

REFINING HEURISTIC-BASED BITCOIN ADDRESS CLUSTERING WITH GRAPH NEURAL NETWORKS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Bitcoin’s pseudonymous nature makes it challenging to analyze user-level activity,
 012 since a single user may control multiple identifiers (addresses). Existing heuristic-
 013 based methods attempt to identify addresses belonging to the same user, but they
 014 often produce flat cluster assignments with limited modularity and are prone to er-
 015 rors such as merging different users together. In this work, we propose a method
 016 for refining heuristic-obtained clusters by grounding our clustering on contrastive
 017 embeddings yielded by graph neural networks. Our contribution is threefold: (i)
 018 we release a publicly available dataset of Bitcoin transaction graphs containing
 019 a substantial number of clusters; (ii) we propose a methodology for learning ad-
 020 dress embeddings consistent with heuristics, and back it up with solid theoretical
 021 foundations and empirical results; (iii) through hierarchical clustering, we allow a
 022 finer analysis of heuristic clusters and provide a quantitative criterion for flagging
 023 suspicious merges.

1 INTRODUCTION

027 Bitcoin (Nakamoto, 2009) is the first and most widely adopted cryptocurrency, designed as a decen-
 028 tralized payment system without reliance on a central authority. Its operation is enabled by a peer-to-
 029 peer network that collectively maintains a shared, immutable record of transactions (Antonopoulos,
 030 2017a). This record, known as the blockchain, provides transparency and auditability while pre-
 031 serving a certain level of pseudonymity for its users; it is organized as a chronological sequence of
 032 blocks, each batching the transactions that happened during a certain time interval.

033 **Bitcoin Address Clustering.** Bitcoin transactions are pseudonymous in nature, as users are iden-
 034 tified by random pseudonyms called addresses (Antonopoulos, 2017b). A single user can reuse an
 035 address or generate new ones at any time; it is therefore common for a user to control many differ-
 036 ent addresses. Since addresses are generated randomly, there is no direct way to associate multiple
 037 addresses with the same user. While analyzing transaction at the address level can be informative, a
 038 user-level analysis provides greater insights. The task of *addresses clustering* consists in grouping
 039 together addresses that belong to the same user (without necessarily identifying said user).

040 **Graph Construction from Transactions.** Graph-based representations are particularly well
 041 suited for visualizing and analyzing blockchain data. Two primary types of graphs are commonly
 042 employed: those where nodes represent transactions and edges represent the moving bitcoin amounts
 043 (Weber et al., 2019), and those where nodes represent users and edges represent transactions (Bellei
 044 et al., 2024; Schnoering & Vazirgiannis, 2025). In this paper, we focus on the latter, as it offers a
 045 more intuitive representation. Constructing a user-level graph from a set of transactions \mathcal{T} typically
 046 involves the following steps (Schnoering & Vazirgiannis, 2025; Bellei et al., 2024; Meiklejohn et al.,
 047 2013; Harrigan & Fretter, 2016):

- 049 1. extracting the addresses involved in the transactions \mathcal{T} ;
- 050 2. clustering the addresses into users using a heuristic \mathcal{H} (or a combination thereof) applied to
 \mathcal{T} , potentially augmented with external information;
- 051 3. creating directed edges with associated features between users, derived from the \mathcal{T} ;
- 052 4. generating node features by aggregating information from edges;
- 053 5. incorporating external information (off-chain) into both node and edge features.

Hierarchical Clustering. Hierarchical clustering constructs a hierarchy of nested clusters over a set of points V endowed with a dissimilarity function d (Heller & Ghahramani, 2005). In the agglomerative variant, each node initially forms its own cluster. At each step, two clusters $A, B \subset V$ are merged according to a linkage rule based on d . After the final step, all nodes are merged into a single cluster. This hierarchy is naturally represented by a rooted binary tree, or *dendrogram*, where leaves correspond to individual nodes, internal nodes represent successive merges, and node height indicates the merge distance. An example of dendrogram is illustrated in Figure 1.

Graph Neural Networks (GNNs). GNNs extend neural architectures to graph-structured data by propagating and transforming node features along edges. At each layer, a node updates its representation by aggregating information from its neighbors, allowing the model to capture both local connectivity and node attributes. By stacking multiple layers, GNNs learn embeddings that encode multi-hop structural context and can be used for tasks such as node classification, link prediction, and graph-level inference (Kipf, 2016; Hamilton et al., 2017; Veličković et al., 2017).

Contributions. The main contributions of this paper are threefold:

1. We publicly release a dataset of large-scale Bitcoin transaction graphs with a substantial number of clusters, enabling the training and evaluation of clustering algorithms at scale.
2. We propose a methodology for learning address embeddings consistent with traditional blockchain heuristics, supported by theoretical guarantees and empirical validation.
3. We show how these learned representations can refine heuristic-based clustering by detecting and correcting cluster collapses and by providing a hierarchical clustering that improves intelligibility and visualization.

2 RELATED WORKS

Heuristics-Based Clustering. To achieve address clustering, a variety of human-made, rule-based heuristics have been proposed (Schnoering et al., 2024), often based on behavioral patterns and human biases. The most prominent is the *common-input heuristic*, which assumes that all addresses providing inputs to the same transaction are controlled by a single entity. Clustering heuristics play a crucial role in Bitcoin analysis by approximating user-level structures from pseudonymous transaction data. They allow researchers and investigators to reduce complexity, uncover patterns of address ownership, and make sense of large-scale transaction graphs. Beyond their methodological value, such heuristics have become essential tools in several domains: in forensic contexts (Meiklejohn et al., 2013; Foley et al., 2019); in compliance and anti-money-laundering efforts (Möser et al., 2013; Yang et al., 2023), and in privacy research (Androulaki et al., 2013).

Other Methods for Address Clustering. Aside from heuristic clustering, other methods have been used on bitcoin transaction networks to similar tasks. Machine-learning based methods tend to focus more on the orthogonal task of address classification (Toyoda et al., 2018; Lin et al., 2019; Garin & Gisin, 2023; Sie et al., 2025; Jia et al., 2018; Lee et al., 2020), which consists in identifying the usage of addresses (e.g. scams, marketplaces). Some of those approaches (Kang et al., 2020) use heuristic clustering as a first step before training a classifier. More recently, approaches leverage GNNs to obtain powerful representation of transaction graphs for downstream tasks (Zhao et al., 2025; Zhang et al., 2025; Huang et al., 2022).

Enhancing Clustering Heuristics with GNNs. Despite their usefulness, heuristic methods have notable limitations. They yield only *flat* cluster assignments—single-level groupings in which addresses are either linked or not—making large clusters difficult to interpret. Some heuristics also merge addresses based on a single transaction, which can erroneously combine unrelated users and cause cluster collapse (Androulaki et al., 2013; Harrigan & Fretter, 2016). Only a few studies attempt to refine or correct the traditional heuristics. Möser & Narayanan (2022) use a random forest to estimate the likelihood that a heuristic-based merge is valid and block merges with low confidence, thereby mitigating cluster collapse. Similarly, Ermilov et al. (2017) uses off-chain information as votes for separating clusters.

Our method differs in key ways. Instead of assigning confidence scores to individual merges, we learn address embeddings that capture the global transaction structure while staying consistent with

108 heuristic clusters. Agglomerative hierarchical clustering on these embeddings yields a dendrogram
 109 that reveals nested substructures and provides a principled criterion for detecting suspicious merges,
 110 producing both a refined flat clustering and a multi-resolution view of the address graph.
 111

112 3 METHODOLOGY

113 3.1 METHODOLOGY OVERVIEW

116 We present a method to learn address embeddings consistent with standard heuristics, mapping
 117 nodes from the same cluster close together and pushing nodes from different clusters apart. These
 118 embeddings are then used to build dendograms whose hierarchical structure reveals discrepancies
 119 in the heuristic partitions—most notably cases of cluster collapse—and to propose corresponding
 120 corrections. Throughout the paper, let $G = (V, E)$ denote the graph, where V is the set of nodes
 121 (Bitcoin addresses) and E the set of edges (value transfers). We write $\mathcal{C} = \{C_1, \dots, C_k\}$ for a
 122 partition of V (e.g., obtained via heuristics), with k the number of clusters.
 123

124 **Rationale for the Two-Stage Methodology.** Our approach is in line with a broad body of prior
 125 work and offers a key practical advantage: it naturally accommodates dynamic graphs with contin-
 126 uously arriving addresses and transactions, closely reflecting real-world blockchain conditions. In
 127 contrast, most end-to-end GNN pooling methods (Ying et al., 2018; Bianchi et al., 2020) construct
 128 a fixed hierarchy of merged nodes whose depth and cluster sizes are predetermined by the network
 129 architecture. Such constraints hinder adaptation to a continually growing transaction graph and re-
 130 duce the interpretability of the resulting merges. Other pooling approaches (Lee et al., 2019) merely
 131 score and retain important nodes without producing a true hierarchical clustering, offering saliency
 132 rather than an interpretable dendrogram of successive merges.
 133

134 3.2 DATA ACQUISITION AND GRAPH CONSTRUCTION

135 We construct our graphs using the pipeline of Schnoering & Vazirgiannis (2025)¹. The procedure
 136 follows the steps outlined in the introduction—parsing the blockchain, extracting transactions, and
 137 forming entity-to-entity links—but, unlike the original work, we do not pre-cluster addresses into
 138 user entities. The resulting network is a directed graph with nodes as addresses. User clusters serving
 139 as ground truth for supervised learning are obtained with the same set of address-clustering heuristics
 140 as in Schnoering et al. (2024), also implemented in the above GitHub repository. Constructing a
 141 graph from the entire history would yield billions of nodes and edges, rendering most algorithms
 142 intractable. We therefore sample a subset of transactions from a contiguous block interval to build
 143 the graph; the sampling strategy is described in the Appendix A.1.1. For complete implementation
 144 details, we refer readers to the original paper and accompanying code. The raw blockchain data for
 145 graph construction and clustering were obtained by running Bitcoin Core².
 146

147 3.3 LEARNING NODE EMBEDDINGS WITH GNNs AND CONTRASTIVE LOSS

148 We train a GNN g to produce node embeddings consistent with the clustering \mathcal{C} : nodes within the
 149 same cluster (user) should have similar embeddings, whereas embeddings of nodes from different
 150 clusters should be dissimilar. To enforce this, we adopt the contrastive InfoNCE loss (Oord et al.,
 151 2018; Chen et al., 2020)

$$152 \quad \mathcal{L} = \mathbb{E}_{\mathbb{P}_\alpha} \left[-\log \frac{\exp(g(X) \cdot g(X^+)/\tau)}{\exp(g(X) \cdot g(X^+)/\tau) + \sum_{i=1}^p \exp(g(X) \cdot g(X_i^-)/\tau)} \right], \quad (1)$$

