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Abstract

Entity Linking (EL) and Relation Extraction001
(RE) are fundamental tasks in Natural Lan-002
guage Processing, serving as critical compo-003
nents in a wide range of applications. In this004
paper, we propose ReLiK, a Retriever-Reader005
architecture for both EL and RE, where, given006
an input text, the Retriever module undertakes007
the identification of candidate entities or rela-008
tions that could potentially appear within the009
text. Subsequently, the Reader module is tasked010
to discern the pertinent retrieved entities or011
relations and establish their alignment with012
the corresponding textual spans. Notably, we013
put forward an innovative input representation014
that incorporates the candidate entities or rela-015
tions alongside the text, making it possible to016
link entities or extract relations in a single for-017
ward pass and to fully leverage pre-trained lan-018
guage models contextualization capabilities, in019
contrast with previous Retriever-Reader-based020
methods, which necessitate a forward pass for021
each candidate. Our formulation of EL and RE022
achieves state-of-the-art performance in both in-023
domain and out-of-domain benchmarks while024
using academic budget training and with up to025
40x inference speed with respect to other com-026
petitors. Finally, we show how our architecture027
can be seamlessly used for Information Extrac-028
tion (cIE), i.e. EL + RE, and setting a new state029
of the art by employing a shared Reader that030
simultaneously extracts entities and relations.031

1 Introduction032

Extracting structured information from unstruc-033

tured text lies at the core of many AI problems,034

such as Information Retrieval (Hasibi et al., 2016;035

Xiong et al., 2017), Knowledge Graph Construc-036

tion (Clancy et al., 2019; Li et al., 2023), Knowl-037

edge Discovery (Trisedya et al., 2019), Automatic038

Text Summarization (Amplayo et al., 2018; Dong039

et al., 2022), Language Modeling (Yamada et al.,040

2020; Liu et al., 2020b), Automatic Text Reasoning041

(Ji et al., 2022), and Semantic Parsing (Bevilacqua042

et al., 2021; Bai et al., 2022), inter alia. Looking at 043

the variety of applications in which IE systems are 044

used, we argue such systems should strive to sat- 045

isfy three fundamental properties: Inference Speed, 046

Flexibility, and Performance. 047

This work focuses on two of the most popular 048

IE tasks: Entity Linking and Relation Extraction. 049

While tremendous progress has recently been made 050

on both EL and RE, to the best of our knowledge, 051

recent approaches only focus on at most two out 052

of the aforementioned three properties simultane- 053

ously (usually either Performance and Inference 054

Speed (De Cao et al., 2021a), or Performance and 055

Flexibility (Zhang et al., 2022)), hindering their 056

applicability in multiple scenarios. Here, we show 057

that by harnessing the Retriever-Reader paradigm 058

(Chen et al., 2017), it is possible to use the same 059

underlying architecture to tackle both tasks, im- 060

proving the current state-of-the-art while satisfying 061

all fundamental properties. Most importantly, our 062

models are trainable on an academic budget with 063

a short experiment lifecycle, leveling the current 064

playing field and making research on these tasks 065

accessible for academic groups. 066

Our system ReLiK frames EL and RE simi- 067

larly to recent Open Domain Question Answering 068

(ODQA) systems (Zhang et al., 2023) where, given 069

an input question, a bi-encoder architecture (Re- 070

triever) encodes the input text and retrieves the 071

most relevant text passages from an external index 072

containing their encodings. Then, a second encoder 073

(Reader) takes in input the question and each re- 074

trieved passage separately and extracts the answer 075

from a specific passage if present. For our tasks, EL 076

and RE, the input query corresponds to the sentence 077

in which we have to link entities and/or extract 078

relations; the retrieved passages are the entities 079

or relations definitions; and predicting an answer 080

translates into linking the entities and/or extracting 081

the relations. However, our framing differs from 082

most famous ODQA ones in two main respects: i) 083
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for both EL and RE, the input text contains multi-084

