the data, which is, depending on the use case, either directly available (see
Sec. 3.2), or can be approximated through a variety of methods such as Bayesian Gaussian mixture models
(Bishop, 2006) (see Sec. 3.1). A caveat here is that depending on the PIG’s parameters, and on the quality of
the density estimate available, pseudo-inputs might be generated in undesired regions of the input space, e.g
uninformative density minima. In practice, we adopted conservative density estimates and did not observe
any significant degradation of the predictive uncertainty.

3 Experiments

Holistic evaluation of uncertainty estimates. The ground truth for uncertainty is usually unknown,
making its evaluation non-trivial. As in Stirn & Knowles (2020), we propose to assess it using multiple
metrics. Calibration, which evaluates probabilistic predictions w.r.t the long-run frequencies that actually
occur (Dawid, 1982) can be measured by proper scoring rules (Lakshminarayanan et al., 2017) such as the
model log-likelihood log pθ(x|λ). Additionally, the root mean squared error (RMSE) between the predictive
and empirical variance, Var[x] − (µθ(x) − x)2, quantifies the model’s awareness of its own uncertainty. It
nevertheless requires an understanding of the model’s mean predictive performance, as commonly measured
by the RMSE of the mean residuals, µθ(x) − x. We further evaluate the cooperation of mean and uncertainty
estimates for generating credible samples, which constitutes a consistency check for the learned precision
distribution (Gelman et al., 2013), by measuring the RMSE of sample residuals x∗ − x, with x∗ ∼ pθ(x).
Finally, The ELBO, despite the absence of theoretical grounding for it (Blei et al., 2017), is commonly
reported as an approximation of the marginal likelihood, and thus of the model’s predictive performance.

A complete assessment of a model’s uncertainty further requires its evaluation under distributional shift
(Ovadia et al., 2019), which we introduce voluntarily through deliberate splitting of the training set (Sec. 3.1),
or by using test data from a different dataset (Sec. 3.2).

3.1 Regression

In a regression setting where the proposed model must capture the conditioning y |x, the precision λ of a
Gaussian likelihood is the only assumed latent code.

3Sec. II..4 of the supplements.
4Running times are reported in Sec. V.

6

Under review as submission to TMLR

Figure 5: Toy regression results. On the left, are shown mean ± 2 std, with
the training data of the bottom row presenting a shift (gap indicated by
dashed lines). On the right are displayed the predictive uncertainty fit and
the prior KL divergence.

Figure 6: Aleatoric (yellow)
and epistemic (dark) uncer-
tainties.

Faithfully to variational variance (Stirn & Knowles, 2020) we adopt a Gamma heteroscedastic variational
posterior qϕ(λ|x) = Γ (λ|αϕ(x), βϕ(x)) parametrised by the independent αϕ and βϕ networks, with weights ϕ,
uniquely conditioned on the inputs (see Fig. 4). This approximate posterior, independent of the targets, gives
up on the dependency of the true posterior on both covariates to guarantee heteroscedasticity5.

For more than 2 degrees of freedom, corresponding to αϕ(x) > 1, the resulting marginal likelihood pθ,ϕ(y|x) =
T
(
y | 2αϕ(x), µθ(x),

√
βϕ(x)/αϕ(x)

)
, has its first two moments defined, E[y|x] = µθ(x) and Var[y|x] =

βϕ(x)/(αϕ(x) − 1), providing explicit mean and uncertainty estimates with a single forward pass in the αϕ, βϕ

and µθ networks. To ensure definition of both the posterior and marginal distributions’ variance, the parameter
maps use a soft-plus on their last layer to ensure positivity, and the αϕ network is further shifted by 1.

For pseudo-inputs generation, we estimate the input density prior to training with a Bayesian Gaussian
mixture model (Bishop, 2006). We refer to it henceforth as dissipative variational variance (d-VV). The
implementation details are listed in Sec. III. of the appendix.

3.1.1 Toy regression

The desiderata for our method are clear: capture of the data heteroscedasticity, extrapolation to a higher
uncertainty level, no underestimation of the predictive uncertainty, and posterior extrapolation to the prior
out-of-distribution. Skafte et al. (2019) first showed on the toy regression task, y = x sin(x) + 0.3 ϵ1 + 0.3x ϵ2,
where ϵ1, ϵ2 ∼ N (0, 1), that amongst a collection of methods, only their proposed variance network architecture
could realise our first three expectations. Fig. 5 demonstrates that our more principled approach also fulfills
all of our requirements, without the need for arbitrarily enforcing the desired extrapolation in our architecture.
The importance of out-of-distribution training is seen as the standard variational variance approach fails to
produce uncertainty estimates that extrapolate correctly and are robust to distributional shift (bottom row
of Fig. 5).

Decomposing model and data uncertainty. Fig. 6 shows that the aleatoric component captures the
heteroscedastic increase of uncertainty in the training data while the epistemic uncertainty, constant in
distribution, extrapolates to higher values.

3.1.2 UCI Benchmarks

Real world regression datasets from the UCI repository are used to evaluate our model against curated
baselines, as in Hernández-Lobato & Adams (2015) and Skafte et al. (2019)6. We further copy each dataset
with a distributional shift to assess the robustness of the methods. As in Foong et al. (2019), a shift is
introduced, for each input feature, as a hole in the training data by assigning the middle third of observations
to the test set, when sorted w.r.t that feature.

5The true posterior is in Sec. III. of the supplements.
6See Sec. III. for benchmark specification.

7

Under review as submission to TMLR

Table 1: Each cell counts datasets for which each method demonstrated the best average, over 5 trials. Grey
shows statistical draws and "n/a" metrics impossible to evaluate for a method. Best per metric is highlighted
in bold.

UCI benchmarks
(shifts included) d-VV VV VV

(no prior)

Mean
variance
network

Skafte
et al

Deep
ensembles

Monte
Carlo
dropout

Noise
contrastive
priors

Bayes
by
backprop

L 21 / 18 3 / 3 0 / 0 n / a n / a n / a n / a n / a n / a
log p(y|x) 2 / 7 5 / 9 0 / 0 0 / 0 4 / 9 0 / 0 0 / 0 2 / 8 11 / 8
RMSE[y, µ(x)] 2 / 2 1 / 4 2 / 5 1 / 5 2 / 3 5 / 12 3 / 16 0 / 0 8 / 0
RMSE[Var] 2 / 4 5 / 9 2 / 4 0 / 0 n / a 2 / 5 5 / 17 0 / 0 8 / 7
RMSE[y, ỹ] 3 / 4 5 / 7 4 / 2 n / a n / a n / a n / a 1 / 2 11 / 7
E[KL] 23 / 14 1 / 0 0 / 0 n / a n / a n / a n / a n / a n / a

Table 1 aggregates best performances over the 24 datasets for two classes of methods7. To the left are methods
that directly parametrise model uncertainty with neural networks, and to the right are methods that use
ensembling for uncertainty estimation.

We note that Bayes by backprop offer a strong baseline, outperforming other ensemble methods. The instability
of its performance on some datasets7, as well as Hafner et al. (2018)’s demonstration of its overfitting in an
active learning setting, challenge the reliability of its uncertainty estimates. As expected, the regularisation
by NCP degrades significantly the mean predictions.

Our method performs best in its class. The ELBO reveals that it clearly strengthens the prior regularisation
as introduced in VV, without significant degradation of the predictive power, as shown by other metrics. A
caveat here is that the calibration of d-VV, as measured by the log-likelihood, suffers from the increased
uncertainty of the method, which we deem acceptable if it leads to safer uncertainty estimates.

3.2 Generative models

We extend the evaluation of our proposal to the case of generative models through the lens of VAEs (Kingma
& Welling, 2013; Rezende et al., 2014). VAEs infer a low dimensional latent encoding of the data z ∈ RD, on
which is conditioned the generative process pθ(x|z). Its predictive uncertainty, which evaluates the confidence
of the model in its ability to adequately reconstruct inputs is known to be untrustworthy.

In the case of continuous or seemingly continuous inputs, the adoption of a Gaussian decoder
pθ(x|z) = N

(
x|µθ(z), σ2

θ(z)
)

results in an ill-defined model likelihood (Mattei & Frellsen, 2018b) that
encourages decoder variance collapse, making the training of the model notoriously harder (Skafte et al.,
2019). Most implementations therefore choose to fix the variance to a set level e.g σθ(z) = 0.1, or elude
the challenge by adopting a Bernoulli likelihood.

Motivated by our previous results, we now aim to demonstrate that VAEs, whose decoder is fitted with
our method, are able to provide robust uncertainty estimates. Assuming a latent generative precision, the
latent variables of the model are decomposed into z = {z, λ}, with z the latent input representations. The
marginalisation of the Gamma distributed latent variance results in a Student-T decoder, as detailed in
Eq. 1. The variational variance variational auto encoder (V3AE) yields, with the addition of our OOD
pseudo-inputs training, the dissipative loss function8,

L(qϕ, θ; Dtrain) = −
∑

x∈Dtrain

L(qϕ, θ; x)

+ Eqout(z) [DKL (qϕ(λ|z) || p(λ))].
(6)

Because only the decoder is regularised, the pseudo-inputs lie in the space of latent representations,
Dout = {ẑk}K

k=1 ∈ RD. The distribution of training inputs is therefore readily accessible as the aggre-
7Full results are included in Sec. III. of the supplements.
8The derivation is provided in Sec. IV.

8

Under review as submission to TMLR

Table 2: Evaluation of the generative modelling. For each dataset, we report mean ± std over 5 trials.

