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Figure 1: Key contributions: 1) An open-source dataset InfoDet. 2) Improvements on chart understanding,
infographic element detection, and graphic layout detection.

ABSTRACT

Given the central role of charts in scientific, business, and communication con-
texts, enhancing the chart understanding capabilities of vision-language models
(VLMs) has become increasingly critical. A key limitation of existing VLMs lies
in their inaccurate visual grounding of infographic elements, including charts and
human-recognizable objects (HROs) such as icons and images. However, chart
understanding often requires identifying relevant elements and reasoning over them.
To address this limitation, we introduce InfoDet, a dataset designed to support
the development of accurate object detection models for charts and HROs in info-
graphics. It contains 11, 264 real and 90, 000 synthetic infographics, with over 14
million bounding box annotations. These annotations are created by combining
the model-in-the-loop and programmatic methods. We demonstrate the usefulness
of InfoDet through three applications: 1) constructing a Thinking-with-Boxes
scheme to boost the chart understanding performance of VLMs, 2) comparing
existing object detection models, and 3) applying the developed detection model to
document layout and UI element detection.

Code: https://github.com/InfoDet2025/InfoDet
Data & Dataset Card: https://huggingface.co/datasets/InfoDet/InfoDet

1 INTRODUCTION

Charts are a fundamental medium for conveying data-driven insights across scientific, business,
and communication domains. Consequently, improving vision-language models (VLMs) for chart
understanding has become increasingly critical, driving significant advances in understanding plain
charts (Huang et al., 2024)–minimal combinations of texts and charts. In practice, however, charts
are often combined with icons and images of real-world objects, known as human-recognizable
objects (HROs) (Borkin et al., 2016), to create infographics. By thoughtfully arranging texts, charts,
and HROs, infographics transform abstract data into accessible insights through engaging visual
designs. While effective for human interpretation, these designs introduce difficulties for VLMs in
accurately understanding chart content (Masry et al., 2025). Previous studies (Masry et al., 2025;
Li et al., 2025a) have identified a key limitation of existing VLMs: inaccurate visual grounding of
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infographic elements, which hinders the ability to associate the elements with the underlying data.
This highlights the need for robust object detection models to support visual grounding and enhance
chart understanding. Although considerable progress has been made in text detection (Long et al.,
2021; Du et al., 2020), detecting charts and HROs—key elements linking abstract data to human
perception—remains relatively underexplored.

Compared to natural scenes, element detection in infographics presents challenges for two reasons.
First, infographic elements exhibit high intra-class variance. Charts vary widely in type, layout,
and visual design, and HROs appear in diverse styles, spanning from realistic depictions to abstract
representations of real-world objects. Second, the visual interplay between charts and HROs often
results in ambiguous boundaries, making it difficult to distinguish one element from another in
context. To effectively handle the highly varied infographic elements with ambiguous boundaries, the
detection model needs to learn from a diverse set of infographics with accurate annotations. Existing
datasets, however, primarily focus on plain charts without HROs (Battle et al., 2018; Deng et al.,
2023), failing to capture the complexity of infographics. Borkin et al. (2016) have taken the first
step in building a dataset with rich annotations, but their dataset is limited in scale, comprising only
393 samples due to the labor-intensive manual annotation process. To advance element detection in
infographics, a large-scale dataset of diverse infographics with comprehensive annotations is required.

To fill this gap, we introduce InfoDet, a dataset for infographic element detection. It comprises a
diverse collection of infographics from two sources: 1) real infographics collected from 10 online plat-
forms, such as Visual Capitalist and Statista, and 2) synthetic infographics programmatically created
from 1, 072 design templates. To effectively annotate the infographics, we combine programmatic
and model-in-the-loop (Kirillov et al., 2023) methods. For the synthetic infographics, we program-
matically derive the bounding boxes. For the real infographics, we co-develop an object detection
model and the annotation process, allowing the model and the annotations to iteratively enhance each
other. Specifically, we use the annotated synthetic infographics to fine-tune an InternImage-based
object detection model (Wang et al., 2023), which is then employed to generate annotations for all
real infographics. The generated annotations are reviewed and corrected by the experts through
multiple rounds of refinement. In each round, expert feedback is utilized to enhance the annotation
quality and refine the model, thereby progressively improving its accuracy. In total, InfoDet contains
11,264 real and 90,000 synthetic infographics, along with 14,227,680 bounding box annotations of
texts, charts, HROs, and finer-grained sub-elements such as bars, axes, and legends. Table 6 in the
Appendix provides a statistical comparison of InfoDet with existing chart datasets.

We demonstrate the usefulness of InfoDet through three applications (Fig. 1). First, we propose a
Thinking-with-Boxes scheme that performs grounded chain-of-thought reasoning over elements. This
grounded reasoning considerably improves the performance of OpenAI o4-mini on the challenging
ChartQAPro benchmark (Masry et al., 2025). Second, we compare the performance of the state-
of-the-art object detection models. The results show that the best-performing foundation models
for object detection (e.g. , DINO-X (Ren et al., 2024)) still struggle to accurately detect infographic
elements, whereas fine-tuning traditional object detection models (e.g. , Faster R-CNN (Ren et al.,
2015)) with InfoDet achieves improved performance. These findings highlight the importance of
sufficient high-quality training data for chart and HRO detection. Third, we apply our InternImage-
based object detection model to out-of-domain graphic layout detection tasks, including document
layout and UI element detection, demonstrating its generalization capability across broader domains.

The main contributions of this work are threefold:

• A large-scale dataset for infographic element detection with 101, 264 annotated infographics.
• An InternImage-based model for detecting charts and HROs in infographics.
• Three applications that show InfoDet’s usefulness in chart understanding and object detection.

2 RELATED WORK

Based on the presence of HROs, chart datasets with element annotations can be classified into two
categories: datasets of plain charts and datasets of infographic charts.

Plain charts present data in a minimal manner using texts and charts. Some datasets consist of
programmatically created charts. FigureQA (Kahou et al., 2018) comprises 100, 000 charts created

2
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from randomly generated data using Bokeh. However, relying on randomly generated data limits real-
world representativeness. To address this, Methani et al. (2020) use crawled data to create 224, 377
charts by randomly combining design parameters such as marker and line styles. Other datasets are
constructed by collecting charts from existing literature or online platforms. VG-DCU (Dou et al.,
2024) consists of 15, 197 SVG-based charts, from which bounding box annotations are extracted
by analyzing the SVG elements. VisImages (Deng et al., 2023) is constructed by gathering 12, 267
images from IEEE VIS publications and manually annotating 35, 096 charts within them. While
these datasets facilitate object detection model training for plain charts, such models often struggle
with the widely used infographics, where diverse HROs and their interplay with the charts introduce
significant variability.

To better support the analysis of infographic designs, Borkin et al. (2016) pioneered the creation of
an infographic dataset with rich annotations. They utilize an existing database of real infographics
and manually annotate the polygons of their elements. However, this dataset is limited in scale,
comprising only 393 samples due to the labor-intensive manual annotation process. As a result, this
dataset is unsuitable for training object detection models that require strong generalization. In contrast,
InfoDet combines a model-in-the-loop annotation method for real infographics and a programmatic
annotation method for synthetic infographics, resulting in 101, 264 annotated infographics that
effectively support object detection model development.

3 INFODET CONSTRUCTION METHOD

Fig. 2 provides an overview of the dataset construction pipeline, which includes two main steps:
infographic collection and infographic annotation.