155 where \mathbb{P}_α is the sampling distribution over anchor nodes, τ is a temperature hyperparameter, and p is
 156 the number of negative samples. For each anchor $X \in V$, the positive sample X^+ is drawn from the
 157 same cluster, while the negatives $\{X_i^-\}_{i=1}^p$ come from different clusters. Clusters are drawn from
 158 a mixture of uniform and size-proportional sampling controlled by α , and nodes are then sampled
 159 uniformly within each chosen cluster. Full details of this sampling scheme are provided in Appendix.
 160

1¹<https://github.com/hugoschnoering2/BTCGraphConstruction>

2²<https://bitcoin.org/en/bitcoin-core>

162 Although the formula omits explicit normalization, we normalize embeddings in practice so that the
 163 dot product computes cosine similarity.
 164

165 3.4 DETECTING AND CORRECTING CLUSTER COLLAPSE 166

167 We perform agglomerative hierarchical clustering on the embeddings using cosine distance, consist-
 168 ent with the contrastive loss. Starting from the coarse partition \mathcal{C} , we cluster each C_i independently,
 169 building a dendrogram that records the merge distances within every initial community.
 170

171 Given a threshold $\lambda > 0$, we define a *collapse*
 172 as any merge whose cosine distance exceeds λ .
 173 This provides a principled way to flag suspicious
 174 merges—likely combining addresses from dif-
 175 ferent users—and highlights potential failures
 176 of the original flat clustering. To correct such
 177 collapses, we split the affected clusters into their
 178 hierarchical subcomponents, yielding a refined
 179 partition that better reflects the true user structure.
 180

181 Mathematically, each dendrogram induces an
 182 ultrametric d_u on the node set V , where $d_u(x, y)$
 183 is the height of the lowest common ancestor of x
 184 and y . Two nodes x and y are grouped together
 185 if they belong to the same initial cluster C_i and
 186 satisfy $d_u(x, y) < \lambda$. This refinement process is
 187 illustrated in Figure 1.

188 A practical variant of this approach uses heuristic-generated clusters as the initial partition, moti-
 189 vated by the observation that such heuristics often merge distinct communities (i.e., distinct Bitcoin
 190 users).

191 4 THEORETICAL FOUNDATIONS OF THE METHODOLOGY 192

193 We show that node embeddings learned by GNNs naturally separate nodes according to cluster
 194 membership in a hierarchical dendrogram, under appropriate conditions. Let d be the working
 195 distance on V , and build a dendrogram from d using single, average, or complete linkage. Assume
 196 the ground-truth clusters are well d -separated: there exist constants $0 < r < s$ such that $d(x, y) \leq$
 197 $r < s \leq d(x, z)$ for all $x, y \in C_\ell$ and every $z \in C_m$ with $\ell \neq m$. It then follows that any horizontal
 198 cut of this dendrogram at a threshold $\lambda \in (r, s)$ exactly recovers C ; the resulting flat clustering
 199 coincides with the ground truth. Although these conditions are stronger than typically encountered
 200 in practice, they provide a clean theoretical framework for the analysis that follows and already
 201 motivate the use of a contrastive loss. The proofs of these results are provided in Appendix D.
 202

203 **Notation.** Let L be the Laplacian of G with eigenvalues $\lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n$ and associated
 204 orthonormal eigenvectors u_1, \dots, u_n , which form an orthonormal basis of \mathbb{R}^n . Let $U \in \mathbb{R}^{n \times n}$
 205 be the matrix whose columns are these eigenvectors. The spectral decomposition of L is $L =$
 206 UDU^\top , where $D = \text{diag}(\lambda_1, \dots, \lambda_n)$ is the diagonal matrix of eigenvalues. Let $U_k \in \mathbb{R}^{n \times k}$
 207 be the matrix formed by the first k eigenvectors. For a node $i \in V$, its spectral embedding is
 208 $e_i^s = (u_{i,1}, u_{i,2}, \dots, u_{i,k}) \in \mathbb{R}^k$, where k is the number of clusters in the partition C . We write
 209 $\|x\|_2$ for the Euclidean norm of a vector x . For any matrix A , A^\top denotes its transpose, $\sigma_{\min}(A)$
 210 the smallest singular value of A , and $\|A\|_{\text{op}}$ for the operator norm of A induced by $\|\cdot\|_2$.
 211

212 4.1 RESULTS

213 Building on the perfect-cut criterion above, our goal is to derive a separability condition on the
 214 problem data that guarantees a dendrogram built from GNN embeddings admits such a perfect cut.
 215 Both results in this section assume that the working distance is Euclidean. The arguments, however,
 216 remain valid for cosine distance provided that the GNN embeddings lie on a common sphere. As a

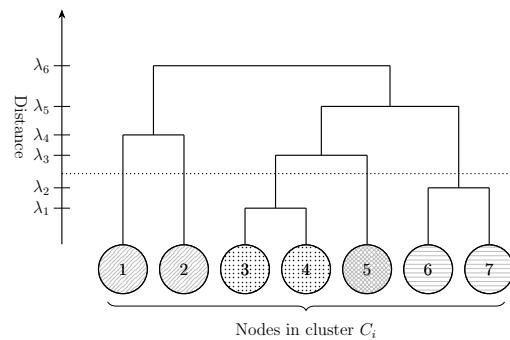


Figure 1: Example of a refinement. The dotted line represents the cut. Sub-clusters are distin-
 guished by node fill patterns. Merges above the
 threshold are treated as collapses.

first step, Lemma 1 establishes an analogous condition for spectral embeddings. This intermediate result is natural because GNNs typically act as low-pass spectral filters (Nt & Maehara, 2019), so their embeddings concentrate in the subspace spanned by the Laplacian eigenvectors with the smallest eigenvalues, i.e., the classical spectral embeddings (Von Luxburg, 2007). The result involves the spectral distance between the Laplacian L and the Laplacian L° of an *ideal cluster graph*, where two nodes are connected if and only if they belong to the same cluster. This ideal graph represents a perfectly homophilic scenario in which edges exist only within clusters. The appearance of this quantity is motivated by empirical observations on data, where addresses controlled by the same user tend to form connected subgraphs.

Lemma 1. *The spectral embeddings are cluster–separable whenever*

$$M := 4\sqrt{2k} \left(1 - \frac{1}{S_{\max}}\right) \|L - L^\circ\|_{\text{op}} < \frac{1}{\sqrt{2S_{\max}}}.$$

where S_{\max} is the size of the largest cluster, and L° the Laplacian of the ideal cluster graph.

The proof in Appendix D.1 relies on a version of the Davies–Kahan theorem from matrix perturbation theory. The separability condition is satisfied whenever the graph Laplacian L is sufficiently close to the ideal block–diagonal Laplacian.

We assume that the node embeddings H produced by the GNN can be written as $H = p(L) XW$, where p is a polynomial, X the matrix of initial node features, and W the learned weight matrix (as in the linearized GCN (Kipf, 2016), for example). Using the spectral decomposition $L = UDU^\top$, this becomes

$$H = U \tilde{D} U^\top XW,$$

where $\tilde{D} = \text{diag}(p(\lambda_1), \dots, p(\lambda_n))$. The polynomial p acts as a *spectral filter*, selectively amplifying or attenuating the eigencomponents of L according to their eigenvalues. In the special case of an ideal low-pass filter, $p(\lambda_i) = \mathbf{1}_{\{i \leq k\}}$, so the embeddings lie entirely in the subspace spanned by the first k eigenvectors. To measure how well a GNN approximates this ideal filter, we define $\alpha = \max_{i \leq k} |p(\lambda_i)|$, $\beta = \max_{i > k} |p(\lambda_i)|$, and $\gamma = \min_{i \leq k} |p(\lambda_i)|$. Theorem 2 transfers this spectral result to the learned GNN embeddings, yielding an equivalent separability condition for the perfect cut—a result that, to our knowledge, is novel.

Theorem 2. *The GNN embeddings are cluster–separable whenever*

$$\|XW\|_{\text{op}} (\beta + \alpha M) < \gamma \sigma_{\min}(U_k^\top XW) \left(\sqrt{2/S_{\max}} - M \right).$$

The embeddings learned by the GNN inherit the geometric separability of the spectral embeddings, up to perturbations controlled by the low-pass approximation quality of p and by the alignment of the feature matrix XW with the leading eigenspace. Because the left-hand side of the inequality is positive, the separability condition holds only if three requirements are met: (i) $\gamma > 0$, so the GNN retains all eigencomponents of the informative subspace; (ii) $\sigma_{\min}(U_k^\top XW) > 0$, ensuring that the transformed features are not orthogonal to this subspace; and (iii) $M \leq \sqrt{2/S_{\max}}$, meaning the observed graph is sufficiently close to the ideal block-diagonal Laplacian so that spectral embeddings themselves already separate the clusters.

4.2 RELATED WORKS

Spectral embeddings have long been central to graph clustering (Von Luxburg, 2007). Most theoretical analyses relate these embeddings to the *optimal* solutions of node-partitioning problems, including RatioCut minimization (Von Luxburg, 2007), k -way partitioning (Peng et al., 2015), and maximum-margin clustering (Hofmeyr, 2020). The guarantees in these works require the reference clustering to coincide with the optimal solution of the respective problem. Our approach makes no such assumption. We instead study graphs that are small perturbations of an *ideal cluster graph* whose connected components match the ground-truth clusters, and we apply matrix perturbation theory to obtain our guarantees. This technique was also used by Ng et al. (2001) to bound intra-cluster variance. In contrast, we establish *pairwise* bounds—both within and across clusters—yielding separability conditions that ensure a perfect cut.