FashionMNIST SVHN CIFAR

log p(x) VAE 2215.54±68.81 4304.90±58.45 2930.64±14.82
d-V3AE 2349.71±11.80 4133.41±64.28 2668.85±13.23

RMSE(x, x̃) VAE 0.171±0.003 0.097±7e-4 0.154±5e-4
d-V3AE 0.158±0.003 0.087±0.002 0.129±7e-4

gate posterior qϕ(z|Dtrain) ≈ 1
N

∑N
n=1 qϕ(z|xn). Again, we rely on a split training procedure to leverage this

perk; the encoder parameter maps µθ and σθ, as well as the decoder mean µϕ are first trained until convergence,
allowing the generation of the OOD pseudo-inputs and subsequently, the training of the decoder variance.

Figure 7: Decoder’s aggregated variance
(left) and generated samples (right) from
the latent space. Coloured points corre-
spond to latent representations of test data,
with per-class colours.

Figure 8: Effect of encoder refitting on the latent rep-
resentations (left) and resulting samples (right). OOD
inputs (top rows, x) initially result in in-distribution
samples (second rows, x̃). The refitted encoder dis-
places the encodings (coloured trajectories), modifying
the generated samples (third rows, x̃refit).

Image data. We evaluate the performance of our proposed dissipative V3AE (d-V3AE) against a fully
Gaussian VAE on image data, coming from FashionMNIST, SVHN and CIFAR10. For both models, all
parameter maps share the same underlying architecture, with the addition of either a softplus and/or a
shifting last layer to ensure definition of both the variational and the generative distribution’s moments9.

Table 2 compares model performance on two metrics, the log-likelihood and the RMSE between the original
inputs x and reconstructed samples x̃, where x̃ ∼ pθ(x|λ, z) , (λ, z) ∼ qϕ(λ, z|x). Unlike most previous
implementations, we focus on actual samples, and not the mean, of the generative distributions. This
comparison emphasize the cooperation between the decoder’s mean and variance, allowing evaluation of the
models’ uncertainty estimates. Our method both qualitatively (Fig. 9), and quantitatively improves on a
Gaussian VAE’s sampling ability. The prior smoothens the uncertainty estimates, resulting in more realistic and
less crisp samples. The log-likelihoods, evaluated at test time using truncation, i.e. ptrunc(x) = pθ(x)/(Fx(1) −
Fx(0)), to account for the finite support of data, reveal that our model can achieve a better fit, if the prior is
selected correctly. In SVHN and CIFAR10, the presence of color channels complicates the selection process and
challenges our choice of a single homoscedastic prior for all pixels and channels. We note that the dissipative
loss also applies to classic VAEs with Bernoulli-only decoders; see Sec. IV. of the supplements for details.

Applications of robust generative uncertainty. In Figs. 7 & 8, the colouring of the 2D latent space
represent the aggregated decoder variance ∑d

i=1(σ2
θ(z))i. It is clear that our method displays more regular

9Full details are included in Sec. IV. of the supplements.

9

Under review as submission to TMLR

Figure 9: Generated samples x̃ ∼ pθ(x|λ, z). The samples from d-V3AE are less noisy than those of the
standard VAE.

Figure 10: Empirical densities of likelihoods for FashionMNIST (ID) and MNIST (OOD). The clear separation
of distributions offered by our method is reflected in the high AUROC shown on the right. The d-V3AE
beats Havtorn et al. (2021)’s reported AUROC of 0.984 .

uncertainty estimates, and provides the extrapolation guarantees we strove for. Beyond increased robustness
and better generative power, this unlocks meaningful out-of-distribution detection, beating previous
state-of-the-art (Havtorn et al., 2021)10. For Figs. 8 & 10, as argued in Mattei & Frellsen (2018a), we refit
at test time the encoder of models trained on FashionMNIST on MNIST. The regularity and structure of the
decoder variance rewards the encoder for learning to place representations of OOD data outside of the region
of in-distribution latent encodings, resulting in a model that is aware of its own inability to reconstruct
plausible data, as displayed by the row x̃refit of d-V3AE.

4 Conclusion

We have introduced a novel loss, the dissipative loss, that leverages artificial out-of-distribution pseudo-inputs
for learning robust uncertainty estimates. We demonstrate through a Bayesian approach that casts a prior
distribution over the model’s variance a principled mechanism for controlling the extrapolation properties of
neural networks governing the predictive uncertainty. Our results reflect the benefits of our principled and
scalable approach, displaying better calibrated and more robust uncertainty estimates, while matching the
predictive power of known baselines. Finally, and most interestingly, our approach can instill into probabilistic
models a notion of their own ignorance, increasing their ability to know what they don’t know.

The main limitation of our approach is that it depends on an input density estimate. In our experience, even
coarse-grained densities are sufficient to significantly improve upon current approaches. However, as one
rarely have guaranteed good estimates of the input density, our method cannot be approached as a black-box.
One exception seems to be the application to VAEs, where the aggregated posterior, in our experience, always
provide a suitable density estimate.

Broader Impact Statement

In this optional section, TMLR encourages authors to discuss possible repercussions of their work, notably
any potential negative impact that a user of this research should be aware of. Authors should consult the
TMLR Ethics Guidelines available on the TMLR website for guidance on how to approach this subject.

10Additional experiments are provided in Sec. IV..6

10

Under review as submission to TMLR

References
Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Concrete

problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. Latent space oddity: on the curvature of deep
generative models. arXiv preprint arXiv:1710.11379, 2017.

Christian Bauckhage. Computing the kullback-leibler divergence between two generalized gamma distributions.
arXiv preprint arXiv:1401.6853, 2014.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, August 2006. ISBN 0387310738.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians. Journal
of the American statistical Association, 112(518):859–877, 2017.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
networks. arXiv preprint arXiv:1505.05424, 2015.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

Zihang Dai, Zhilin Yang, Fan Yang, William W Cohen, and Russ R Salakhutdinov. Good semi-supervised
learning that requires a bad gan. In Advances in neural information processing systems, pp. 6510–6520,
2017.

A Philip Dawid. The well-calibrated bayesian. Journal of the American Statistical Association, 77(379):
605–610, 1982.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and Philipp
Hennig. Laplace redux-effortless bayesian deep learning. Advances in Neural Information Processing
Systems, 34, 2021.

Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? does it matter? Structural safety, 31(2):
105–112, 2009.

Andrew YK Foong, Yingzhen Li, José Miguel Hernández-Lobato, and Richard E Turner. ’in-
between’uncertainty in bayesian neural networks. arXiv preprint arXiv:1906.11537, 2019.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In international conference on machine learning, pp. 1050–1059, 2016.

Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B Rubin. Bayesian
data analysis. CRC press, 2013.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing
systems, 27:2672–2680, 2014a.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014b.

Alex Graves. Practical variational inference for neural networks. Advances in neural information processing
systems, 24:2348–2356, 2011.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks.
arXiv preprint arXiv:1706.04599, 2017.

Danijar Hafner, Dustin Tran, Timothy Lillicrap, Alex Irpan, and James Davidson. Reliable uncertainty
estimates in deep neural networks using noise contrastive priors. 2018.

11

Under review as submission to TMLR

Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE transactions on pattern analysis and
machine intelligence, 12(10):993–1001, 1990.

Leonard Hasenclever, Stefan Webb, Thibaut Lienart, Sebastian Vollmer, Balaji Lakshminarayanan, Charles
Blundell, and Yee Whye Teh. Distributed bayesian learning with stochastic natural gradient expectation
propagation and the posterior server. The Journal of Machine Learning Research, 18(1):3744–3780, 2017.

Søren Hauberg. Only bayes should learn a manifold (on the estimation of differential geometric structure
from data), 2019.

Jakob D. Havtorn, Jes Frellsen, Søren Hauberg, and Lars Maaløe. Hierarchical vaes know what they don’t
know, 2021.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution examples in
neural networks. arXiv preprint arXiv:1610.02136, 2016.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier exposure.
arXiv preprint arXiv:1812.04606, 2018.

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable learning of
bayesian neural networks. In International Conference on Machine Learning, pp. 1861–1869, 2015.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pp. 448–456. PMLR, 2015.

Siddhartha Jain, Ge Liu, Jonas Mueller, and David Gifford. Maximizing overall diversity for improved
uncertainty estimates in deep ensembles. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 4264–4271, 2020.

Norman L Johnson, Samuel Kotz, and Narayanaswamy Balakrishnan. Continuous univariate distributions,
volume 1, 2nd Edition. John wiley & sons, 1994.

Martin Jørgensen. Stochastic Representations with Gaussian Processes and Geometry. PhD thesis, Technical
University of Denmark, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. In Advances in neural information processing systems, pp. 6402–6413,
2017.

Elisa T Lee and John Wang. Statistical methods for survival data analysis, volume 476. John Wiley & Sons,
2003.

Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training confidence-calibrated classifiers for detecting
out-of-distribution samples. arXiv preprint arXiv:1711.09325, 2017.

Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution image
detection in neural networks. arXiv preprint arXiv:1706.02690, 2017.

Christos Louizos and Max Welling. Multiplicative normalizing flows for variational bayesian neural networks.
arXiv preprint arXiv:1703.01961, 2017.

David JC MacKay. A practical bayesian framework for backpropagation networks. Neural computation, 4(3):
448–472, 1992.

12

Under review as submission to TMLR

Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior networks. arXiv preprint
arXiv:1802.10501, 2018.

P.-A Mattei and J Frellsen. Refit your encoder when new data comes by. In 3rd NeurIPS workshop on
Bayesian Deep Learning, 2018a.