ple questions simultaneously since there might be085

multiple entities to link, and/or multiple relations086

to extract; ii) we encode the input text with all its087

retrieved passages (i.e. the textual representations088

of the candidate entities or relations), linking all089

the entities or extracting all the relational triplets in090

a single forward pass. Our architecture can thus be091

conceptually divided into two main components:092

• The Retriever that is tasked to retrieve the pos-093

sible Entities/Relations that can be extracted094

from a given input text.095

• The Reader, that, given the original input text096

and all the retrieved Entities/Relations (output097

of the Retriever), is tasked to connect them to098

the relevant spans in the text.099

ReLiK innovates and integrates various unique100

properties and benefits: first, leveraging the non-101

parametric memory, i.e. the knowledge base ac-102

cessed by the Retriever component, considerably103

lowers the number of parameters required by the fi-104

nal model to achieve state-of-the-art performances105

(Inference Speed). Second, using textual repre-106

sentations for entities/relations combined with the107

Retriever component makes it easier for the fi-108

nal model to zero-shot on unseen entities/relations109

(Flexibility). Finally, using our novel input formu-110

lation we exploit to the fullest the contextualiza-111

tion capabilities of novel large language models112

such as He et al. (2023). Indeed, with an exten-113

sive array of experiments, we show that encoding114

the input text and the textual representation of en-115

tities/relations and linking/extracting them in the116

same forward pass improves both model’s final117

performances and processing speed (Performance118

and Inference Speed).119

To foster research and usage of ReLiK, we120

release the code and models’ weights at http:121

//www.omitted.link.122

2 Background123

Entity Linking (EL) is the task of identifying124

all the entity mentions in a given input text and125

linking them to an entry in a reference knowledge126

base. Formally, we can define an EL system as a127

function that, given an input text q and a reference128

knowledge base E , identifies all the mentions in q129

along their corresponding entities {(m, e) : m ∈130

M(q), e ∈ E} where m := (s, t) ∈ M(q) repre-131

sents a span among all the possible spans M(q) in132

the input text q starting in s and ending in t with 133

1 ≤ s ≤ t ≤ |q|. 134

Relation Extraction (RE) is the task of ex- 135

tracting semantic relations between entities found 136

within a given text from a closed set of relation 137

types coming from a reference knowledge base. 138

Formally, for an input text q and a closed set of rela- 139

tion types R, RE consists of identifying all triplets 140

{(m,m', r) : (m,m') ∈ M(q) × M(q), r ∈ R} 141

where m and m' are respectively the subject and 142

object spans and r a relation between them. The 143

combination of both EL and RE as a unified task is 144

known as closed Information Extraction (cIE). 145

3 The Reader-Retriever (RR) paradigm 146

In this section, we introduce ReLiK, our Retriever- 147

Reader architecture for EL, RE, and cIE. While 148

the Retriever is shared by the three tasks (Section 149

3.1), the Reader has a common formulation for 150

span identification but slightly differs in the last 151

linking and extraction steps (Section 3.2). Figure 1 152

shows a high-level overview of ReLiK as a unified 153

framework for EL, RE and cIE. 154

3.1 Retriever 155

For the Retriever component, we follow a retrieval 156

paradigm similar to Dense Passage Retrieval (DPR) 157

(Karpukhin et al., 2020) based on an encoder that 158

produces a dense representation of our queries and 159

passages. In our setup, given an input text q as our 160

query and a passage p ∈ Dp in a collection of pas- 161

sages Dp that corresponds to the textual represen- 162

tations1 of either entities or relations, the Retriever 163

model computes: 164

EQ(q) = Retriever(q), EP (p) = Retriever(p) 165

and ranks the most relevant entities or relations 166

with respect to q using the similarity function 167

sim(q, p) = EQ(q)
⊤EP (p), where the contextu- 168

alized hidden representation of a query q and a 169

passage p are computed by the same Retriever 170

Transformer encoder.2 171

We train the Retriever employing a multi-label 172

noise contrastive estimation (NCE) as a training 173

1A textual representation of an entity or a relation is any
text that univocally identifies them. Using Wikipedia as refer-
ence knowledge base for entity linking, a textual representa-
tion for an entity might be its Wikipedia title.

2The representations consist of the average of the encod-
ings for the tokens in each of the two sequences.
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Figure 1: Description of ReLiK. Based on the RR-paradigm, we (1) Retrieve candidate entities and relations (2)
Read and contextualize the text and candidates (3) Link and extract entities and triplets.

objective. The LRetriever loss for q is defined as:174

− log
∑

p+∈Dp(q)

esim(q,p
+)

esim(q,p+) +
∑

p−∈P−
q
esim(q,p−)

(1)175

where Dp(q) are the gold passages of the entities or176

relations present in q, and P−
q is the set of negative177

examples for q, constructed using in-batch nega-178

tives from gold passages of other queries and by179

hard negative mining using highest-scoring incor-180

rect passages retrieved by the model.181

3.2 Reader182

Differently from other ODQA approaches, our183

Reader performs a single forward pass for184

each input query. We append the top-k re-185

trieved passages, p1:K = (p1, . . . , pK), pi ∈186

Dp,3 to the input query q, and obtain the se-187

3The k highest scoring passages according to the sim func-
tion introduced in Section 3.1.

quence q [SEP ] ⟨ST0⟩ ⟨ST1⟩ p1 . . . ⟨STK⟩ pK , 188

with [SEP ] being a special token used to separate 189

the query from the retrieved passages, and ⟨STi⟩ 190

being special tokens used to mark the start of the 191

i-th retrieved passage. We obtain the hidden repre- 192

sentations X of the sequence using a Transformer 193

encoder: 194

X = Tr (q [SEP ] ⟨ST0⟩ . . . pK) ∈ Rl×H (2) 195

where l = |q|+1+ (1+K)+
∑

k |pk| is the total 196

length in tokens. Now, we predict all mentions 197

within q, M̃(q). We first compute the probability 198

of each token s to be the start of a mention as: 199

pS(s|X) = σ0(W
T
S Xs + bS) ∀s ∈ {1, . . . , |q|} 200

with WS ∈ RH×2, bS ∈ R2 being learnable param- 201

eters, and σi the softmax function value at position 202

i. Then we compute the probability of a token t to 203

be the end of a mention with starting token s is: 204

pE(t|X, s) = σ0(W
T
EXm+ bE) ∀t ∈ {s, . . . , |q|} 205
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with WE ∈ R2H×2, bE ∈ R2 being learnable pa-206

rameters and Xm ∈ R2H the concatenation of Xs207

and Xt. We note that with this formulation we sup-208

port the prediction of overlapping mentions. The209

loss for identifying spans in a single query is:210

LS = −
|q|∑
s=0

1MS(q)
(s)log(pS(s|X))211

− 1MS(q)∁
(s)log(1− pS(s|X))212

LE = −
∑

s∈MS(q)

|q|∑
t=s

1M(q,s)(t)log(pE(t|X, s))213

− 1M(q,s)∁(t)log(1− pE(t|X, s))214

where MS(q) are the gold start tokens for the men-215

tions in q and M(q, s) are the gold end tokens for216

mentions that start at s, ∁ indicates complementary217

set and 1 is the indicator function. At inference218

time, we first compute all s with pS(s|X) > 0.5219

and then all ends pE(t|X, s) > 0.5 for each start s220

to predict mentions M̃(q).221

While the formulation for extracting mentions222

from the input text is shared between EL and RE,223

the final steps to link them to entities and extract224

relational triplets are different. In what follows, we225

describe the two different procedures.226

Entity Linking As we now describe the EL step,227

in this paragraph the retrieved passages will iden-228

tify the textual representations of the entities we229

have to link to the previously identified mentions,230

and thus we will change the notation of p1:K =231

(p1, . . . , pK) to e0:K = (e0, . . . , eK), ei ̸=0 ∈ E .4232

Specifically, for each m ∈ M(q), we need to find233

E(q,m), the entity linked to mention m. To do so,234

we use the hidden representations X from Equation235

2, and project each mention and special token in a236

shared dense space using a feed-forward layer:237

M = GeLU
(
W T

MXm + bM
)

238239
E0:K = GeLU

(
W T

M [X⟨ST0:K⟩, X⟨ST0:K⟩] + bM
)

240

where WM ∈ R2H×H , bM ∈ RH are learnable241

parameters, and [X⟨ST0:K⟩, X⟨ST0:K⟩] ∈ RK×2H242

represent the repetition along the hidden represen-243

tation axis of the special tokens vectors X⟨ST0:K⟩ ∈244

RK×H in order to match the shape of Xm. The245

probability of mention m being linked to entity ek246

is computed as:247

p̃ent = pent(E(q,m) = ek|M,E0:K) =248

σk(E
T
0:KM) ∀m ∈ M(q), k ∈ {0 . . .K}249

4Here e0 symbolizes NME, i.e. mentions for which the
gold entity is not in E , represented by ⟨ST0⟩.