270 5 EXPERIMENTAL SETUP
271272 All experiments were performed on a Mac M3 Max equipped with 36 GB of RAM, using only CPU
273 computation and no GPU acceleration.
274275 We use the pipeline described in Section 3 to generate graphs from Bitcoin transactions. To avoid
276 information leakage, transaction sets are sampled from non-overlapping block intervals so that no
277 transaction appears in more than one graph. In total, we construct three graphs for training, one for
278 validation, and one for testing. The main characteristics of these graphs are provided in Appendix A,
279 and all datasets, including the graphs used in the experiments with ground truth labels in Section 6.3,
280 are publicly available at *** under the CC BY 4.0 license.
281282 Before being fed to the GNNs, features undergo the normalization and log-scaling procedure de-
283 tailed in Appendix B.2. This step ensures consistent feature distributions across the different graphs.
284285 5.1 TRAINING
286287 **Setup.** We train two-layer GNNs to minimize the contrastive loss of Equation equation 1, moni-
288 toring progress by evaluating the same loss on a validation graph. We experiment with three popular
289 architectures: Graph Convolutional Network (GCN) (Kipf, 2016), GraphSAGE (Hamilton et al.,
290 2017), and Graph Attention Network (GAT) (Veličković et al., 2017). Optimization uses Adam
291 (Kingma & Ba, 2014) with a learning rate halved when the validation loss does not improve for 20
292 consecutive epochs. Because we have three training graphs, we cycle through them every 15 epochs
293 to promote generalization. To accelerate training, we adopt neighborhood sampling (Hamilton et al.,
294 2017), drawing 15 neighbors for the first GNN layer and 5 for the second. All experiments rely on
295 the PyTorch Geometric implementations of GNN models, the Adam optimizer, learning-rate
296 scheduler, and neighbor sampling. The code used in this study is publicly available at ***. Unless
297 otherwise specified, all hyperparameters are listed in Table 6 of Appendix B.3.
298299 **Model Variations.** We evaluate three main variations of the base model. (1) Because the con-
300 structed graphs are directed, we optionally symmetrize them before input to the GNN. (2) Since
301 edges carry attributes, we can include or ignore these edge features whenever the architecture sup-
302 ports them. (3) We optionally add a structural positional encoding to enhance locality. GNN mes-
303 sage passing tends to make nodes with similar neighborhoods appear similar—even when they are
304 far apart (Xu et al., 2019)—which can spuriously cluster structurally alike but unrelated nodes. Yet
305 Bitcoin addresses belonging to the same user are usually close in the graph, as they often participate
306 in the same transactions. To exploit this property, we follow the position-aware GNN framework
307 (You et al., 2019): we select the highest-degree nodes as landmarks and represent each node by its
308 vector of shortest-path distances to these landmarks. These distances are converted to similarities
309 via $x \mapsto (1 + x)^{-1}$ and normalized dimension-wise. The resulting distance-based vector is then
310 concatenated with the original node feature vector before message passing.
311312 5.2 EVALUATION
313314 We evaluate our method by its ability to recover both hierarchical and flat clusterings consistent with
315 the ground truth. For the hierarchical step, we apply agglomerative clustering with cosine distance
316 on the GNN embeddings using average linkage. Because the graphs are large and computing the full
317 pairwise distance matrix is impractical, we first obtain a coarse partition with the Leiden algorithm
318 (Traag et al., 2019), limiting the maximum community size to 65 000 nodes to control memory
319 usage, following the strategy described in Section 3.4.
320321 **Metrics.** We score the resulting dendograms with *dendrogram purity* (Heller & Ghahramani,
322 2005), which ranges from 0 to 1 and measures how well nodes from the same ground-truth cluster
323 merge together. Flat clusterings are obtained by cutting each dendrogram at a threshold λ (Figure 1),
324 selected by grid search to maximize the silhouette score (Rousseeuw, 1987), a standard criterion for
325 choosing the cut level in hierarchical clustering. We then compare the flat partition to the ground
326 truth using Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI) (Vinh et al.,
327 2009): NMI captures global agreement and is robust to cluster-size imbalance, while ARI empha-
328 sizes local consistency but is more sensitive to class imbalance. Additional implementation details
329

324	Model	Sym.	Edge feat.	# LM	DP	NMI	ARI
325	Louvain	✓	na	na	na	0.642 (± 0.000)	0.289 (± 0.000)
326	Leiden	✓	na	na	na	0.665 (± 0.000)	0.311 (± 0.000)
327	Random GAT	✓	✗	0	0.691 (± 0.004)	0.759 (± 0.011)	0.586 (± 0.009)
328	GAE	✓	✗	0	0.741 (± 0.006)	0.746 (± 0.006)	0.325 (± 0.213)
329	DIG	✓	✗	0	0.684 (± 0.004)	0.755 (± 0.008)	0.607 (± 0.041)
330	GAT	✗	✗	0	0.649 (± 0.011)	0.714 (± 0.010)	0.320 (± 0.043)
331			✗	64	0.689 (± 0.003)	0.745 (± 0.004)	0.611 (± 0.025)
332			✗	128	0.693 (± 0.002)	0.743 (± 0.004)	0.590 (± 0.004)
333			✗	256	0.685 (± 0.002)	0.741 (± 0.003)	0.589 (± 0.002)
334	GAT	✗	✓	0	0.642 (± 0.011)	0.705 (± 0.012)	0.333 (± 0.046)
335			✗	64	0.688 (± 0.002)	0.743 (± 0.003)	0.593 (± 0.003)
336			✗	128	0.692 (± 0.004)	0.743 (± 0.004)	0.596 (± 0.006)
337			✗	256	0.686 (± 0.004)	0.739 (± 0.004)	0.587 (± 0.003)
338	GAT	✓	✗	0	<u>0.783</u> (± 0.004)	<u>0.775</u> (± 0.008)	<u>0.702</u> (± 0.033) [*]
339			✓	64	0.796 (± 0.003) ^{**}	0.770 (± 0.002)	0.707 (± 0.012) ^{**}
340			✓	128	0.793 (± 0.002)	0.770 (± 0.008)	0.672 (± 0.029)
341			✓	256	0.792 (± 0.002)	0.771 (± 0.003)	0.665 (± 0.029)
342	GCN	✓	✗	0	0.724 (± 0.003)	0.767 (± 0.002)	0.592 (± 0.006)
343	GraphSage	✓	✗	0	0.768 (± 0.004)	0.791 (± 0.002) ^{**}	0.622 (± 0.016)

Table 1: Performance across different variations: graph symmetrization (Sym.), edge features (Edge feat.), number of landmarks (# LM), with evaluation metrics NMI, ARI, and dendrogram purity (DP), non applicable (na). The best score for each metric is marked with ^{**}, the second-best with ^{*} and the performance of the model with all default parameters is underlined.

on how these metrics are computed, as well as their formal definitions, are provided in Appendix B.4. For all metrics we evaluate only nodes with degree ≥ 2 , excluding peripheral addresses that often lack sufficient transactional context for reliable user clustering and can artificially inflate cluster counts, making global metrics less informative.

Baselines. To highlight the added value of the contrastive loss, we compare our model to three unsupervised baselines: (i) an untrained GAT, (ii) a GAT trained as a non-probabilistic Graph Auto-Encoder (GAE) (Kipf & Welling, 2016), and (iii) a GAT trained with Deep Graph Infomax (DGI) (Veličković et al., 2018), which maximizes mutual information between local and global representations. All baselines produce node embeddings that are clustered exactly as in our contrastive pipeline. Implementation details are provided in Appendix B.5.

6 RESULTS

6.1 ABLATION STUDY

We report in Table 1 the performance results for different variations, including graph symmetrization, use of edge features, and the number of landmarks in the structural embedding. For each model variation, we averaged the results over five runs with different random seeds on the test graph. **Additional experiments on the embedding dimension, the sampling parameter α , and the number of negative anchors in the contrastive loss, as well as empirical evidence that our method approaches the conditions required by the theoretical results, are reported in Appendix C.**

All baselines achieve ARI scores above zero—better than random—showing that graph topology alone conveys cluster information and supporting the homophily hypothesis. An untrained GAT already surpasses Louvain and Leiden, highlighting the strong signal in the input features. GAE yields higher dendrogram purity than the random GAT but lower NMI and ARI, consistent with its link-prediction loss, which encourages neighbors to share embeddings and can merge unrelated users. DGI matches the untrained GAT on dendrogram purity and NMI while achieving a stronger ARI, suggesting that its mutual-information objective promotes sharper local separation.

Results show that a GAT trained on a non-symmetrized graph generally performs worse on all metrics than an untrained GAT, highlighting the importance of reciprocal connections for capturing address relationships. Adding the structural positional encoding improves performance in the non-

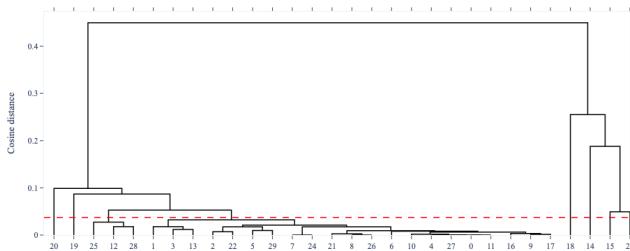
378 symmetric setting, closing the gap with the untrained GAT. In contrast, incorporating edge features
 379 in the non-symmetric case offers no clear benefit and in fact slightly degrades performance.
 380

381 All models trained on symmetrized graphs outperform the baselines on every metric. Using the
 382 structural positional encoding generally increases dendrogram purity—improving hierarchical clus-
 383 tering—while slightly reducing NMI and ARI, which measure flat clustering quality. This suggests
 384 that the silhouette score may be suboptimal for selecting the dendrogram cut. Among landmark-
 385 based encodings, the best results occur with 64 landmarks, followed by 128 and 256. The decline in
 386 performance as the number of landmarks increases—and the lack of gains from incorporating edge
 387 features despite their additional information—points to potential training instabilities or feature re-
 388 dundancy, highlighting the need for careful tuning.

389 For the alternative architectures, GCN and GraphSage, only the NMI score of GraphSage exceeds
 390 that of GAT under the same settings, supporting our choice of GAT as the primary architecture.
 391

392 6.2 ILLUSTRATING CLUSTER REFINEMENT

393 We address potential cluster collapse using the procedure of Section 3. Starting from the heuristic
 394 clustering, we build a hierarchical clustering within each heuristic cluster and obtain a refined flat
 395 partition by cutting each dendrogram at the threshold λ that maximizes the silhouette score. Figure 2
 396 shows the resulting dendrogram for a representative cluster, with the selected cut level indicated. Its
 397 structure reveals the sequence of merges and highlights several late merges occurring above the
 398 optimal threshold. In particular, the final two subclusters merge at a cosine distance of 0.45, well
 399 above the chosen cut, indicating that they should remain separate. A few other merges also exceed
 400 the threshold, although most nodes merge below it into a single coherent group.
 401



410 Figure 2: Dendrogram for a representative heuristic cluster. The dashed horizontal line indicates the
 411 cut level λ selected to maximize the global silhouette score.
 412

413 Figure 3 displays the minimal subgraph induced by the cluster and its neighbors. Cutting the den-
 414 drogram at the optimal threshold reveals coherent sub-groups, offering a clearer view of the cluster’s
 415 internal organization. This approach naturally scales to much larger clusters, tens of thousands of
 416 nodes in our data and potentially millions in larger transaction sets, where direct graph visualiza-
 417 tion becomes impractical. Dendograms provide a hierarchical, navigable representation that exposes
 418 meaningful substructures at multiple resolutions.
 419

420 6.3 ADDITIONAL EXPERIMENTS WITH GROUND-TRUTH LABELS

421 In each experiment, we select transactions for which ground-truth labels indicate whether two ad-
 422 dresses do or do not belong to the same cluster. For each transaction with labels, we extract a
 423 local transaction subgraph using a sampling procedure adapted from Section 3.2 (details in Ap-
 424 pendix A.1.2), and construct the corresponding address-level graph. For each graph, we compute
 425 (1) the clustering from standard heuristics, (2) the clustering from our default GNN-HAC pipeline,
 426 and (3) a hybrid clustering where GNN embeddings refine the heuristic output, as described in Sec-
 427 tion 3.4. We evaluate three linkage criteria and three dendrogram-cutting strategies (Appendix ??).
 428 Because some involved addresses are labeled, we can assess clustering quality with standard binary
 429 metrics: correct predictions group same-entity addresses or separate different ones, while errors cor-
 430 respond to incorrect merges or splits. To avoid overweighting transactions with many labels, we
 431 evaluate at most five randomly selected labeled pairs per graph.