Pierre-Alexandre Mattei and Jes Frellsen. Leveraging the exact likelihood of deep latent variable models. In
Advances in Neural Information Processing Systems, pp. 3855–3866, 2018b.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, and Balaji Lakshminarayanan. Detecting out-of-
distribution inputs to deep generative models using typicality. arXiv preprint arXiv:1906.02994, 2019.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business Media,
2012.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confidence
predictions for unrecognizable images. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 427–436, 2015.

David A Nix and Andreas S Weigend. Estimating the mean and variance of the target probability distribution.
In Proceedings of 1994 ieee international conference on neural networks (ICNN’94), volume 1, pp. 55–60.
IEEE, 1994.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua Dillon, Balaji
Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty? evaluating predictive
uncertainty under dataset shift. In Advances in Neural Information Processing Systems, pp. 13991–14002,
2019.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press, 2005.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. arXiv preprint arXiv:1401.4082, 2014.

Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda Wang, and Russell Webb. Learning
from simulated and unsupervised images through adversarial training. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 2107–2116, 2017.

Nicki Skafte, Martin Jørgensen, and Søren Hauberg. Reliable training and estimation of variance networks.
In Advances in Neural Information Processing Systems, pp. 6326–6336, 2019.

Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter. Bayesian optimization with robust
bayesian neural networks. Advances in neural information processing systems, 29:4134–4142, 2016.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):
1929–1958, 2014.

Andrew Stirn and David A Knowles. Variational variance: Simple and reliable predictive variance parameter-
ization. arXiv preprint arXiv:2006.04910, 2020.

Jeppe Thagaard, Søren Hauberg, Bert van der Vegt, Thomas Ebstrup, Johan D. Hansen, and Anders B. Dahl.
Can you trust predictive uncertainty under real dataset shifts in digital pathology? In Medical Image
Computing and Computer-Assisted Intervention (MICCAI), Lima, Peru, October 2020.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In Proceedings of
the 28th international conference on machine learning (ICML-11), pp. 681–688, 2011.

Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka. How
neural networks extrapolate: From feedforward to graph neural networks. arXiv preprint arXiv:2009.11848,
2020.

13

Under review as submission to TMLR

Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S. Du, Ken ichi Kawarabayashi, and Stefanie Jegelka. How
neural networks extrapolate: From feedforward to graph neural networks, 2021.

14

Under review as submission to TMLR

I. Student-t likelihood

I..1 Marginal distribution of a Gaussian likelihood with a Gamma precision

In the case of a Gaussian likelihood with a latent Gamma distributed precision, the marginal distribution
follows:

pθ(x) =
∫

N (x|µ, λ)Γ(λ|α, β)dλ

=
∫

λ1/2
√

2π
e− 1

2 λ(x−µ)2 βα

Γ(α)λ
α−1e−βλdλ

= 1
Γ(α)

√
2π

βα(
β + (x−µ)2

2

)α− 1
2

∫ [(
β + 1

2(x − µ)2
)
λ

](α+ 1
2)−1

e
−
(

β+ (x−µ)2
2

)
λ
dλ

=
Γ
(
α+ 1

2
)

Γ(α)
√

2π
βα(

β + (x−µ)2

2

)α− 1
2

=
Γ
(2α+1

2
)

Γ(α)
√
π2α

(
β
α

)1/2

1 + 1
2α

 x − µ(
β
α

)1/2

2

− 2α+1
2

=
Γ
(

ν+1
2
)

Γ
(

ν
2
)√

νπσ̂

(
1 + 1

ν

(
x − µ̂

σ̂

)2
)− ν+1

2

= T
(

x|ν = 2α, µ̂ = µ, σ̂ =
√
β/α

)
.

(7)

The moments of the marginal distribution are, assuming ν > 2,E[x] = µ̂ = µ

Var[x] = σ̂2 ν
ν−2 = β

α
α

α−1 .
(8)

I..2 Decomposition of a Student-t’s uncertainty

The variance of a non standard Student-t distribution with 2α degrees of freedom and scaled by
√
β/α can

be decomposed as Var[x] = β
α

α
α−1 . The number of degrees of freedom scales with the number of observations

that the distribution arises from. When the number of observations grows towards ∞, i.e towards perfect
information, the term α

α−1 converges towards 1, motivating its casting into an epistemic factor. The natural
consequence is that β

α , which accounts for the rest of the model’s uncertainty, scales as the aleatoric uncertainty.
For more details see Jørgensen (2020, p16).

II. Pseudo-inputs generator

II..1 On boundary samples

Tab. 3 provides supporting evidence regarding the benefits of placing pseudo-inputs close to the training
distribution. It compares the mean measured OOD KL divergence over 5 trials for two different UCI
regression datasets. The boundary OOD pseudo-inputs were generated using the proposed density-based
generation procedure. The far OOD pseudo-inputs were generated by adding large Gaussian noise (σ = 15
for standardised inputs) to training points. Boundary OOD pseudo-inputs result in a lower OOD prior KL
divergence, meaning that the regularisation is indeed enforced in most of the OOD support.

15

Under review as submission to TMLR

Table 3: Comparison of the OOD prior KL for different pseudo-input distributions. Lower is better, and best
per experiment are highlighted in bold.

method CCPP Wine-white
No OOD (VV) 0.655 1.719
Boundary OOD (d-VV) 0.019 0.072
Far OOD (d-VV) 0.023 0.941

Table 4: Evaluation of the influence of the number
of steps in Alg. 1.

N steps ELBO log p(y|x)
0 1.253 1.360
1 1.232 1.361
5 1.192 1.423
10 1.183 1.437

Table 5: Evaluation of the influence of the threshold
ϵ in Alg. 1.

Threshold ϵ ELBO log p(y|x)
0.1 1.193 1.418
0.01 1.192 1.418
0.001 1.252 1.359

II..2 Sensitivity to hyperparameters

The pseudo-input generator hyperparameters were chosen through a coarse grid search on a sub selection of
experiments from the UCI benchmarks, and applied to the rest of the experiments. In practice we observed
that Alg. 1 is relatively insensitive to hyperparameters. For example the Tab. 4 below describes the evolution
of the ELBO and the log-likelihood as a function of the number of steps on the Carbon UCI dataset. The
ELBO and LLK here have opposite evolutions based on the number of steps - hence our practical choice of a
“middle ground” with n = 5. Tab. 5 evaluates similarly the influence of the threshold parameter. The results
are naturally varying depending on the dataset chosen, as different overall input densities will more or less
allow the gradient descent iterations to modify the original distribution of noisy pseudo-inputs. We regard
this as a strength of our proposed method, if the distribution of pseudo-inputs can be improved and better
separated from the training input distribution, it will leverage this possibility, but if it’s not the case, pseudo
inputs will not vary from their original position, generated as if they were inputs perturbed by Gaussian
noise.

II..3 Influence of the pseudo-input generator

We originally envisioned to generate pseudo-inputs using the same Gaussian perturbation technique as
independently proposed in Hafner et al. (2018), x̂ = x+ ϵ where ϵ ∼ N (0, σ2). We nevertheless quickly come
to realise that this does not actually produce pseudo-inputs that are guaranteed to be out-of-distribution,
and eventually result in over-regularisation. Tab. 6 compares the mean ELBO over 5 trials of our proposal
with selected parameters for the gradient descent (dVV), with our proposal without any gradient descent
(dVV - 0 steps) and our method with pseudo-inputs generated as Gaussian noise (dVV - Gaussian noise, as is
done in Hafner et al. (2018)) on the UCI benchmark. We observe that, as expected, better pseudo-inputs
placement results in our method performing better on a larger selection of experiments (8/12).

Table 6: Comparison of the mean ELBO of dissipative VV on UCI datasets, over 5 trials, depending on the
chosen pseudo-input generator. Best is highlighted in bold.

method Boston Carbon CCPP Concrete Energy Kin8nm Naval Protein Superconduct Wine-red Wine-white Yacht
d-VV -0.614 1.191 -0.141 -0.443 0.665 -0.247 0.522 -1.319 -0.543 -1.997 -1.822 -17.599
d-VV -0.658 1.229 -0.131 -0.433 0.656 -0.255 0.496 -1.317 -0.558 -2.192 -2.03 -21.802
(0 steps)
d-VV -0.819 -0.473 -0.569 -0.645 -0.515 -0.591 -0.537 -1.236 -0.724 -1.747 -1.554 -0.507
(Gaussian noise)

16

Under review as submission to TMLR

II..4 Number of pseudo-inputs

In our implementation, to stabilise training, we use the expected value over each dataset (in or out-of-
distribution) by dividing each term by the number of data points used to compute them. This results in a
very limited sensibility of our practical implementation in the number of pseudo-inputs used.

III. Regression experiments

III..1 Variational Variance’s ELBO Closed Form

For a Gaussian likelihood and a Gamma posterior, both terms of the ELBO have a closed form solution.
Firstly the expected log-likelihood verifies:

Eq(λ|x) [log p(y|x, λ)] =
∫

log N (y|µ(x), λ)Γ (λ|α(x), β(x)) dλ

=
∫

−1
2
(
log 2π − log λ+ λ(y − µ(x))2)Γ (λ|α(x), β(x)) dλ

= −1
2

(
log 2π − Eq(λ|x)[log λ] + (y − µ(x))2 Eq(λ|x)[λ]

)
.