3.1 INFOGRAPHIC COLLECTION

Previous studies (Zhu-Tian et al., 2020; Zhu et al., 2025) have highlighted the complementary benefits
of real and synthetic data: the former captures authentic design practices, while the latter offers
controlled variation and scalability for robust training and evaluation. Informed by this finding,
we collect infographics from two sources to balance authenticity, diversity, and scalability: 1) real
infographics from chart-rich online platforms, and 2) synthetic infographics created programmatically.

Real infographic collection We collect infographics from 10 chart-rich online platforms that permit
research use, such as Visual Capitalist and Statista. The complete list is provided in Appendix B. To
enhance the quality of the infographics, we implement a two-step filtering process: deduplication and
content verification. In deduplication, we remove infographics that exhibit high CLIP similarity (Rad-

0

20

30

10

Urban

Rural

29

5 9
2.0

3.2

Monthly Energy Usage

in Urban and Rural Areas
Comparative Analysis of

Urban and Rural Areas

from January to May 2023

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Infographic Collection Infographic Annotation

11,264

real infographics

Deduplication &

Content verification

90,000

synthetic infographics

Annotated

infographics

Collection

from platforms

Model-in-the-loop

Detection

model

ExpertsP
red

ictionFe
ed

b
ac

k

1,072 templates

31M data tables

645K icons

Synthetic Infographic Creation

TEXTTEXTTEXT

Parser
0

20

30

10

Urban

Rural

29

5 9
2.0

3.2

Monthly Energy Usage

in Urban and Rural Areas
Comparative Analysis of

Urban and Rural Areas

from January to May 2023

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Experts

summarize 14,227,680 annotations

...

Figure 2: The construction pipeline for the InfoDet dataset.
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ford et al., 2021) (≥ 0.9) and low perceptual hashing distance (Jain et al., 2019) (≤ 2) relative to
other infographics. In content verification, we prompt GPT-4o mini to identify and remove images
that are blurry, lack charts or HROs, are photographs instead of graphic designs, or contain personal
or sensitive content. After filtering, the collection is refined to 11, 264 high-quality infographics.

Synthetic infographic creation We employ a template-based method (Li et al., 2025b) to create
synthetic infographics. This method utilizes 1, 072 design templates derived from representative
real infographics. Each template specifies: 1) the presence and relative positions of charts, texts,
and HROs, and 2) the type and visual style of the charts. An infographic is created by filling the
template with: 1) data tables for chart creation, 2) descriptive texts, and 3) selected HROs. To ensure
diversity, we sample data tables from VizNet (Hu et al., 2019), a large-scale dataset containing over 31
million tables and associated metadata. Charts are created from the sampled data tables as specified
by the template. Descriptive texts for the charts are generated using GPT-4o mini. HROs with the
highest CLIP similarity to the descriptive texts are selected from the IconQA dataset (Lu et al., 2021),
which contains over 645K icons. Using this template-based method, we generate 90, 000 synthetic
infographics. Example templates and infographics generated from them are provided in Appendix C.

3.2 INFOGRAPHIC ANNOTATION

Given the differences in collecting real and synthetic infographics, we adopt two annotation methods:
a programmatic method for synthetic infographics and a model-in-the-loop method for real ones.

Programmatic synthetic infographic annotation Synthetic infographic annotations are program-
matically generated with a parser integrated into the infographic generation process. This parser
extracts bounding boxes for texts, charts, and HROs from the corresponding SVG file, which encodes
the visual and structural details of the infographic. Additionally, the parser leverages information
from the design template to classify charts and HROs into subcategories: charts are categorized
into 75 distinct types, while HROs are labeled as either data-related or theme-related objects. The
complete list of chart types is provided in Appendix D.

Model-in-the-loop real infographic annotation To reduce human labor in the annotation, we
aim to leverage object detection models for assistance. However, there is an absence of specialized
detection models for charts and HROs. To address this, we employ a model-in-the-loop annotation
method (Kirillov et al., 2023). This method co-develops an object detection model and the annotation
process, allowing the model and the annotations to iteratively enhance each other. Specifically, using
the annotated synthetic infographics, we build an object detection model by fine-tuning InternImage-
L (Wang et al., 2023) along with the DINO (Zhang et al., 2023) detector. This fine-tuned model
is then employed to generate annotations for all real infographics. However, since the synthetic
infographics do not fully represent the diversity of all infographics, the fine-tuned object detection
model is prone to errors. To mitigate this, we conduct multiple rounds of annotation refinement and
model enhancement with the experts. In each round, the experts review and correct the auto-generated
annotations, and the feedback is used to further fine-tune the model, progressively improving its
accuracy. At the end of the refinement process, we randomly sample 1, 250 infographics to evaluate
the quality of the generated annotations. Results show that the generated annotations achieve a
precision of 93.9% and a recall of 96.7%, comparable to those of widely used object detection
datasets, such as COCO (Lin et al., 2014) (83.0% recall and 71.9% precision) and Objects365 (Shao
et al., 2019) (92.0% recall and 91.7% precision), as reported by Shao et al. (2019).

3.3 STATISTICS AND DATASET ANALYSIS

InfoDet contains 101,264 infographics, including 11,264 real and 90,000 synthetic infographics. To
complement the dataset with text annotations, we use the widely adopted OCR model PP-OCRv4 (Du
et al., 2020) to annotate all real infographics and extract text annotations from the generation process
for synthetic infographics. For completeness, we also extract mark-level annotations of 26 categories
of chart sub-elements, such as bars, axes, and legends. The list of sub-element categories is provided
in Appendix E. Across these infographics, we annotate a total of 7,284,892 text elements (each
corresponding to a line of text), 310,299 charts, 1,080,598 HROs, and 5,551,891 sub-elements.
The detailed statistics are provided in Appendix D. Beyond the basic statistics, we have verified
that our dataset exhibits high diversity, no harmful bias, and high fidelity of synthetic infographics
(See Appendix F). To ensure consistent evaluation, we split InfoDet into a training set of 96, 264
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infographics and a test set of 5, 000 infographics, while maintaining the same proportion of real and
synthetic infographics in both sets.

4 EXPERIMENTS

In this section, we first construct a Thinking-with-Boxes scheme to enhance the performance of the
latest VLMs. We then evaluate the performance of existing object detection models. Finally, we
apply the InternImage-based object detection model to graphic layout detection tasks.

4.1 THINKING-WITH-BOXES VIA GROUNDED CHAIN-OF-THOUGHT

Latest VLMs, such as OpenAI’s o3/o4-mini, demonstrate chain-of-thought reasoning capability
with images through seamless image manipulations, including automatic zooming and cropping.
Considering that chart understanding requires more complex, fine-grained visual reasoning over the
elements within infographic images (Lin et al., 2025), we construct a Thinking-with-Boxes scheme
to enhance VLMs by explicitly providing grounded annotations of texts, charts, and HROs along
with additional layered infographic images. The bounding boxes are predicted using our infographic-
oriented object detection model and an OCR model. With this scheme, we prompt the VLMs to output
reasoning trajectories over the grounded regions, referred to as grounded chain-of-thought (grounded
CoT), which guide the model to think step-by-step before achieving the final answer. Next, we detail
the implementation of grounded CoT and demonstrate the effectiveness of the Thinking-with-Boxes
scheme through improved performance on ChartQAPro.

4.1.1 GROUNDED CHAIN-OF-THOUGHT PROMPTING

As shown in Fig. 3 B1 , we provide the VLM with detected elements in two modalities—visual
prompts, by overlaying boxes on the infographic image, and textual descriptions of each element—to
study the reasoning preferences of the evaluated VLMs.

