
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REFINING HEURISTIC-BASED BITCOIN ADDRESS
CLUSTERING WITH GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Bitcoin’s pseudonymous nature makes it challenging to analyze user-level activity,
since a single user may control multiple identifiers (addresses). Existing heuristic-
based methods attempt to identify addresses belonging to the same user, but they
often produce flat cluster assignments with limited modularity and are prone to er-
rors such as merging different users together. In this work, we propose a method
for refining heuristic-obtained clusters by grounding our clustering on contrastive
embeddings yielded by graph neural networks. Our contribution is threefold: (i)
we release a publicly available dataset of Bitcoin transaction graphs containing
a substantial number of clusters; (ii) we propose a methodology for learning ad-
dress embeddings consistent with heuristics, and back it up with solid theoretical
foundations and empirical results; (iii) through hierarchical clustering, we allow a
finer analysis of heuristic clusters and provide a quantitative criterion for flagging
suspicious merges.

1 INTRODUCTION

Bitcoin (Nakamoto, 2009) is the first and most widely adopted cryptocurrency, designed as a decen-
tralized payment system without reliance on a central authority. Its operation is enabled by a peer-to-
peer network that collectively maintains a shared, immutable record of transactions (Antonopoulos,
2017a). This record, known as the blockchain, provides transparency and auditability while pre-
serving a certain level of pseudonymity for its users; it is organized as a chronological sequence of
blocks, each batching the transactions that happened during a certain time interval.

Bitcoin Address Clustering. Bitcoin transactions are pseudonymous in nature, as users are iden-
tified by random pseudonyms called addresses (Antonopoulos, 2017b). A single user can reuse an
address or generate new ones at any time; it is therefore common for a user to control many differ-
ent addresses. Since addresses are generated randomly, there is no direct way to associate multiple
addresses with the same user. While analyzing transaction at the address level can be informative, a
user-level analysis provides greater insights. The task of addresses clustering consists in grouping
together addresses that belong to the same user (without necessarily identifying said user).

Graph Construction from Transactions. Graph-based representations are particularly well
suited for visualizing and analyzing blockchain data. Two primary types of graphs are commonly
employed: those where nodes represent transactions and edges represent the moving bitcoin amounts
(Weber et al., 2019), and those where nodes represent users and edges represent transactions (Bellei
et al., 2024; Schnoering & Vazirgiannis, 2025). In this paper, we focus on the latter, as it offers a
more intuitive representation. Constructing a user-level graph from a set of transactions T typically
involves the following steps (Schnoering & Vazirgiannis, 2025; Bellei et al., 2024; Meiklejohn et al.,
2013; Harrigan & Fretter, 2016):

1. extracting the addresses involved in the transactions T ;
2. clustering the addresses into users using a heuristic H (or a combination thereof) applied to

T , potentially augmented with external information;
3. creating directed edges with associated features between users, derived from the T ;
4. generating node features by aggregating information from edges;
5. incorporating external information (off-chain) into both node and edge features.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Hierarchical Clustering. Hierarchical clustering constructs a hierarchy of nested clusters over
a set of points V endowed with a dissimilarity function d (Heller & Ghahramani, 2005). In the
agglomerative variant, each node initially forms its own cluster. At each step, two clusters A,B ⊂ V
are merged according to a linkage rule based on d. After the final step, all nodes are merged into a
single cluster. This hierarchy is naturally represented by a rooted binary tree, or dendrogram, where
leaves correspond to individual nodes, internal nodes represent successive merges, and node height
indicates the merge distance. An example of dendrogram is illustrated in Figure 1.

Graph Neural Networks (GNNs). GNNs extend neural architectures to graph-structured data by
propagating and transforming node features along edges. At each layer, a node updates its repre-
sentation by aggregating information from its neighbors, allowing the model to capture both local
connectivity and node attributes. By stacking multiple layers, GNNs learn embeddings that encode
multi-hop structural context and can be used for tasks such as node classification, link prediction,
and graph-level inference (Kipf, 2016; Hamilton et al., 2017; Veličković et al., 2017).

Contributions. The main contributions of this paper are threefold:

1. We publicly release a dataset of large-scale Bitcoin transaction graphs with a substantial num-
ber of clusters, enabling the training and evaluation of clustering algorithms at scale.

2. We propose a methodology for learning address embeddings consistent with traditional
blockchain heuristics, supported by theoretical guarantees and empirical validation.

3. We show how these learned representations can refine heuristic-based clustering by detect-
ing and correcting cluster collapses and by providing a hierarchical clustering that improves
intelligibility and visualization.

2 RELATED WORKS

Heuristics-Based Clustering. To achieve address clustering, a variety of human-made, rule-based
heuristics have been proposed (Schnoering et al., 2024), often based on behavioral patterns and hu-
man biases. The most prominent is the common-input heuristic, which assumes that all addresses
providing inputs to the same transaction are controlled by a single entity. Clustering heuristics play
a crucial role in Bitcoin analysis by approximating user-level structures from pseudonymous trans-
action data. They allow researchers and investigators to reduce complexity, uncover patterns of
address ownership, and make sense of large-scale transaction graphs. Beyond their methodological
value, such heuristics have become essential tools in several domains: in forensic contexts (Meikle-
john et al., 2013; Foley et al., 2019); in compliance and anti–money-laundering efforts (Möser et al.,
2013; Yang et al., 2023), and in privacy research (Androulaki et al., 2013).

Other Methods for Address Clustering. Aside from heuristic clustering, other methods have
been used on bitcoin transaction networks to similar tasks. Machine-learning based methods tend
to focus more on the orthogonal task of address classification (Toyoda et al., 2018; Lin et al., 2019;
Garin & Gisin, 2023; Sie et al., 2025; Jia et al., 2018; Lee et al., 2020), which consists in identifying
the usage of addresses (e.g. scams, marketplaces). Some of those approaches (Kang et al., 2020)
use heuristic clustering as a first step before training a classifier. More recently, approaches leverage
GNNs to obtain powerful representation of transaction graphs for downstream tasks (Zhao et al.,
2025; Zhang et al., 2025; Huang et al., 2022).

Enhancing Clustering Heuristics with GNNs. Despite their usefulness, heuristic methods have
notable limitations. They yield only flat cluster assignments—single-level groupings in which ad-
dresses are either linked or not—making large clusters difficult to interpret. Some heuristics also
merge addresses based on a single transaction, which can erroneously combine unrelated users and
cause cluster collapse (Androulaki et al., 2013; Harrigan & Fretter, 2016). Only a few studies at-
tempt to refine or correct the traditional heuristics. Möser & Narayanan (2022) use a random forest to
estimate the likelihood that a heuristic-based merge is valid and block merges with low confidence,
thereby mitigating cluster collapse. Similarly, Ermilov et al. (2017) uses off-chain information as
votes for separating clusters.

Our method differs in key ways. Instead of assigning confidence scores to individual merges, we
learn address embeddings that capture the global transaction structure while staying consistent with

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

heuristic clusters. Agglomerative hierarchical clustering on these embeddings yields a dendrogram
that reveals nested substructures and provides a principled criterion for detecting suspicious merges,
producing both a refined flat clustering and a multi-resolution view of the address graph.

3 METHODOLOGY

3.1 METHODOLOGY OVERVIEW

We present a method to learn address embeddings consistent with standard heuristics, mapping
nodes from the same cluster close together and pushing nodes from different clusters apart. These
embeddings are then used to build dendrograms whose hierarchical structure reveals discrepancies
in the heuristic partitions—most notably cases of cluster collapse—and to propose corresponding
corrections. Throughout the paper, let G = (V,E) denote the graph, where V is the set of nodes
(Bitcoin addresses) and E the set of edges (value transfers). We write C = {C1, . . . , Ck} for a
partition of V (e.g., obtained via heuristics), with k the number of clusters.

Rationale for the Two-Stage Methodology. Our approach is in line with a broad body of prior
work and offers a key practical advantage: it naturally accommodates dynamic graphs with contin-
uously arriving addresses and transactions, closely reflecting real-world blockchain conditions. In
contrast, most end-to-end GNN pooling methods (Ying et al., 2018; Bianchi et al., 2020) construct
a fixed hierarchy of merged nodes whose depth and cluster sizes are predetermined by the network
architecture. Such constraints hinder adaptation to a continually growing transaction graph and re-
duce the interpretability of the resulting merges. Other pooling approaches (Lee et al., 2019) merely
score and retain important nodes without producing a true hierarchical clustering, offering saliency
rather than an interpretable dendrogram of successive merges.

3.2 DATA ACQUISITION AND GRAPH CONSTRUCTION

We construct our graphs using the pipeline of Schnoering & Vazirgiannis (2025)1. The procedure
follows the steps outlined in the introduction—parsing the blockchain, extracting transactions, and
forming entity-to-entity links—but, unlike the original work, we do not pre-cluster addresses into
user entities. The resulting network is a directed graph with nodes as addresses. User clusters serving
as ground truth for supervised learning are obtained with the same set of address-clustering heuristics
as in Schnoering et al. (2024), also implemented in the above GitHub repository. Constructing a
graph from the entire history would yield billions of nodes and edges, rendering most algorithms
intractable. We therefore sample a subset of transactions from a contiguous block interval to build
the graph; the sampling strategy is described in the Appendix A.1.1. For complete implementation
details, we refer readers to the original paper and accompanying code. The raw blockchain data for
graph construction and clustering were obtained by running Bitcoin Core2.