(9)

The variational posterior being Gamma distributed, its expected value is defined as Eq(λ|x)[λ] = α(x)
β(x) . The

logarithmic expectation of a Gamma distribution can be derived to yield (Johnson et al., 1994, 337–349)
Eq(λ|x)[log λ] = ψ(α(x)) − log β(x) where ψ is the digamma function. The closed-form expression of the
expected likelihood is therefore:

Eq(λ|x) [log p(y|x, λ)] = −1
2

(
log 2π − ψ(α(x)) + log β(x) + α(x)

β(x) (y − µ(x))2
)
. (10)

Secondly, the KL-divergence between the posterior Γ (α(x), β(x)) and the prior Γ(a, b) can be derived from
Equation (28) in Bauckhage (2014, p6). With Bauckhage’s notation, setting p1 = p2 = 1, to correspond to
standard Gamma distributions, shape parameters d1 = α(x) and d2 = a, and scale parameters a1 = 1

β(x) and
a2 = 1

b the KL-divergence can be expressed as

DKL(q(λ|x) || p(λ)) = (α(x) − a)ψ(α(x))
− log Γ(α(x)) + log Γ(a)
+ a(log β(x) − log b)

+ α(x)b− β(x)
β(x) .

(11)

III..2 True posterior and heteroscedasticity

The true posterior for variational variance in a regression context can be written p(λ|y, x). As first demon-
strated in Sec. 8.2 of Stirn & Knowles (2020), it factorizes as:

p(λ|y, x) = p(y|x, λ)p(λ)∫
p(y|x, λ)p(λ)dλ

(12)

= ΠN
n=1p(yn|xn, λn)p(λn)∫

ΠN
n=1p(yn|xn, λn)p(λn)dλn

(13)

= ΠN
n=1

p(yn|xn, λn)p(λn)∫
p(yn|xn, λn)p(λn)dλn

(14)

= ΠN
n=1p(λn|yn, xn). (15)

As a result, the true posterior both depends on the inputs xn and targets yn. It means that a single
input, could theoretically imply different latent precisions for different targets yn ≠ yk, thus violating the
x-surjectivity of the heteroscedastic definition.

17

Under review as submission to TMLR

III..3 Model architecture

We adopted a unified network architecture for the regression case. All neural-network parameter maps share
the same underlying architecture, a single hidden layer with 50 hidden units using exponential linear unit
(ELU) activation functions. A final softplus layer is applied on the last layer of the σ, α and β parameter
maps. The α parameter map is further shifted by +1 to ensure the definition of the marginal distribution’s
variance. Regression models are trained with the Adam (Kingma & Ba, 2014) optimiser, and both the inputs
and targets are standardised prior to training and testing.

III..4 Pseudo-input generator

Tab. 7 presents the parameters used by the PIG in a regression setting. We remind that these parameters
are parameters of a gradient descent, with learning rate δ. For our experiments, we approximated the input

Table 7: Parameters for the regression pseudo-input generator.

K max_iterations tolerance δ

N 5 0.005 4e-1

density with a Bayesian Gaussian mixture model11 with diagonal covariance matrices, and initialised with as
many components as there are inputs in a batch.

III..5 UCI experiments

Table 8: UCI benchmarks

Name Dimensions (N,Dx, Dy) Link (https://archive.ics.uci.edu/ml/*)
Boston (505,13,1) machine-learning-databases/housing/
Carbon (10721,5,3) datasets/Carbon+Nanotubes
Concrete (1030,8,1) datasets/Concrete+Compressive+Strength
Energy (768,8,2) datasets/Energy+efficiency
Kin8nm (8192,8,1) https://www.openml.org/d/189
Naval (11934,16,2) datasets/Condition+Based+Maintenance+of+Naval+Propulsion+Plants
Power plant (CCPP) (9568,4,1) datasets/Combined+Cycle+Power+Plant
Protein (45630, 9, 1) datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure
Superconductivity (21263,81,1) datasets/Superconductivty+Data
Wine-red (1599,11,1) datasets/Wine+Quality
Wine-white (4898,11,1) datasets/Wine+Quality
Yacht (308,6,1) datasets/Yacht+Hydrodynamics

The UCI experiments (https://archive.ics.uci.edu/ml/datasets.php) consist of the datasets presented
in Tab. 8.

The results, for the different metrics, as presented in Tab. 11 to 16, were computed as the mean ± the
standard deviation over 5 trials with standardised inputs and targets. Due to a technical error, we were forced
to re-run the experiments for d-VV and VV (no PIG) right before the submission deadline, and reduced the
number of trials to 3 for these methods.

A method is deemed to perform best for a given metric when the mean of the evaluated metric is the best
across methods. For determining statistical draws we ran for each method a two-sided test for verifying
whether the mean of the evaluated metric µ is significantly different to the mean of the best method µbest.
To do so, we test for µbest − µ = 0, under a Gaussian distribution with standard deviation σ2

best
Nbest

+ σ2

N at a
0.05 level.

11https://scikit-learn.org/stable/modules/generated/sklearn.mixture.BayesianGaussianMixture.html

18

https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
https://archive.ics.uci.edu/ml/datasets/Carbon+Nanotubes
https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
https://archive.ics.uci.edu/ml/datasets/Energy+efficiency
https://www.openml.org/d/189
https://archive.ics.uci.edu/ml/datasets/Condition+Based+Maintenance+of+Naval+Propulsion+Plants
https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure
https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics
https://archive.ics.uci.edu/ml/datasets.php
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.BayesianGaussianMixture.html

Under review as submission to TMLR

III..6 Aggregate benchmark data

Table 9: Results for experiments excluding distributional shifts. Each cell counts datasets for which
each method demonstrated the best average, over 5 trials. Grey shows statistical draws and "n/a" metrics
impossible to evaluate for a method. Best per metric is highlighted in bold.

UCI benchmarks
(shifts not included) d-VV VV VV

(no prior)

Mean
variance
network

Skafte
et al

Deep
ensembles

Monte
Carlo
dropout

Noise
contrastive
priors

Bayes
by
backprop

L 11 / 8 1 / 1 0 / 0 n / a n / a n / a n / a n / a n / a
log p(y|x) 1 / 1 3 / 6 0 / 0 0 / 0 1 / 2 0 / 0 0 / 0 0 / 0 7 / 6
RMSE[y, µ(x)] 2 / 2 1 / 4 1 / 3 0 / 0 0 / 0 4 / 10 0 / 0 0 / 0 4 / 0
RMSE[Var] 2 / 4 3 / 4 1 / 2 0 / 0 n / a 1 / 3 1 / 2 0 / 0 4 / 4
RMSE[y, ỹ] 2 / 2 3 / 3 2 / 1 n / a n / a n / a n / a 0 / 0 5 / 3
E[KL] 12 / 7 0 / 0 0 / 0 n / a n / a n / a n / a n / a n / a

Table 10: Results for experiments specifically for distributional shifts. Each cell counts datasets for
which each method demonstrated the best average, over 5 trials. Grey shows statistical draws and "n/a"
metrics impossible to evaluate for a method. Best per metric is highlighted in bold.

UCI benchmarks
(only shifts) d-VV VV VV

(no prior)

Mean
variance
network

Skafte
et al

Deep
ensembles

Monte
Carlo
dropout

Noise
contrastive
priors

Bayes
by
backprop

L 10 / 10 2 / 2 0 / 0 n / a n / a n / a n / a n / a n / a
log p(y|x) 1 / 6 2 / 3 0 / 0 0 / 0 3 / 7 0 / 0 0 / 0 2 / 8 4 / 2
RMSE[y, µ(x)] 0 / 0 0 / 0 1 / 2 1 / 5 2 / 3 1 / 2 3 / 16 0 / 0 4 / 0
RMSE[Var] 0 / 0 2 / 5 1 / 2 0 / 0 n / a 1 / 2 4 / 15 0 / 0 4 / 3
RMSE[y, ỹ] 1 / 2 2 / 4 2 / 1 n / a n / a n / a n / a 1 / 2 6 / 4
E[KL] 11 / 7 1 / 0 0 / 0 n / a n / a n / a n / a n / a n / a

19

Under review as submission to TMLR

III..7 Benchmark raw data

Table 11: UCI benchmarks - L

UCI benchmarks d-VV VV VV
(no prior)

Mean
variance
network

Skafte
et al

Deep
ensembles

Monte
Carlo
dropout

Noise
contrastive
priors

Bayes
by
backprop

N
ot

sh
ift

ed

uci_boston -0.61 ± 0.33 -0.72 ± 0.38 -64.28 ± 29.34 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_carbon 1.19 ± 0.11 1.17 ± 0.12 -3913.5 ± 580.03 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_ccpp -0.14 ± 0.01 -0.16 ± 0.04 -10.9 ± 1.06 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_concrete -0.44 ± 0.13 -0.46 ± 0.08 -44.06 ± 14.23 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_energy 0.67 ± 0.03 0.65 ± 0.03 -118.78 ± 81.29 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_kin8nm -0.25 ± 0.02 -0.28 ± 0.04 -16.76 ± 1.53 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_naval 0.52 ± 0.16 0.12 ± 0.4 -9.57 ± 4.57 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_protein -1.32 ± 0.01 -1.34 ± 0.01 -14.31 ± 2.59 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_superconduct -0.54 ± 0.03 -0.56 ± 0.01 -269.08 ± 58.88 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_wine_red -2.0 ± 0.08 -2.36 ± 0.19 -37.86 ± 31.48 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_wine_white -1.82 ± 0.06 -2.01 ± 0.1 -869.26 ± 1718.81 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_yacht -17.6 ± 0.43 1.04 ± 0.1 -551.12 ± 1060.39 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan

Sh
ift

ed

uci_boston -1.28 ± 0.32 -1.47 ± 0.28 -110.63 ± 110.55 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_carbon 1.16 ± 0.02 1.11 ± 0.03 -3991.86 ± 679.64 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_ccpp -0.25 ± 0.08 -0.33 ± 0.14 -8.36 ± 1.65 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_concrete -1.29 ± 0.27 -1.51 ± 0.38 -75.74 ± 59.7 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_energy -0.69 ± 1.1 -0.56 ± 0.9 -891.92 ± 1570.09 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_kin8nm -0.33 ± 0.03 -0.38 ± 0.04 -23.9 ± 1.92 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_naval -4.73 ± 4.61 -5.31 ± 6.58 -26.02 ± 48.06 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_protein -1.56 ± 0.11 -1.64 ± 0.16 -9.34 ± 6.68 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_superconduct -1.43 ± 0.32 -1.52 ± 0.34 -224.0 ± 111.57 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_wine_red -2.84 ± 0.21 -3.45 ± 0.35 -47.78 ± 56.02 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_wine_white -2.04 ± 0.11 -2.53 ± 0.29 -346.83 ± 434.27 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_yacht -7.59 ± 2.58 0.35 ± 0.19 -194.42 ± 149.45 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan

Table 12: UCI benchmarks - log p(y|x)

UCI benchmarks d-VV VV VV
(no prior)

Mean
variance
network

Skafte
et al

Deep
ensembles

Monte
Carlo
dropout

Noise
contrastive
priors

Bayes
by
backprop

N
ot

sh
ift

ed

uci_boston -0.43 ± 0.35 -0.42 ± 0.39 -3.34 ± 1.39 -0.76 ± 0.07 -0.18 ± 0.19 -0.68 ± 0.04 -0.81 ± 0.51 -1.39 ± 0.33 -248.43 ± 163.55
uci_carbon 1.45 ± 0.13 1.45 ± 0.11 0.98 ± 3.08 -3.78 ± 0.05 1.13 ± 0.51 -3.71 ± 0.04 0.29 ± 1.08 nan ± nan nan ± nan
uci_ccpp -0.07 ± 0.01 -0.03 ± 0.03 0.05 ± 0.06 -0.58 ± 0.14 -0.18 ± 0.12 -0.61 ± 0.05 -3.36 ± 0.56 0.21 ± 0.04 4.06 ± 0.69
uci_concrete -0.29 ± 0.15 -0.25 ± 0.1 -0.83 ± 0.5 -0.68 ± 0.09 -0.4 ± 0.15 -0.65 ± 0.04 -0.9 ± 0.33 0.38 ± 0.04 3.84 ± 0.66
uci_energy 0.87 ± 0.04 0.89 ± 0.03 0.47 ± 0.2 -1.22 ± 0.11 0.28 ± 0.37 -1.17 ± 0.04 0.36 ± 0.26 nan ± nan nan ± nan
uci_kin8nm -0.17 ± 0.02 -0.15 ± 0.04 -0.36 ± 0.07 -0.61 ± 0.06 -0.61 ± 0.12 -0.65 ± 0.03 -0.63 ± 0.05 -0.68 ± 0.08 -0.16 ± 0.03
uci_naval 0.71 ± 0.19 0.52 ± 0.2 -0.13 ± 0.32 -2.26 ± 0.08 -2.67 ± 0.22 -2.26 ± 0.06 -0.2 ± 0.74 nan ± nan nan ± nan
uci_protein -1.16 ± 0.01 -1.12 ± 0.01 -1.42 ± 0.38 -1.13 ± 0.05 -1.54 ± 0.74 -1.05 ± 0.01 -7.41 ± 0.27 -1.02 ± 0.01 -0.96 ± 0.02
uci_superconduct -0.38 ± 0.02 -0.35 ± 0.02 -1.73 ± 1.71 -0.66 ± 0.04 -0.96 ± 0.18 -0.68 ± 0.03 -1.72 ± 0.25 -0.2 ± 0.19 -0.04 ± 0.06
uci_wine_red -1.91 ± 0.07 -2.13 ± 0.21 -7.77 ± 6.39 -2560.95 ± 5395.69 -1.15 ± 0.04 -1.24 ± 0.08 -4.24 ± 0.91 0.16 ± 0.04 3.76 ± 0.39
uci_wine_white -1.72 ± 0.06 -1.75 ± 0.1 -305.7 ± 549.73 -27.69 ± 48.8 -1.4 ± 0.58 -1.16 ± 0.08 -5.86 ± 1.08 0.29 ± 0.06 3.76 ± 0.82
uci_yacht 0.9 ± 0.02 1.33 ± 0.11 0.63 ± 0.59 -0.59 ± 0.11 0.4 ± 0.14 -0.58 ± 0.04 0.33 ± 0.69 0.63 ± 0.1 1.57 ± 0.6

Sh
ift

ed

uci_boston -1.09 ± 0.32 -1.16 ± 0.27 -10.33 ± 10.87 -0.84 ± 0.09 -0.16 ± 0.09 -0.79 ± 0.07 -2.52 ± 1.34 -3.83 ± 1.82 -428.29 ± 194.72
uci_carbon 1.34 ± 0.06 1.4 ± 0.02 -0.6 ± 2.9 -3.87 ± 0.34 1.12 ± 0.25 -3.71 ± 0.12 0.55 ± 0.1 nan ± nan nan ± nan
uci_ccpp -0.18 ± 0.09 -0.2 ± 0.14 -0.1 ± 0.08 -0.54 ± 0.04 -0.16 ± 0.02 -0.65 ± 0.02 -4.31 ± 0.43 0.2 ± 0.07 3.76 ± 0.75
uci_concrete -1.11 ± 0.27 -1.23 ± 0.36 -10.81 ± 15.27 -0.77 ± 0.1 -0.38 ± 0.06 -0.78 ± 0.04 -2.38 ± 0.52 0.29 ± 0.05 4.17 ± 0.36
uci_energy -0.47 ± 1.15 -0.2 ± 0.76 -96.95 ± 259.19 -1.42 ± 0.26 0.2 ± 0.25 -1.36 ± 0.23 -1.13 ± 2.52 nan ± nan nan ± nan
uci_kin8nm -0.26 ± 0.04 -0.22 ± 0.04 -0.88 ± 0.14 -0.64 ± 0.09 -0.59 ± 0.04 -0.65 ± 0.05 -0.86 ± 0.21 -0.68 ± 0.09 -0.26 ± 0.1
uci_naval -4.55 ± 4.62 -5.01 ± 6.53 -14.78 ± 18.92 -3.59 ± 0.89 -2.76 ± 0.15 -3.62 ± 0.89 -22.29 ± 12.05 nan ± nan nan ± nan
uci_protein -1.44 ± 0.12 -1.42 ± 0.15 -2.26 ± 1.3 -1.33 ± 0.09 -1.51 ± 0.46 -1.21 ± 0.07 -9.94 ± 1.27 -1.16 ± 0.06 -1.21 ± 0.09
uci_superconduct -1.28 ± 0.32 -1.28 ± 0.33 -8.32 ± 11.59 -0.98 ± 0.11 -1.06 ± 0.16 -0.9 ± 0.06 -5.9 ± 1.74 -0.72 ± 0.28 -2.87 ± 5.54
uci_wine_red -2.7 ± 0.2 -3.1 ± 0.32 -12.13 ± 13.11 -229.56 ± 749.24 -1.14 ± 0.02 -1.57 ± 0.26 -4.42 ± 0.5 0.13 ± 0.1 3.84 ± 0.44
uci_wine_white -1.97 ± 0.12 -2.24 ± 0.27 -183.07 ± 323.25 -1.75 ± 0.23 -1.3 ± 0.13 -1.29 ± 0.04 -5.65 ± 0.49 0.3 ± 0.04 3.61 ± 0.88
uci_yacht 0.71 ± 0.76 0.65 ± 0.19 0.51 ± 0.55 -0.53 ± 0.05 0.43 ± 0.07 -0.58 ± 0.05 0.37 ± 0.35 0.41 ± 0.2 -11.62 ± 25.18

20

Under review as submission to TMLR

Table 13: UCI benchmarks - RMSE [y, µ(x)]

UCI benchmarks d-VV VV VV
(no prior)