Therefore, if E(q,m) is the gold entity linked to m 250

in q, the loss for EL is: 251

LEL = −
∑

m∈M(q)

K∑
k=0

1E(q,m)(ek) log(p̃ent) 252

To train ReLiK for EL, we optimize LEL and 253

the mention detection losses from Section 3.2: 254

L = LS + LE + LEL. At inference time 255

we will have the predicted spans M̃(q) as 256

input to the EL module and we will take 257

argmaxk pent(E(q,m) = ek|M,E0:K) for each 258

m ∈ M̃(q) as its linked entity. 259

Relation Extraction In RE, the retrieved pas- 260

sages for an input text q will instead identify 261

the textual representations of relations r1:K = 262

(r1, . . . , rK), ri ∈ R. Specifically for each pair 263

of mentions (m,m') ∈ M(q)×M(q) we need to 264

find R(q,m,m'), i.e. the relation types between 265

m and m' expressed in q. To do so, we use the 266

hidden representations X from Equation 2, and 267

project each mention and special token using three 268

feed-forward layers: 269

Sm = GeLU
(
W T

subjectXm + bsubject
)

270

Om' = GeLU
(
W T

objectXm' + bobject
)

271

Rk = GeLU
(
W T

r X⟨STk⟩ + br
)

272

where Wsubject,Wobject ∈ R2H×H , Wr ∈ RH×H , 273

bsubject, bobject and br ∈ RH are learnable param- 274

eters. We obtain a hidden representation for each 275

possible triplet with the Hadamard product: 276

Tm,m',k = Sm ⊙Om' ⊙Rk ∈ RH 277

which is a dense representation of relation (k) be- 278

tween subject (m) and object (m'). Then, the prob- 279

ability that m and m' are in a relation rk in q is: 280

p̃rel = prel(rk ∈ R(q,m,m')|Tm,m',k) = 281

σ0(WrelTm,m',k + brel) 282

∀ (m,m') ∈ M(q)×M(q), k ∈ {1, . . . ,K} 283

with Wrel ∈ RH×2, brel ∈ R2 being learnable pa- 284

rameters. If we take R(q,m,m') as the gold re- 285

lations between m and m' in q, the loss for RE is 286

defined as follows: 287

Lrel = −
∑

(m,m')∈
M(q)×M(q)

(
K∑
k=1

1R(q,m,m')(rk)log(p̃rel) 288

− 1R(q,m,m')∁(rk)log(1− p̃rel)

)
289

To train ReLiK for RE we optimize Lrel and the 290

losses from Section 3.2: L = LS + LE + Lrel. At 291

inference time we compute all mentions M̃(q) and 292
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then predict all triplets (m,m', rk) where prel(rk ∈293

R(q,m,m')|Tm,m',k) > 0.5 ∀ (m,m') ∈ M̃(q)×294

M̃(q).295

closed Information Extraction In the previous296

paragraphs, we described how to perform EL and297

RE separately with ReLiK. However, since both298

tasks share the same mention detection approach,299

ReLiK allows for closed IE with a single Reader.300

In this setup, we use the Retriever trained on301

each task separately to retrieve e1:K ∈ EK and302

r1:K′ ∈ RK′
. Then, the Reader performs both303

tasks at the same time. The only difference is304

the input for the hidden representations in Equa-305

tion 2 as (q [SEP ] ⟨ST0⟩ ⟨ST1⟩ e1 . . . ⟨STK⟩ eK306

[SEP ] ⟨STK+1⟩ r1 . . . ⟨STK+K′⟩ rK′). Addition-307

ally, we leverage the predictions of the EL module308

to condition RE by taking309

Xm = [Xs, Xt, σ(E
T
0:KMm)X⟨ST0:K⟩]310

as the input to the RE module after EL predictions311

are computed. Notice that now Wsubject,Wobject ∈312

R3H×H . Finally, at training time the loss becomes313

L = LS +LE +Lel+Lrel for a dataset annotated314

with both tasks.315

4 Entity Linking316

We now describe the experimental setup (Section317

4.1) and compare our system to current state-of-318

the-art solutions (Section 4.2) for EL.319

4.1 Experimental Setup320

4.1.1 Data321

To evaluate ReLiK on Entity Linking, we repro-322

duce the setting used by Zhang et al. (2022). We323

use the AIDA-CoNLL dataset (Hoffart et al., 2011,324

AIDA) for the in-domain training (AIDA train) and325

evaluation (AIDA testa for model selection and326

AIDA testb for test). The out-of-domain evaluation327

is carried on: MSNBC, Derczynski (Derczynski328

et al., 2015), KORE 50 (Hoffart et al., 2012), N3-329

Reuters-128, N3-RSS-500 (R500) (Röder et al.,330

2014), and OKE challenges 2015 and 2016 (Nuz-331

zolese et al., 2015). As our reference knowledge332

base, we follow Zhang et al. (2022) and use the333

2019 Wikipedia dump provided in the KILT bench-334

mark (Petroni et al., 2021). We do not use any335

mention-entities dictionary to retrieve the list of336

possible entities to associate with a given mention.337

4.1.2 Comparison Systems338

We compare ReLiK with two autoregressive ap-339

proaches, namely De Cao et al. (2021b), in which340

the authors train a sequence-to-sequence model to 341

produce, given a text sequence in input, a formatted 342

string containing the entities spans along with the 343

reference Wikipedia title; and De Cao et al. (2021a) 344

which build on top of this approach by previously 345

identifying the spans of text that may represent en- 346

tities and then generate in parallel the Wikipedia 347

title of each span, greatly enhancing the speed of 348

the system. 349

The most similar approach to our system is ar- 350

guably Zhang et al. (2022), which was the first to 351

invert the standard Mention Detection → Entity 352

Disambiguation pipeline for EL. They first used 353

a bi-encoder architecture to retrieve the entities 354

that could appear in a text sequence and then an 355

encoder architecture to reconduct each retrieved 356

entity to a span in the text. We want to highlight 357

that while the Retriever part of ReLiK for EL and 358

Zhang et al. (2022) are conceptually the same, the 359

Reader component strongly differs. Indeed, our 360

Reader is capable of linking all the retrieved en- 361

tities in a single forward pass, while theirs must 362

perform a forward pass for each retrieved entity, 363

being roughly 40 times slower to achieve the same 364

performance. Finally, we note that, with the excep- 365

tion of Zhang et al. (2022), the other approaches 366

use a mention-entities dictionary, i.e. a dictionary 367

that for each mention contains a list of possible en- 368

tities in the reference knowledge base with which 369

the mention can be associated. In order to build 370

such a dictionary for Wikipedia entities, the hy- 371

perlinks in Wikipedia pages are usually utilized 372

(Pershina et al., 2015). This means that given the 373

input sentence “Jordan is an NBA player” in order 374

to link the span “Jordan” to the Wikipedia page of 375

Michael Jordan, there must be at least one page 376

in Wikipedia in which a user manually linked that 377

specific span (Jordan) to the Michael Jordan page. 378

While for frequent entities, this might not repre- 379

sent a problem, for rare entities, it could mean the 380

impossibility of linking them. 381

4.1.3 Evaluation 382

We evaluate ReLiK on the GERBIL platform 383

(Röder et al., 2018), using the implementation 384

of Zhang et al. (2022) from the paper repository 385

https://github.com/WenzhengZhang/EntQA. 386

We report the results of evaluating against the 387

datasets described in Section 4.1.1 using the 388

InKB F1 score with strong matching (prediction 389

boundaries must match exactly gold ones). 390

5

https://github.com/WenzhengZhang/EntQA


In-domain Out-of-domain Avgs

Model AIDA MSNBC Der K50 R128 R500 O15 O16 Tot OOD AIT (m:s)