For the visual prompts, we overlay bounding boxes on top of the infographics, each labeled with an
alphabetical ID. To improve clarity, the bounding boxes are rendered in contrastive colors against the
background, and the ID labels are placed to minimize overlap. However, even with these measures,
overlap between bounding boxes remains inevitable in regions with dense texts and HROs. To
mitigate this, we propose to separate the visual prompts into two layers: one containing charts and
HROs, and the other containing texts. We also provide textual description of each element to ease
the challenge of simultaneously locating and interpreting their content. Please refer to Appendix G.1
for detailed prompts and a comparison of visual prompts rendered in one versus two layers.

ABC
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ABC ABC

      Visual+Textual, 2 LayersB1

      Visual, 2 Layers B2

ABC ABC ABC

      Textual, 2 Layers B3
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Figure 3: The Thinking-with-Boxes scheme: (a) the charts, HROs, and texts are detected and overlaid
onto the original image to create annotated images with grounded elements; (b) the input of the
grounded chain-of-thought method (B1) and its ablated variants (B2, B3, B4).
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Table 1: Performance of o1, o3, and o4-mini with different prompting methods. The best one is bold.

Chart Group
o1 o3 o4-mini

Direct CoT PoT Grounded
CoT (ours) Direct CoT PoT Grounded

CoT (ours) Direct CoT PoT Grounded
CoT (ours)

Plain, Single 57.8 57.8 56.1 60.1 56.8 57.7 57.5 57.2 58.1 57.9 55.3 60.6
Plain, Multiple 63.7 65.1 62.2 65.4 62.8 61.0 58.8 63.4 66.7 66.1 62.3 66.9
Infographic, Single 66.4 64.3 60.9 67.8 64.9 59.5 64.2 67.7 67.4 64.4 67.5 68.4
Infographic, Multiple 66.0 67.6 66.8 71.9 66.0 64.9 64.2 68.8 70.6 69.2 64.7 72.5
Overall 61.4 61.9 60.0 64.1 60.6 60.0 59.5 61.6 63.2 62.5 59.7 64.9

4.1.2 EXPERIMENTAL SETUP

We evaluate the chart understanding capability of VLMs using the ChartQAPro benchmark (Masry
et al., 2025), which contains 1, 948 challenging question-answer pairs across 1, 341 images. To better
analyze the performance of our method, we manually categorize them into four groups based on two
criteria: whether the charts are plain or infographic, and whether there are single or multiple charts.
We assess three state-of-the-art VLMs: OpenAI’s o1, o3, and o4-mini. For each VLM, we compare
our method against three widely used baseline prompting methods: 1) Direct prompting with the chart
image and the question, 2) Chain-of-Thought (Wei et al., 2022) (CoT), which prompts the model to
reason step-by-step for the provided image and question, and 3) Program-of-Thought (Chen et al.,
2023) (PoT), which prompts the model to generate a Python code that prints the final answer. The
performance is measured using the enhanced relaxed accuracy (Masry et al., 2025). Please refer to
Appendix G.1 for the detailed prompts and the enhanced relaxed accuracy implementation.

4.1.3 RESULTS AND ANALYSIS

Effectiveness of grounded CoT prompting As shown in Table 1, prompting the latest VLMs
to think step-by-step or write Python code does not significantly improve their performance. We
attribute this to the reasoning-centric design of the VLMs, which inherently reduces the dependence
on explicit prompts for step-by-step reasoning. In contrast, our method enhances chart understanding
performance by providing grounded infographic elements. In particular, our method performs
comparably on plain, single charts and shows better performance on infographic charts and images
with multiple charts, leading to improved overall performance. As shown in Fig. 4, the grounded

What proportion of Chinese 
public respondents have a 
neutral impression of Japan?

Wrong!

From the chart, Japan’s 'very 
unfavorable' is 38.4%, 'somewhat 
unfavorable' is 19.1%, the neutral 
portion is labeled as , so the 
neutral share is .

19.1%
19.1%

What were the traffic acquisition costs 
when the earnings were minimum?

l looked at the EARNINGS ...  chart ...  and identified that 
the lowest bar is the July 2017 bar .... Next, I examined 
the TRAFFIC ACQUISITION COSTS (TAC) ... chart ... for 
the same month (July 2017 ... ). From the label ... near 
the bar, it is approximately  $5 billion.

When the gas price in the US dropped to its lowest, was 
the gas price in California at its lowest point as well?

The lowest price of US ... occurs in early 2016 (... , $1.72) . 
At the same time, price of California ... is at its lowest (... , 
$2.38). Thus, , California's price is lowest  too.yes

Correct!

First, identify which row belongs to 
Japan by looking at its label ... . 

Next, match the 'Neutral' category 
in the legend by noting the 
neutral-face icon ... and text ... that 
appears in a beige/gray color on 
the bar. 

The numeric label for that color 
segment is given in ..., which reads 
' '.29.4%

What proportion of Chinese 
public respondents have a 
neutral impression of Japan?

Figure 4: Grounded CoT guides the model to think step-by-step and achieve the correct answer.
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Table 2: Ablation of the grounded CoT method. The best one is bold.

(a) Prompt Modality

Visual Textual Visual+Textual
62.8 61.6 64.1

(b) Prompt Separation

1-Layer 2-Layer
62.3 64.1

(c) In-Context Example

With Example Without Example
61.5 64.1

annotations of elements effectively guide the VLM to reason step-by-step and arrive at the correct
answer. Despite its strong visual reasoning capability, o3 encounters instruction-following issues,
resulting in slightly lower performance compared to o1 and o4-mini. The detailed evaluation results
and analysis of this issue are provided in Appendix H.

Ablation Study We conduct ablation studies on o1 to evaluate the effects of different prompt
modality designs, separating grounded annotations into two layers, and adding in-context examples.

Prompt modality. Table 2(a) shows that using only visual prompts (Fig. 3 B2 ) or textual descrip-
tions (Fig. 3 B3 ) results in a performance drop compared to combining both. This highlights their
complementary roles in grounding infographic elements and supporting VLMs in chart understanding.

Prompt separation. Table 2(b) shows that separating the prompts into two layers leads to better
performance than providing them in one layer (Fig. 3 B4 ). This suggests that reducing overlap through
separation facilitates the visual grounding of infographic elements and improves chart understanding.

Incorporation of in-context examples. Table 2(c) shows that incorporating in-context examples results
in a performance drop. This indicates that the latest VLMs can perform reasoning tasks effectively
without additional examples, which would instead introduce confusion and hinder performance.

4.2 EVALUATING OBJECT DETECTION MODELS

We evaluate the infographic element detection performance of 11 object detection models on InfoDet.

4.2.1 EXPERIMENTAL SETUP

Models Existing object detection models can be classified into two categories: foundation models
that support zero-/few-shot detection and traditional deep learning models that require fine-tuning
before detecting novel classes. We select the representative models in each category, including
seven foundation models (RegionCLIP (Zhong et al., 2022), Detic (Zhou et al., 2022), Grounding
DINO (Liu et al., 2024), GLIP (Li et al., 2022), MQ-GLIP (Xu et al., 2023), T-Rex2 (Jiang et al.,
2024), and DINO-X (Ren et al., 2024)) and four traditional models (Faster R-CNN (Ren et al., 2015),
YOLOv3 (Redmon & Farhadi, 2018), RTMDet (Lyu et al., 2022), and Co-DETR (Zong et al., 2023)).