Mean
variance
network

Skafte
et al

Deep
ensembles

Monte
Carlo
dropout

Noise
contrastive
priors

Bayes
by
backprop

N
ot

sh
ift

ed

uci_boston 0.33 ± 0.09 0.33 ± 0.08 0.38 ± 0.09 0.35 ± 0.06 0.3 ± 0.07 0.29 ± 0.05 0.33 ± 0.05 0.47 ± 0.06 0.5 ± 0.04
uci_carbon 0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 0.75 ± 0.01 0.09 ± 0.08 0.75 ± 0.01 0.08 ± 0.0 nan ± nan nan ± nan
uci_ccpp 0.23 ± 0.01 0.23 ± 0.01 0.23 ± 0.01 0.23 ± 0.01 0.27 ± 0.03 0.23 ± 0.01 0.24 ± 0.01 0.07 ± 0.03 0.0 ± 0.0
uci_concrete 0.29 ± 0.04 0.29 ± 0.04 0.33 ± 0.04 0.29 ± 0.01 0.35 ± 0.07 0.27 ± 0.01 0.28 ± 0.02 0.08 ± 0.02 0.0 ± 0.0
uci_energy 0.08 ± 0.01 0.08 ± 0.01 0.3 ± 0.03 0.13 ± 0.01 0.22 ± 0.08 0.13 ± 0.01 0.13 ± 0.02 nan ± nan nan ± nan
uci_kin8nm 0.26 ± 0.01 0.26 ± 0.01 0.28 ± 0.01 0.27 ± 0.01 0.44 ± 0.07 0.26 ± 0.01 0.33 ± 0.01 0.4 ± 0.07 0.29 ± 0.0
uci_naval 0.09 ± 0.06 0.1 ± 0.03 0.33 ± 0.07 0.72 ± 0.01 0.86 ± 0.09 0.72 ± 0.01 0.2 ± 0.07 nan ± nan nan ± nan
uci_protein 0.71 ± 0.01 0.71 ± 0.0 0.75 ± 0.01 0.71 ± 0.01 1.12 ± 0.73 0.69 ± 0.01 0.7 ± 0.01 0.76 ± 0.02 0.73 ± 0.01
uci_superconduct 0.35 ± 0.01 0.35 ± 0.01 0.4 ± 0.02 0.35 ± 0.01 0.67 ± 0.22 0.32 ± 0.01 0.33 ± 0.01 0.44 ± 0.03 0.41 ± 0.01
uci_wine_red 0.89 ± 0.01 0.9 ± 0.04 0.77 ± 0.07 1.13 ± 0.15 0.76 ± 0.02 0.84 ± 0.06 0.77 ± 0.05 0.1 ± 0.04 0.01 ± 0.0
uci_wine_white 0.9 ± 0.03 0.88 ± 0.02 0.82 ± 0.06 0.85 ± 0.05 0.93 ± 0.39 0.77 ± 0.06 0.79 ± 0.05 0.08 ± 0.04 0.01 ± 0.0
uci_yacht 0.05 ± 0.02 0.04 ± 0.02 0.82 ± 0.12 0.05 ± 0.01 0.09 ± 0.06 0.05 ± 0.01 0.11 ± 0.04 0.09 ± 0.02 0.16 ± 0.03

Sh
ift

ed

uci_boston 0.52 ± 0.08 0.52 ± 0.08 0.43 ± 0.1 0.48 ± 0.07 0.3 ± 0.04 0.44 ± 0.08 0.41 ± 0.06 0.5 ± 0.07 0.46 ± 0.06
uci_carbon 0.03 ± 0.0 0.03 ± 0.0 0.03 ± 0.0 0.72 ± 0.05 0.1 ± 0.03 0.72 ± 0.05 0.08 ± 0.0 nan ± nan nan ± nan
uci_ccpp 0.26 ± 0.02 0.26 ± 0.03 0.25 ± 0.01 0.25 ± 0.01 0.26 ± 0.01 0.25 ± 0.01 0.25 ± 0.01 0.07 ± 0.04 0.01 ± 0.0
uci_concrete 0.54 ± 0.07 0.54 ± 0.07 0.44 ± 0.05 0.48 ± 0.05 0.35 ± 0.03 0.43 ± 0.05 0.4 ± 0.04 0.09 ± 0.03 0.0 ± 0.0
uci_energy 0.26 ± 0.23 0.26 ± 0.22 0.39 ± 0.14 0.28 ± 0.19 0.23 ± 0.05 0.22 ± 0.11 0.22 ± 0.11 nan ± nan nan ± nan
uci_kin8nm 0.28 ± 0.01 0.28 ± 0.01 0.29 ± 0.01 0.29 ± 0.01 0.43 ± 0.02 0.27 ± 0.01 0.36 ± 0.02 0.37 ± 0.08 0.31 ± 0.02
uci_naval 1.37 ± 0.96 1.35 ± 0.95 1.61 ± 0.71 0.89 ± 0.11 0.9 ± 0.06 0.89 ± 0.1 1.32 ± 0.59 nan ± nan nan ± nan
uci_protein 0.83 ± 0.04 0.83 ± 0.05 0.84 ± 0.04 0.84 ± 0.05 1.02 ± 0.22 0.8 ± 0.05 0.8 ± 0.03 0.82 ± 0.03 0.81 ± 0.03
uci_superconduct 0.59 ± 0.07 0.59 ± 0.06 0.52 ± 0.06 0.6 ± 0.06 0.6 ± 0.08 0.52 ± 0.05 0.51 ± 0.05 0.54 ± 0.06 0.53 ± 0.05
uci_wine_red 1.13 ± 0.05 1.14 ± 0.05 0.79 ± 0.03 1.62 ± 0.21 0.76 ± 0.01 1.03 ± 0.11 0.84 ± 0.03 0.11 ± 0.05 0.01 ± 0.0
uci_wine_white 0.96 ± 0.04 0.96 ± 0.04 0.87 ± 0.03 1.03 ± 0.07 0.84 ± 0.05 0.86 ± 0.03 0.86 ± 0.04 0.06 ± 0.02 0.01 ± 0.0
uci_yacht 0.16 ± 0.08 0.1 ± 0.04 0.74 ± 0.22 0.09 ± 0.03 0.07 ± 0.02 0.07 ± 0.02 0.13 ± 0.04 0.11 ± 0.02 0.18 ± 0.06

Table 14: UCI benchmarks - RMSE
[
Var[y|x], (y − µ(x))2

]
UCI benchmarks d-VV VV VV

(no prior)

Mean
variance
network

Skafte
et al

Deep
ensembles

Monte
Carlo
dropout

Noise
contrastive
priors

Bayes
by
backprop

N
ot

sh
ift

ed

uci_boston 0.25 ± 0.11 0.37 ± 0.26 1.000000e+11 ± 3.162278e+11 0.61 ± 0.14 nan ± nan 0.53 ± 0.06 0.29 ± 0.17 36.0 ± 4.18 0.77 ± 0.31
uci_carbon 0.05 ± 0.04 0.05 ± 0.04 0.03 ± 0.03 1.68 ± 0.06 nan ± nan 1.6 ± 0.03 0.09 ± 0.01 nan ± nan nan ± nan
uci_ccpp 0.15 ± 0.01 0.15 ± 0.01 0.24 ± 0.3 0.5 ± 0.18 nan ± nan 0.47 ± 0.04 0.14 ± 0.04 0.13 ± 0.01 0.0 ± 0.0
uci_concrete 0.24 ± 0.15 0.22 ± 0.13 1.32 ± 3.53 0.55 ± 0.15 nan ± nan 0.47 ± 0.05 0.18 ± 0.03 0.25 ± 0.06 0.0 ± 0.0
uci_energy 0.03 ± 0.0 0.02 ± 0.0 0.15 ± 0.04 0.55 ± 0.06 nan ± nan 0.49 ± 0.02 0.08 ± 0.01 nan ± nan nan ± nan
uci_kin8nm 0.14 ± 0.02 0.13 ± 0.02 63.3 ± 146.89 0.48 ± 0.09 nan ± nan 0.47 ± 0.04 0.2 ± 0.01 0.38 ± 0.03 0.14 ± 0.01
uci_naval 0.03 ± 0.0 3.828603e+03 ± 6.631150e+03 6.000000e+11 ± 5.163978e+11 2.0 ± 0.2 nan ± nan 1.93 ± 0.16 0.12 ± 0.05 nan ± nan nan ± nan
uci_protein 0.8 ± 0.04 0.8 ± 0.01 3.000002e+11 ± 4.830458e+11 0.88 ± 0.09 nan ± nan 0.77 ± 0.03 0.88 ± 0.03 9.76 ± 3.17 4.71 ± 10.99
uci_superconduct 0.39 ± 0.04 0.41 ± 0.07 5.371845e+04 ± 8.860245e+04 0.53 ± 0.08 nan ± nan 0.53 ± 0.05 0.33 ± 0.06 0.62 ± 0.08 0.62 ± 0.05
uci_wine_red 1.38 ± 0.08 1.62 ± 0.38 3.46 ± 4.12 2.69 ± 0.78 nan ± nan 2.97 ± 2.35 1.18 ± 0.21 0.57 ± 0.17 0.0 ± 0.0
uci_wine_white 1.52 ± 0.01 1.52 ± 0.14 3.795848e+03 ± 9.990566e+03 1.5 ± 0.33 nan ± nan 1.11 ± 0.2 1.24 ± 0.16 0.08 ± 0.01 0.0 ± 0.0
uci_yacht 0.03 ± 0.0 0.01 ± 0.0 2.272965e+03 ± 4.416696e+03 0.59 ± 0.13 nan ± nan 0.52 ± 0.05 0.09 ± 0.03 0.28 ± 0.05 0.03 ± 0.02