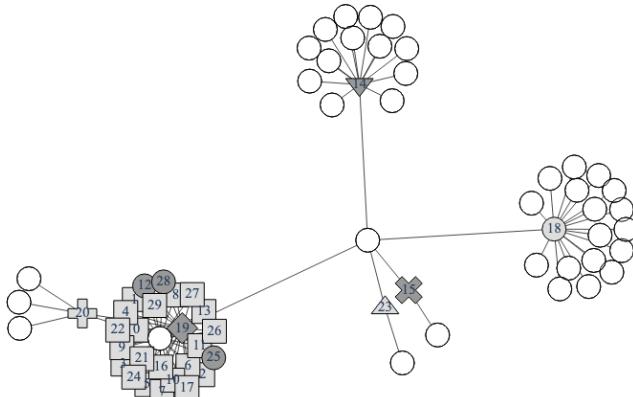


Figure 3: Minimal subgraph induced by the representative cluster and its immediate neighbors. Nodes belonging to the cluster are numbered, while external neighbors remain unnumbered. Cutting the dendrogram at the optimal threshold reveals distinct sub-groups, shown here with different gray shades and marker shapes.

Model	Link.	Cut	TP(%)	FP(%)	FN(%)	TN(%)	bACC(%)	F1(%)
Heuristics	na	na	42.9	22.5	16.0	18.6	59.1	59.2
GNN-HAC	avg.	sil.	46.0	20.9	12.9	20.1	63.7	63.8
GNN-HAC	avg.	inc.	58.9	41.1	0.0	0.0	50.0	37.1
GNN-HAC	avg.	gap.	52.1	28.7	6.8	12.4	59.4	57.9
GNN-HAC	ward	sil.	48.6	22.5	10.3	18.6	63.9	64.0
GNN-HAC	com.	sil.	38.8	16.1	20.1	25.0	63.4	63.1
Hybrid	avg.	sil.	40.7	11.7	18.2	29.4	70.3**	69.7**
Hybrid	avg.	inc.	42.9	22.5	16.0	18.6	59.1	59.2
Hybrid	avg.	gap.	42.4	18.5	16.5	22.6	63.5	63.5
Hybrid	ward	sil.	42.2	22.5	16.7	18.6	58.5	58.6
Hybrid	com.	sil.	37.6	10.6	21.3	30.5	69.0*	67.9*

Table 2: Clustering performance with ground-truth entity labels. Linkage (Link.) criteria: average linkage (avg.), Ward linkage (ward), and complete linkage (com.). Dendrogram cut methods: silhouette-based cut (sil.), inconsistency cut (inc.), and largest-gap cut (gap.). Metrics reported include true positives (TP), false positives (FP), false negatives (FN), true negatives (TN), along with balanced accuracy (bACC), defined as the mean of positive and negative recalls, and the macro-averaged F1 score (F1). The best score for each metric is marked with **, the second-best with *.

6.3.1 ENTITY LABELS

We use the dataset of roughly 100,000 addresses labeled with entity names from Schnoering & Vazirgiannis (2025). After excluding addresses linked to individuals, we sample 500 transactions between blocks 550,000 and 700,000 that involve at least two distinct labeled addresses. Addresses associated with the same entity should fall in the same cluster, while those linked to different entities should not. Results are reported in Table 2.

The average-linkage / silhouette-score setting yields substantial improvements over the heuristic baselines. The best results are obtained with the refinement pipeline, underscoring the importance of the hybrid approach: macro-F1 and accuracy increase by more than 10%, and false positives are reduced by half, effectively preventing cluster collapses. Complete linkage performs almost as well, with very similar results. In contrast, Ward linkage is more mixed: it appears particularly effective only when heuristic clusters are not further refined. The largest-gap criterion improves heuristic results only within the refinement step. Finally, the inconsistency criterion is not well suited to our task, as it leads to over-clustering, reflected by the high false-positive rate.

6.3.2 COINJOIN TRANSACTION LABELS

CoinJoin transactions involve many users and are specifically designed to defeat the common-input heuristic (Schnoering & Vazirgiannis, 2025). Based on analyses of open-source CoinJoin protocol implementations, Schnoering & Vazirgiannis (2023) proposed heuristics capable of detecting

Model	Link.	Cut	TN(%)
Heuristics	na	na	0.
GNN-HAC	avg.	sil.	6.5
GNN-HAC	ward	sil.	11.5
GNN-HAC	com.	sil.	25.5
Hybrid	avg.	sil.	2.0
Hybrid	ward	sil.	0.3
Hybrid	com.	sil.	8.0

Table 3: Clustering performance with ground-truth CoinJoin labels. Results are shown for average linkage (avg.) combined with three dendrogram cut methods: silhouette-based cut (sil.), inconsistency cut (inc.), and largest-gap cut (gap.). The evaluation metric is the true-negative rate (TN).

most such transactions. In these transactions, all input addresses are expected to belong to different clusters. For each protocol examined in Schnoering & Vazirgiannis (2023), we randomly selected 100 transactions between blocks 550,000 and 700,000. As these transactions contain only negative cases, performance is measured solely through the true-negative rate. Classical heuristics without CoinJoin-aware protections, as noted in Schnoering et al. (2024), achieve a score of zero. Results for the different clustering methods are reported in Table 3.

Using the embeddings reduces the number of false positives arising from CoinJoin transactions. This effect is particularly strong in the setting without heuristic-cluster refinement, where complete linkage lowers false positives by roughly one quarter. In the refinement setting, however, the gain remains modest, either because the threshold selection is suboptimal or because the dendrogram structure does not sufficiently expose dubious merges. Robustness to CoinJoin transactions could also be improved by explicitly incorporating them as true negative examples in the contrastive loss.

CONCLUSION AND LIMITATIONS

This work presents a principled framework for refining heuristic-based Bitcoin address clustering through contrastive GNN embeddings that remain consistent with standard heuristics while uncovering richer hierarchical structure. Starting from classical clustering rules, our method learns embeddings that separate users in latent space and applies agglomerative hierarchical clustering to reveal substructures and flag suspicious merges. Together, these elements provide a unified toolkit—data, theory, and methodology—for moving from flat heuristic clusters to interpretable, multi-resolution user graphs. A key limitation, however, is the limited amount of ground-truth labels available for evaluating user clusters at scale.

An important direction for future work is to adapt this procedure to a dynamic transaction graph that grows as new blocks and addresses appear, enabling online refinement of user clusters. A key challenge will be scalability. While node embeddings can be approximated by sampling subgraphs of manageable size, constructing the hierarchical structure is far less scalable, as illustrated in Appendix E. Nevertheless, this limitation can be partially mitigated by sampling very local subgraphs, either around specific transactions or within narrow temporal windows, which keeps graph sizes controlled while maintaining strong clustering performance. Future research should therefore focus on scalable hierarchical clustering techniques capable of handling continuously evolving blockchain graphs.

LLM Usage The research ideas, work and content presented in this paper was fully designed and made by the authors. LLMs were solely used in improving grammar and language a-posteriori, with no contribution besides reformulating for clarity purpose. In particular, no new idea or element was introduced through the use of an LLM.

540 REFERENCES
541

542 Elli Androulaki, Ghassan O Karame, Marc Roeschlin, Tobias Scherer, and Srdjan Capkun. Evaluating user privacy in bitcoin. In *International conference on financial cryptography and data security*, pp. 34–51. Springer, 2013.

545 Andreas M. Antonopoulos. Mastering bitcoin: Unlocking digital cryptocurrencies. In *Mastering Bitcoin: Unlocking Digital Cryptocurrencies* (2nd ed.), chapter 2. O'Reilly Media, 2017a.

548 Andreas M. Antonopoulos. Mastering bitcoin: Unlocking digital cryptocurrencies. In *Mastering Bitcoin: Unlocking Digital Cryptocurrencies* (2nd ed.), chapter 4. O'Reilly Media, 2017b.

551 Claudio Bellei, Muhua Xu, Ross Phillips, Tom Robinson, Mark Weber, Tim Kaler, Charles E Leiserson, Jie Chen, et al. The shape of money laundering: Subgraph representation learning on the blockchain with the elliptic2 dataset. *arXiv preprint arXiv:2404.19109*, 2024.

554 Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph neural networks for graph pooling. In *International conference on machine learning*, pp. 874–883. PMLR, 2020.

558 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In *Proceedings of the 37th International Conference on Machine Learning (ICML)*, pp. 1597–1607. PMLR, 2020.

561 Dmitry Ermilov, Maxim Panov, and Yury Yanovich. Automatic bitcoin address clustering. In *2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)*, pp. 461–466, 2017. doi: 10.1109/ICMLA.2017.0-118.

565 Sean Foley, Jonathan R Karlsen, and Tālis J Putniņš. Sex, drugs, and bitcoin: How much illegal activity is financed through cryptocurrencies? *The review of financial studies*, 32(5):1798–1853, 2019.

569 Leonid Garin and Vladimir Gisin. Machine learning in classifying bitcoin addresses. *The Journal of Finance and Data Science*, 9:100109, 2023. ISSN 2405-9188. doi: <https://doi.org/10.1016/j.jfds.2023.100109>. URL <https://www.sciencedirect.com/science/article/pii/S2405918823000259>.

573 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. *Advances in neural information processing systems*, 30, 2017.

576 Martin Harrigan and Christoph Fretter. The unreasonable effectiveness of address clustering. In *2016 intl ieee conferences on ubiquitous intelligence & computing, advanced and trusted computing, scalable computing and communications, cloud and big data computing, internet of people, and smart world congress (uic/atc/scalcom/cbdcn/iop/smartworld)*, pp. 368–373. IEEE, 2016.