De Cao et al. (2021b)† 83.7 73.7 54.1 60.7 46.7 40.3 56.1 50.0 58.2 55.0 38:00
De Cao et al. (2021a)†* 85.5 19.8 10.2 8.2 22.7 8.3 14.4 15.2 — — 00:52
Zhang et al. (2022) 85.8 72.1 52.9 64.5 54.1 41.9 61.1 51.3 60.5 57.3 20:00

ReLiKB 85.9 71.9 55.5 67.2 49.2 41.5 62.6 53.9 61.0 57.9 00:29
ReLiKL 86.5 74.2 56.6 73.9 51.4 43.0 66.1 55.4 63.4 60.5 01:46

Table 1: Comparison systems’ evaluation (inKB Micro F1) on the in-domain AIDA test set and out-of-domain
MSNBC (MSN), Derczynski (Der), KORE50 (K50), N3-Reuters-128 (R128), N3-RSS-500 (R500), OKE-15 (O15),
and OKE-16 (O16) test sets. Bold indicates the best model and underline indicates the second best competitor. †
marks systems that use mention dictionaries. * For De Cao et al. (2021a), we report the results on the Out-of-domain
benchmark running the model from the official repository, but without using any mention-entity dictionary since no
implementation of it is provided. AIT column shows the time in minutes and seconds (m:s) that the systems need to
process the whole AIDA test set using an NVIDIA RTX 4090, except for Zhang et al. (2022) that does not fit in
24GB of RAM and for which an A100 is used.

4.1.4 ReLiK Setup391

Retriever We initialize the query encoder and392

passage encoder with E5base (Wang et al., 2022)393

trained on BLINK5. We train the encoder on the394

AIDA dataset for a maximum of 5000 steps using395

RAdam (Liu et al., 2020a) with a learning rate of396

1e-5 and a linear learning rate decay schedule. We397

split each document into overlapping chunks of398

length W = 32 words with a stride S = 16, re-399

sulting in 12,995 windows in the training set, 3292400

in the validation set, and 2950 in the test set. We401

concatenate to each window the first word of the402

document as in Zhang et al. (2022). We employ403

KILT (Petroni et al., 2021) to construct the entities404

index, which contains |E| = 5.9M entities. The405

textual representation of each entity is a combina-406

tion of the Wikipedia title and opening text for the407

corresponding entity contained within KILT. We408

optimize the NCE loss (Equation 1) with 400 neg-409

atives per batch. At the end of each epoch, we410

mine at most 15 hard negatives per sample in the411

batch among the highest-scoring incorrect entities412

retrieved by the model. Appendix A.2.1 shows all413

the parameters used during the training process.414

Reader We train the Reader model with the win-415

dows produced by the Retriever on the AIDA416

dataset. While in the Retriever we use the417

Wikipedia openings as the entities’ textual repre-418

sentations, in the Reader, due to computational419

constraints, and as in other works (De Cao et al.,420

2021b,a), we only use Wikipedia titles, which421

demonstrated to be informative and discriminative422

in most situations (Procopio et al., 2023). In or-423

der to handle the long sequences created by the424

5Appendix A.1 provides details on the training process.

concatenation of the top-100 retrieved candidates 425

to the windows, we use DeBERTa-v3 (He et al., 426

2023) as our underlying encoder. We train two 427

versions of it using DeBERTa-v3 base (183M pa- 428

rameters, ReLiKB) and DeBERTa-v3 large (434M 429

parameters, ReLiKL). We optimize both ReLiKB 430

and ReLiKL using AdamW and apply a learning 431

rate decay on each layer as in Clark et al. (2020) 432

for 50,000 optimization steps. A table with all 433

the training hyperparamenters can be found in Ap- 434

pendix A.2.1. 435

4.2 Results 436

Performance We show in Table 1 the InKB F1 437

score ReLiK and its alternatives attain on the evalu- 438

ation datasets.6 Arguably, the most interesting find- 439

ing we report is the improvement in performance 440

we achieve with respect to Zhang et al. (2022). In- 441

deed, not only even ReLiKB outperforms Zhang 442

et al. (2022) both in- and out-of-domain (85.9 vs 443

85.8 in-domain and 57.9 vs 57.3 average out-of- 444

domain) with fewer parameters (289M parameters 445

vs 650M parameters), but it does so using a single 446

forward pass to link all the entities in a window of 447

text, greatly enhancing the final speed of the system. 448

A broader look at the table shows that ReLiKL sur- 449

passes all its competitors on all evaluation datasets 450

except R128, thus setting a new state-of-the-art. 451

Finally, another interesting finding is ReLiKL out- 452

performing its best competitor by 9.4 points on 453

K50. While the other datasets contain news and en- 454

cyclopedic corpora annotations, K50 is specifically 455

designed to capture hard-to-disambiguate mentions 456

that involve a deep understanding of the context in 457

6Additional comparison systems can be found in Table 5.
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which they appear. A qualitative error analysis of458