Evaluation protocol The above models are not tailored to detecting charts and HROs. To address
this, we evaluate three adaptation methods: 1) Zero-shot prompting, which uses text prompts
to define target classes, 2) Few-shot prompting, which uses k randomly selected infographics to
describe target classes, optionally augmented with text prompts, and 3) Standard fine-tuning, which
updates model weights using annotated infographics, either with k random example infographics or
the entire InfoDet training set. We compare the models at two granularity levels: the element level
targeting charts and HROs, and the mark level targeting sub-elements such as bars, axes, and legends.
For both levels, the performance is measured using the average precision (AP) and recall (AR) on
the InfoDet test set. Please refer to Appendix G.2 for more details on text prompts, fine-tuning
hyperparameters, and computational costs.

4.2.2 RESULTS AND ANALYSIS

Comparing adaptation methods and object detection models at the element level We evaluate
all applicable adaptation methods for each model, except for standard fine-tuning, which is restricted
to models that fit within the memory constraints of an NVIDIA Tesla V100 GPU. For few-shot
prompting and fine-tuning methods, we use k = 4, 10, and 30 randomly selected infographics. We
average the results over 3 runs, excluding T-Rex2 and DINO-X due to their reliance on charged APIs.
Table 3 shows the results for all models with k = 4. The full results, including the variance across
runs, are available in Appendix I. We present our key findings as follows:
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Table 3: Evaluation results of the foundation and the traditional models at the element level. The
best one is bold.

(a) Zero-shot prompting

Model
Average Precision (AP) Average Recall (AR)

Chart HRO Chart HRO

RegionCLIP 0.8 3.6 13.9 24.9
Detic 1.8 4.4 23.7 11.3
Grounding DINO 12.6 12.2 63.2 46.0
GLIP 13.5 11.2 44.9 33.2
MQ-GLIP 13.5 11.2 44.9 33.2
DINO-X 14.0 15.0 29.4 29.1

(b) Few-shot prompting, 4-shots

Model
Average Precsion (AP) Average Recall (AR)

Chart HRO Chart HRO

MQ-GLIP 16.2 15.5 43.5 40.7
T-Rex2 12.2 16.2 21.8 24.7

(c) Standard fine-tuning, 4-shots

Model
Average Precsion (AP) Average Recall (AR)

Chart HRO Chart HRO

RegionCLIP 6.8 14.7 15.5 22.9
Detic 19.6 14.2 37.0 22.8
Faster R-CNN 3.4 1.0 10.8 1.5
YOLOv3 5.5 4.0 16.2 13.1
RTMDet 12.8 18.9 44.2 49.1
Co-DETR 27.6 25.5 53.4 49.7

(d) Standard fine-tuning, InfoDet

Model
Average Precsion (AP) Average Recall (AR)

Chart HRO Chart HRO

RegionCLIP 10.1 23.3 17.5 28.6
Detic 39.6 34.3 57.4 47.7
Faster R-CNN 78.9 49.0 80.8 52.7
YOLOv3 14.7 25.5 43.2 35.7
RTMDet 83.7 53.6 86.4 59.9
Co-DETR 88.2 64.0 89.8 69.5

Zero-shot and few-shot prompting exhibit limited performance. Zero-shot prompting exhibits limited
performance. As shown in Fig. 5(a), even state-of-the-art foundation models like DINO-X fail to
interpret these concepts through textual prompts, often missing key components. Contrary to prior
findings (Madan et al., 2024), providing annotated example infographics does not lead to notable
improvements (Fig. 5(b)). We attribute this to the models’ pretraining on natural scenes (Mathew et al.,
2022), which provides limited exposure to graphic representations such as infographics. Consequently,
the models lack the prior knowledge needed to effectively learn from the provided examples.

Standard fine-tuning improves performance. Compared with zero-/few-shot prompting, fine-tuning
with example infographics or the InfoDet training set yields higher performance. Few-shot exper-
iments show that the performance improves significantly as the number of example infographics
increases. Moreover, fine-tuning on InfoDet consistently outperforms few-shot fine-tuning, particu-
larly for the traditional models. This is verified by Co-DETR’s more accurate detection results after
fine-tuning on InfoDet (Fig. 5(d)) compared to using 4 example infographics (Fig. 5(c)).

Evaluating traditional models at the mark level Due to the effectiveness of fine-tuning traditional
models at the element level, we further evaluate them at the mark level. Table 4 shows the performance
of each model averaged over 3 runs. Despite the increased difficulty of mark-level detection, which
leads to a drop in mAP (e.g. , from 76.1% to 69.6% for Co-DETR), the models still perform effectively,
supported by the large-scale training set of InfoDet. We also evaluate model generalizability via
cross-dataset evaluation following Deng et al. (2023). Specifically, we fine-tune each model on

(a) (b) (c) (d)

Figure 5: Detection results of evaluated object detection models: (a) zero-shot prompting with
DINO-X; (b) 4-shot prompting with T-Rex2; (c) 4-shot fine-tuning with Co-DETR; (d) fine-tuning
on InfoDet with Co-DETR. Bounding boxes in colors are the predictions for charts and HROs .
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Table 4: Evaluation results of the traditional models at the element level. The best one is bold.

Model mAP mAR
Faster R-CNN 47.0 ± 0.1 49.9 ± 0.1
YOLOv3 11.3 ± 0.9 21.5 ± 0.5
RTMDet 46.9 ± 0.2 59.5 ± 0.5
Co-DETR 69.6± 0.4 77.0± 0.3

either our infographics or VG-DCU (Dou et al., 2024) (plain charts with mark-level annotations) and
test on the other. Models show a smaller drop in mAP when transferred from our infographics to
VG-DCU than vice versa. For example, the mAP of Co-DETR drops 17.1% when transferring from
our infographics to VG-DCU, compared with a much larger 53.7% drop in the opposite direction.
This indicates that models trained on our infographics generalize more effectively due to the inclusion
of infographic charts. The full experimental setup and results are provided in Appendix I.

4.3 APPLYING THE DEVELOPED MODEL TO GRAPHIC LAYOUT DETECTION

To demonstrate the broader applicability of InfoDet, we evaluate its effectiveness on graphic layout
detection tasks by applying the InternImage-based model.

4.3.1 EXPERIMENTAL SETUP

We evaluate the InternImage-based model on two graphic layout detection datasets, Rico (Deka et al.,
2017) and DocGenome (Xia et al., 2024). Rico contains over 66K user interfaces collected from
Android applications. Following the common practice (Manandhar et al., 2020; 2021), we aim to
detect 25 UI component classes and split the dataset into 53K layouts for training and 13K for testing.
DocGenome is a large-scale scientific document dataset of 6.8M pages sourced from the arXiv
repository, annotated with bounding boxes for 13 categories of components. We randomly sample
113K pages for training and 13K for testing. For both datasets, we fine-tune four model variants, each
pre-trained on a different combination of ImageNet-22K (Deng et al., 2009), Objects365 (Shao et al.,
2019), COCO (Lin et al., 2014), and InfoDet, as shown in Table 5. Please refer to Appendix G.3 for
more details on the fine-tuning hyperparameters and computational costs.

Table 5: Performance of the detection models with different pre-training data. The best one is bold.

Pre-Training Data Rico DocGenome
- 42.1 69.0
InfoDet 50.6 74.4

ImageNet-22K, Objects365, COCO 51.8 78.7
ImageNet-22K, Objects365, COCO, InfoDet 53.6 80.0

4.3.2 RESULTS AND ANALYSIS

As shown in Table 5, pre-training on InfoDet improves model performance when fine-tuned on Rico
and DocGenome, both on its own and when combined with existing large-scale pre-training data.
With the growing interest in integrating multiple datasets for training foundation models (Yang et al.,
2024), InfoDet serves as a useful addition to existing resources for graphic layout detection.