580 Katherine A Heller and Zoubin Ghahramani. Bayesian hierarchical clustering. In *Proceedings of the 22nd international conference on Machine learning*, pp. 297–304, 2005.

583 David P Hofmeyr. Connecting spectral clustering to maximum margins and level sets. *Journal of Machine Learning Research*, 21(18):1–35, 2020.

586 Zhengjie Huang, Yunyang Huang, Yu Zheng, Yizhou Zhang, and Xiaohui Li. Demystifying bitcoin address behavior via graph neural networks. In *International Conference on Database Systems for Advanced Applications (DASFAA)*, pp. 257–273. Springer, 2022.

589 Cong Jia, Zhiqiang Zhou, Yujie Wang, and Ke Xu. Identifying bitcoin users using deep neural network. In *International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP)*, pp. 56–70. Springer, 2018.

593 Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse in contrastive self-supervised learning. *arXiv preprint arXiv:2110.09348*, 2021.

594 Changhoon Kang, Chaehyeon Lee, Kyungchan Ko, Jongsoo Woo, and James Won-Ki Hong. De-
 595 anonymization of the bitcoin network using address clustering. In Zibin Zheng, Hong-Ning Dai,
 596 Xiaodong Fu, and Benhui Chen (eds.), *Blockchain and Trustworthy Systems*, pp. 489–501, Sin-
 597 gapore, 2020. Springer Singapore. ISBN 978-981-15-9213-3.

598 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 599 *arXiv:1412.6980*, 2014.

601 Thomas N Kipf and Max Welling. Variational graph auto-encoders. *arXiv preprint*
 602 *arXiv:1611.07308*, 2016.

603 TN Kipf. Semi-supervised classification with graph convolutional networks. *arXiv preprint*
 604 *arXiv:1609.02907*, 2016.

606 Chaehyeon Lee, Sajan Maharjan, Kyungchan Ko, Jongsoo Woo, and James Won-Ki Hong. Machine
 607 learning based bitcoin address classification. In Zibin Zheng, Hong-Ning Dai, Xiaodong Fu,
 608 and Benhui Chen (eds.), *Blockchain and Trustworthy Systems*, pp. 517–531, Singapore, 2020.
 609 Springer Singapore. ISBN 978-981-15-9213-3.

611 Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In *International confer-
 612 ence on machine learning*, pp. 3734–3743. pmlr, 2019.

613 Yu-Jing Lin, Po-Wei Wu, Cheng-Han Hsu, I-Ping Tu, and Shih-wei Liao. An evaluation of bitcoin
 614 address classification based on transaction history summarization. In *2019 IEEE International
 615 Conference on Blockchain and Cryptocurrency (ICBC)*, pp. 302–310, 2019. doi: 10.1109/BLOC.
 616 2019.8751410.

617 Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy, Geoffrey M
 618 Voelker, and Stefan Savage. A fistful of bitcoins: characterizing payments among men with no
 619 names. In *Proceedings of the 2013 conference on Internet measurement conference*, pp. 127–140,
 620 2013.

622 Nicholas Monath, Kumar Avinava Dubey, Guru Guruganesh, Manzil Zaheer, Amr Ahmed, Andrew
 623 McCallum, Gokhan Mergen, Marc Najork, Mert Terzihan, Bryon Tjanaka, et al. Scalable hi-
 624 erarchical agglomerative clustering. In *Proceedings of the 27th ACM SIGKDD Conference on
 625 knowledge discovery & data mining*, pp. 1245–1255, 2021.

626 Malte Möser and Arvind Narayanan. Resurrecting address clustering in bitcoin. In *International
 627 Conference on Financial Cryptography and Data Security*, pp. 386–403. Springer, 2022.

629 Malte Möser, Rainer Böhme, and Dominic Breuker. An inquiry into money laundering tools in the
 630 bitcoin ecosystem. In *2013 APWG eCrime researchers summit*, pp. 1–14. Ieee, 2013.

632 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. *bitcoin.org*, May 2009. URL
 633 <http://www.bitcoin.org/bitcoin.pdf>.

634 Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
 635 *Advances in neural information processing systems*, 14, 2001.

637 Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters.
 638 *arXiv preprint arXiv:1905.09550*, 2019.

639 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
 640 tive coding. In *Advances in Neural Information Processing Systems (NeurIPS) Workshop*, 2018.

642 Richard Peng, He Sun, and Luca Zanetti. Partitioning well-clustered graphs: Spectral clustering
 643 works! In *Conference on learning theory*, pp. 1423–1455. PMLR, 2015.

644 Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analy-
 645 sis. *Journal of computational and applied mathematics*, 20:53–65, 1987.

647 Hugo Schnoering and Michalis Vazirgiannis. Heuristics for detecting coinjoin transactions on the
 648 bitcoin blockchain. *arXiv preprint arXiv:2311.12491*, 2023.

648 Hugo Schnoering and Michalis Vazirgiannis. Bitcoin research with a transaction graph dataset.
 649 *Scientific Data*, 12(1):404, 2025.
 650

651 Hugo Schnoering, Pierre Porthaux, and Michalis Vazirgiannis. Assessing the efficacy of heuristic-
 652 based address clustering for bitcoin. *arXiv preprint arXiv:2403.00523*, 2024.

653 Ming-Fong Sie, Yen-Jui Chang, Chien-Lung Lin, Ching-Ray Chang, and Shih-Wei Liao. Efficient
 654 Bitcoin address classification using quantum-inspired feature selection. *Quantum Machine Intel-
 655 ligence*, 7(2):75, 2025. doi: 10.1007/s42484-025-00302-3.

656 Kentaroh Toyoda, Tomoaki Ohtsuki, and P. Takis Mathiopoulos. Multi-class bitcoin-enabled service
 657 identification based on transaction history summarization. In *2018 IEEE International Conference
 658 on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom)
 659 and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData)*,
 660 pp. 1153–1160, 2018. doi: 10.1109/Cybermatics_2018.2018.00208.

661 Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. From louvain to leiden: guaranteeing
 662 well-connected communities. *Scientific reports*, 9(1):1–12, 2019.

663

664 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
 665 Bengio. Graph attention networks. *arXiv preprint arXiv:1710.10903*, 2017.

666 Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
 667 Hjelm. Deep graph infomax. *arXiv preprint arXiv:1809.10341*, 2018.

668

669 Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for clusterings
 670 comparison: is a correction for chance necessary? In *Proceedings of the 26th annual international
 671 conference on machine learning*, pp. 1073–1080, 2009.

672 Ulrike Von Luxburg. A tutorial on spectral clustering. *Statistics and computing*, 17(4):395–416,
 673 2007.

674

675 Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I Weidele, Claudio Bellei, Tom Robin-
 676 son, and Charles E Leiserson. Anti-money laundering in bitcoin: Experimenting with graph
 677 convolutional networks for financial forensics. *arXiv preprint arXiv:1908.02591*, 2019.

678 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 679 networks? In *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=ryGs6iA5Km>.

680

681 Guangyi Yang, Xiaoxing Liu, and Beixin Li. Anti-money laundering supervision by intelligent
 682 algorithm. *Computers & Security*, 132:103344, 2023.

683

684 Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
 685 archical graph representation learning with differentiable pooling. *Advances in neural information
 686 processing systems*, 31, 2018.

687

688 Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In Kamala-
 689 lika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International Con-
 690 ference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pp.
 691 7134–7143. PMLR, 09–15 Jun 2019. URL <https://proceedings.mlr.press/v97/you19b.html>.

692

693 Yi Yu, Tengyao Wang, and Richard J Samworth. A useful variant of the davis–kahan theorem for
 694 statisticians. *Biometrika*, 102(2):315–323, 2015.

695

696 Yifeng Zhang, Qianqian Ren, Yourong Chen, and Meng Han. Beyond contrastive learning: adaptive
 697 graph representations with mutual information maximization for blockchain and structured data.
Complex Intell. Syst., 11(9), September 2025.

698

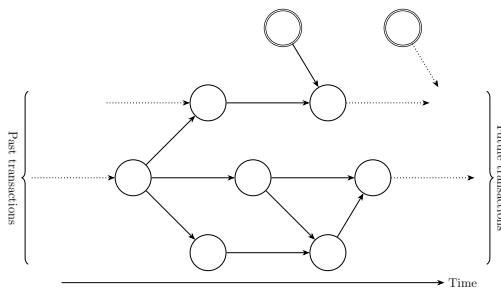
699 Zening Zhao, Jinsong Wang, and Jiajia Wei. Graph neural network-based transaction link pre-
 700 diction method for public blockchain in heterogeneous information networks. *Blockchain: Re-
 701 search and Applications*, 6(2):100265, 2025. ISSN 2096-7209. doi: <https://doi.org/10.1016/j.bcr.2024.100265>. URL <https://www.sciencedirect.com/science/article/pii/S2096720924000782>.

702 **A DATASET**
703704 **A.1 TRANSACTIONS SAMPLING STRATEGY**
705706 **A.1.1 SAMPLING FROM COINBASE TRANSACTIONS**
707

708 Constructing a graph from the full history of Bitcoin transactions would yield a network with several
709 billions of nodes and edges, rendering most graph algorithms computationally infeasible. To obtain
710 a manageable subgraph, we sample transactions occurring between two block indices $t_1 < t_2$.

711 A Bitcoin transaction transforms input value units into new output value units (TXOs), with unspent
712 outputs known as UTXOs. Inputs originate from previous transactions, while outputs can be spent
713 by future transactions. The only exception is the *coinbase transaction*—the first transaction in each
714 block—which has no inputs and generates new currency units as a mining reward.

715 This structure naturally defines a directed acyclic graph (DAG): sources correspond to coinbase
716 transactions; an edge exists from transaction A to transaction B whenever outputs from A are con-
717 sumed by B ; sinks correspond to transactions whose no output has been spent. An example of such
718 a transaction DAG is shown in Figure 4.



731 Figure 4: Bitcoin transaction graph. Circles represent transaction nodes, directed edges indicate the
732 flow of bitcoin between transactions. Double-circled nodes denote coinbase transactions.

733 Our sampling procedure performs a breadth-first search (BFS) on this transaction DAG, initialized
734 from a coinbase transaction chosen uniformly at random between blocks t_1 and t_2 . Because block
735 indices increase monotonically along transaction paths, all sampled transactions necessarily have
736 indices greater than t_1 , and exploration is truncated at block t_2 , ensuring that every sampled trans-
737 action lies within the interval $[t_1, t_2]$. To further control the graph size, we cap the exploration depth
738 at 15 and limit the number of transactions expanded at each BFS step to 5,000.