3.3 LEARNING NODE EMBEDDINGS WITH GNNS AND CONTRASTIVE LOSS

We train a GNN g to produce node embeddings consistent with the clustering C: nodes within the
same cluster (user) should have similar embeddings, whereas embeddings of nodes from different
clusters should be dissimilar. To enforce this, we adopt the contrastive InfoNCE loss (Oord et al.,
2018; Chen et al., 2020)

L = EPα

[
− log

exp
(
g(X)·g(X+)/τ

)
exp
(
g(X)·g(X+)/τ

)
+
∑p

i=1exp
(
g(X)·g(X−

i)/τ
)] , (1)

where Pα is the sampling distribution over anchor nodes, τ is a temperature hyperparameter, and p is
the number of negative samples. For each anchor X ∈ V , the positive sample X+ is drawn from the
same cluster, while the negatives {X−

i }pi=1 come from different clusters. Clusters are drawn from
a mixture of uniform and size-proportional sampling controlled by α, and nodes are then sampled
uniformly within each chosen cluster. Full details of this sampling scheme are provided in Appendix.

1https://github.com/hugoschnoering2/BTCGraphConstruction
2https://bitcoin.org/en/bitcoin-core

3

https://github.com/hugoschnoering2/BTCGraphConstruction
https://bitcoin.org/en/bitcoin-core

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Although the formula omits explicit normalization, we normalize embeddings in practice so that the
dot product computes cosine similarity.

3.4 DETECTING AND CORRECTING CLUSTER COLLAPSE

We perform agglomerative hierarchical clustering on the embeddings using cosine distance, consis-
tent with the contrastive loss. Starting from the coarse partition C, we cluster each Ci independently,
building a dendrogram that records the merge distances within every initial community.

Given a threshold λ > 0, we define a collapse
as any merge whose cosine distance exceeds λ.
This provides a principled way to flag suspicious
merges—likely combining addresses from dif-
ferent users—and highlights potential failures
of the original flat clustering. To correct such
collapses, we split the affected clusters into their
hierarchical subcomponents, yielding a refined
partition that better reflects the true user structure.

Mathematically, each dendrogram induces an ul-
trametric du on the node set V , where du(x, y)
is the height of the lowest common ancestor of x
and y. Two nodes x and y are grouped together
if they belong to the same initial cluster Ci and
satisfy du(x, y) < λ. This refinement process is
illustrated in Figure 1.

1 2 3 4 5 6 71 2 3 4 5 6 7
D
istan

ce

λ1

λ2

λ3

λ4

λ5

λ6

Nodes in cluster Ci

Figure 1: Example of a refinement. The dotted
line represents the cut. Sub-clusters are distin-
guished by node fill patterns. Merges above the
threshold are treated as collapses.

A practical variant of this approach uses heuristic-generated clusters as the initial partition, moti-
vated by the observation that such heuristics often merge distinct communities (i.e., distinct Bitcoin
users).

4 THEORETICAL FOUNDATIONS OF THE METHODOLOGY

We show that node embeddings learned by GNNs naturally separate nodes according to cluster
membership in a hierarchical dendrogram, under appropriate conditions. Let d be the working
distance on V , and build a dendrogram from d using single, average, or complete linkage. Assume
the ground-truth clusters are well d-separated: there exist constants 0 < r < s such that d(x, y) ≤
r < s ≤ d(x, z) for all x, y ∈ Cℓ and every z ∈ Cm with ℓ ̸= m. It then follows that any horizontal
cut of this dendrogram at a threshold λ ∈ (r, s) exactly recovers C; the resulting flat clustering
coincides with the ground truth. Although these conditions are stronger than typically encountered
in practice, they provide a clean theoretical framework for the analysis that follows and already
motivate the use of a contrastive loss. The proofs of these results are provided in Appendix D.

Notation. Let L be the Laplacian of G with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn and associated
orthonormal eigenvectors u1, . . . , un, which form an orthonormal basis of Rn. Let U ∈ Rn×n

be the matrix whose columns are these eigenvectors. The spectral decomposition of L is L =
UDU⊤, where D = diag(λ1, . . . , λn) is the diagonal matrix of eigenvalues. Let Uk ∈ Rn×k

be the matrix formed by the first k eigenvectors. For a node i ∈ V , its spectral embedding is
esi = (ui,1, ui,2, . . . , ui,k) ∈ Rk, where k is the number of clusters in the partition C. We write
∥x∥2 for the Euclidean norm of a vector x. For any matrix A, A⊤ denotes its transpose, σmin(A)
the smallest singular value of A, and ∥A∥op for the operator norm of A induced by ∥ · ∥2.

4.1 RESULTS

Building on the perfect–cut criterion above, our goal is to derive a separability condition on the
problem data that guarantees a dendrogram built from GNN embeddings admits such a perfect cut.
Both results in this section assume that the working distance is Euclidean. The arguments, however,
remain valid for cosine distance provided that the GNN embeddings lie on a common sphere. As a

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

first step, Lemma 1 establishes an analogous condition for spectral embeddings. This intermediate
result is natural because GNNs typically act as low-pass spectral filters (Nt & Maehara, 2019), so
their embeddings concentrate in the subspace spanned by the Laplacian eigenvectors with the small-
est eigenvalues, i.e., the classical spectral embeddings (Von Luxburg, 2007). The result involves the
spectral distance between the Laplacian L and the Laplacian L◦ of an ideal cluster graph, where
two nodes are connected if and only if they belong to the same cluster. This ideal graph represents
a perfectly homophilic scenario in which edges exist only within clusters. The appearance of this
quantity is motivated by empirical observations on data, where addresses controlled by the same
user tend to form connected subgraphs.

Lemma 1. The spectral embeddings are cluster–separable whenever

M := 4
√
2k
(
1− 1

Smax

)
∥L− L◦∥op <

1√
2Smax

.

where Smax is the size of the largest cluster, and L◦ the Laplacian of the ideal cluster graph.

The proof in Appendix D.1 relies on a version of the Davies–Kahan theorem from matrix perturba-
tion theory. The separability condition is satisfied whenever the graph Laplacian L is sufficiently
close to the ideal block–diagonal Laplacian.

We assume that the node embeddings H produced by the GNN can be written as H = p(L)XW ,
where p is a polynomial, X the matrix of initial node features, and W the learned weight matrix (as
in the linearized GCN (Kipf, 2016), for example). Using the spectral decomposition L = UDU⊤,
this becomes

H = U D̃ U⊤XW,

where D̃ = diag(p(λ1), . . . , p(λn)). The polynomial p acts as a spectral filter, selectively ampli-
fying or attenuating the eigencomponents of L according to their eigenvalues. In the special case
of an ideal low-pass filter, p(λi) = 1{i≤k}, so the embeddings lie entirely in the subspace spanned
by the first k eigenvectors.To measure how well a GNN approximates this ideal filter, we define
α = maxi≤k |p(λi)|, β = maxi>k |p(λi)|, and γ = mini≤k |p(λi)|. Theorem 2 transfers this
spectral result to the learned GNN embeddings, yielding an equivalent separability condition for the
perfect cut—a result that, to our knowledge, is novel.

Theorem 2. The GNN embeddings are cluster–separable whenever

∥XW∥op
(
β + αM

)
< γ σmin

(
U⊤
k XW

) (√
2/Smax −M

)
.

The embeddings learned by the GNN inherit the geometric separability of the spectral embeddings,
up to perturbations controlled by the low-pass approximation quality of p and by the alignment of
the feature matrix XW with the leading eigenspace. Because the left-hand side of the inequality is
positive, the separability condition holds only if three requirements are met: (i) γ > 0, so the GNN
retains all eigencomponents of the informative subspace; (ii) σmin(U

⊤
k XW) > 0, ensuring that the

transformed features are not orthogonal to this subspace; and (iii) M ≤
√
2/Smax, meaning the ob-

served graph is sufficiently close to the ideal block-diagonal Laplacian so that spectral embeddings
themselves already separate the clusters.

4.2 RELATED WORKS

Spectral embeddings have long been central to graph clustering (Von Luxburg, 2007). Most the-
oretical analyses relate these embeddings to the optimal solutions of node-partitioning problems,
including RatioCut minimization (Von Luxburg, 2007), k-way partitioning (Peng et al., 2015), and
maximum-margin clustering (Hofmeyr, 2020). The guarantees in these works require the reference
clustering to coincide with the optimal solution of the respective problem. Our approach makes
no such assumption. We instead study graphs that are small perturbations of an ideal cluster graph
whose connected components match the ground-truth clusters, and we apply matrix perturbation the-
ory to obtain our guarantees. This technique was also used by Ng et al. (2001) to bound intra-cluster
variance. In contrast, we establish pairwise bounds—both within and across clusters—yielding sep-
arability conditions that ensure a perfect cut.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 EXPERIMENTAL SETUP

All experiments were performed on a Mac M3 Max equipped with 36 GB of RAM, using only CPU
computation and no GPU acceleration.

We use the pipeline described in Section 3 to generate graphs from Bitcoin transactions. To avoid
information leakage, transaction sets are sampled from non-overlapping block intervals so that no
transaction appears in more than one graph. In total, we construct three graphs for training, one for
validation, and one for testing. The main characteristics of these graphs are provided in Appendix A,
and all datasets, including the graphs used in the experiments with ground truth labels in Section 6.3,
are publicly available at *** under the CC BY 4.0 license.