5 CONCLUSION

In this paper, we introduce InfoDet, a dataset designed to support infographic element detection. It
features a diverse collection of real and synthetic infographics, along with bounding box annotations
for texts, charts, HROs, and finer-grained sub-elements. Three applications demonstrate that InfoDet
is not only valuable for developing visual reasoning methods but also broadly applicable to tasks
such as object detection model evaluation and graphic layout detection. Although InfoDet has proven
effective, there remain promising directions for future work. For example, analyzing the annotated
infographics to uncover design principles could advance automated infographic design.
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ETHICS STATEMENT

To ensure the integrity of this work, we carefully consider several ethical aspects when collecting real
infographics from online platforms. First, we manually collect the real infographics and release only
their source URLs on Hugging Face, without hosting or redistributing third-party content. We have
reviewed the data usage policies of the platforms and confirmed that they either explicitly permit
(e.g. , Statista, Visual Capitalist) or do not prohibit (e.g. , Daily Infographics, Infographics Archive)
the use of their content for research purposes, including the sharing of source URLs. Details of the
data usage policies and licenses of each platform are provided in Appendix B. Second, to exclude
harmful and sensitive content from our dataset, we: 1) collect only from reputable public platforms,
which generally filter such content; and 2) use GPT-4o mini to flag potentially harmful or sensitive
infographics, which are then manually verified and removed. Finally, we release our dataset and
model strictly for academic research purposes.
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A STATISTICAL COMPARISON OF INFODET WITH EXISTING CHART DATASETS

Table 6 provides a statistical comparison of InfoDet with existing datasets. Unlike most existing
datasets that focus on plain charts, InfoDet is specifically designed for infographic charts, where
charts, texts, and HROs are tightly integrated in visually complex layouts. Compared to the dataset
by Borkin et al. (2016), the only existing infographic dataset with mark-level annotations, InfoDet is
significantly larger in scale and better suited for training object detection models.

Table 6: Statistics of existing chart datasets.

Dataset # Real # Synthetic Infographic?
InfoDet (ours) 11, 264 90, 000 ✓
Borkin et al. (2016) 393 0 ✓
FigureQA (Kahou et al., 2018) 0 100, 000 -
PlotQA (Methani et al., 2020) 0 224, 377 -
Beagle (Battle et al., 2018) 41, 000 0 -
VisImages (Deng et al., 2023) 12, 267 0 -
VG-DCU (Dou et al., 2024) 4, 515 10, 682 -

B ONLINE PLATFORMS FOR REAL INFOGRAPHIC COLLECTION

We collect the real infographics from the 10 online platforms listed in Table 7. The infographic
collection strictly adheres to the copyright and licensing regulations of the respective platforms.

Table 7: Infographic platforms and licenses.

Platform Website Link Licenses
Statista statista.com CC BY-NC
Visual Capitalist visualcapitalist.com Customized:

“For individuals and small organizations
(5 people or less, or < $1 million in rev-
enue), we allow you to use our visuals in
a variety of use cases for free. These
include personal and commercial use
cases, such as: embedding our graphics
in a newsletter, report, video, presenta-
tion, or on your website.”

World Statistics world-statistics.org CC BY
Our World in Data ourworldindata.org CC BY
OECD oecd.org CC BY
Openverse openverse.org CC
The Conversation theconversation.com CC BY-ND
Kaiser Family Founda-
tion

kff.org CC BY-NC-ND

Daily Infographics dailyinfographics.com Customized.
No prohibition on research use or
sharing of source URLs.

Infographics Archive infographicsarchive.com Customized.
No prohibition on research use or
sharing of source URLs.

C EXAMPLE SYNTHETIC INFOGRAPHICS

We employ a template-based method to create synthetic infographics. Fig. 6 shows examples of
design templates and infographics generated from them.
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Figure 6: Template-based generation of synthetic infographics: (a) design templates; (b) synthetic
infographics generated from the design templates.

D DATASET STATISTICS

Fig. 7 shows the distribution of the number of annotated texts, charts, and HROs per real and synthetic
infographic. On average, each real infographic contains 53.76 text elements (each corresponding to
a line of text), 1.94 charts, and 14.74 HROs, while each synthetic infographic contains 74.21 text
elements, 3.20 charts, 10.16 HROs, and 61.69 sub-elements. The slight difference in annotation
density between real and synthetic infographics enhances the diversity of the dataset, improving its
utility for training models to handle diverse infographics.

Figure 7: The distribution of the number of texts, charts, and HROs in each infographic.

We classify charts and HROs into subcategories: charts are categorized into 75 distinct types, while
HROs are labeled as either data-related or theme-related objects. The 75 chart types are: 1) Vertical
bar chart, 2) Vertical stacked bar chart, 3) Vertical grouped bar chart, 4) Horizontal bar chart,
5) Horizontal stacked bar chart, 6) Horizontal grouped bar chart, 7) Radial bar chart, 8) Radial
stacked bar chart, 9) Radial grouped bar chart, 10) Circular bar chart, 11) Circular stacked bar chart,
12) Circular grouped bar chart, 13) Pictorial percentage bar chart, 14) Histogram, 15) Lollipop chart,
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16) Dot chart, 17) Diverging bar chart, 18) Vertical bar chart with circle, 19) Horizontal bar chart
with circle, 20) Vertical dot bar chart, 21) Horizontal dot bar chart, 22) Dumbbell plot, 23) Span
chart, 24) Bump chart, 25) Line graph, 26) Spline graph, 27) Stepped line graph, 28) Slope chart,
29) Small multiples of line graphs, 30) Small multiples of spline graphs, 31) Small multiples of
stepped line graphs, 32) Area chart, 33) Spline area chart, 34) Layered area chart, 35) Layered
spline area chart, 36) Range area chart, 37) Stacked area chart, 38) Radial area chart, 39) Radial
spline area chart, 40) Radial layered area chart, 41) Radial layered spline area chart, 42) Radial
range area chart, 43) Radial stacked area chart, 44) Diverging area chart, 45) Diverging spline area
chart, 46) Small multiples of area charts, 47) Small multiples of spline area charts, 48) Pie chart,
49) Donut chart, 50) Semicircle pie chart, 51) Semicircle donut chart, 52) Rose chart, 53) Small
multiples of pie charts, 54) Small multiples of donut charts, 55) Small multiples of semicircle pie
charts, 56) Small multiples of semicircle donut charts, 57) Small multiples of rose charts, 58) Radar
line chart, 59) Radar spline chart, 60) Small multiples of radar line charts, 61) Small multiples of radar
spline charts, 62) Proportional area chart, 63) Scatterplot, 64) Grouped scatterplot, 65) Bubble chart,
66) Heatmap, 67) Waffle chart, 68) Small multiples of waffle charts, 69) Alluvial diagram, 70) Gauge
chart, 71) Small multiples of gauge charts, 72) Funnel chart, 73) Pyramid chart, 74) Treemap,
75) Voronoi treemap.

For the real infographics, we have attempted to classify the charts and HROs using GPT-4o. However,
it achieves limited accuracy, with 61.49% on 1, 179 charts and 74.69% on 1, 498 HROs. As current
models face challenges in reliably classifying charts and HROs in infographics, we leave their
fine-grained annotation for future work.