740 **A.1.2 SAMPLING FROM TRANSACTIONS WITH LABELS**
741

742 In contrast to the directed exploration used for coinbase-based sampling, we perform a breadth-first
743 search on the *undirected* transaction graph. This allows the procedure to explore not only future
744 transactions consuming outputs of the seed, but also past transactions whose outputs were used as
745 inputs to it.

746 To preserve locality, we use a maximum BFS depth of 3 and limit the number of expanded trans-
747 actions per depth to 100. These constraints ensure that the sampled subgraph remains compact
748 while capturing the relevant transactional context surrounding the labeled addresses. Aside from
749 these modifications, the overall exploration logic follows the same structure as the coinbase-based
750 sampling procedure described above in Appendix A.1.1.

752 **A.2 GRAPH CHARACTERISTICS**
753

754 Table 4 summarizes the key statistics of the sampled Bitcoin transaction graphs used for training,
755 validation, and testing.

Split	Blk int.	Blk dates int.	#Tx	#Nodes	#Edges	#Clust.
Train (1)	[599k, 600k]	12/10/19 - 19/10/19	57k	643k	5.3M	105k
Train (2)	[624k, 625k]	02/04/20 - 08/04/20	48k	491k	3.7M	96k
Train (3)	[674k, 675k]	10/03/21 - 17/03/21	44k	923k	15.1M	164k
Valid	[649k, 650k]	19/09/20 - 26/09/20	57k	828k	7.0M	137k
Test	[699k, 700k]	04/09/21 - 11/09/21	56k	1071k	4.2M	141k

Table 4: Dataset statistics. Abbreviations: Blk int. = block interval, #Tx = number of transactions sampled, #Nodes = number of nodes, #Edges = number of edges, #Clust. = number of clusters.

A.3 NODE AND EDGE FEATURES

Table 5 lists the columns and their descriptions for each table (nodes, edges, and clusters) in the released graph dataset.

Table	Column name	Description
Nodes	node_id	Identifier of the node
	degree_in	The number of incoming edges to the node
	degree_out	The number of outgoing edges from the node
	total_transaction_in	Total count of transfers received by the node
	total_transaction_out	Total count of transfers initiated by the node
	first_transaction_in	Block index of the first transfer received
	last_transaction_in	Block index of the last transfer received
	first_transaction_out	Block index of the first transfer sent
	last_transaction_out	Block index of the last transfer sent
	min_sent	Smallest value sent out in a single transaction
	max_sent	Largest value sent out in a single transaction
	total_sent	Cumulative value of all outgoing transfers
	min_received	Smallest value received in a single transaction
	max_received	Largest value received in a single transaction
	total_received	Cumulative value of all incoming transfers
Edges	a	Node id of the sender
	b	Node id of the recipient
	reveal	Block index of the first transaction
	last_seen	Block index of the last transaction
	total	Total number of transactions
	min_sent	Minimum sent in a single transaction
	max_sent	Maximum sent in a single transaction
Clusters	total_sent	Total sent in a single transaction
	node_id	Identifier of the node
	alias	Identifier of the cluster

Table 5: Description of the columns of the different tables constituting the graph.

B TRAINING

B.1 SAMPLING FUNCTION FOR CONTRASTIVE LEARNING

We assume a ground-truth clustering $\mathcal{C} = \{C_1, \dots, C_k\}$ over the node set V . Let the latent variables (Z, Z_1^-, \dots, Z_p^-) denote the cluster labels of (X, X_1^-, \dots, X_p^-) under \mathcal{C} . The joint sampling distribution of equation 1 is

$$\mathbb{P}_\alpha(x, x^+, x_1^-, \dots, x_p^-) = \sum_{z, z_1^-, \dots, z_p^-} \mathbb{P}_\alpha(z) \mathbb{P}(x | z) \mathbb{P}(x^+ | z, x) \prod_{i=1}^p \mathbb{P}_\alpha(z_i^- | z) \mathbb{P}(x_i^- | z_i^-).$$

where $\mathbb{P}_\alpha(Z = z) = \alpha \frac{|C_z|}{|V|} + (1 - \alpha) \frac{1}{|\mathcal{C}|}$ is a mixture between size-proportional sampling ($\alpha = 1$), $\mathbb{P}(X = x | Z = z)$ is uniform over all nodes in cluster C_z , $\mathbb{P}(X^+ = x^+ | Z = z, X = x)$ is uniform over $C_z \setminus \{x\}$, $\mathbb{P}_\alpha(Z_i^- = z_i^- | Z = z)$ is uniform over all $z_i^- \neq z$ and $\mathbb{P}(X_i^- = x_i^- | Z_i^- = z_i^-)$ is uniform over all nodes in cluster $C_{z_i^-}$.

This scheme provides a principled sampling strategy for contrastive learning: positive pairs are always drawn from the same cluster as the anchor, while negatives come from different clusters. The parameter α balances diversity and representativeness by interpolating between uniform and size-proportional cluster sampling.

B.2 FEATURES PREPROCESSING

Some input features encode amounts denominated in bitcoins (Table 5). Because the bitcoin price varies substantially across graph samples, we augment these features with their corresponding U.S.-dollar values, computed from the bitcoin price at each graph’s starting date.

Feature preprocessing is performed independently for each graph. First, all features are log-transformed using $x \mapsto \log(1 + x)$ to reduce skewness. Next, we apply min–max normalization based on the empirical 5th and 95th percentiles of each feature, and missing values are imputed with zeros.

B.3 HYPERPARAMETERS

Table 6 summarizes the model architecture, preprocessing options, and optimization settings used for training the GNNs.

	Hyperparameter	Value
Model	Number of attention heads	4
	Size of hidden embeddings	64
	Size of output embeddings	128
	Number of layers	2
	Activation function	Leaky ReLU
	Dropout	0.2
Preprocessing	Symmetrize the input graph	True
	Use edge features	False
	Number of landmarks in the positional encoding	0
Optimizer	Initial learning rate	2.5×10^{-3}
	Weight decay	10^{-5}
Learning rate scheduler	Reduction factor	0.5
	Patience	20
Gradient descent	Number of epochs	250
	Num anchors per batch	512
	Num negative samples per anchor (p)	4
	Temperature (τ)	0.07
	Parameter of sampling function (α)	0.5

Table 6: Hyperparameters used in the training.

B.4 EVALUATION METRICS

We evaluate hierarchical and flat clusterings using standard information-theoretic and pairwise similarity measures.

B.4.1 HIERARCHICAL CLUSTERING

Dendrogram Purity. Following Heller & Ghahramani (2005), let T be a dendrogram with leaves $1, \dots, n$ and class labels c_1, \dots, c_n . To compute the purity of T :

1. Sample a leaf ℓ uniformly at random.
2. Sample another leaf j uniformly at random among those with the same class label, $c_j = c_\ell$.
3. Let $S(\ell, j)$ be the smallest subtree of T containing both ℓ and j .
4. Compute the fraction of leaves in $S(\ell, j)$ that share the class c_ℓ .

864 The expected value of this fraction over the sampling procedure defines the *dendrogram purity*,
 865 which equals 1 if and only if every ground-truth class forms a pure subtree.
 866

867 *Implementation.* We provide an open-source implementation in our public repository. Purity is
 868 estimated by Monte-Carlo with $N = 10,000$ sampled pairs (ℓ, j) . Each pair is drawn *within the*
 869 *same coarse Leiden cluster*; because this Leiden partition is identical across all evaluations, this
 870 sampling constraint does not introduce bias.

871 **B.4.2 FLAT CLUSTERING**
 872

873 **Normalized Mutual Information (NMI).** The uncertainty of a clustering is quantified by its
 874 *entropy*, $H(U) = -\sum_u p(u) \log p(u)$, where $p(u)$ is the probability of cluster u . The sim-
 875 ilarity between two clusterings U and V can then be measured by their *mutual information*,
 876 $I(U; V) = \sum_{u,v} p(u, v) \log \frac{p(u, v)}{p(u)p(v)}$, which captures how much knowing V reduces the uncertainty
 877 of U . The NMI score normalizes mutual information to the range $[0, 1]$ via

$$878 \quad 879 \quad 880 \quad \text{NMI}(U, V) = \frac{2 I(U; V)}{H(U) + H(V)}.$$

881 Because mutual information captures the overall dependency between the two label distributions,
 882 this normalization measures *global agreement* between entire clusterings rather than only local pair-
 883 wise matches. Moreover, the ratio form compensates for differing cluster entropies, making the
 884 score *robust to cluster-size imbalance* and directly comparable across datasets of varying class dis-
 885 tributions.

886 **Adjusted Rand Index (ARI).** To assess pairwise agreement, the *Rand index* is defined as $\text{RI} =$
 887 $\frac{a+b}{\binom{n}{2}}$, where a denotes the number of element pairs assigned to the same cluster in both U and V ,
 888 and b denotes the number of pairs assigned to different clusters in both. The Rand index is corrected
 889 for chance agreement with

$$890 \quad \text{ARI} = \frac{\text{RI} - \mathbb{E}[\text{RI}]}{\max(\text{RI}) - \mathbb{E}[\text{RI}]},$$

893 placing the score in $[-1, 1]$ and emphasizing local consistency.

894 *Implementation.* All NMI and ARI computations use the standard implementations from `sklearn`.
 895

896 **B.5 TRAINING OF BASELINES**
 897

898 **Louvain.** We use the Louvain implementation from the `NetworkX` library. The resolution pa-
 899 rameter, which controls the granularity of the detected communities, is tuned by grid search in the
 900 range $[0.5, 3.0]$ on the validation graph to maximize the modularity score.

901 **Leiden.** For Leiden we rely on the `leidenalg` package, using the
 902 `RBCConfigurationVertexPartition` objective (the standard modularity-based config-
 903 uration). The resolution parameter is likewise tuned by grid search in the range $[0.5, 3.0]$ on the
 904 validation graph, and the number of refinement iterations is fixed to 10 to ensure convergence.

905 **Untrained GAT.** We follow exactly the same procedure as for the trained GNN experi-
 906 ments—using the default hyperparameters of Table 6—except that the number of training epochs
 907 is set to zero.