Before being fed to the GNNs, features undergo the normalization and log-scaling procedure de-
tailed in Appendix B.2. This step ensures consistent feature distributions across the different graphs.

5.1 TRAINING

Setup. We train two-layer GNNs to minimize the contrastive loss of Equation equation 1, moni-
toring progress by evaluating the same loss on a validation graph. We experiment with three popular
architectures: Graph Convolutional Network (GCN) (Kipf, 2016), GraphSAGE (Hamilton et al.,
2017), and Graph Attention Network (GAT) (Veličković et al., 2017). Optimization uses Adam
(Kingma & Ba, 2014) with a learning rate halved when the validation loss does not improve for 20
consecutive epochs. Because we have three training graphs, we cycle through them every 15 epochs
to promote generalization. To accelerate training, we adopt neighborhood sampling (Hamilton et al.,
2017), drawing 15 neighbors for the first GNN layer and 5 for the second. All experiments rely on
the PyTorch Geometric implementations of GNN models, the Adam optimizer, learning-rate
scheduler, and neighbor sampling. The code used in this study is publicly available at ***. Unless
otherwise specified, all hyperparameters are listed in Table 6 of Appendix B.3.

Model Variations. We evaluate three main variations of the base model. (1) Because the con-
structed graphs are directed, we optionally symmetrize them before input to the GNN. (2) Since
edges carry attributes, we can include or ignore these edge features whenever the architecture sup-
ports them. (3) We optionally add a structural positional encoding to enhance locality. GNN mes-
sage passing tends to make nodes with similar neighborhoods appear similar—even when they are
far apart (Xu et al., 2019)—which can spuriously cluster structurally alike but unrelated nodes. Yet
Bitcoin addresses belonging to the same user are usually close in the graph, as they often participate
in the same transactions. To exploit this property, we follow the position-aware GNN framework
(You et al., 2019): we select the highest-degree nodes as landmarks and represent each node by its
vector of shortest-path distances to these landmarks. These distances are converted to similarities
via x 7→ (1 + x)−1 and normalized dimension-wise. The resulting distance-based vector is then
concatenated with the original node feature vector before message passing.

5.2 EVALUATION

We evaluate our method by its ability to recover both hierarchical and flat clusterings consistent with
the ground truth. For the hierarchical step, we apply agglomerative clustering with cosine distance
on the GNN embeddings using average linkage. Because the graphs are large and computing the full
pairwise distance matrix is impractical, we first obtain a coarse partition with the Leiden algorithm
(Traag et al., 2019), limiting the maximum community size to 65 000 nodes to control memory
usage, following the strategy described in Section 3.4.

Metrics. We score the resulting dendrograms with dendrogram purity (Heller & Ghahramani,
2005), which ranges from 0 to 1 and measures how well nodes from the same ground-truth cluster
merge together. Flat clusterings are obtained by cutting each dendrogram at a threshold λ (Figure 1),
selected by grid search to maximize the silhouette score (Rousseeuw, 1987), a standard criterion for
choosing the cut level in hierarchical clustering. We then compare the flat partition to the ground
truth using Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI) (Vinh et al.,
2009): NMI captures global agreement and is robust to cluster-size imbalance, while ARI empha-
sizes local consistency but is more sensitive to class imbalance. Additional implementation details

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model Sym. Edge feat. # LM DP NMI ARI
Louvain ✓ na na na 0.642 (±0.000) 0.289 (±0.000)
Leiden ✓ na na na 0.665 (±0.000) 0.311 (±0.000)

Random GAT ✓ × 0 0.691 (±0.004) 0.759 (±0.011) 0.586 (±0.009)
GAE ✓ × 0 0.741 (±0.006) 0.746 (±0.006) 0.325 (±0.213)
DIG ✓ × 0 0.684 (±0.004) 0.755 (±0.008) 0.607 (±0.041)
GAT × × 0 0.649 (±0.011) 0.714 (±0.010) 0.320 (±0.043)

× × 64 0.689 (±0.003) 0.745 (±0.004) 0.611 (±0.025)
× × 128 0.693 (±0.002) 0.743 (±0.004) 0.590 (±0.004)
× × 256 0.685 (±0.002) 0.741 (±0.003) 0.589 (±0.002)

GAT × ✓ 0 0.642 (±0.011) 0.705 (±0.012) 0.333 (±0.046)
× ✓ 64 0.688 (±0.002) 0.743 (±0.003) 0.593 (±0.003)
× ✓ 128 0.692 (±0.004) 0.743 (±0.004) 0.596 (±0.006)
× ✓ 256 0.686 (±0.004) 0.739 (±0.004) 0.587 (±0.003)

GAT ✓ × 0 0.783 (±0.004) 0.775 (±0.008) 0.702 (±0.033)∗

✓ × 64 0.796 (±0.003)∗∗ 0.770 (±0.002) 0.707 (±0.012)∗∗

✓ × 128 0.793 (±0.002) 0.770 (±0.008) 0.672 (±0.029)
✓ × 256 0.792 (±0.002) 0.771 (±0.003) 0.665 (±0.029)

GAT ✓ ✓ 0 0.778 (±0.005) 0.782 (±0.012)∗ 0.677 (±0.031)
✓ ✓ 64 0.794 (±0.003)∗ 0.765 (±0.005) 0.661 (±0.052)
✓ ✓ 128 0.789 (±0.004) 0.771 (±0.004) 0.691 (±0.043)
✓ ✓ 256 0.787 (±0.005) 0.765 (±0.004) 0.639 (±0.053)

GCN ✓ × 0 0.724 (±0.003) 0.767 (±0.002) 0.592 (±0.006)
GraphSage ✓ × 0 0.768 (±0.004) 0.791 (±0.002)∗∗ 0.622 (±0.016)

Table 1: Performance across different variations: graph symmetrization (Sym.), edge features (Edge
feat.), number of landmarks (# LM), with evaluation metrics NMI, ARI, and dendrogram purity
(DP), non applicable (na). The best score for each metric is marked with ∗∗, the second-best with ∗

and the performance of the model with all default parameters is underlined.

on how these metrics are computed, as well as their formal definitions, are provided in Appendix B.4.
For all metrics we evaluate only nodes with degree ≥ 2, excluding peripheral addresses that often
lack sufficient transactional context for reliable user clustering and can artificially inflate cluster
counts, making global metrics less informative.

Baselines. To highlight the added value of the contrastive loss, we compare our model to three
unsupervised baselines: (i) an untrained GAT, (ii) a GAT trained as a non-probabilistic Graph Auto-
Encoder (GAE) (Kipf & Welling, 2016), and (iii) a GAT trained with Deep Graph Infomax (DGI)
(Veličković et al., 2018), which maximizes mutual information between local and global represen-
tations. All baselines produce node embeddings that are clustered exactly as in our contrastive
pipeline. Implementation details are provided in Appendix B.5.

6 RESULTS

6.1 ABLATION STUDY

We report in Table 1 the performance results for different variations, including graph symmetriza-
tion, use of edge features, and the number of landmarks in the structural embedding. For each model
variation, we averaged the results over five runs with different random seeds on the test graph. Ad-
ditional experiments on the embedding dimension, the sampling parameter α, and the number of
negative anchors in the contrastive loss, as well as empirical evidence that our method approaches
the conditions required by the theoretical results, are reported in Appendix C.

All baselines achieve ARI scores above zero—better than random—showing that graph topology
alone conveys cluster information and supporting the homophily hypothesis. An untrained GAT
already surpasses Louvain and Leiden, highlighting the strong signal in the input features. GAE
yields higher dendrogram purity than the random GAT but lower NMI and ARI, consistent with
its link-prediction loss, which encourages neighbors to share embeddings and can merge unrelated
users. DGI matches the untrained GAT on dendrogram purity and NMI while achieving a stronger
ARI, suggesting that its mutual-information objective promotes sharper local separation.

Results show that a GAT trained on a non-symmetrized graph generally performs worse on all met-
rics than an untrained GAT, highlighting the importance of reciprocal connections for capturing
address relationships. Adding the structural positional encoding improves performance in the non-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

symmetric setting, closing the gap with the untrained GAT. In contrast, incorporating edge features
in the non-symmetric case offers no clear benefit and in fact slightly degrades performance.

All models trained on symmetrized graphs outperform the baselines on every metric. Using the
structural positional encoding generally increases dendrogram purity—improving hierarchical clus-
tering—while slightly reducing NMI and ARI, which measure flat clustering quality. This suggests
that the silhouette score may be suboptimal for selecting the dendrogram cut. Among landmark-
based encodings, the best results occur with 64 landmarks, followed by 128 and 256. The decline in
performance as the number of landmarks increases—and the lack of gains from incorporating edge
features despite their additional information—points to potential training instabilities or feature re-
dundancy, highlighting the need for careful tuning.

For the alternative architectures, GCN and GraphSage, only the NMI score of GraphSage exceeds
that of GAT under the same settings, supporting our choice of GAT as the primary architecture.