E CREATING MARK-LEVEL ANNOTATIONS

To create mark-level annotations, we extend our synthetic infographic creation and an-
notation methods. Using these methods, we generate annotations of 26 element cate-
gories. The 26 categories are: "vertical_gridline", "dumbbell_mark", "scatter_mark", "leg-
end", "bar_mark", "proportional-area_mark", "axis", "other_gridline", "line_mark", "area-under-
line_mark", "gauge_mark", "bump_mark", "horizontal_gridline", "stacked-bar_mark", "radar_mark",
"donut_mark", "sankey_mark", "pie_mark", "span_mark", "bubble_mark", "histogram_mark",
"treemap_mark", "waffle_mark", "pyramid_mark", "funnel_mark", and "range_mark".

F DATASET ANALYSIS

We have conducted analyses to verify that our dataset exhibits high diversity, no harmful bias, and
high fidelity of synthetic infographics.

F.1 DIVERSITY ANALYSIS

To evaluate the diversity of the dataset, we extract a set of attributes from each infographic and
examine the variety of values for each attribute. Specifically, we consider four key attributes: chart
type, infographic topic, visual style, and communication tone. Attribute values are extracted using
Gemini-2.5-flash, with slightly different strategies for each attribute: 1) Chart type is selected from the
67 identified chart categories; 2) Infographic topic was categorized based on the IPTC Media Topics
taxonomy, a widely adopted taxonomy for news content; 3) For visual style and communication
tone, the model first generate a descriptive term for each infographic, and then grouped semantically
similar terms into attribute values. We report the number of unique values identified for each attribute
in Table 8. These numbers indicate a broad range of chart types, infographic topics, visual styles, and
communication tones. In particular, the infographic topics span all 17 top-level categories and 96 out
of 120 second-level topics in the IPTC Media Topics taxonomy. These results verify the diversity of
our dataset.
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Table 8: Diversity of infographic attribute values in InfoDet.

Attribute # Attribute Values Example Attribute Values
Chart Type 67 horizontal bar chart, line graph, treemap
Infographic Topic 96 public health, weather forecast, market and exchange
Visual Style 15 minimalistic, cartoonish, vintage
Communication Tone 21 neutral, critical, persuasive

F.2 BIAS ANALYSIS

To mitigate potential bias, we have monitored attribute distributions during the infographic collection
and generation and applied resampling techniques when necessary. For example, we observed an
overrepresentation of bar charts in early synthetic samples and reduced their frequency through
targeted resampling. We also computed pointwise mutual information (PMI) across attribute pairs
to identify unexpected co-occurrences. Manual inspection showed that high-PMI pairs (e.g. , envi-
ronment topic + concerned tone) aligned with common communication patterns and did not suggest
harmful or misleading bias. In summary, we found no harmful or systemic bias in the dataset and
ensured that attribute variations remain reflective of real-world usage.

F.3 QUALITY EVALUATION OF SYNTHETIC INFOGRAPHICS AND COMPARISON WITH REAL
INFOGRAPHICS

Quality evaluation The quality of synthetic infographics is evaluated at both the sample and dataset
levels. At the sample level, we randomly select 500 synthetic infographics and manually verify their
quality. All of them clearly convey the underlying data, contain HROs that align well with their
intended semantics, and have accurate annotations. A minor issue is observed in 18 samples, where
slight unintended overlap occurs between elements due to minor misalignments during rendering.
However, this does not affect object detection, as the boundaries of the overlapping elements remain
clear. At the dataset level, we evaluate how well the synthetic infographics cover the real ones in
feature space. Specifically, we use CLIP (Radford et al., 2021) to extract the feature embeddings of
all infographics and project them into a two-dimensional space using UMAP (McInnes et al., 2018).
The space is divided into a uniform grid, and a real infographic is considered “covered" if at least one
synthetic infographic falls in the same grid cell. The results show that 92.64% of the real infographics
are covered, indicating the high representativeness of the synthetic infographics.

Comparison with real infographics We qualitatively examine the difference in the distribution of
synthetic and real infographics in the UMAP visualization (Fig. 8). While the overall distribution
of synthetic and real infographics largely overlaps, some distinctive characteristics are observed.
Synthetic infographics include chart variations specially crafted by design experts, such as those with
hand-drawn-style fills, which are relatively rare in real infographics. Real infographics, on the other
hand, uniquely feature composite charts, where multiple single charts are combined by sharing axes
or overlaying each other.
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Figure 8: The distribution of synthetic and real infographics.

G DETAILED EXPERIMENTAL SETUP

G.1 THINKING-WITH-BOXES VIA GROUNDED CHAIN-OF-THOUGHT

Prompts for the grounded chain-of-thought method and the baselines In the grounded chain-of-
thought method, we prepend the grounded infographic elements to the question-category-specific
prompt used in ChartQAPro (Masry et al., 2025). Below is an example input to the vision-language
model.

Example Prompt for Grounded Chain-of-Thought

You will be provided with two versions of the same infographic chart, each with certain elements highlighted.
You will also be provided with the information lists of elements highlighted in the images. Each entry in the lists of
elements follows the format (ID, Content), where:

ID means the id of the element.
Content means the content of the element.

This above image highlights non-text elements enclosed in boxes, each labeled with a unique ID.
Here is the list of elements:
***************************************
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(ID=A, Content="human recognizable object")
......
(ID=R, Content="chart")
......
***************************************

This above image highlights text elements enclosed in boxes, each labeled with a unique ID.
Here is the list of elements:
***************************************
(ID=X, Content="text: HOW DOES")
(ID=Y, Content="text: QUESTION")
......
***************************************

These labeled elements are intended to support you in your upcoming task. Please refer to and make use
of them as needed during your thinking and analysis, and be sure to mention their IDs when doing so.
For example:
1. Based on the content in box ID 1, (your finding about the box), or;
2. Based on the relationships of box ID 1, ID 2, ..., ID N, (your finding based on the boxes).

Below is the image of original infographic chart, followed by your task:

You are given a factoid question that you need to answer based on the provided image.
You need to think step-by-step, but your final answer should be a single word, number, or phrase. If the question
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is unanswerable based on the information in the provided image, your answer should be unanswerable. Do not
generate units. But if numerical units such as million, m, billion, B, or K are required, use the exact notation shown
in the chart.
If there are multiple final answers, put them in brackets using this format [’Answer1’, ’Answer2’].
Remember to think step-by-step and mention the IDs of the elements you used, and reply in the following JSON
format:
{

"Steps": "The step-by-step thinking process with IDs mentioned.",
"A": "Your answer."

}
Question: What proportion of Chinese public respondents have a neutral impression
of Japan?

For the baselines, we use the same prompt as ChartQAPro. Below are examples of the input for the
three baselines: direct prompting, chain-of-thought, and program-of-thought.

Example Prompt for Direct Prompting

You are given a factoid question that you need to answer based on the provided image.
Your answer should be a single word, number, or phrase. If the question is unanswerable based on the information in
the provided image, your answer should be unanswerable. Do not generate units. But if numerical units such as
million, m, billion, B, or K are required, use the exact notation shown in the chart.
If there are multiple final answers, put them in brackets using this format [’Answer1’, ’Answer2’].
Remember to generate the final answer only without any additional text!
Question: What proportion of Chinese public respondents have a neutral impression

of Japan?
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Example Prompt for Chain-of-Thought

You are given a factoid question that you need to answer based on the provided image.
You need to think step-by-step, but your final answer should be a single word, number, or phrase. If the question
is unanswerable based on the information in the provided image, your answer should be unanswerable. Do not
generate units. But if numerical units such as million, m, billion, B, or K are required, use the exact notation shown
in the chart.
If there are multiple final answers, put them in brackets using this format [’Answer1’, ’Answer2’].
Remember to think step-by-step and format the final answer in a separate sentence like "The answer is X"
Question: What proportion of Chinese public respondents have a neutral impression

of Japan?