Sh
ift

ed

uci_boston 0.74 ± 0.37 0.74 ± 0.35 7.692309e+10 ± 2.773501e+11 0.72 ± 0.19 nan ± nan 0.71 ± 0.16 0.46 ± 0.21 37.59 ± 17.11 0.87 ± 0.35
uci_carbon 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 1.31 ± 0.51 nan ± nan 1.45 ± 0.22 0.09 ± 0.0 nan ± nan nan ± nan
uci_ccpp 0.15 ± 0.03 0.15 ± 0.03 0.13 ± 0.03 0.4 ± 0.06 nan ± nan 0.49 ± 0.02 0.14 ± 0.02 0.12 ± 0.01 0.0 ± 0.0
uci_concrete 0.61 ± 0.2 0.64 ± 0.21 26.51 ± 73.79 0.57 ± 0.16 nan ± nan 0.54 ± 0.09 0.31 ± 0.06 0.28 ± 0.12 0.0 ± 0.0
uci_energy 0.28 ± 0.29 0.25 ± 0.26 119.45 ± 271.5 0.55 ± 0.09 nan ± nan 0.59 ± 0.2 0.12 ± 0.08 nan ± nan nan ± nan
uci_kin8nm 0.16 ± 0.01 0.15 ± 0.02 33.73 ± 71.3 0.49 ± 0.1 nan ± nan 0.46 ± 0.06 0.23 ± 0.04 0.41 ± 0.07 0.17 ± 0.03
uci_naval 4.51 ± 4.91 4.17 ± 4.9 4.375000e+11 ± 5.123475e+11 29.35 ± 35.96 nan ± nan 30.74 ± 37.17 2.47 ± 1.51 nan ± nan nan ± nan
uci_protein 0.98 ± 0.1 1.03 ± 0.12 7.777778e+11 ± 4.409585e+11 1.02 ± 0.08 nan ± nan 0.88 ± 0.09 1.04 ± 0.07 7.09 ± 2.31 1.58 ± 0.89
uci_superconduct 0.67 ± 0.15 0.66 ± 0.14 5.061728e+11 ± 5.030769e+11 0.73 ± 0.11 nan ± nan 0.7 ± 0.1 0.53 ± 0.09 0.57 ± 0.1 0.65 ± 0.32
uci_wine_red 2.34 ± 0.43 2.37 ± 0.45 4.02 ± 5.18 4.88 ± 1.35 nan ± nan 7.66 ± 6.9 1.32 ± 0.12 0.45 ± 0.29 0.0 ± 0.0
uci_wine_white 1.57 ± 0.15 1.63 ± 0.16 2.788480e+03 ± 8.365328e+03 1.83 ± 0.32 nan ± nan 1.35 ± 0.15 1.4 ± 0.14 0.13 ± 0.09 0.0 ± 0.0
uci_yacht 0.14 ± 0.09 0.04 ± 0.01 7.139074e+04 ± 1.741110e+05 0.52 ± 0.07 nan ± nan 0.51 ± 0.05 0.09 ± 0.04 0.47 ± 0.5 0.05 ± 0.03

21

Under review as submission to TMLR

Table 15: UCI benchmarks - RMSE [y, ỹ]

UCI benchmarks d-VV VV VV
(no prior)

Mean
variance
network

Skafte
et al

Deep
ensembles

Monte
Carlo
dropout

Noise
contrastive
priors

Bayes
by
backprop

N
ot

sh
ift

ed

uci_boston 0.56 ± 0.08 0.57 ± 0.16 0.58 ± 0.28 nan ± nan nan ± nan nan ± nan nan ± nan 2.23 ± 0.68 0.51 ± 0.06
uci_carbon 0.11 ± 0.01 0.1 ± 0.0 0.04 ± 0.02 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_ccpp 0.42 ± 0.01 0.4 ± 0.01 0.33 ± 0.01 nan ± nan nan ± nan nan ± nan nan ± nan 0.33 ± 0.01 0.01 ± 0.01
uci_concrete 0.44 ± 0.06 0.43 ± 0.05 0.43 ± 0.05 nan ± nan nan ± nan nan ± nan nan ± nan 0.32 ± 0.04 0.01 ± 0.0
uci_energy 0.21 ± 0.03 0.17 ± 0.01 0.4 ± 0.08 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_kin8nm 0.46 ± 0.01 0.43 ± 0.01 0.39 ± 0.04 nan ± nan nan ± nan nan ± nan nan ± nan 0.78 ± 0.06 0.4 ± 0.01
uci_naval 0.22 ± 0.03 0.29 ± 0.03 1.3 ± 1.0 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_protein 1.05 ± 0.01 1.05 ± 0.02 1.15 ± 0.13 nan ± nan nan ± nan nan ± nan nan ± nan 1.24 ± 0.15 1.17 ± 0.38
uci_superconduct 0.54 ± 0.0 0.56 ± 0.02 0.59 ± 0.11 nan ± nan nan ± nan nan ± nan nan ± nan 0.62 ± 0.04 0.6 ± 0.04
uci_wine_red 1.15 ± 0.1 1.07 ± 0.06 1.07 ± 0.09 nan ± nan nan ± nan nan ± nan nan ± nan 0.4 ± 0.05 0.01 ± 0.0
uci_wine_white 1.19 ± 0.04 1.17 ± 0.06 1.18 ± 0.12 nan ± nan nan ± nan nan ± nan nan ± nan 0.31 ± 0.01 0.01 ± 0.0
uci_yacht 0.18 ± 0.03 0.1 ± 0.01 0.97 ± 0.22 nan ± nan nan ± nan nan ± nan nan ± nan 0.33 ± 0.13 0.23 ± 0.13

Sh
ift

ed

uci_boston 0.73 ± 0.07 0.67 ± 0.08 0.58 ± 0.2 nan ± nan nan ± nan nan ± nan nan ± nan 3.24 ± 1.19 0.5 ± 0.07
uci_carbon 0.12 ± 0.01 0.11 ± 0.0 0.04 ± 0.01 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_ccpp 0.44 ± 0.01 0.43 ± 0.02 0.35 ± 0.02 nan ± nan nan ± nan nan ± nan nan ± nan 0.33 ± 0.03 0.01 ± 0.0
uci_concrete 0.73 ± 0.07 0.71 ± 0.04 0.52 ± 0.06 nan ± nan nan ± nan nan ± nan nan ± nan 0.37 ± 0.04 0.01 ± 0.0
uci_energy 0.44 ± 0.16 0.45 ± 0.19 0.69 ± 0.49 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_kin8nm 0.48 ± 0.03 0.45 ± 0.01 0.4 ± 0.02 nan ± nan nan ± nan nan ± nan nan ± nan 0.79 ± 0.07 0.41 ± 0.03
uci_naval 1.73 ± 0.8 1.71 ± 0.82 2.33 ± 1.32 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_protein 1.15 ± 0.03 1.18 ± 0.06 1.25 ± 0.13 nan ± nan nan ± nan nan ± nan nan ± nan 1.2 ± 0.05 1.13 ± 0.04
uci_superconduct 0.79 ± 0.05 0.8 ± 0.06 0.93 ± 0.42 nan ± nan nan ± nan nan ± nan nan ± nan 0.71 ± 0.08 0.72 ± 0.1
uci_wine_red 1.32 ± 0.05 1.36 ± 0.08 1.03 ± 0.05 nan ± nan nan ± nan nan ± nan nan ± nan 0.44 ± 0.06 0.01 ± 0.0
uci_wine_white 1.24 ± 0.07 1.23 ± 0.03 1.21 ± 0.09 nan ± nan nan ± nan nan ± nan nan ± nan 0.31 ± 0.02 0.01 ± 0.0
uci_yacht 0.22 ± 0.09 0.21 ± 0.02 0.97 ± 0.28 nan ± nan nan ± nan nan ± nan nan ± nan 0.48 ± 0.23 0.22 ± 0.08

Table 16: UCI benchmarks - E[KL]

UCI benchmarks d-VV VV VV
(no prior)

Mean
variance
network

Skafte
et al

Deep
ensembles

Monte
Carlo
dropout

Noise
contrastive
priors

Bayes
by
backprop

N
ot

sh
ift

ed

uci_boston 0.24 ± 0.05 0.66 ± 0.29 109.96 ± 65.06 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_carbon 0.03 ± 0.0 0.2 ± 0.01 3.590175e+03 ± 683.49 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_ccpp 0.02 ± 0.01 0.65 ± 0.15 765.25 ± 1.304725e+03 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_concrete 0.06 ± 0.01 0.54 ± 0.09 151.72 ± 197.18 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_energy 0.03 ± 0.01 1.22 ± 0.06 719.58 ± 835.96 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_kin8nm 0.01 ± 0.0 0.21 ± 0.03 25.55 ± 5.99 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_naval 0.57 ± 0.13 1.09 ± 0.37 966.35 ± 1.672143e+03 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_protein 0.03 ± 0.0 0.88 ± 0.3 1.489842e+09 ± 9.803508e+08 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_superconduct 0.1 ± 0.02 0.81 ± 0.01 5.670007e+03 ± 5.534678e+03 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_wine_red 0.07 ± 0.01 2.22 ± 1.01 3.798346e+03 ± 6.945584e+03 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_wine_white 0.07 ± 0.01 1.72 ± 0.2 1.766196e+06 ± 2.118534e+06 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_yacht 0.14 ± 0.04 0.5 ± 0.29 869.08 ± 1.882199e+03 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan

Sh
ift

ed

uci_boston 0.13 ± 0.03 0.39 ± 0.29 390.83 ± 741.65 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_carbon 0.03 ± 0.01 0.2 ± 0.02 3.145017e+03 ± 808.29 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_ccpp 0.02 ± 0.0 0.25 ± 0.07 29.45 ± 18.62 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_concrete 0.05 ± 0.01 0.17 ± 0.05 549.89 ± 1.020544e+03 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_energy 0.02 ± 0.01 0.67 ± 0.41 2.454811e+03 ± 1.613791e+03 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_kin8nm 0.01 ± 0.0 0.19 ± 0.01 43.01 ± 8.46 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_naval 0.13 ± 0.02 0.3 ± 0.11 3.223887e+04 ± 1.257591e+05 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_protein 0.04 ± 0.01 0.72 ± 0.24 1.800074e+08 ± 2.840555e+08 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_superconduct 0.03 ± 0.01 0.53 ± 0.11 2.629295e+03 ± 3.482120e+03 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_wine_red 0.06 ± 0.01 1.04 ± 0.31 210.6 ± 258.73 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_wine_white 0.08 ± 0.01 2.05 ± 0.31 3.506659e+05 ± 6.077032e+05 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_yacht 0.33 ± 0.09 0.19 ± 0.04 196.98 ± 125.57 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan

22

Under review as submission to TMLR

Figure 11: Effect of the informativity of the prior (as displayed on the left) on the KL divergence of the
trained posterior on an artificial example (right). The scale of the respective KL divergences reveals that the
heavy-tailed prior (green) allows the posterior to be significantly influenced by data, while its counterpart
(red) is much more restrictive.