6.2 ILLUSTRATING CLUSTER REFINEMENT

We address potential cluster collapse using the procedure of Section 3. Starting from the heuristic
clustering, we build a hierarchical clustering within each heuristic cluster and obtain a refined flat
partition by cutting each dendrogram at the threshold λ that maximizes the silhouette score. Figure 2
shows the resulting dendrogram for a representative cluster, with the selected cut level indicated. Its
structure reveals the sequence of merges and highlights several late merges occurring above the
optimal threshold. In particular, the final two subclusters merge at a cosine distance of 0.45, well
above the chosen cut, indicating that they should remain separate. A few other merges also exceed
the threshold, although most nodes merge below it into a single coherent group.

Figure 2: Dendrogram for a representative heuristic cluster. The dashed horizontal line indicates the
cut level λ selected to maximize the global silhouette score.

Figure 3 displays the minimal subgraph induced by the cluster and its neighbors. Cutting the den-
drogram at the optimal threshold reveals coherent sub-groups, offering a clearer view of the cluster’s
internal organization. This approach naturally scales to much larger clusters, tens of thousands of
nodes in our data and potentially millions in larger transaction sets, where direct graph visualization
becomes impractical. Dendrograms provide a hierarchical, navigable representation that exposes
meaningful substructures at multiple resolutions.

6.3 ADDITIONAL EXPERIMENTS WITH GROUND-TRUTH LABELS

In each experiment, we select transactions for which ground-truth labels indicate whether two ad-
dresses do or do not belong to the same cluster. For each transaction with labels, we extract a
local transaction subgraph using a sampling procedure adapted from Section 3.2 (details in Ap-
pendix A.1.2), and construct the corresponding address-level graph. For each graph, we compute
(1) the clustering from standard heuristics, (2) the clustering from our default GNN–HAC pipeline,
and (3) a hybrid clustering where GNN embeddings refine the heuristic output, as described in Sec-
tion 3.4. We evaluate three linkage criteria and three dendrogram-cutting strategies (Appendix ??).
Because some involved addresses are labeled, we can assess clustering quality with standard binary
metrics: correct predictions group same-entity addresses or separate different ones, while errors cor-
respond to incorrect merges or splits. To avoid overweighting transactions with many labels, we
evaluate at most five randomly selected labeled pairs per graph.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: Minimal subgraph induced by the representative cluster and its immediate neighbors.
Nodes belonging to the cluster are numbered, while external neighbors remain unnumbered. Cutting
the dendrogram at the optimal threshold reveals distinct sub-groups, shown here with different gray
shades and marker shapes.

Model Link. Cut TP(%) FP(%) FN(%) TN(%) bACC(%) F1(%)
Heuristics na na 42.9 22.5 16.0 18.6 59.1 59.2
GNN-HAC avg. sil. 46.0 20.9 12.9 20.1 63.7 63.8
GNN-HAC avg. inc. 58.9 41.1 0.0 0.0 50.0 37.1
GNN-HAC avg. gap. 52.1 28.7 6.8 12.4 59.4 57.9
GNN-HAC ward sil. 48.6 22.5 10.3 18.6 63.9 64.0
GNN-HAC com. sil. 38.8 16.1 20.1 25.0 63.4 63.1
Hybrid avg. sil. 40.7 11.7 18.2 29.4 70.3∗∗ 69.7∗∗

Hybrid avg. inc. 42.9 22.5 16.0 18.6 59.1 59.2
Hybrid avg. gap. 42.4 18.5 16.5 22.6 63.5 63.5
Hybrid ward sil. 42.2 22.5 16.7 18.6 58.5 58.6
Hybrid com. sil. 37.6 10.6 21.3 30.5 69.0∗ 67.9∗

Table 2: Clustering performance with ground-truth entity labels. Linkage (Link.) criteria: aver-
age linkage (avg.), Ward linkage (ward), and complete linkage (com.). Dendrogram cut methods:
silhouette-based cut (sil.), inconsistency cut (inc.), and largest-gap cut (gap.). Metrics reported in-
clude true positives (TP), false positives (FP), false negatives (FN), true negatives (TN), along with
balanced accuracy (bACC), defined as the mean of positive and negative recalls, and the macro-
averaged F1 score (F1). The best score for each metric is marked with **, the second-best with *.

6.3.1 ENTITY LABELS

We use the dataset of roughly 100,000 addresses labeled with entity names from Schnoering &
Vazirgiannis (2025). After excluding addresses linked to individuals, we sample 500 transactions
between blocks 550,000 and 700,000 that involve at least two distinct labeled addresses. Addresses
associated with the same entity should fall in the same cluster, while those linked to different entities
should not. Results are reported in Table 2.

The average-linkage / silhouette-score setting yields substantial improvements over the heuristic
baselines. The best results are obtained with the refinement pipeline, underscoring the importance
of the hybrid approach: macro-F1 and accuracy increase by more than 10%, and false positives are
reduced by half, effectively preventing cluster collapses. Complete linkage performs almost as well,
with very similar results. In contrast, Ward linkage is more mixed: it appears particularly effective
only when heuristic clusters are not further refined. The largest-gap criterion improves heuristic
results only within the refinement step. Finally, the inconsistency criterion is not well suited to our
task, as it leads to over-clustering, reflected by the high false-positive rate.

6.3.2 COINJOIN TRANSACTION LABELS

CoinJoin transactions involve many users and are specifically designed to defeat the common-input
heuristic (Schnoering & Vazirgiannis, 2025). Based on analyses of open-source CoinJoin proto-
col implementations, Schnoering & Vazirgiannis (2023) proposed heuristics capable of detecting

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Model Link. Cut TN(%)
Heuristics na na 0.
GNN-HAC avg. sil. 6.5
GNN-HAC ward sil. 11.5
GNN-HAC com. sil. 25.5
Hybrid avg. sil. 2.0
Hybrid ward sil. 0.3
Hybrid com. sil. 8.0

Table 3: Clustering performance with ground-truth CoinJoin labels. Results are shown for average
linkage (avg.) combined with three dendrogram cut methods: silhouette-based cut (sil.), inconsis-
tency cut (inc.), and largest-gap cut (gap.). The evaluation metric is the true-negative rate (TN).

most such transactions. In these transactions, all input addresses are expected to belong to different
clusters. For each protocol examined in Schnoering & Vazirgiannis (2023), we randomly selected
100 transactions between blocks 550,000 and 700,000. As these transactions contain only negative
cases, performance is measured solely through the true-negative rate. Classical heuristics without
CoinJoin-aware protections, as noted in Schnoering et al. (2024), achieve a score of zero. Results
for the different clustering methods are reported in Table 3.

Using the embeddings reduces the number of false positives arising from CoinJoin transactions.
This effect is particularly strong in the setting without heuristic-cluster refinement, where complete
linkage lowers false positives by roughly one quarter. In the refinement setting, however, the gain
remains modest, either because the threshold selection is suboptimal or because the dendrogram
structure does not sufficiently expose dubious merges. Robustness to CoinJoin transactions could
also be improved by explicitly incorporating them as true negative examples in the contrastive loss.

CONCLUSION AND LIMITATIONS

This work presents a principled framework for refining heuristic-based Bitcoin address clustering
through contrastive GNN embeddings that remain consistent with standard heuristics while uncov-
ering richer hierarchical structure. Starting from classical clustering rules, our method learns embed-
dings that separate users in latent space and applies agglomerative hierarchical clustering to reveal
substructures and flag suspicious merges. Together, these elements provide a unified toolkit—data,
theory, and methodology—for moving from flat heuristic clusters to interpretable, multi-resolution
user graphs. A key limitation, however, is the limited amount of ground-truth labels available for
evaluating user clusters at scale.

An important direction for future work is to adapt this procedure to a dynamic transaction graph
that grows as new blocks and addresses appear, enabling online refinement of user clusters. A key
challenge will be scalability. While node embeddings can be approximated by sampling subgraphs
of manageable size, constructing the hierarchical structure is far less scalable, as illustrated in Ap-
pendix E. Nevertheless, this limitation can be partially mitigated by sampling very local subgraphs,
either around specific transactions or within narrow temporal windows, which keeps graph sizes
controlled while maintaining strong clustering performance. Future research should therefore focus
on scalable hierarchical clustering techniques capable of handling continuously evolving blockchain
graphs.

LLM Usage The research ideas, work and content presented in this paper was fully designed and
made by the authors. LLMs were solely used in improving grammar and language a-posteriori, with
no contribution besides reformulating for clarity purpose. In particular, no new idea or element was
introduced through the use of an LLM.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Elli Androulaki, Ghassan O Karame, Marc Roeschlin, Tobias Scherer, and Srdjan Capkun. Eval-
uating user privacy in bitcoin. In International conference on financial cryptography and data
security, pp. 34–51. Springer, 2013.

Andreas M. Antonopoulos. Mastering bitcoin: Unlocking digital cryptocurrencies. In Mastering
Bitcoin: Unlocking Digital Cryptocurrencies (2nd ed.), chapter 2. O’Reilly Media, 2017a.

Andreas M. Antonopoulos. Mastering bitcoin: Unlocking digital cryptocurrencies. In Mastering
Bitcoin: Unlocking Digital Cryptocurrencies (2nd ed.), chapter 4. O’Reilly Media, 2017b.

Claudio Bellei, Muhua Xu, Ross Phillips, Tom Robinson, Mark Weber, Tim Kaler, Charles E Leis-
erson, Jie Chen, et al. The shape of money laundering: Subgraph representation learning on the
blockchain with the elliptic2 dataset. arXiv preprint arXiv:2404.19109, 2024.

Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph neural
networks for graph pooling. In International conference on machine learning, pp. 874–883.
PMLR, 2020.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In Proceedings of the 37th International Conference
on Machine Learning (ICML), pp. 1597–1607. PMLR, 2020.

Dmitry Ermilov, Maxim Panov, and Yury Yanovich. Automatic bitcoin address clustering. In 2017
16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 461–
466, 2017. doi: 10.1109/ICMLA.2017.0-118.

Sean Foley, Jonathan R Karlsen, and Tālis J Putniņš. Sex, drugs, and bitcoin: How much illegal
activity is financed through cryptocurrencies? The review of financial studies, 32(5):1798–1853,
2019.

Leonid Garin and Vladimir Gisin. Machine learning in classifying bitcoin addresses. The Journal of
Finance and Data Science, 9:100109, 2023. ISSN 2405-9188. doi: https://doi.org/10.1016/j.jfds.
2023.100109. URL https://www.sciencedirect.com/science/article/pii/
S2405918823000259.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Martin Harrigan and Christoph Fretter. The unreasonable effectiveness of address clustering. In 2016
intl ieee conferences on ubiquitous intelligence & computing, advanced and trusted computing,
scalable computing and communications, cloud and big data computing, internet of people, and
smart world congress (uic/atc/scalcom/cbdcom/iop/smartworld), pp. 368–373. IEEE, 2016.

Katherine A Heller and Zoubin Ghahramani. Bayesian hierarchical clustering. In Proceedings of
the 22nd international conference on Machine learning, pp. 297–304, 2005.

David P Hofmeyr. Connecting spectral clustering to maximum margins and level sets. Journal of
Machine Learning Research, 21(18):1–35, 2020.

Zhengjie Huang, Yunyang Huang, Yu Zheng, Yizhou Zhang, and Xiaohui Li. Demystifying bitcoin
address behavior via graph neural networks. In International Conference on Database Systems
for Advanced Applications (DASFAA), pp. 257–273. Springer, 2022.

Cong Jia, Zhiqiang Zhou, Yujie Wang, and Ke Xu. Identifying bitcoin users using deep neural
network. In International Conference on Algorithms and Architectures for Parallel Processing
(ICA3PP), pp. 56–70. Springer, 2018.

Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse in
contrastive self-supervised learning. arXiv preprint arXiv:2110.09348, 2021.

11

https://www.sciencedirect.com/science/article/pii/S2405918823000259
https://www.sciencedirect.com/science/article/pii/S2405918823000259

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Changhoon Kang, Chaehyeon Lee, Kyungchan Ko, Jongsoo Woo, and James Won-Ki Hong. De-
anonymization of the bitcoin network using address clustering. In Zibin Zheng, Hong-Ning Dai,
Xiaodong Fu, and Benhui Chen (eds.), Blockchain and Trustworthy Systems, pp. 489–501, Sin-
gapore, 2020. Springer Singapore. ISBN 978-981-15-9213-3.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

TN Kipf. Semi-supervised classification with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Chaehyeon Lee, Sajan Maharjan, Kyungchan Ko, Jongsoo Woo, and James Won-Ki Hong. Machine
learning based bitcoin address classification. In Zibin Zheng, Hong-Ning Dai, Xiaodong Fu,
and Benhui Chen (eds.), Blockchain and Trustworthy Systems, pp. 517–531, Singapore, 2020.
Springer Singapore. ISBN 978-981-15-9213-3.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International confer-
ence on machine learning, pp. 3734–3743. pmlr, 2019.

Yu-Jing Lin, Po-Wei Wu, Cheng-Han Hsu, I-Ping Tu, and Shih-wei Liao. An evaluation of bitcoin
address classification based on transaction history summarization. In 2019 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), pp. 302–310, 2019. doi: 10.1109/BLOC.
2019.8751410.

Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy, Geoffrey M
Voelker, and Stefan Savage. A fistful of bitcoins: characterizing payments among men with no
names. In Proceedings of the 2013 conference on Internet measurement conference, pp. 127–140,
2013.

Nicholas Monath, Kumar Avinava Dubey, Guru Guruganesh, Manzil Zaheer, Amr Ahmed, Andrew
McCallum, Gokhan Mergen, Marc Najork, Mert Terzihan, Bryon Tjanaka, et al. Scalable hi-
erarchical agglomerative clustering. In Proceedings of the 27th ACM SIGKDD Conference on
knowledge discovery & data mining, pp. 1245–1255, 2021.

Malte Möser and Arvind Narayanan. Resurrecting address clustering in bitcoin. In International
Conference on Financial Cryptography and Data Security, pp. 386–403. Springer, 2022.

Malte Möser, Rainer Böhme, and Dominic Breuker. An inquiry into money laundering tools in the
bitcoin ecosystem. In 2013 APWG eCrime researchers summit, pp. 1–14. Ieee, 2013.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. bitcoin.org, May 2009. URL
http://www.bitcoin.org/bitcoin.pdf.

Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
Advances in neural information processing systems, 14, 2001.

Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters.
arXiv preprint arXiv:1905.09550, 2019.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. In Advances in Neural Information Processing Systems (NeurIPS) Workshop, 2018.

Richard Peng, He Sun, and Luca Zanetti. Partitioning well-clustered graphs: Spectral clustering
works! In Conference on learning theory, pp. 1423–1455. PMLR, 2015.

Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analy-
sis. Journal of computational and applied mathematics, 20:53–65, 1987.

Hugo Schnoering and Michalis Vazirgiannis. Heuristics for detecting coinjoin transactions on the
bitcoin blockchain. arXiv preprint arXiv:2311.12491, 2023.

12

http://www.bitcoin.org/bitcoin.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hugo Schnoering and Michalis Vazirgiannis. Bitcoin research with a transaction graph dataset.
Scientific Data, 12(1):404, 2025.

Hugo Schnoering, Pierre Porthaux, and Michalis Vazirgiannis. Assessing the efficacy of heuristic-
based address clustering for bitcoin. arXiv preprint arXiv:2403.00523, 2024.

Ming-Fong Sie, Yen-Jui Chang, Chien-Lung Lin, Ching-Ray Chang, and Shih-Wei Liao. Efficient
Bitcoin address classification using quantum-inspired feature selection. Quantum Machine Intel-
ligence, 7(2):75, 2025. doi: 10.1007/s42484-025-00302-3.

Kentaroh Toyoda, Tomoaki Ohtsuki, and P. Takis Mathiopoulos. Multi-class bitcoin-enabled service
identification based on transaction history summarization. In 2018 IEEE International Conference
on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData),
pp. 1153–1160, 2018. doi: 10.1109/Cybermatics 2018.2018.00208.

Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. From louvain to leiden: guaranteeing
well-connected communities. Scientific reports, 9(1):1–12, 2019.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. arXiv preprint arXiv:1809.10341, 2018.

Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for clusterings
comparison: is a correction for chance necessary? In Proceedings of the 26th annual international
conference on machine learning, pp. 1073–1080, 2009.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416,
2007.

Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I Weidele, Claudio Bellei, Tom Robin-
son, and Charles E Leiserson. Anti-money laundering in bitcoin: Experimenting with graph
convolutional networks for financial forensics. arXiv preprint arXiv:1908.02591, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Guangyi Yang, Xiaoxing Liu, and Beixin Li. Anti-money laundering supervision by intelligent
algorithm. Computers & Security, 132:103344, 2023.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
archical graph representation learning with differentiable pooling. Advances in neural information
processing systems, 31, 2018.

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In Kama-
lika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.
7134–7143. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/
you19b.html.

Yi Yu, Tengyao Wang, and Richard J Samworth. A useful variant of the davis–kahan theorem for
statisticians. Biometrika, 102(2):315–323, 2015.

Yifeng Zhang, Qianqian Ren, Yourong Chen, and Meng Han. Beyond contrastive learning: adaptive
graph representations with mutual information maximization for blockchain and structured data.
Complex Intell. Syst., 11(9), September 2025.

Zening Zhao, Jinsong Wang, and Jiajia Wei. Graph neural network-based transaction link pre-
diction method for public blockchain in heterogeneous information networks. Blockchain: Re-
search and Applications, 6(2):100265, 2025. ISSN 2096-7209. doi: https://doi.org/10.1016/
j.bcra.2024.100265. URL https://www.sciencedirect.com/science/article/
pii/S2096720924000782.

13

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://proceedings.mlr.press/v97/you19b.html
https://proceedings.mlr.press/v97/you19b.html
https://www.sciencedirect.com/science/article/pii/S2096720924000782
https://www.sciencedirect.com/science/article/pii/S2096720924000782

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DATASET

A.1 TRANSACTIONS SAMPLING STRATEGY

A.1.1 SAMPLING FROM COINBASE TRANSACTIONS

Constructing a graph from the full history of Bitcoin transactions would yield a network with several
billions of nodes and edges, rendering most graph algorithms computationally infeasible. To obtain
a manageable subgraph, we sample transactions occurring between two block indices t1 < t2.

A Bitcoin transaction transforms input value units into new output value units (TXOs), with unspent
outputs known as UTXOs. Inputs originate from previous transactions, while outputs can be spent
by future transactions. The only exception is the coinbase transaction—the first transaction in each
block—which has no inputs and generates new currency units as a mining reward.

This structure naturally defines a directed acyclic graph (DAG): sources correspond to coinbase
transactions; an edge exists from transaction A to transaction B whenever outputs from A are con-
sumed by B; sinks correspond to transactions whose no output has been spent. An example of such
a transaction DAG is shown in Figure 4.