the predictions can be found in Appendix A.6.459

Speed and Flexibility As we can see from Ta-460

ble 1 last column, ReLiKB is the fastest system461

among the competitors. Not only that, the second462

fastest system, i.e. (De Cao et al., 2021a), requires463

a mention-entities dictionary that contains the possi-464

ble entities to which a mention can be linked. When465

not using such a dictionary, the results on the AIDA466

test set drop by 43% (De Cao et al., 2021a) and,467

as reported in Table 1, it becomes unusable in out-468

of-domain settings. We want to stress that systems469

that leverage such dictionaries are less flexible in470

predicting unseen entities during training and, most471

importantly, cannot link at all entities to mentions472

to which they are not specifically paired in the ref-473

erence dictionary. Finally, our formulation allows474

the use of relatively large language models such475

as DeBERTa-v3 large and achieves unprecedented476

performance while keeping competitive inference477

speed. Report and ablations on ReLiK efficiency478

can be found in Appendices A.4 and A.5.479

5 Relation Extraction and closed480

Information Extraction481

In this section, we present the experimental setup482

(Section 5.1) for RE and cIE, and compare the483

results of our systems to the current state of the art484

(Section 5.2).485

5.1 Experimental Setup486

5.1.1 Data487

RE We choose two of the most popular datasets488

available. NYT (Riedel et al., 2010), which has 24489

relation types, 60K training sentences and 5K for490

validation and test; and CONLL04 (Roth and Yih,491

2004) with 5 relation types, 922 training sentences,492

231 for validation and 288 for testing.493

cIE We follow previous work and report on the494

REBEL dataset (Huguet Cabot and Navigli, 2021),495

which leverages entity labels from Wikipedia and496

relation types (10,936) from Wikidata. We subsam-497

ple 3M sentences for training, 10K for validation498

and and keep the same test set as Josifoski et al.499

(2022) containing 175K sentences.500

5.1.2 Comparison Systems501

RE We compare ReLiK with recent state-of-the-502

art systems for RE. As with EL, we compare to503

a recent trend in RE systems using seq2seq ap- 504

proaches. Huguet Cabot and Navigli (2021) re- 505

framed the task as a triplet sequence generation, in 506

which the model learns to translate the input text 507

into a sequence of triplets. Lu et al. (2022) fol- 508

lowed a similar approach to tackle several IE tasks, 509

including RE. They were the first to include labels 510

as part of the input to aid generation. However, 511

while these approaches are flexible and end-to-end, 512

they suffer from efficiency, as they are autoregres- 513

sive. Lou et al. (2023) built upon Lu et al. (2022), 514

dropping the need for a decoder by having labels as 515

part of the input and reframing the task as linking 516

mention spans and labels between each other, pair- 517

wise. This approach is somewhat similar to our EL 518

Reader component. However, it does not include 519

a Retriever, limiting the number of relation types 520

that can be predicted, and their linking pairwise 521

strategy leads to ambiguous decoding for triplets 522

(See A.7 for more details). 523

cIE The task of cIE has been traditionally tack- 524

led using pipelines with systems trained separately 525

for EL and RE. We compare ReLiK to two recent 526

autoregressive approaches. Josifoski et al. (2022), 527

inspired by Huguet Cabot and Navigli (2021), gen- 528

erate the triplets with the unique Wikipedia title 529

of each entity instead of their surface form with 530

the aid of constraint decoding from De Cao et al. 531

(2021b). Rossiello et al. (2023) extended their ap- 532

proach by outputting both surface forms and titles. 533

As with RE, autoregressive approaches did lift the 534

ceiling for cIE, however, they are still slow and 535

computationally heavy at inference time. 536

5.1.3 Evaluation 537

We report on micro-F1, using boundaries evalua- 538

tion, i.e. a triplet is considered correct when entity 539

boundaries are properly identified with the relation 540

type. For cIE, we consider a triplet correct only 541

when both entity spans, their disambiguation, and 542

the relation type between the two entities are cor- 543

rect. To ensure a fair comparison with previous 544

autoregressive systems, we only consider entities 545

present in triplets for EL, albeit ReLiK is able to 546

disambiguate all of them. 547

5.1.4 ReLiK Setup 548

Retriever As in the EL setting (Section 4.1.4), 549

we initialize the query and passage encoders with 550

E5 (Wang et al., 2022). In this context, we utilize 551

the small version of E5. This choice is driven by 552

the limited search space in contrast to the Entity 553
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NYT CONLL04 REBEL

Model Params. Pretr. Pretr. EL RE

Huguet Cabot and Navigli (2021) 460M 93.1 93.4 71.2 75.4 — —
Lu et al. (2022) 770M 93.5 — 71.4 72.6 — —
Lou et al. (2023) 355M 94.0 94.1 75.9 78.8 — —

Josifoski et al. (2022) 460M — — — — 79.7 68.9
Rossiello et al. (2023) 460M — — — — 82.7 70.7

ReLiKS 33M + 141M 94.4 94.4 71.7 75.8 83.7 73.8
ReLiKB 33M + 183M 94.8 94.7 72.9 77.2 84.1 74.3
ReLiKL 33M + 434M 95.0 94.9 75.0 78.1 85.1 75.6

Table 2: Micro-F1 results for systems trained on NYT, CONLL04 and REBEL datasets. Params. column shows the
number of parameters for each system. EL reports only on entities belonging to a triplet. Pretr. indicates the model
underwent pretraining on additional task-specific data.

Linking setting. Consequently, this enables us to554

significantly lower the computational demands for555

both training and inference. We train the encoder556

for a maximum of 40,000 steps using RAdam (Liu557

et al., 2020a) with a learning rate of 1e-5 and a lin-558

ear learning rate decay schedule. For NYT we have559

|R| = 24 while for REBEL we use all Wikidata560

properties with their definitions, |R| = 10, 936.561

For EL we use the same settings explained in Sec-562

tion 4.1 with KILT as KB, |E| = 5.9M. We opti-563

mize the NCE loss (1) using 24 negatives per batch564

for NYT and 400 for REBEL. More details are565

given in Appendix A.2.1.566

Reader The Reader setup mirrors that of EL. We567

use DeBERTa-v3 in all three sizes with AdamW as568

the optimizer and a linear decay schedule. For NYT569

we set K = 24, effectively utilizing the Retriever570

as a ranker. For the CONLL04 dataset, we use the571

NYT’s Retriever. We explore a setup where ReLiK572

is pretrained using data from REBEL and NYT7. In573

the context of closed Information Extraction (cIE)574

we set K = 25 and K ′ = 20 as the number of575

passages for EL and RE respectively. In all cases,576

we select the best-performing validation step for577

evaluation. A table with all the parameters utilized578

during training can be found in Appendix A.2.1.579

5.2 Results580

RE In Table 2, we present the performance of Re-581

LiK in comparison to other systems. Notably, on582

NYT ReLiKS achieves remarkable results, outper-583

forming all previous systems while utilizing fewer584

parameters and with remarkable speed, around 10585

seconds to predict the entire NYT test set (see Ap-586

7We replicate the approach from Lou et al. (2023) by sam-
pling 300K from REBEL dataset plus NYT train set. We
pretrain for 250,000 steps with the same settings as NYT.

pendix A.4 for more details). The only exception 587

is the CONLL04 dataset, where ReLiK is outper- 588

formed by Lou et al. (2023). However, it is impor- 589

tant to note that CONLL04 is an extremely small 590

dataset, where a few instances can lead to a big gap 591

in performance. 592

cIE The right side of Table 2 reports on closed 593

Information Extraction. Here, ReLiK truly shines 594

as the first efficient end-to-end system for jointly 595

performing EL and RE with exceptional perfor- 596

mance. It outperforms previous approaches in all 597

its model sizes by a significant margin and is up 598

to 35x times faster (see Appendix A.4 for more 599

details). ReLiK enables dowsntream cIE use in a 600

previously unattainable capacity. 601

A qualitative Error Analysis of the predictions 602

can be found in Appendix A.6. 603

6 Conclusion 604

In this work, we presented ReLiK, a novel and 605

unified Retriever-Reader architecture that seam- 606

lessly attains state-of-the-art performance for both 607

Entity Linking and Relation Extraction. Further- 608

more, taking advantage of the common architecture 609

and using a shared Reader, our system is capable 610

of achieving unprecedented performance and effi- 611

ciency even on the closed Information Extraction 612

task (i.e. Entity Linking + Relation Extraction). 613

Our models are considerably lighter, an order of 614

magnitude faster, and trained on an academic bud- 615

get. We believe that ReLiK can advance the field of 616

Information Extraction in two directions: first, by 617

providing a novel framework for unifying other IE 618

tasks beyond EL and RE, and, second, by providing 619

accurate information for downstream applications 620

in an efficient way. 621
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7 Limitations622