Example Prompt for Program-of-Thought

You are given a factoid question that you need to answer based on the provided image.
You need to write an executable python code that calculates and prints the final answer, but your final answer should
be a single word, number, or phrase. If the question is unanswerable based on the information in the provided image,
your answer should be unanswerable. Do not generate units. But if numerical units such as million, m, billion, B, or
K are required, use the exact notation shown in the chart.
If there are multiple final answers, put them in brackets using this format [’Answer1’, ’Answer2’].
Remember to return a python code only without any additional text.
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Question: What proportion of Chinese public respondents have a neutral impression

of Japan?

Comparison of the visual prompts rendered in one layer versus two layers In our grounded
chain-of-thought method, we propose to separate the visual prompts into two layers: one for charts
and HROs, and the other for texts. As shown in Fig. 9, this separation improves visual clarity by
reducing overlap between bounding boxes.

(a) (b)

Figure 9: Comparison of the visual prompts rendered with different layer configurations: (a) visual
prompts rendered in one merged layer: (b) visual prompts rendered in two separate layers.

Enhanced relaxed accuracy implementation Following ChartQAPro, we use the enhanced
relaxed accuracy to evaluate the chart understanding performance. This metric evaluates answers
based on the following criteria:

1. Numeric answers are allowed a 5% error margin.
2. For answers in ‘years’, an exact match is required.
3. Textual answers are evaluated using the ANLS score (Biten et al., 2019), which is based on

the edit distance between texts.
4. Multiple-choice and fact-checking tasks are evaluated using an exact-match criterion.

To more accurately evaluate model performance, we make three refinements to the official implemen-
tation of the enhanced relaxed accuracy:

1. We remove punctuation marks (i.e., commas and periods) from answers, ensuring that
‘25,000’ and ‘25000’ are treated as equivalent.

2. We remove unit symbols when evaluating numeric answers, so that values like ‘100’ and
‘$100’ are treated as equivalent.

3. We standardize ratios and percentages by converting them into decimal form, so that
expressions like ‘3:2’, ‘150%’, and ‘1.5’ are all treated as equivalent.

G.2 COMPARING OBJECT DETECTION MODELS

We evaluate the performance of existing object detection models in detecting charts and HROs. As
the models are not tailored to detecting charts and HROs, we adapt them using three adaptation
methods: 1) Zero-shot prompting, which uses text prompts to define target classes, 2) Few-shot
prompting, which uses k randomly selected infographics to describe target classes, optionally
augmented with text prompts, and 3) Standard fine-tuning, which updates model weights using
annotated infographics, either with k random example infographics or the InfoDet training set.

For zero-shot prompting, we evaluate six models: RegionCLIP (Zhong et al., 2022), Detic (Zhou
et al., 2022), Grounding DINO (Liu et al., 2024), GLIP (Li et al., 2022), MQ-GLIP (Xu et al., 2023),
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and DINO-X (Ren et al., 2024), all of which take the class names "chart" and "human recognizable
object" as input.

For few-shot prompting, we evaluate two models: T-Rex2 (Jiang et al., 2024) and MQ-GLIP (Xu et al.,
2023). For T-Rex2, we provide k randomly selected infographics with bounding box annotations.
For MQ-GLIP, we provide the class names along with the selected infographics.

For traditional fine-tuning, we evaluate six models: RegionCLIP, Detic, Faster R-CNN (Ren et al.,
2015), YOLOv3 (Redmon & Farhadi, 2018), RTMDet (Lyu et al., 2022), and Co-DETR (Zong et al.,
2023). For fine-tuning on the entire InfoDet training set, we train for E epochs with a batch size
of B and a learning rate of lr. Table 9 shows the fine-tuning hyperparameters, which adhere to the
official settings, as well as the computational costs, in terms of GPU hours using NVIDIA GeForce
RTX 4090 D. For few-shot fine-tuning, we adjust the number of training epochs inversely with
the number of random infographics, ensuring consistent computational costs. All other fine-tuning
hyperparameters remain unchanged.

Table 9: Training hyperparameters and computational costs for traditional fine-tuning on the entire
InfoDet training set.

Hyperparameters RegionCLIP Detic Faster R-CNN YOLOv3 RTMDet Co-DETR

Optimizer SGD AdamW SGD SGD AdamW AdamW
E 1 8 10 10 5 3
B 1 8 64 64 64 64
lr 5e− 4 3.75e− 6 2e− 3 1e− 3 4e− 3 1e− 5

Computational costs
(GPU hours) 20 40 20 30 40 70

G.3 APPLYING THE DEVELOPED MODEL TO GRAPHIC LAYOUT DETECTION

We evaluate the InternImage-based model on two graphic layout detection datasets, Rico (Deka
et al., 2017) and DocGenome (Xia et al., 2024). Rico contains over 66K user interfaces collected
from Android applications. Following the common practice (Manandhar et al., 2020; 2021), we aim
to detect 25 UI component classes and split the dataset into 53K layouts for training and 13K for
testing. DocGenome is a large-scale scientific document dataset of 6.8M pages sourced from the
arXiv repository, annotated with bounding boxes for 13 categories of components. We randomly
sample 113K pages for training and 13K for testing. Following the official setting (Wang et al., 2023),
we fine-tune the frozen InternImage backbones along with the DINO detector (Zhang et al., 2023) for
12 epochs. The batch size is set to 16, and we use an AdamW optimizer (Loshchilov & Hutter, 2019)
with an initial learning rate of 0.0001 and a weight decay of 0.05. We use a step-based learning rate
scheduler, which decreases the learning rate by a factor of 0.1 at epochs 8 and 11. The training takes
196 GPU hours on Rico and 296 GPU hours on DocGenome using NVIDIA Tesla V100.

H DETAILED ANALYSIS OF ERRORS BY O3 ON CHARTQAPRO

Despite its strong visual reasoning capability, o3 achieves slightly lower accuracy compared to o1
and o4-mini on the ChartQAPro benchmark (Masry et al., 2025). To investigate this, we randomly
sample 200 question-answer pairs and analyze the failure patterns when using grounded CoT. We
identify two primary sources of failures: 1) perception error, where models fail to correctly interpret
the content and relationships of the infographic elements, and 2) instruction following error, where
models do not adhere to the prompt when formatting the answer. As shown in Table 10, perception
errors are the main cause of chart understanding failures, occurring with similar frequency across
all models. However, o3 shows a higher frequency of instruction-following errors, contributing
to its slightly lower overall performance compared to o1 and o4-mini. In particular, even when
instructed to output the numerical answer as a single word, o3 often includes extra words like ‘≈’ and
‘about’. To address this, we have attempted to increase the reasoning effort from ‘medium’ to ‘high’.
However, as shown in Table 11, this change does not yield an obvious improvement in the chart
understanding performance, and the instruction following error still occurs with a similar frequency.
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This suggests that the ‘medium’ setting already provides sufficient reasoning budget for ChartQAPro,
and alternative strategies are needed to enhance o3’s instruction-following ability.

Table 10: Error analysis of chart understanding failures on ChartQAPro for o1, o3, and o4-mini.

Model Perception Error Instruction
Following Error

o1 48 12
o3 47 22
o4-mini 46 8

Table 11: Performance of o3 using different levels of reasoning effort.