Time

P
ast

tran
saction

s

F
u
tu
re

tran
saction

s

Figure 4: Bitcoin transaction graph. Circles represent transaction nodes, directed edges indicate the
flow of bitcoin between transactions. Double–circled nodes denote coinbase transactions.

Our sampling procedure performs a breadth-first search (BFS) on this transaction DAG, initialized
from a coinbase transaction chosen uniformly at random between blocks t1 and t2. Because block
indices increase monotonically along transaction paths, all sampled transactions necessarily have
indices greater than t1, and exploration is truncated at block t2, ensuring that every sampled trans-
action lies within the interval [t1, t2]. To further control the graph size, we cap the exploration depth
at 15 and limit the number of transactions expanded at each BFS step to 5,000.

A.1.2 SAMPLING FROM TRANSACTIONS WITH LABELS

In contrast to the directed exploration used for coinbase-based sampling, we perform a breadth-first
search on the undirected transaction graph. This allows the procedure to explore not only future
transactions consuming outputs of the seed, but also past transactions whose outputs were used as
inputs to it.

To preserve locality, we use a maximum BFS depth of 3 and limit the number of expanded trans-
actions per depth to 100. These constraints ensure that the sampled subgraph remains compact
while capturing the relevant transactional context surrounding the labeled addresses. Aside from
these modifications, the overall exploration logic follows the same structure as the coinbase-based
sampling procedure described above in Appendix A.1.1.

A.2 GRAPH CHARACTERISTICS

Table 4 summarizes the key statistics of the sampled Bitcoin transaction graphs used for training,
validation, and testing.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Split Blk int. Blk dates int. #Tx #Nodes #Edges #Clust.
Train (1) [599k, 600k] 12/10/19 - 19/10/19 57k 643k 5.3M 105k
Train (2) [624k, 625k] 02/04/20 - 08/04/20 48k 491k 3.7M 96k
Train (3) [674k, 675k] 10/03/21 - 17/03/21 44k 923k 15.1M 164k

Valid [649k, 650k] 19/09/20 - 26/09/20 57k 828k 7.0M 137k
Test [699k, 700k] 04/09/21 - 11/09/21 56k 1071k 4.2M 141k

Table 4: Dataset statistics. Abbreviations: Blk int. = block interval, #Tx = number of transactions
sampled, #Nodes = number of nodes, #Edges = number of edges, #Clust. = number of clusters.

A.3 NODE AND EDGE FEATURES

Table 5 lists the columns and their descriptions for each table (nodes, edges, and clusters) in the
released graph dataset.

Table Column name Description
Nodes node id Identifier of the node

degree in The number of incoming edges to the node
degree out The number of outgoing edges from the node

total transaction in Total count of transfers received by the node
total transaction out Total count of transfers initiated by the node
first transaction in Block index of the first transfer received
last transaction in Block index of the last transfer received

first transaction out Block index of the first transfer sent
last transaction out Block index of the last transfer sent

min sent Smallest value sent out in a single transaction
max sent Largest value sent out in a single transaction

total sent Cumulative value of all outgoing transfers
min received Smallest value received in a single transaction
max received Largest value received in a single transaction

total received Cumulative value of all incoming transfers
Edges a Node id of the sender

b Node id of the recipient
reveal Block index of the first transaction

last seen Block index of the last transaction
total Total number of transactions

min sent Minimum sent in a single transaction
max sent Maximum sent in a single transaction

total sent Total sent in a single transaction
Clusters node id Identifier of the node

alias Identifier of the cluster

Table 5: Description of the columns of the different tables constituting the graph.

B TRAINING

B.1 SAMPLING FUNCTION FOR CONTRASTIVE LEARNING

We assume a ground-truth clustering C = {C1, . . . , Ck} over the node set V . Let the latent vari-
ables (Z,Z−

1 , . . . , Z−
p) denote the cluster labels of (X,X−

1 , . . . , X−
p) under C. The joint sampling

distribution of equation 1 is

Pα(x, x
+, x−

1 , . . . , x
−
p) =

∑
z,z−

1 ,...,z−
p

Pα(z)P(x | z)P(x+ | z, x)
p∏

i=1

Pα(z
−
i | z)P(x−

i | z−i).

where Pα(Z = z) = α |Cz|
|V | + (1−α) 1

|C| is a mixture between size-proportional sampling (α = 1),
P(X = x | Z = z) is uniform over all nodes in cluster Cz , P(X+ = x+ | Z = z,X = x) is uniform
over Cz \ {x}, Pα(Z

−
i = z−i | Z = z) is uniform over all z−i ̸= z and P(X−

i = x−
i | Z−

i = z−i) is
uniform over all nodes in cluster Cz−

i
.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

This scheme provides a principled sampling strategy for contrastive learning: positive pairs are
always drawn from the same cluster as the anchor, while negatives come from different clusters.
The parameter α balances diversity and representativeness by interpolating between uniform and
size-proportional cluster sampling.

B.2 FEATURES PREPROCESSING

Some input features encode amounts denominated in bitcoins (Table 5). Because the bitcoin price
varies substantially across graph samples, we augment these features with their corresponding
U.S.-dollar values, computed from the bitcoin price at each graph’s starting date.

Feature preprocessing is performed independently for each graph. First, all features are log-
transformed using x 7→ log(1 + x) to reduce skewness. Next, we apply min–max normalization
based on the empirical 5th and 95th percentiles of each feature, and missing values are imputed with
zeros.

B.3 HYPERPARAMETERS

Table 6 summarizes the model architecture, preprocessing options, and optimization settings used
for training the GNNs.

Hyperparameter Value
Model Number of attention heads 4

Size of hidden embeddings 64
Size of output embeddings 128
Number of layers 2
Activation function Leaky ReLU
Dropout 0.2

Preprocessing Symmetrize the input graph True
Use edge features False
Number of landmarks in the positional
encoding

0

Optimizer Initial learning rate 2.5× 10−3

Weight decay 10−5

Learning rate scheduler Reduction factor 0.5
Patience 20

Gradient descent Number of epochs 250
Num anchors per batch 512
Num negative samples per anchor (p) 4
Temperature (τ) 0.07
Parameter of sampling function (α) 0.5

Table 6: Hyperparameters used in the training.

B.4 EVALUATION METRICS

We evaluate hierarchical and flat clusterings using standard information–theoretic and pairwise sim-
ilarity measures.

B.4.1 HIERARCHICAL CLUSTERING

Dendrogram Purity. Following Heller & Ghahramani (2005), let T be a dendrogram with leaves
1, . . . , n and class labels c1, . . . , cn. To compute the purity of T :

1. Sample a leaf ℓ uniformly at random.
2. Sample another leaf j uniformly at random among those with the same class label, cj = cℓ.
3. Let S(ℓ, j) be the smallest subtree of T containing both ℓ and j.
4. Compute the fraction of leaves in S(ℓ, j) that share the class cℓ.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The expected value of this fraction over the sampling procedure defines the dendrogram purity,
which equals 1 if and only if every ground-truth class forms a pure subtree.

Implementation. We provide an open-source implementation in our public repository. Purity is
estimated by Monte-Carlo with N = 10,000 sampled pairs (ℓ, j). Each pair is drawn within the
same coarse Leiden cluster; because this Leiden partition is identical across all evaluations, this
sampling constraint does not introduce bias.

B.4.2 FLAT CLUSTERING

Normalized Mutual Information (NMI). The uncertainty of a clustering is quantified by its
entropy, H(U) = −

∑
u p(u) log p(u), where p(u) is the probability of cluster u. The sim-

ilarity between two clusterings U and V can then be measured by their mutual information,
I(U ;V) =

∑
u,v p(u, v) log

p(u,v)
p(u)p(v) , which captures how much knowing V reduces the uncertainty

of U . The NMI score normalizes mutual information to the range [0, 1] via

NMI(U, V) =
2 I(U ;V)

H(U) +H(V)
.

Because mutual information captures the overall dependency between the two label distributions,
this normalization measures global agreement between entire clusterings rather than only local pair-
wise matches. Moreover, the ratio form compensates for differing cluster entropies, making the
score robust to cluster-size imbalance and directly comparable across datasets of varying class dis-
tributions.

Adjusted Rand Index (ARI). To assess pairwise agreement, the Rand index is defined as RI =
a+b

(n2)
, where a denotes the number of element pairs assigned to the same cluster in both U and V ,

and b denotes the number of pairs assigned to different clusters in both. The Rand index is corrected
for chance agreement with

ARI =
RI−E[RI]

max(RI)− E[RI]
,

placing the score in [−1, 1] and emphasizing local consistency.

Implementation. All NMI and ARI computations use the standard implementations from sklearn.

B.5 TRAINING OF BASELINES

Louvain. We use the Louvain implementation from the NetworkX library. The resolution pa-
rameter, which controls the granularity of the detected communities, is tuned by grid search in the
range [0.5, 3.0] on the validation graph to maximize the modularity score.

Leiden. For Leiden we rely on the leidenalg package, using the
RBConfigurationVertexPartition objective (the standard modularity-based config-
uration). The resolution parameter is likewise tuned by grid search in the range [0.5, 3.0] on the
validation graph, and the number of refinement iterations is fixed to 10 to ensure convergence.