The main limitation of our work is that while it en-623

ables efficient downstream use of very relevant IE624

tasks, the experiments on the paper are performed625

on held-out benchmarks which enable comparisons626

across systems but do not test or demonstrate its627

effectiveness on a wider range of data, other than628

the OOD experiments for EL. While this is true629

for any EL or RE model evaluated in the most630

common benchmarks, we expect the lightweight631

computation requirements of ReLiK, as well as its632

state-of-the-art performance to make it attractive633

to NLP and real-world applications which should634

always be done cautiosly, by considering shortcom-635

ings or limitations such as an Entity index frozen in636

time (KILT was built from a Wikipedia dump from637

2020), or AIDA as an old dataset that while manu-638

ally annotated it contains biases of its own, such as639

conflicting labels regarding Taiwan and China. The640

NYT and REBEL datasets were distantly annotated641

which may contain wrong or missing annotations.642

Again, while these shortcomings are not unique of643

our work, they should be considered.644
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A Appendix985

A.1 Retriever Pretrain For Entity Linking986

We train the E5base encoder Retriever on BLINK987

(Wu et al., 2020) before finetuning it on AIDA.988

We split each document d in overlapping windows989

q of W = 32 words with a stride S = 16. To990

reduce the computational requirements, we (1) ran-991

dom subsample 1 million windows from the entire992

BLINK dataset, and (2) we retrieve hard negatives993

at each 10% of an epoch.We employ the same strat-994

egy as in Section 4.1.4 to construct the entity index,995

namely, we utilize KILT (Petroni et al., 2021) as996

our knowledge base, and we construct the textual997

representation of each entity within KILT by con-998

catenating the Wikipedia title and opening text. We999

optimize the NCE loss (1) with 400 negatives per1000

batch. At each hard-negatives retrieval step we1001

mine 15 hard negatives per sample in the batch1002

with a probability of 0.2 among the highest-scoring1003

incorrect entities retrieved by the model. We train1004

the encoder for a maximum of 110,000 steps using1005

RAdam (Liu et al., 2020a) with a learning rate of1006

1e-5 and a linear learning rate decay schedule.1007

A.2 Experimental Setup 1008

A.2.1 Hyperparameters 1009

Retriever We report in Table 3 the hyperparame- 1010

ters we used to train our Retriever for both Entity 1011

Linking and Relation Extraction. 1012

Reader We report in Table 4 the hyperparameters 1013

we used to train our Reader for both Entity Linking 1014

and Relation Extraction. 1015

A.2.2 Implementation Details 1016

We implement our work in PyTorch (Paszke et al., 1017

2019), using PyTorch Lightning (Falcon and The 1018

PyTorch Lightning team, 2019) as the underlying 1019

framework. We use the pretrained models for E5 1020

and DeBERTa-v3 from HuggingFace Transformers 1021

(Wolf et al., 2020). 1022

A.2.3 Hardware 1023

We train every model on a single NVIDIA RTX 1024

4090 graphic card with 24GB of VRAM. 1025

A.3 Additional Results for Entity Linking 1026

Similarly to Table 1, we report in Table 5 the InKB 1027

F1 score of ReLiK compared with other systems. 1028

A.4 Efficiency 1029

Efficiency is a crucial factor in the practical deploy- 1030

ment of Information Extraction systems, as real- 1031

world applications often require rapid and scalable 1032

information extraction capabilities. ReLiK excels 1033

in this regard, outperforming previous systems in 1034

performance, memory requirements, and speed. Ta- 1035

ble 6 shows the training and inference speeds of 1036

ReLiK. 1037

EL Until now, efficiency had been a clear bottle- 1038

neck for most EL systems, which rendered them 1039

useless or highly expensive on real-world applica- 1040

tions. Therefore the efficiency gains for EL were 1041

extensively discussed in the main body of the paper 1042

at Section 4.2. 1043

RE On the RE side, the only system on-par in 1044

terms of speed and performance would be USM. 1045

Unfortunately, it is not openly available, limiting 1046

its utility for the broader research community and 1047

hindering our ability to asses its speed. In Section 1048

A.7 we discuss other of its shortcomings. Instead, 1049

Table 6 compares the current openly available RE 1050

system with the best performance on NYT, REBEL. 1051

As an autoregressive system, inference speeds are 1052
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Values

Hyperparameter BLINK EL RE

Optimizer RAdam RAdam RAdam
Learning Rate 1e-5 1e-5 1e-5
Weight Decay 0.01 0.01 0.01
Training Steps 110,000 5000 40,000
Patience 0 5 5
Query Batch Size 64 64 64
Max Query Length 64 64 64
Passage Batch Size 400 400 [24, 400]
Max Passage Length 64 64 64
Hard-Negative Probability 0.2 1.0 1.0

Table 3: Hyperparameter we used to train the Retriever for the Entity Linking Pretrain (BLINK), Entity Linking
(EL), and Relation Extraction (RE).

Values

Hyperparameter AIDA NYT CONLL04 REBEL

Optimizer AdamW AdamW AdamW AdamW
Learning Rate 1e-5 2e-5 8e-5 2e-5
Layer LR Decay 0.9 – – –
Weight Decay 0.01 0.01 0.01 0.01
Training Steps 50000 750,000 1,000 600,000
Warmup 5000 75,000 0 10,000
Token Batch Size 2048 2048 4096 4096
Max Sequence Length 1024 1024 1024 1024
EL passages 100 – – 25
RE passages – 24 5 20

Table 4: Hyperparameter we used to train the Reader for Entity Linking (AIDA), Relation Extraction (NYT) and
cIE (REBEL).

several orders of magnitude higher. ReLiKL out-1053

performs it by more than 2 F1 points and it is still1054

around 3x faster, while ReLiKL, which still outper-1055

forms any previous system, takes only 10s, a 10x1056

gain in terms of speed.1057

cIE ReLiK continues to shine in the domain of1058

closed Information Extraction, where it outper-1059

forms existing systems in terms of efficiency and1060

performance. Compared with two other leading1061

systems, ReLiKS surpasses them in F1 score while1062

significantly outpacing them in terms of speed.1063

These systems rely on BART-large, making them1064

several orders of magnitude slower. In Table 6 we1065

report on GenIE as its inference and train time are1066

reported, but it should be noted that both GenIE1067

and KnowGL are roughly equivalent in terms of1068

compute. Here, again, the speed gains are multiple1069

orders of magnitude, from 40x with ReLiKS to 15x 1070

with ReLiKL. 1071

In conclusion, ReLiK redefines the efficiency 1072

landscape in Information Extraction. Its unified 1073

framework, reduced computational requirements, 1074

and speed make it a compelling choice for a wide 1075

range of IE applications. Whether used in research 1076

or practical applications, ReLiK empowers users to 1077

extract valuable information swiftly and efficiently 1078

from textual data, setting a new standard for IE 1079

system efficiency. 1080

A.5 Ablations 1081

A.5.1 Entity Linking 1082

Retriever Table 7 presents the findings of our 1083

ablation study conducted on the Retriever using the 1084

validation set from AIDA. In the baseline configura- 1085
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In-domain Out-of-domain Avgs