908 **Graph AutoEncoder (GAE).** We follow the non-probabilistic graph auto-encoder training pro-
 909 cedure of Kipf & Welling (2016). The encoder is a GAT with the default hyperparameters of Table 6,
 910 while the decoder is a simple dot product. Given adjacency matrix A and encoder embeddings H ,
 911 the loss is the binary cross-entropy

$$912 \quad 913 \quad \mathcal{L}_{\text{GAE}} = -\sum_{i,j} [A_{ij} \log \sigma(h_i^\top h_j) + (1 - A_{ij}) \log (1 - \sigma(h_i^\top h_j))],$$

914 where σ is the sigmoid function. Embeddings are trained to reconstruct A . We apply the same
 915 neighbor sampling, training-graph rotation, and learning-rate scheduling as in the main experiments,
 916

918 monitoring performance via the validation-graph reconstruction loss. The only change in hyperparameters
 919 is a shorter training duration of 20 epochs.
 920

921 **Deep Graph Infomax (DGI).** We adopt the training procedure of Veličković et al. (2018) for
 922 Deep Graph Infomax. The encoder is a GAT with the default hyperparameters of Table 6. DGI
 923 learns node embeddings by maximizing mutual information between local node representations and
 924 a global summary vector. Given node embeddings H and a readout summary $s = \sigma\left(\frac{1}{n} \sum_i h_i\right)$, a
 925 corrupted graph \tilde{G} is produced by randomly shuffling node features to create negative samples \tilde{H} .
 926 The loss is the binary cross-entropy

$$927 \quad \mathcal{L}_{\text{DGI}} = - \sum_i [\log \sigma(h_i^\top W s) + \log(1 - \sigma(\tilde{h}_i^\top W s))],$$

929 where W is a trainable scoring matrix and σ the sigmoid function. We use the same neighbor
 930 sampling, rotation of training graphs, and learning-rate scheduling as in the main experiments, and
 931 monitor training with the DGI objective on the validation graph. Training is limited to 20 epochs to
 932 match the GAE baseline.
 933

934 C ADDITIONAL EXPERIMENTS

935 C.1 EMBEDDING DIMENSION

938 A critical design choice is the number of dimensions in the embedding space produced by the GNN.
 939 If the dimensionality is too low, the model cannot adequately separate the numerous clusters. Con-
 940 versely, a very high dimensionality increases algorithmic complexity and computational cost, and
 941 may even lead to dimensional collapse (Jing et al., 2021). To investigate this trade-off, we experi-
 942 mented with different embedding sizes, and compared their performance in Table 7. For consistency,
 943 we set the number of hidden dimensions in the GAT to $\frac{2 \times \text{Size of output embedding space}}{\text{Number of attention heads}}$.
 944

945 Embedding dimension	946 DP	947 NMI	948 ARI
16	0.722(± 0.004)	0.755(± 0.010)	0.649(± 0.050)
32	0.745(± 0.007)	0.773(± 0.006)	0.632(± 0.040)
64	0.768(± 0.006)	0.785(± 0.006) [*]	0.647(± 0.040)
128	0.783(± 0.002)	0.789(± 0.009) ^{**}	0.632(± 0.028)
256	0.788(± 0.004) [*]	0.773(± 0.023)	0.657(± 0.040) [*]
512	0.798(± 0.005) ^{**}	0.778(± 0.009)	0.700(± 0.025) ^{**}

951 Table 7: Performance across different embedding dimensions with evaluation metrics NMI, ARI,
 952 and dendrogram purity (DP). The best score for each metric is marked with ^{**} and the second-best
 953 with ^{*}. All metrics are computed on the test graph / heuristic clustering, and results are averaged
 954 over five runs.
 955

956 Model performance generally improves as the embedding dimension increases, especially for the
 957 DP and ARI metrics. The DP score rises monotonically, indicating better hierarchical clustering
 958 quality at higher dimensions. The best NMI values occur at 64 and 128 dimensions, suggesting
 959 that an embedding size of 64 is already sufficient to capture the global cluster structure. For finer
 960 local agreement, however, higher dimensions are beneficial, as reflected by the strong ARI scores
 961 observed at 512 dimensions.
 962

963 C.2 PARAMETER OF THE SAMPLING FUNCTION

964 In this section, we evaluate the influence of the sampling parameter α on the performance of
 965 our methodology. The sampling parameter α controls the balance between uniform and size-
 966 proportional cluster selection in the contrastive sampling distribution. Table 8 reports the results.
 967 ARI scores are highest for small α (close to uniform sampling), indicating strong local cluster
 968 consistency. NMI scores peak at larger α (around 0.7), showing that higher values capture more global
 969 ground-truth information in the flat clustering. Dendrogram purity is maximized for intermediate
 970 α (around 0.4), suggesting the most coherent hierarchical structure. Overall, these trends reveal a
 971 trade-off: small α favors local accuracy, large α enhances global information, and moderate values
 972 balance the two.
 973

α	DP	NMI	ARI
0.	0.762(± 0.006)	0.776(± 0.005)	0.733(± 0.005) ^{**}
0.2	0.776(± 0.005)	0.772(± 0.005)	0.716(± 0.020) [*]
0.4	0.782(± 0.004) ^{**}	0.773(± 0.009)	0.694(± 0.019)
0.6	0.773(± 0.008)	0.788(± 0.007) ^{**}	0.630(± 0.036)
0.8	0.779(± 0.005) [*]	0.779(± 0.015) [*]	0.655(± 0.028)
1.0	0.770(± 0.012)	0.770(± 0.012)	0.655(± 0.063)

Table 8: Performance across different α with evaluation metrics NMI, ARI, and dendrogram purity (DP). The best score for each metric is marked with ^{**} and the second-best with ^{*}. All metrics are computed on the test graph / heuristic clustering, and results are averaged over five runs.

C.3 NUMBER OF NEGATIVE SAMPLES

In this section, we evaluate the impact of the number of negative examples per anchor used in the contrastive loss on the performance of our methodology. The results are reported in Table 9. The results suggest that hierarchical clustering quality, as measured by dendrogram purity, tends to improve as the number of negative anchors in the contrastive loss increases. For the flat-clustering metrics (NMI and ARI), however, no clear trend emerges, preventing any firm conclusion about their dependence on the number of negatives.

p	DP	NMI	ARI
1	0.766(± 0.004)	0.774(± 0.013)	0.675(± 0.024) [*]
4	0.769(± 0.009)	0.780(± 0.011)	0.660(± 0.045)
16	0.782(± 0.003) [*]	0.783(± 0.010) [*]	0.674(± 0.048)
32	0.779(± 0.004)	0.787(± 0.012) ^{**}	0.641(± 0.033)
64	0.787(± 0.004) ^{**}	0.774(± 0.012)	0.697(± 0.015) ^{**}

Table 9: Performance across different p with evaluation metrics NMI, ARI, and dendrogram purity (DP). The best score for each metric is marked with ^{**} and the second-best with ^{*}. All metrics are computed on the test graph / heuristic clustering, and results are averaged over five runs.

C.4 APPROACHING THE THEORETICAL CONDITIONS

Cluster homophily. Ideally, homophily would be measured by the spectral norm $\|L - L^\circ\|_{\text{op}}$ between the graph Laplacian L and the ideal block-diagonal Laplacian L° , but this is infeasible for graphs with millions of nodes. As a practical alternative we use the *cut ratio*, the fraction of edges that cross between clusters: a low cut ratio indicates that most edges remain inside clusters and thus reflects strong homophily. On the validation graph the overall cut ratio is 87%; restricted to subgraphs of size 10–100 it is 77%, for size 100–1000 it is 51%, and for size 1000–5000 it is 49%. To assess the significance of these scores given the graph topology, we randomly permuted 1% of node labels and recomputed the cut ratio over 300 trials. For each case we calculated a z-score as the difference between the original score and the mean of the permuted scores, divided by their standard deviation. The corresponding p-value is the empirical probability that a random permutation yields a clustering more homophilic than the original. The resulting z-scores are -9.42 (global), -3.04 (10–100), -1.09 (100–1000), and -1.49 (1000–5000), with all p-values below 0.01, confirming that the observed homophily is highly significant for the graph topology.

Low-pass GNN behavior. For embeddings $H^{(\ell)}$ at layer ℓ , the Dirichlet energy $\mathcal{E}(H^{(\ell)}) = \text{Trace}((H^{(\ell)})^\top L H^{(\ell)}) = \sum_{i=1}^n \lambda_i \|H_i^{(\ell)}\|_2^2$ measures the concentration of $H^{(\ell)}$ on high-frequency eigenvectors. Normalizing by total energy gives the Rayleigh quotient $R(H^{(\ell)}) = \text{Trace}((H^{(\ell)})^\top L H^{(\ell)}) / \text{Trace}((H^{(\ell)})^\top H^{(\ell)})$. A GNN acting as a low-pass filter should yield small Rayleigh quotients that decrease across layers. Across five training runs of a two-layer GAT with default parameters, the Rayleigh quotient decreases from 6.54 for the input embeddings $H^{(0)}$ to 1.29 after the first convolution $H^{(1)}$, then to 1.20 after the first activation (still $H^{(1)}$), and finally to 0.99 at the output $H^{(2)}$ on the validation subgraph. This monotonic drop confirms the expected low-pass filtering behavior.

1026 **D PROOFS OF SECTION 4**
 1027

1028 **D.1 PROOF OF LEMMA 1.**
 1029

1030 We begin by deriving a few spectral properties of the Laplacian L° of the *ideal cluster graph*, in
 1031 which two nodes are adjacent if and only if they belong to the same cluster. It is well known that
 1032 the Laplacian L° of this ideal graph has 0 as an eigenvalue with multiplicity equal to the number of
 1033 connected components—equivalently, the number of clusters (Von Luxburg, 2007). For each cluster
 1034 C_j , the normalized indicator vector

$$1035 \quad u_{j,i}^\circ = \begin{cases} |C_j|^{-1/2}, & \text{if } i \in C_j, \\ 1036 \quad 0, & \text{otherwise,} \end{cases}$$

1038 is an eigenvector associated with the eigenvalue 0, and these vectors form an orthonormal basis of
 1039 the corresponding eigenspace.

1040 The spectral embedding of node i in the *ideal model*, using the first k eigenvectors, is its coordinate
 1041 vector in this basis:

$$1042 \quad (e_i^\circ)_j = \begin{cases} |C_j|^{-1/2}, & \text{if } i \in C_j, \\ 1043 \quad 0, & \text{otherwise.} \end{cases}$$

1045 Consequently, if $i, j \in C_a$ then $e_i^\circ = e_j^\circ$; and if $i \in C_a$ and $j \in C_b$ with $a \neq b$,

$$1046 \quad \|e_i^\circ - e_j^\circ\|_2^2 = \frac{1}{|C_a|} + \frac{1}{|C_b|} \quad \Rightarrow \quad \|e_i^\circ - e_j^\circ\|_2 \geq \sqrt{\frac{2}{S_{\max}}}.$$

1049 We now view the empirical Laplacian L as a perturbation of the ideal Laplacian L° and invoke
 1050 spectral perturbation theory. Let $U_k, U_k^\circ \in \mathbb{R}^{n \times k}$ collect the eigenvectors associated with the k
 1051 smallest eigenvalues of L and L° , respectively. By the Davis–Kahan–type result of Yu et al. (2015),
 1052 there exists an orthogonal matrix $Q \in \mathbb{R}^{k \times k}$ such that

$$1053 \quad \|U_k - U_k^\circ Q\|_F \leq \frac{2\sqrt{2k} \|L - L^\circ\|_{\text{op}}}{\lambda_{k+1}(L^\circ)},$$

1055 where $\|\cdot\|_F$ is the Frobenius norm and $\lambda_{k+1}(L^\circ)$ denotes the $(k+1)$ -th eigenvalue of L° .