Reasoning Effort Direct CoT PoT Grounded CoT
Medium 60.6 60.0 59.5 61.6
High 60.4 61.0 60.8 61.8

I DETAILED EVALUATION RESULTS

Comparing adaptation methods and object detection models We evaluate all applicable adapta-
tion methods for each model, except for standard fine-tuning, which is restricted to models that fit
within the memory constraints of an Nvidia Tesla V100 GPU. For few-shot prompting and fine-tuning
methods, we use k = 4, 10, and 30 randomly selected infographics. We average the results over 3
runs, excluding T-Rex2 and DINO-X, due to their reliance on charged APIs. Tables 12 and 13 show
the AP and AR along with their standard deviation for all models.

Table 12: AP of object detection models for the chart and HRO categories. The best one is bold.

Model Zero-shot
prompting

Few-shot prompting Standard fine-tuning
4-shots 10-shots 30-shots 4-shots 10-shots 30-shots InfoDet

Chart Category

Fo
un

da
tio

n
M

od
el

s

RegionCLIP 0.83 - - - 6.81 ± 3.70 9.38 ± 1.62 10.12 ± 0.96 10.14 ± 0.80
Detic 1.77 - - - 19.62 ± 5.61 23.02 ± 1.38 28.00 ± 1.42 39.57 ± 0.10
Grounding Dino 12.64 - - - - - - -
GLIP 13.52 - - - - - - -
MQ-GLIP 13.52 16.24 ± 0.63 16.80 ± 0.19 16.91 ± 0.24 - - - -
T-Rex2 - 12.22 - - - - - -
DINO-X 13.99 - - - - - - -

Tr
ad

iti
on

al
M

od
el

s Faster R-CNN - - - - 3.43 ± 2.46 5.63 ± 2.34 9.89 ± 2.89 78.92 ± 0.33
YOLOv3 - - - - 5.49 ± 1.64 5.12 ± 2.81 7.83 ± 2.04 14.70 ± 5.92
RTMDet - - - - 12.82 ± 1.74 25.90 ± 2.44 28.84 ± 2.09 83.65 ± 3.46
Co-DETR - - - - 27.63 ± 11.41 31.65 ± 4.20 43.36 ± 2.99 88.22 ± 0.64

HRO Category

Fo
un

da
tio

n
M

od
el

s

RegionCLIP 3.57 - - - 14.70 ± 0.55 18.28 ± 0.23 18.80 ± 1.38 23.26 ± 0.31
Detic 4.38 - - - 14.24 ± 5.15 22.47 ± 3.29 30.41 ± 1.19 34.31 ± 0.59
Grounding Dino 12.24 - - - - - - -
GLIP 11.21 - - - - - - -
MQ-GLIP 11.21 15.46 ± 1.43 16.18 ± 0.36 16.94 ± 0.29 - - - -
T-Rex2 - 16.15 - - - - - -
DINO-X 14.94 - - - - - - -

Tr
ad

iti
on

al
M

od
el

s Faster R-CNN - - - - 0.98 ± 0.13 4.07 ± 1.05 11.59 ± 1.01 49.02 ± 0.17
YOLOv3 - - - - 3.96 ± 0.77 5.95 ± 1.52 9.14 ± 1.28 25.52 ± 2.48
RTMDet - - - - 18.91 ± 2.41 21.91 ± 1.34 26.38 ± 3.29 53.64 ± 0.22
Co-DETR - - - - 25.46 ± 2.43 31.09 ± 1.10 36.94 ± 3.62 64.02 ± 4.73
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Table 13: AR of object detection models for the chart and HRO categories. The best one is bold.

Model Zero-shot
prompting

Few-shot prompting Standard fine-tuning
4-shots 10-shots 30-shots 4-shots 10-shots 30-shots InfoDet

Chart Category
Fo

un
da

tio
n

M
od

el
s

RegionCLIP 13.93 - - - 15.50 ± 3.22 19.37 ± 1.47 19.54 ± 0.81 17.48 ± 0.65
Detic 23.72 - - - 36.99 ± 6.02 40.40 ± 0.97 44.06 ± 1.39 57.38 ± 0.41
Grounding Dino 63.22 - - - - - - -
GLIP 44.89 - - - - - - -
MQ-GLIP 44.88 43.47 ± 0.46 43.81 ± 0.51 43.97 ± 0.22 - - - -
T-Rex2 - 21.84 - - - - - -
DINO-X 29.36 - - - - - - -

Tr
ad

iti
on

al
M

od
el

s Faster R-CNN - - - - 10.79 ± 4.69 15.86 ± 2.74 20.86 ± 4.79 80.84 ± 0.31
YOLOv3 - - - - 16.21 ± 2.54 15.98 ± 5.08 23.33 ± 1.55 43.16 ± 5.45
RTMDet - - - - 44.16 ± 0.67 53.48 ± 4.74 56.34 ± 1.92 86.41 ± 0.25
Co-DETR - - - - 53.41 ± 12.34 61.10 ± 6.36 68.36 ± 2.80 89.82 ± 0.53

HRO Category

Fo
un

da
tio

n
M

od
el

s

RegionCLIP 24.92 - - - 22.85 ± 1.55 26.21 ± 0.65 27.08 ± 0.43 28.56 ± 0.27
Detic 11.31 - - - 22.80 ± 6.66 34.52 ± 5.80 46.16 ± 1.44 47.74 ± 0.50
Grounding Dino 45.97 - - - - - - -
GLIP 33.21 - - - - - - -
MQ-GLIP 33.20 40.72 ± 2.06 41.69 ± 1.45 42.38 ± 0.54 - - - -
T-Rex2 - 24.72 - - - - - -
DINO-X 29.14 - - - - - - -

Tr
ad

iti
on

al
M

od
el

s Faster R-CNN - - - - 1.55 ± 1.01 8.77 ± 3.56 25.92 ± 2.03 52.69 ± 0.21
YOLOv3 - - - - 13.06 ± 1.76 18.75 ± 1.03 25.31 ± 0.98 35.70 ± 2.01
RTMDet - - - - 49.10 ± 0.69 49.72 ± 0.94 52.50 ± 1.15 59.94 ± 0.14
Co-DETR - - - - 49.74 ± 0.35 57.15 ± 0.38 61.48 ± 0.84 69.47 ± 0.92

Cross-dataset evaluation between our dataset and VG-DCU We evaluate the generalizability of
the traditional models via cross-dataset evaluation following Deng et al. (2023). Specifically, we train
each model on either our infographics or VG-DCU (Dou et al., 2024), which comprises plain charts
with element-level annotations, and evaluate each model on the other dataset. To support the transfer
between datasets, we identify common categories with identical annotation guidelines, resulting in
four categories: "bar_mark", "line_mark", "pie_mark", and "axis". We train and evaluate the models
on these categories. Table 14 shows the evaluation results. Models show a smaller drop in mAP when
transferred from our infographics to VG-DCU compared to the opposite direction. This shows that
models trained on our data exhibit stronger generalizability due to the inclusion of infographic charts.

Table 14: Cross-dataset evaluation results

Training set VG-DCU Ours
Test set VG-DCU Ours mAP↓ Ours VG-DCU mAP↓
Faster R-CNN 59.5 19.2 40.3 53.7 19.1 34.6
YOLOv3 26.4 4.1 22.3 23.2 12.5 10.7
RTMDet 70.2 28.1 42.1 60.9 42.4 18.5
Co-DETR 86.7 33.0 53.7 71.0 53.9 17.1

J THE USE OF LARGE LANGUAGE MODELS

The use of LLMs in this work is limited to the following: 1) polishing the writing for clarity; 2)
filtering candidate infographics during dataset construction.
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