Untrained GAT. We follow exactly the same procedure as for the trained GNN experi-
ments—using the default hyperparameters of Table 6—except that the number of training epochs
is set to zero.

Graph AutoEncoder (GAE). We follow the non-probabilistic graph auto-encoder training proce-
dure of Kipf & Welling (2016). The encoder is a GAT with the default hyperparameters of Table 6,
while the decoder is a simple dot product. Given adjacency matrix A and encoder embeddings H ,
the loss is the binary cross-entropy

LGAE = −
∑
i,j

[
Aij log σ(h

⊤
i hj) + (1−Aij) log

(
1− σ(h⊤

i hj)
)]
,

where σ is the sigmoid function. Embeddings are trained to reconstruct A. We apply the same
neighbor sampling, training-graph rotation, and learning-rate scheduling as in the main experiments,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

monitoring performance via the validation-graph reconstruction loss. The only change in hyperpa-
rameters is a shorter training duration of 20 epochs.

Deep Graph Infomax (DGI). We adopt the training procedure of Veličković et al. (2018) for
Deep Graph Infomax. The encoder is a GAT with the default hyperparameters of Table 6. DGI
learns node embeddings by maximizing mutual information between local node representations and
a global summary vector. Given node embeddings H and a readout summary s = σ

(
1
n

∑
i hi

)
, a

corrupted graph G̃ is produced by randomly shuffling node features to create negative samples H̃ .
The loss is the binary cross-entropy

LDGI = −
∑
i

[
log σ(h⊤

i Ws) + log
(
1− σ(h̃⊤

i Ws)
)]
,

where W is a trainable scoring matrix and σ the sigmoid function. We use the same neighbor
sampling, rotation of training graphs, and learning-rate scheduling as in the main experiments, and
monitor training with the DGI objective on the validation graph. Training is limited to 20 epochs to
match the GAE baseline.

C ADDITIONAL EXPERIMENTS

C.1 EMBEDDING DIMENSION

A critical design choice is the number of dimensions in the embedding space produced by the GNN.
If the dimensionality is too low, the model cannot adequately separate the numerous clusters. Con-
versely, a very high dimensionality increases algorithmic complexity and computational cost, and
may even lead to dimensional collapse (Jing et al., 2021). To investigate this trade-off, we experi-
mented with different embedding sizes, and compared their performance in Table 7. For consistency,
we set the number of hidden dimensions in the GAT to 2×Size of output embedding space

Number of attention heads .

Embedding dimension DP NMI ARI
16 0.722(±0.004) 0.755(±0.010) 0.649(±0.050)
32 0.745(±0.007) 0.773(±0.006) 0.632(±0.040)
64 0.768(±0.006) 0.785(±0.006)∗ 0.647(±0.040)
128 0.783(±0.002) 0.789(±0.009)∗∗ 0.632(±0.028)
256 0.788(±0.004)∗ 0.773(±0.023) 0.657(±0.040)∗

512 0.798(±0.005)∗∗ 0.778(±0.009) 0.700(±0.025)∗∗

Table 7: Performance across different embedding dimensions with evaluation metrics NMI, ARI,
and dendrogram purity (DP). The best score for each metric is marked with ∗∗ and the second-best
with ∗. All metrics are computed on the test graph / heuristic clustering, and results are averaged
over five runs.

Model performance generally improves as the embedding dimension increases, especially for the
DP and ARI metrics. The DP score rises monotonically, indicating better hierarchical clustering
quality at higher dimensions. The best NMI values occur at 64 and 128 dimensions, suggesting
that an embedding size of 64 is already sufficient to capture the global cluster structure. For finer
local agreement, however, higher dimensions are beneficial, as reflected by the strong ARI scores
observed at 512 dimensions.

C.2 PARAMETER OF THE SAMPLING FUNCTION

In this section, we evaluate the influence of the sampling parameter α on the performance of
our methodology. The sampling parameter α controls the balance between uniform and size-
proportional cluster selection in the contrastive sampling distribution. Table 8 reports the results.
ARI scores are highest for small α (close to uniform sampling), indicating strong local cluster con-
sistency. NMI scores peak at larger α (around 0.7), showing that higher values capture more global
ground-truth information in the flat clustering. Dendrogram purity is maximized for intermediate
α (around 0.4), suggesting the most coherent hierarchical structure. Overall, these trends reveal a
trade-off: small α favors local accuracy, large α enhances global information, and moderate values
balance the two.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

α DP NMI ARI
0. 0.762(±0.006) 0.776(±0.005) 0.733(±0.005)∗∗

0.2 0.776(±0.005) 0.772(±0.005) 0.716(±0.020)∗

0.4 0.782(±0.004)∗∗ 0.773(±0.009) 0.694(±0.019)
0.6 0.773(±0.008) 0.788(±0.007)∗∗ 0.630(±0.036)
0.8 0.779(±0.005)∗ 0.779(±0.015)∗ 0.655(±0.028)
1.0 0.770(±0.012) 0.770(±0.012) 0.655(±0.063)

Table 8: Performance across different α with evaluation metrics NMI, ARI, and dendrogram purity
(DP). The best score for each metric is marked with ∗∗ and the second-best with ∗. All metrics are
computed on the test graph / heuristic clustering, and results are averaged over five runs.

C.3 NUMBER OF NEGATIVE SAMPLES

In this section, we evaluate the impact of the number of negative examples per anchor used in
the contrastive loss on the performance of our methodology. The results are reported in Table 9.
The results suggest that hierarchical clustering quality, as measured by dendrogram purity, tends to
improve as the number of negative anchors in the contrastive loss increases. For the flat-clustering
metrics (NMI and ARI), however, no clear trend emerges, preventing any firm conclusion about their
dependence on the number of negatives.

p DP NMI ARI
1 0.766(±0.004) 0.774(±0.013) 0.675(±0.024)∗

4 0.769(±0.009) 0.780(±0.011) 0.660(±0.045)
16 0.782(±0.003)∗ 0.783(±0.010)∗ 0.674(±0.048)
32 0.779(±0.004) 0.787(±0.012)∗∗ 0.641(±0.033)
64 0.787(±0.004)∗∗ 0.774(±0.012) 0.697(±0.015)∗∗

Table 9: Performance across different p with evaluation metrics NMI, ARI, and dendrogram purity
(DP). The best score for each metric is marked with ∗∗ and the second-best with ∗. All metrics are
computed on the test graph / heuristic clustering, and results are averaged over five runs.

C.4 APPROACHING THE THEORETICAL CONDITIONS

Cluster homophily. Ideally, homophily would be measured by the spectral norm ∥L − L◦∥op
between the graph Laplacian L and the ideal block-diagonal Laplacian L◦, but this is infeasible for
graphs with millions of nodes. As a practical alternative we use the cut ratio, the fraction of edges
that cross between clusters: a low cut ratio indicates that most edges remain inside clusters and
thus reflects strong homophily. On the validation graph the overall cut ratio is 87%; restricted to
subgraphs of size 10–100 it is 77%, for size 100–1000 it is 51%, and for size 1000–5000 it is 49%.
To assess the significance of these scores given the graph topology, we randomly permuted 1% of
node labels and recomputed the cut ratio over 300 trials. For each case we calculated a z-score as the
difference between the original score and the mean of the permuted scores, divided by their standard
deviation. The corresponding p-value is the empirical probability that a random permutation yields
a clustering more homophilic than the original. The resulting z-scores are -9.42 (global), -3.04 (10-
100), -1.09 (100-1000), and -1.49 (1000–5000), with all p-values below 0.01, confirming that the
observed homophily is highly significant for the graph topology.

Low-pass GNN behavior. For embeddings H(ℓ) at layer ℓ, the Dirichlet energy E(H(ℓ)) =

Trace
(
(H(ℓ))⊤LH(ℓ)

)
=

∑n
i=1 λi∥H(ℓ)

i ∥22 measures the concentration of H(ℓ) on high-
frequency eigenvectors. Normalizing by total energy gives the Rayleigh quotient R(H(ℓ)) =
Trace

(
(H(ℓ))⊤LH(ℓ)

)/
Trace

(
(H(ℓ))⊤H(ℓ)

)
. A GNN acting as a low-pass filter should yield small

Rayleigh quotients that decrease across layers. Across five training runs of a two-layer GAT with
default parameters, the Rayleigh quotient decreases from 6.54 for the input embeddings H(0) to 1.29
after the first convolution H(1), then to 1.20 after the first activation (still H(1)), and finally to 0.99
at the output H(2) on the validation subgraph. This monotonic drop confirms the expected low-pass
filtering behavior.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D PROOFS OF SECTION 4

D.1 PROOF OF LEMMA 1.

We begin by deriving a few spectral properties of the Laplacian L◦ of the ideal cluster graph, in
which two nodes are adjacent if and only if they belong to the same cluster. It is well known that
the Laplacian L◦ of this ideal graph has 0 as an eigenvalue with multiplicity equal to the number of
connected components—equivalently, the number of clusters (Von Luxburg, 2007). For each cluster
Cj , the normalized indicator vector

u◦
j,i =

{
|Cj |−1/2, if i ∈ Cj ,

0, otherwise,

is an eigenvector associated with the eigenvalue 0, and these vectors form an orthonormal basis of
the corresponding eigenspace.