Model AIDA MSNBC Der K50 R128 R500 O15 O16 Tot OOD

Hoffart et al. (2011) 72.8 65.1 32.6 55.4 46.4 42.4 63.1 0.0 47.2 43.6
Steinmetz and Sack (2013) 42.3 30.9 26.5 46.8 18.1 20.5 46.2 46.4 34.7 33.6
Moro et al. (2014) 48.5 39.7 29.8 55.9 23.0 29.1 41.9 37.7 38.2 36.7
Kolitsas et al. (2018) 82.4 72.4 34.1 35.2 50.3 38.2 61.9 52.7 53.4 49.2
Broscheit (2019) 79.3 — — — — — — — — —
Martins et al. (2019) 81.9 — — — — — — — — —
van Hulst et al. (2020) 80.5 72.4 41.1 50.7 49.9 35.0 63.1 58.3 56.4 52.9
De Cao et al. (2021b) 83.7 73.7 54.1 60.7 46.7 40.3 56.1 50.0 58.2 55.0
De Cao et al. (2021a) 85.5 19.8 10.2 8.2 22.7 8.3 14.4 15.2 — —
Zhang et al. (2022) 85.8 72.1 52.9 64.5 54.1 41.9 61.1 51.3 60.5 57.3

ReLiKB 85.9 71.9 55.5 67.2 49.2 41.5 62.6 53.9 61.0 57.9
ReLiKL 86.5 74.2 56.6 73.9 51.4 43.0 66.1 55.4 63.4 60.5

Table 5: Comparison systems’ evaluation (inKB Micro F1) on the in-domain AIDA test set and out-of-domain
MSNBC (MSN), Derczynski (Der), KORE50 (K50), N3-Reuters-128 (R128), N3-RSS-500 (R500), OKE-15 (O15),
and OKE-16 (O16) test sets. Bold indicates the best model and underline indicates the second best competitor.

Train

Retriever ReLiKS ReLiKB ReLiKL Previous SotA GPU

AIDA (EL) 4 h – 11h 36h 48 h A100
NYT (RE) 2 h 14 h 21 h 48 h 34 h 3090
REBEL (cIE) 6 h 20 h 30 h 3 d 18.5 d V100

Inference

AIDA (EL) 6 s – 23s 100s 20 m A100
NYT (RE) 2 s 8 s 14 s 28 s 105 s 4090
REBEL (cIE) 5 m 10 m 17 m 36 m 10 h 4090

Table 6: Training and inference times for ReLiK on a single NVIDIA RTX 4090 GPU. Retriever times are reported
separately, as they are shared across Reader sizes. The total time for any model size X is Retriever + ReLiKX .
Results for previous SotA (State-of-the-Art) in the right side are taken from the best performing openly available
systems trained on each dataset and task. Zhang et al. (2022, entQA) for AIDA, Huguet Cabot and Navigli (2021,
REBEL) for NYT and Josifoski et al. (2022, GenIE) for REBEL. Inference times refer to the time needed to annotate
the corresponding test split for each dataset.
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Model Name Recall@100 Recall@50

Baseline 81.9 71.6
+ Hard-Negatives 98.5 97.9
+ Document-level information 98.8 98.0
+ BLINK Pretrain 99.2 98.8

Table 7: Ablation for the Retriever module. Each line
represents an additional change built upon the previous
one.

EL RE

K 100 50 20 24 16 12 8 4

ReLiKS — — — 94.4 94.5 94.5 94.5 94.2
Time — — — 10 s 10 s 10 s 8 s 6 s
ReLiKB 85.9 86.1 85.8 94.8 94.8 94.8 94.8 94.5
Time 23 s 14 s 6 s 14 s 14 s 12 s 10 s 9 s
ReLiKL 86.5 86.5 86.1 95.0 95.1 95.0 95.0 94.8
Time 100 s 47 s 22 s 28 s 24 s 22 s 20 s 18 s

Table 8: Micro-F1 results and inference time on AIDA
for EL and NYT for RE when we reduce the number
of retrieved passages as input to the Reader. Times
reported are just for the Reader, without the retrieval
step. Notice that for K = 24, all relation types in NYT
are part of the input.

tion, we initialize the model with E5base and train it1086

by optimizing the loss (1) with a focus solely on in-1087

batch negatives. The introduction of hard-negatives1088

substantially improve recall rates. Additionally,1089

document-level information proves beneficial to1090

the Retriever, albeit particularly benefiting AIDA,1091

where relevant information is concentrated in the1092

first token. Furthermore, the pretraining on BLINK1093

demonstrated significant impact, especially on Re-1094

call@50, suggesting that pretraining enhances the1095

Retriever ability to efficiently rank the candidate1096

entities.1097

Passages Trimming The Retriever serves as a1098

way to limit the number of passages that we con-1099

sider as input to the Reader. At train time, we set1100

K = 100, which, as Table 7 just showed, has a1101

high Recall@K. However, as the computational1102

cost of the Transformer Encoder that serves as the1103

Reader grows quadratically on the input length, the1104

choice of K affects efficiency. Table 8 shows what1105

happens when we reduce the number of passages1106

at inference time. Surprisingly, performance is not1107

affected; in some cases, it even improves while1108

time is halved. This showcases the usefulness of1109

the Retriever which while fast is still able to rank1110

passages effectively.1111

A.5.2 Relation Extraction 1112

No Retriever Our benchmarks for RE contain a 1113

small number of relation types (5 and 24). There- 1114

fore the Retriever component is not extrictly neces- 1115

sary when all types fit as part of the input. Still, we 1116

believe it is an important part of the RE pipeline, as 1117

it is more flexible and robust to cases outside of the 1118

benchmarks. For instance, in long-text RE where 1119

the input text is longer, there is a need to reduce the 1120

number of passages as input to the Reader. Or as 1121

the case with cIE with REBEL, when the relation 1122

type set is larger, the Retriever enables an unre- 1123

stricted amount of relation types. Nevertheless, we 1124

assess the influence of the Retriever as a reranker 1125

for NYT and explore a version of ReLiK without a 1126

Retriever. To do so we train a version of our Reader 1127

where the relation types are shuffled (ie. without a 1128

Retriever step). We obtained a micro-F1 of 94.2 for 1129

ReLiKS , which is just slightly worse. Given how 1130

fast the Retriever component is at inference time, 1131

this result showcases how even when not strictly 1132

needed, it does not hurt performance. 1133

Passages Trimming The previous section 1134

seemed to indicate that for datasets with a small 1135

set of relation types there is no need of a Retrieval 1136

step and a standalone Reader would be enough. 1137

While this is certantly an option, the Retrieve step 1138

is still very fast and doesn’t add much overhead 1139

computation. On the other hand, the Reader is 1140

considerably slower, as the input is larger with 1141

additional computation that adds to the overall 1142

computational time. For RE the Hadamard product 1143

step grows quadratically with the number of 1144

passages. Therefore we explore how it affects 1145

downstream performance to reduce the number 1146

of passages once the system is already trained. 1147

We want to find out 1) is performance affected 1148

2) is it considerably faster to reduce the number 1149

of passages. As Table 8 shows, reducing the 1150

number of passages up to just 8 doesn’t impact 1151

performance. In fact, we even obtained better 1152

results with just 16 passages instead of 24. 1153

Entity Linking as an aid to Relation Extraction 1154

On the cIE setup where Entity Linking and Rela- 1155

tion Extraction are performed by the same Reader, 1156

each task is performed sequentially and then RE 1157

predictions are conditioned on EL. But does EL aid 1158

RE? Or does having a shared Reader between both 1159

tasks impact RE negatively? Entity types were of- 1160

ten included in Relation Classification to improve 1161
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System using BERT-base P R F