III..8 Prior parameters

For the toy experiments (Fig. 3, 5 and 6), an homoscedastic prior that matches the standard deviation of the
targets σ̄ is chosen. As shown in Fig. 11, for a Gamma prior, the rate β controls its informativity, the closer
β is to 0, the more spread out the prior is, and the less penalising it is for the posterior to diverge from it. We
thus deliberately choose a prior with low informativity, β = 1e-3, and infer the shape as α = 1 + β/σ̄. For the
UCI benchmarks, we aimed to adopt a prior that would match the model’s empirical variance (y − µ(x))2. As
such, we first ran a training run to determine the model’s empirical variance on each dataset, and subsequently
adopted α = 1.5 and β = (α− 1) (y − µ(x))2, with the choice for α being motivated by stability concerns,
and obtained from an empirical study. All prior parameters can be found in the configuration files present in
the source code.

23

Under review as submission to TMLR

IV. Generative models experiments

Table 17: Datasets for generative models

Name Dimensions Link
(N,C,Dx, Dy)

MNIST (70000, 1, 28, 28) http://yann.lecun.com/exdb/mnist/
FashionMNIST (70000, 1, 28, 28) https://github.com/zalandoresearch/fashion-mnist
EMNIST (70000, 1, 28, 28) https://www.westernsydney.edu.au/icns/reproducible_research/publication_support_materials/emnist

KMNIST (70000, 1, 28, 28) https://github.com/rois-codh/kmnist
SVHN (600000, 3, 32, 32) http://ufldl.stanford.edu/housenumbers/
CIFAR (60000, 3, 32, 32) https://www.cs.toronto.edu/~kriz/cifar.html

IV..1 Datasets

Tab. 17 lists all the datasets used in the generative modelling experiments.

IV..2 Dissipative loss for generative models

Figure 12: PGM for V3AE

The full expression of the dissipative loss for the V3AE is given as:

Loss(qϕ, θ; Dtrain) = −
[(∑

x∈Dtrain

Eqϕ(z|x)
[
Eqϕ(λ|z)[log pθ(x|z)] −DKL (qϕ(λ|z) || p(λ))

]
−DKL(qϕ(z|x) || p(z))

)
+ Eqout(z) [DKL (qϕ(λ|z) || p(λ))]

]
.

(16)

The expected likelihood w.r.t the posterior qϕ(z|x) is intractable as it requires the integration of the parameter
maps αϕ(z) and βϕ(z) and must be approximated through MC-integration, using multiple sampled latent
codes. We observed in practice that a low number of sampled codes, typically, 2 or 3, is sufficient for ensuring
convergence.

IV..3 Model architecture

In our VAEs, the encoder and decoder networks’ architectures are mirrored, and all parameter maps of
each stage share on the same architecture. For the MNIST and FashionMNIST datasets, we relied on fully
connected encoder-decoders, with 2 hidden layers with respectively 512 and 256 neurons. Each fully connected
layer is followed by batch normalisation (Ioffe & Szegedy, 2015). For the SVHN and CIFAR datasets, we
relied on a convolutional architecture, with hidden dimensions corresponding to depths of 32, 64, 128, 256,
and 512, for kernels of size 3, with a stride of 2 and a padding of 1. Again, batch normalisation is applied

24

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://www.westernsydney.edu.au/icns/reproducible_research/publication_support_materials/emnist
https://github.com/rois-codh/kmnist
http://ufldl.stanford.edu/housenumbers/
https://www.cs.toronto.edu/~kriz/cifar.html

Under review as submission to TMLR

after each layer. In both cases, we used leaky rectified linear units (Leaky ReLU) for activations and here
again, softplus and shifting might be applied on the last layer of the different parameter maps to ensure the
proper definition of the quantities they model, and models are optimised with Adam.

IV..4 Pseudo-input generator

Table 18: Parameters for the generative model pseudo-input generator

K max_iterations tolerance δ

N 10 0.007 4e-1

Tab. 18 presents the parameters used by the PIG in a generative modelling setting. We remind that these
parameters are parameters of a gradient descent, with learning rate δ. Because it is too computationally
expensive to use the complete aggregate posterior as the density estimate we base the PIG on, we iteratively
generated pseudo-inputs using the aggregate posterior established on one batch at a time.

IV..5 Prior parameters

As for the regression experiments, an homoscedastic Gamma prior, with the same parameters for all image
channels was chosen for model comparisons. The shape and rate parameters were tuned with the same base
intuition as for the UCI benchmarks; the prior uncertainty should be fairly close to the empirical mean of the
model. An empirical grid search was conducted to determine the best combination of prior parameters wrt to
the objective to optimise. In the case of out-of-distribution detection, we adopted an heteroscedastic prior.
Such prior adopts similar base parameters as the more standard homoscedastic prior, but its rate parameter,
and consequently its associated uncertainty, increases linearly as a function of the distance to the closest of
the C pre-determined K-means12 cluster center, where C is the number of classes in the dataset. Again, the
prior parameters used for running the experiments can be found in the configuration files provided with the
source code.

IV..6 Out-of-distribution detection

The same experimental setup used to assess the OOD detection capabilities of the d-V3AE is replicated
for other OOD datasets, namely EMNIST (Fig. 13) and KMNIST (Fig. 14). Here again, the benefits
of the regularity of the learned decoder variance for OOD detection are clear, with our method clearly
overperforming the baseline.

Figure 13: Empirical densities of likelihoods for FashionMNIST (ID) and EMNIST (OOD).

IV..7 Pseudo-inputs training for VAE’s with Bernoulli likelihood

Motivated by the idea of not necessarily having to adopt a non trivial Γ(λ|a, b) prior, we explore the use of
pseudo-input training in simpler VAE’s with Bernoulli likelihood. In this setting, the combined epistemic and
aleatoric uncertainty on the reconstructed x̃ is approximated with a measure of entropy. As uncertainty is
high for distributions with high entropy, we reinterpret the decoded Bernoulli distributed reconstruction x̃ as

12https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

25

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

Under review as submission to TMLR

Figure 14: Empirical densities of likelihoods for FashionMNIST (ID) and KMNIST (OOD).

normalized Categorical distribution and then proceed to maximize its entropy for the pseudo inputs ẑ. The
resulting loss function,

Loss(qϕ, θ; Dtrain) = −
[∑

x∈Dtrain

L(qϕ, θ; x) −
∑

ẑ∈Dout

H[x̃|ẑ]
]
, (17)

balances the overall entropy of the reconstruction by promoting entropy increase, H[x̃|ẑ]. Figure 15 shows the
effect of this method for a VAE trained on a subset of MNIST.

Figure 15: Pseudo inputs for Bernoulli VAE’s

26

Under review as submission to TMLR

V. Implementation details

V..1 Source code

The source code is accessible in the GitHub repository https://github.com/****13

V..2 Hardware

Experiments were done on a 16-Core AMD Ryzen 5950X machine with a single Nvidia 3080 GPU.

V..3 Running times and carbon emissions

Table 19: Regression models

CO2 (kg) Time (s)
Dataset
uci_boston 0.000064 15.969
uci_carbon 0.000695 138.548
uci_ccpp 0.001464 275.824
uci_concrete 0.000102 22.480
uci_energy 0.000095 21.140
uci_kin8nm 0.000869 168.273
uci_naval 0.001427 274.547
uci_protein 0.009920 1762.071
uci_superconduct 0.002010 360.634
uci_wine_red 0.000185 36.186
uci_wine_white 0.000482 89.373
uci_yacht 0.000046 11.404

Table 20: Generative models

CO2 (kg) Time (s)
Dataset
fashion_mnist 0.003713 504.190
cifar 0.037554 2573.566
svhn 0.036692 2585.144

Table 21: Generative models w/o pseudo inputs
CO2 (kg) Time (s)

Dataset
fashion_mnist 0.002750 407.991
cifar 0.025522 2022.803
svhn 0.025130 2023.293

Tab. 20 and 21 demonstrate that the generation of artificial pseudo-inputs incurs a limited additional
computational burden (∼ +26%).

13Hidden for the review, please refer instead to the .zip folder attached.

27

https://github.com/****

	Introduction
	Background and related work
	Robust uncertainty estimates

	Out-of-distribution pseudo-inputs
	Dissipative loss
	Pseudo-input generators (PIGs)

	Experiments
	Regression
	Toy regression
	UCI Benchmarks

	Generative models

	Conclusion
	Student-t likelihood
	Marginal distribution of a Gaussian likelihood with a Gamma precision
	Decomposition of a Student-t's uncertainty

	Pseudo-inputs generator
	On boundary samples
	Sensitivity to hyperparameters
	Influence of the pseudo-input generator
	Number of pseudo-inputs

	Regression experiments
	Variational Variance's ELBO Closed Form
	True posterior and heteroscedasticity
	Model architecture
	Pseudo-input generator
	UCI experiments
	Aggregate benchmark data
	Benchmark raw data
	Prior parameters

	Generative models experiments
	Datasets
	Dissipative loss for generative models
	Model architecture
	Pseudo-input generator
	Prior parameters
	Out-of-distribution detection
	Pseudo-inputs training for VAE's with Bernoulli likelihood

	Implementation details
	Source code
	Hardware
	Running times and carbon emissions