1057 Let e_i^s be the spectral embedding of node i obtained from L . Applying the bound row-wise gives,
 1058 for every node i ,

$$1059 \quad \|e_i^s - e_i^\circ Q\|_2 \leq \frac{2\sqrt{2k} \|L - L^\circ\|_{\text{op}}}{\lambda_{k+1}(L^\circ)}.$$

1061 By the triangle inequality and the orthogonality of Q ,

$$1062 \quad \|e_i^s - e_j^s\|_2 \leq \|e_i^s - e_i^\circ Q\|_2 + \|(e_i^\circ - e_j^\circ)Q\|_2 + \|e_j^\circ Q - e_j^s\|_2 \\ 1063 \quad \leq \frac{4\sqrt{2k} \|L - L^\circ\|_{\text{op}}}{\lambda_{k+1}(L^\circ)} + \|e_i^\circ - e_j^\circ\|_2.$$

1066 In particular, if i and j lie in the same cluster, then $e_i^\circ = e_j^\circ$ and

$$1069 \quad \|e_i^s - e_j^s\|_2 \leq \frac{4\sqrt{2k} \|L - L^\circ\|_{\text{op}}}{\lambda_{k+1}(L^\circ)}.$$

1071 A symmetric argument yields the complementary lower bound

$$1072 \quad \|e_i^s - e_j^s\|_2 \geq \|e_i^\circ - e_j^\circ\|_2 - \frac{4\sqrt{2k} \|L - L^\circ\|_{\text{op}}}{\lambda_{k+1}(L^\circ)}.$$

1074 Hence, if i and j belong to different clusters,

$$1076 \quad \|e_i^s - e_j^s\|_2 \geq \sqrt{\frac{2}{S_{\max}}} - \frac{4\sqrt{2k} \|L - L^\circ\|_{\text{op}}}{\lambda_{k+1}(L^\circ)}.$$

1078 Finally, for the ideal cluster graph—a disjoint union of cliques—one has $\lambda_{k+1}(L^\circ) = \frac{S_{\max}}{S_{\max}-1}$,
 1079 recovering the explicit constant used earlier.

1080 D.2 PROOF OF THEOREM 2.
10811082 Recall that $U_k \in \mathbb{R}^{n \times k}$ is the matrix whose columns are the k orthonormal eigenvectors of L associated
1083 with its k smallest eigenvalues. Let U_k^\perp denote the matrix whose columns form an orthonormal
1084 basis of the orthogonal complement of $\text{span}(U_k)$. The block matrix

1085
$$U := [U_k \ U_k^\perp]$$

1086

1087 is therefore orthogonal and provides a full orthonormal basis of \mathbb{R}^n .1088 Under our structural assumption on the GNN, for input features $X \in \mathbb{R}^{n \times d}$ and weight matrix
1089 $W \in \mathbb{R}^{d \times m}$, the linearized GNN can be written

1090
$$H = p(L) XW,$$

1091

1092 where p is a polynomial filter. Using the spectral decomposition $L = UDU^\top$, this becomes

1093
$$H = U p(D) U^\top XW.$$

1094

1095 This representation naturally separates the embedding into its low-frequency and residual components,
1096

1097
$$H = U_k p(D_k) U_k^\top XW + U_k^\perp p(D_k^\perp) (U_k^\perp)^\top XW,$$

1098

1099 highlighting the projection of H onto the informative subspace spanned by U_k and its complement
1100 along U_k^\perp .1101 Let $P_k := U_k U_k^\top$ denote the orthogonal projector onto the eigenspace spanned by U_k . Then

1102
$$(I - P_k)H = U_k^\perp p(D_k^\perp) (U_k^\perp)^\top XW,$$

1103

1104 so the leakage of H outside $\text{span}(U_k)$ is controlled by

1105
$$\begin{aligned} \|(I - P_k)H\|_{\text{op}} &= \|p(D_k^\perp) (U_k^\perp)^\top XW\|_{\text{op}} \\ &\leq \|p(D_k^\perp)\|_{\text{op}} \|XW\|_{\text{op}}. \end{aligned}$$

1106

1107 Because D_k^\perp is diagonal with entries given by the eigenvalues $\lambda_{k+1}, \dots, \lambda_n$ of L , the operator norm
1108 of $p(D_k^\perp)$ is simply the largest absolute value of $p(\lambda_i)$ for $i > k$. Hence

1109
$$\|(I - P_k)H\|_{\text{op}} \leq \left(\max_{i>k} |p(\lambda_i)| \right) \|XW\|_{\text{op}} = \beta \|XW\|_{\text{op}}.$$

1110

1111 Since for any matrix A one has $\max_i \|A_{i,:}\|_2 \leq \|A\|_{\text{op}}$, it follows that for each node i , whose
1112 embedding is the i -th row h_i of H ,

1113
$$\|h_i - (P_k H)_{i,:}\|_2 \leq \|(I - P_k)H\|_{\text{op}} \leq \beta \|XW\|_{\text{op}}.$$

1114

1115 Let $Z := U_k^\top H \in \mathbb{R}^{k \times m}$; then $P_k H = U_k Z$, so that $(P_k H)_{i,:} = (e_i^s)^\top Z$. Therefore, for any nodes
1116 $i, j \in V$,

1117
$$\begin{aligned} \|h_i - h_j\|_2 &\leq \|h_i - (P_k H)_{i,:}\|_2 + \|(e_i^s - e_j^s)^\top Z\|_2 + \|(P_k H)_{j,:} - h_j\|_2 \\ &\leq 2\beta \|XW\|_2 + \|(e_i^s - e_j^s)^\top Z\|_2. \end{aligned}$$

1118

1119 Since $Z = U_k^\top H = p(D_k) U_k^\top XW$, we obtain

1120
$$\|Z\|_{\text{op}} \leq \|p(D_k)\|_{\text{op}} \|U_k^\top XW\|_{\text{op}} \leq \left(\max_{i \leq k} |p(\lambda_i)| \right) \|XW\|_{\text{op}} = \alpha \|XW\|_{\text{op}}.$$

1121

1122 Consequently,

1123
$$\|(e_i^s - e_j^s)^\top Z\|_2 \leq \|e_i^s - e_j^s\|_2 \|Z\|_{\text{op}} \leq \alpha \|XW\|_{\text{op}} \|e_i^s - e_j^s\|_2.$$

1124

1125 Combining the two displays gives the upper bound

1126
$$\|h_i - h_j\|_2 \leq \|XW\|_{\text{op}} (2\beta + \alpha \|e_i^s - e_j^s\|_2).$$

1127

1134 A symmetric lower bound follows from the reverse triangle inequality:
 1135

$$1136 \|h_i - h_j\|_2 \geq \|(e_i^s - e_j^s)^\top Z\|_2 - \|h_i - (P_k H)_{i,:}\|_2 - \|h_j - (P_k H)_{j,:}\|_2.$$

1137 Using the fact that $\|(e_i^s - e_j^s)^\top Z\|_2 \geq \sigma_{\min}(Z) \|e_i^s - e_j^s\|_2$ and recalling that $Z = p(D_k) U_k^\top X W$,
 1138 we obtain

$$1139 \sigma_{\min}(Z) \geq \left(\min_{i \leq k} |p(\lambda_i)| \right) \sigma_{\min}(U_k^\top X W) = \gamma \sigma_{\min}(U_k^\top X W).$$

1140 Hence,

$$1141 \|h_i - h_j\|_2 \geq \gamma \sigma_{\min}(U_k^\top X W) \|e_i^s - e_j^s\|_2 - 2\beta \|X W\|_{\text{op}}.$$

1142 Using the bounds from Lemma 1 and substituting them into the inequalities above, we obtain the
 1143 following estimates.

1144 For nodes i, j in the *same* cluster,

$$1145 \|h_i - h_j\|_2 \leq \|X W\|_{\text{op}} \left(2\beta + \frac{4\sqrt{2k}\alpha}{\lambda_{k+1}(L^\circ)} \|L - L^\circ\|_{\text{op}} \right).$$

1146 For nodes i, j in *different* clusters,

$$1147 \|h_i - h_j\|_2 \geq \gamma \sigma_{\min}(U_k^\top X W) \left(\sqrt{\frac{2}{S_{\max}}} - \frac{4\sqrt{2k}}{\lambda_{k+1}(L^\circ)} \|L - L^\circ\|_{\text{op}} \right) - 2\beta \|X W\|_{\text{op}}.$$

1148 E COMPUTATIONAL COMPLEXITY ANALYSIS

1149 We summarize here the computational costs associated with each step of our pipeline. Let $N = |V|$ denote the number of nodes, $M = |E|$ the number of edges, d the embedding dimension, k_s the maximum number of neighbors sampled at each GNN layer, and k_l the maximum size of the Leiden pre-clusters. Table 10 reports asymptotic time and memory requirements for each stage of the method. These complexity estimates are based on the PyTorch implementations used for the GNN components, the SciPy implementation used for hierarchical agglomerative clustering, and the leidenalg package for the Leiden pre-clustering step.

Step		Time	Memory
Embeddings	Forward pass	$O(Md + Nd^2)$	$O(Nd)$
	Forward pass with sampling	$O(Nk_s^{L-1}d(k_s + d))$	$O(Nd)$
Pre-clustering	Leiden algorithm	$O(M)$	$O(N + M)$
Distance Matrix	Without pre-clustering	$O(N^2d)$	$O(N^2)$
	With pre-clustering	$O(Nk_l d)$	$O(Nk_l)$
HAClustering	Linkage vector	$O(N^2)$	$O(N^2)$
Flat Clustering	Dendrogram cut	$O(N)$	$O(N)$
	Silhouette score	$O(N^2)$	$O(N)$

1150 Table 10: Complexity Analysis.

1151 These results highlight the main computational bottlenecks. Embedding computation scales linearly
 1152 in both N and M , especially when neighbor sampling is applied. In contrast, operations involving
 1153 pairwise distances or hierarchical clustering scale quadratically in N , which motivates the need for
 1154 pre-clustering or highly local sampling strategies. As an illustration, Monath et al. (2021) propose a
 1155 scalable HAC algorithm that mitigates these quadratic costs.

1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187