(Sui et al., 2023) 92.5 92.2 92.3
(Zheng et al., 2021) 93.5 91.9 92.7
(Lou et al., 2023, USMBERT−base) 93.7 91.9 92.8
ReLiKBERT−base 93.2 92.9 93.1

Table 9: Results for systems using BERT-base on the
NYT dataset.

the overall performance (Zhou and Chen, 2022).1162

In our case, RE is conditioned on EL implicitly,1163

without explicit ad-hoc information, i.e. just by1164

leveraging the predictions of the EL component.1165

We train ReLiKS on REBEL without EL, which1166

performs solely RE under the same conditions and1167

hyperparameters as the cIE counterpart. The sys-1168

tem without EL obtained a micro-F1 of 75.4 with1169

boundaries evaluation. On the other hand, the cIE1170

approach that combines both EL and RE, we ob-1171

tain 76.0 micro-F18, which considering the size1172

of the test set (175K sentences) is a considerable1173

difference. This is an exciting result as it validates1174

end-to-end approaches for cIE where both tasks are1175

combined.1176

BERT-base Our Reader is based on DeBERTa-1177

v3, while previous RE systems may be based1178

on older models. To enable a fair comparison1179

and assess the flexibility of our RR approach,1180

we train our Reader on NYT using BERT-base1181

and compare with other systems. Table 9 shows1182

how ReLiKBERT−base outperforms previous ap-1183

proaches, including USM.1184

A.6 Error Analysis1185

Entity Linking Figure 2 shows an example of1186

the predictions generated by our system when1187

trained on EL. This particular example showcases1188

a common error when evaluating the AIDA dataset.1189

AIDA was manually annotated in 2011 on top of1190

a Named Entity Recognition 2003 dataset (Tjong1191

Kim Sang and De Meulder, 2003). While widely1192

used as the de-facto EL dataset, it contains errors1193

and inconsistencies. A common one is the original1194

entity spans not being linked to any entity in the1195

KB. This could either be because at the time such1196

an entity was not present in the KB, or an annota-1197

tion error due to the complexity of the task. This1198

leads to NME annotations which at evaluation time1199

are considered false positives, as our system links1200

8This value differs from the one reported in Table 2 since
it is evaluated without entity disambiguation

to the correct entity, such as Bill Brett in the exam- 1201

ple. Another source of errors is document slicing in 1202

windows. While necessary to overcome the length 1203

constraints of our Encoder, it can lead to inconsis- 1204

tent or incomplete predictions. For instance, ILO 1205

was linked to an entity in a window that did not 1206

see further context (Workers Group), while the next 1207

window correctly identified ILO Workers Group as 1208

an NME. 1209

Relation Extraction The example shown in Fig- 1210

ure 2 is a common error found in predictions on 1211

NYT by ReLiK. Due to the semiautomatic nature 1212

of NYT annotations, some relations, such as the 1213

ones shown in the example, lack the proper con- 1214

text to ensure consistency at inference time. In this 1215

case, the system predicts a relation (place_lived) 1216

which cannot really be inferred from the text or is 1217

ambiguous at best. We believe this is due to cer- 1218

tain biases introduced at training time. This can be 1219

exemplified by the false negative, annotated as cor- 1220

rect (place_of_birth), which is impossible to infer 1221

from the sentence. 1222

closed Information Extraction Finally, the last 1223

example in Figure 2 shows a prediction by our 1224

model when trained on both tasks simultaneously 1225

with the REBEL dataset. Notice the missing pre- 1226

diction (participant), and the false positives. While 1227

the passages retrieved contained all the necessary 1228

relation types, the system still failed to recover one 1229

of the gold triplets, even if all the spans were cor- 1230

rectly identified. Then, for the two false positives, 1231

while they were not annotated in the dataset, proba- 1232

bly due to its automatic annotation, they are correct, 1233

and ReLiK predicted them even if, at evaluation 1234

time, this will decrease the reported performances. 1235

A.7 USM 1236

In this section, we want to discuss in detail how 1237

ReLiK compares with USM. USM is the current 1238

state-of-the-art for RE and was the first modern 1239

RE system that jointly encoded the input text with 1240

the relation types, breaking from ad-hoc classifiers 1241

with weak transfer capabilities or autoregressive 1242

approaches that leverage its large language head 1243

but are inefficient. Therefore, it shares a similar 1244

strategy to our RE component, in that both rely on 1245

the relation types being part of the input, and the 1246

core idea is to link mention spans to their corre- 1247

sponding triplet. However, this is where the simi- 1248

larities end. In USM, the probabilities of a mention 1249

span being linked to a triplet (i.e. to another entity 1250
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Figure 2: Example predictions by ReLiKL on AIDA (top), NYT (middle), and REBEL (bottom) for EL, RE, and
cIE respectively. Green stands for true positive, blue for false positive, and red for false negative.

and a relation type) are assumed to be independent1251

and factorized such that they are computed sepa-1252

rately, in a pairwise fashion. Mentions are linked1253

as subjects to the spans that share a triplet (blue1254

lines in Figure 3) and to the relation type label1255

(green lines). Finally, labels are linked to the object1256

entity (red lines). In most cases, these are suffi-1257

cient to decode each triplet but we want to point1258

out a shortcoming of this strategy. The decoding1259

is done by pairs. First mention-mention, i.e. in1260

Figure 3 (Jack, Malaga), (Jack, New York), (John,1261

Malaga) and (John, New York); then label-mention1262

(birth place, Malaga), (birth place, New York), (live1263

in, Malaga) and (live in, New York); and finally1264

mention-label (Jack, birth place), (Jack, live in),1265

(John, birth place), (John, live in). At this point,1266

the issue should be clear. From this set of pairs,1267

one cannot retrieve the correct triplets, even though1268

the model would have not made any mistake in its1269

predictions. It is worth pointing out that these phe-1270

nomena do not happen on either test set for NYT1271

or CONLL04, therefore it doesn’t affect reported1272

performance.1273
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Figure 3: Example of a sentence as input to USM where their token-linking strategy would fail even if the model
made the right predictions.
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