The spectral embedding of node i in the ideal model, using the first k eigenvectors, is its coordinate
vector in this basis:

(e◦i)j =

{
|Cj |−1/2, if i ∈ Cj ,

0, otherwise.
Consequently, if i, j ∈ Ca then e◦i = e◦j ; and if i ∈ Ca and j ∈ Cb with a ̸= b,

∥e◦i − e◦j∥22 =
1

|Ca|
+

1

|Cb|
⇒ ∥e◦i − e◦j∥2 ≥

√
2

Smax
.

We now view the empirical Laplacian L as a perturbation of the ideal Laplacian L◦ and invoke
spectral perturbation theory. Let Uk, U

◦
k ∈ Rn×k collect the eigenvectors associated with the k

smallest eigenvalues of L and L◦, respectively. By the Davis–Kahan–type result of Yu et al. (2015),
there exists an orthogonal matrix Q ∈ Rk×k such that

∥Uk − U◦
kQ∥F ≤ 2

√
2k ∥L− L◦∥op
λk+1(L◦)

,

where ∥ · ∥F is the Frobenius norm and λk+1(L
◦) denotes the (k + 1)-th eigenvalue of L◦.

Let esi be the spectral embedding of node i obtained from L. Applying the bound row-wise gives,
for every node i,

∥esi − e◦iQ∥2 ≤ 2
√
2k ∥L− L◦∥op
λk+1(L◦)

.

By the triangle inequality and the orthogonality of Q,
∥esi − esj∥2 ≤ ∥esi − e◦iQ∥2 + ∥(e◦i − e◦j)Q∥2 + ∥e◦jQ− esj∥2

≤ 4
√
2k ∥L− L◦∥op
λk+1(L◦)

+ ∥e◦i − e◦j∥2.

In particular, if i and j lie in the same cluster, then e◦i = e◦j and

∥esi − esj∥2 ≤ 4
√
2k ∥L− L◦∥op
λk+1(L◦)

.

A symmetric argument yields the complementary lower bound

∥esi − esj∥2 ≥ ∥e◦i − e◦j∥2 −
4
√
2k ∥L− L◦∥op
λk+1(L◦)

.

Hence, if i and j belong to different clusters,

∥esi − esj∥2 ≥
√

2
Smax

− 4
√
2k ∥L− L◦∥op
λk+1(L◦)

.

Finally, for the ideal cluster graph—a disjoint union of cliques—one has λk+1(L
◦) = Smax

Smax−1 ,
recovering the explicit constant used earlier.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D.2 PROOF OF THEOREM 2.

Recall that Uk ∈ Rn×k is the matrix whose columns are the k orthonormal eigenvectors of L associ-
ated with its k smallest eigenvalues. Let U⊥

k denote the matrix whose columns form an orthonormal
basis of the orthogonal complement of span(Uk). The block matrix

U :=
[
Uk U⊥

k

]
is therefore orthogonal and provides a full orthonormal basis of Rn.

Under our structural assumption on the GNN, for input features X ∈ Rn×d and weight matrix
W ∈ Rd×m, the linearized GNN can be written

H = p(L)XW,

where p is a polynomial filter. Using the spectral decomposition L = UDU⊤, this becomes

H = U p(D)U⊤XW.

This representation naturally separates the embedding into its low-frequency and residual compo-
nents,

H = Uk p(Dk)U
⊤
k XW + U⊥

k p(D⊥
k) (U

⊥
k)⊤XW,

highlighting the projection of H onto the informative subspace spanned by Uk and its complement
along U⊥

k .

Let Pk := UkU
⊤
k denote the orthogonal projector onto the eigenspace spanned by Uk. Then

(I − Pk)H = U⊥
k p(D⊥

k) (U
⊥
k)⊤XW,

so the leakage of H outside span(Uk) is controlled by

∥(I − Pk)H∥op = ∥ p(D⊥
k) (U

⊥
k)⊤XW ∥op

≤ ∥p(D⊥
k)∥op ∥XW∥op.

Because D⊥
k is diagonal with entries given by the eigenvalues λk+1, . . . , λn of L, the operator norm

of p(D⊥
k) is simply the largest absolute value of p(λi) for i > k. Hence

∥(I − Pk)H∥op ≤
(
max
i>k

|p(λi)|
)
∥XW∥op = β ∥XW∥op.

Since for any matrix A one has maxi ∥Ai,:∥2 ≤ ∥A∥op, it follows that for each node i, whose
embedding is the i-th row hi of H ,

∥hi − (PkH)i,: ∥2 ≤ ∥(I − Pk)H∥op ≤ β ∥XW∥op.

Let Z := U⊤
k H ∈ Rk×m; then PkH = UkZ, so that (PkH)i,: = (esi)

⊤Z. Therefore, for any nodes
i, j ∈ V ,

∥hi − hj∥2 ≤ ∥hi − (PkH)i,:∥2 + ∥(esi − esj)
⊤Z∥2 + ∥(PkH)j,: − hj∥2

≤ 2β ∥XW∥2 + ∥(esi − esj)
⊤Z∥2.

Since Z = U⊤
k H = p(Dk)U

⊤
k XW , we obtain

∥Z∥op ≤ ∥p(Dk)∥op ∥U⊤
k XW∥op ≤

(
max
i≤k

|p(λi)|
)
∥XW∥op = α ∥XW∥op.

Consequently,

∥(esi − esj)
⊤Z∥2 ≤ ∥esi − esj∥2 ∥Z∥op ≤ α ∥XW∥op ∥esi − esj∥2.

Combining the two displays gives the upper bound

∥hi − hj∥2 ≤ ∥XW∥op
(
2β + α ∥esi − esj∥2

)
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A symmetric lower bound follows from the reverse triangle inequality:

∥hi − hj∥2 ≥ ∥(esi − esj)
⊤Z∥2 − ∥hi − (PkH)i,:∥2 − ∥hj − (PkH)j,:∥2.

Using the fact that ∥(esi − esj)
⊤Z∥2 ≥ σmin(Z) ∥esi − esj∥2 and recalling that Z = p(Dk)U

⊤
k XW ,

we obtain
σmin(Z) ≥

(
min
i≤k

|p(λi)|
)
σmin(U

⊤
k XW) = γ σmin(U

⊤
k XW).

Hence,
∥hi − hj∥2 ≥ γ σmin(U

⊤
k XW) ∥esi − esj∥2 − 2β ∥XW∥op.

Using the bounds from Lemma 1 and substituting them into the inequalities above, we obtain the
following estimates.

For nodes i, j in the same cluster,

∥hi − hj∥2 ≤ ∥XW∥op

(
2β +

4
√
2k α

λk+1(L◦)
∥L− L◦∥op

)
.

For nodes i, j in different clusters,

∥hi − hj∥2 ≥ γ σmin(U
⊤
k XW)

(√
2

Smax
− 4

√
2k

λk+1(L◦)
∥L− L◦∥op

)
− 2β ∥XW∥op.

E COMPUTATIONAL COMPLEXITY ANALYSIS

We summarize here the computational costs associated with each step of our pipeline. Let N =
|V | denote the number of nodes, M = |E| the number of edges, d the embedding dimension, ks
the maximum number of neighbors sampled at each GNN layer, and kl the maximum size of the
Leiden pre-clusters. Table 10 reports asymptotic time and memory requirements for each stage of
the method. These complexity estimates are based on the PyTorch implementations used for the
GNN components, the SciPy implementation used for hierarchical agglomerative clustering, and
the leidenalg package for the Leiden pre-clustering step.

Step Time Memory
Embeddings Forward pass O(Md+Nd2) O(Nd)

Forward pass with sampling O(NkL−1
s d(ks + d)) O(Nd)

Pre-clustering Leiden algorithm O(M) O(N +M)
Distance Matrix Without pre-clustering O(N2d) O(N2)

With pre-clustering O(Nkld) O(Nkl)
HAClustering Linkage vector O(N2) O(N2)
Flat Clustering Dendrogram cut O(N) O(N)

Silhouette score O(N2) O(N)

Table 10: Complexity Analysis.

These results highlight the main computational bottlenecks. Embedding computation scales linearly
in both N and M , especially when neighbor sampling is applied. In contrast, operations involving
pairwise distances or hierarchical clustering scale quadratically in N , which motivates the need for
pre-clustering or highly local sampling strategies. As an illustration, Monath et al. (2021) propose a
scalable HAC algorithm that mitigates these quadratic costs.

22

	Introduction
	Related Works
	Methodology
	Methodology Overview
	Data Acquisition and Graph Construction
	Learning Node Embeddings with GNNs and Contrastive Loss
	Detecting and Correcting Cluster Collapse

	Theoretical Foundations of the Methodology
	Results
	Related Works

	Experimental Setup
	Training
	Evaluation

	Results
	Ablation Study
	Illustrating Cluster Refinement
	Additional Experiments with Ground-Truth Labels
	Entity Labels
	Coinjoin Transaction Labels

	Dataset
	Transactions Sampling Strategy
	Sampling from Coinbase Transactions
	Sampling from Transactions with Labels

	Graph Characteristics
	Node and Edge Features

	Training
	Sampling Function for Contrastive Learning
	Features Preprocessing
	Hyperparameters
	Evaluation Metrics
	Hierarchical Clustering
	Flat Clustering

	Training of Baselines

	Additional Experiments
	Embedding dimension
	Parameter of the sampling function
	Number of negative samples
	Approaching the Theoretical Conditions

	Proofs of section 4
	Proof of Lemma 1.
	Proof of Theorem 2.

	Computational Complexity Analysis

