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ABSTRACT

Bitcoin’s pseudonymous nature makes it challenging to analyze user-level activity,
since a single user may control multiple identifiers (addresses). Existing heuristic-
based methods attempt to identify addresses belonging to the same user, but they
often produce flat cluster assignments with limited modularity and are prone to er-
rors such as merging different users together. In this work, we propose a method
for refining heuristic-obtained clusters by grounding our clustering on contrastive
embeddings yielded by graph neural networks. Our contribution is threefold: (i)
we release a publicly available dataset of Bitcoin transaction graphs containing
a substantial number of clusters; (ii) we propose a methodology for learning ad-
dress embeddings consistent with heuristics, and back it up with solid theoretical
foundations and empirical results; (iii) through hierarchical clustering, we allow a
finer analysis of heuristic clusters and provide a quantitative criterion for flagging
suspicious merges.

1 INTRODUCTION

Bitcoin (Nakamoto, 2009) is the first and most widely adopted cryptocurrency, designed as a decen-
tralized payment system without reliance on a central authority. Its operation is enabled by a peer-to-
peer network that collectively maintains a shared, immutable record of transactions (Antonopoulos,
2017a). This record, known as the blockchain, provides transparency and auditability while pre-
serving a certain level of pseudonymity for its users; it is organized as a chronological sequence of
blocks, each batching the transactions that happened during a certain time interval.

Bitcoin Address Clustering. Bitcoin transactions are pseudonymous in nature, as users are iden-
tified by random pseudonyms called addresses (Antonopoulos, 2017b). A single user can reuse an
address or generate new ones at any time; it is therefore common for a user to control many differ-
ent addresses. Since addresses are generated randomly, there is no direct way to associate multiple
addresses with the same user. While analyzing transaction at the address level can be informative, a
user-level analysis provides greater insights. The task of addresses clustering consists in grouping
together addresses that belong to the same user (without necessarily identifying said user).

Graph Construction from Transactions. Graph-based representations are particularly well
suited for visualizing and analyzing blockchain data. Two primary types of graphs are commonly
employed: those where nodes represent transactions and edges represent the moving bitcoin amounts
(Weber et al., 2019), and those where nodes represent users and edges represent transactions (Bellei
et al., 2024; Schnoering & Vazirgiannis, 2025). In this paper, we focus on the latter, as it offers a
more intuitive representation. Constructing a user-level graph from a set of transactions T typically
involves the following steps (Schnoering & Vazirgiannis, 2025; Bellei et al., 2024; Meiklejohn et al.,
2013; Harrigan & Fretter, 2016):

1. extracting the addresses involved in the transactions T ;
2. clustering the addresses into users using a heuristic H (or a combination thereof) applied to

T , potentially augmented with external information;
3. creating directed edges with associated features between users, derived from the T ;
4. generating node features by aggregating information from edges;
5. incorporating external information (off-chain) into both node and edge features.
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Hierarchical Clustering. Hierarchical clustering constructs a hierarchy of nested clusters over
a set of points V endowed with a dissimilarity function d (Heller & Ghahramani, 2005). In the
agglomerative variant, each node initially forms its own cluster. At each step, two clusters A,B ⊂ V
are merged according to a linkage rule based on d. After the final step, all nodes are merged into a
single cluster. This hierarchy is naturally represented by a rooted binary tree, or dendrogram, where
leaves correspond to individual nodes, internal nodes represent successive merges, and node height
indicates the merge distance. An example of dendrogram is illustrated in Figure 1.

Graph Neural Networks (GNNs). GNNs extend neural architectures to graph-structured data by
propagating and transforming node features along edges. At each layer, a node updates its repre-
sentation by aggregating information from its neighbors, allowing the model to capture both local
connectivity and node attributes. By stacking multiple layers, GNNs learn embeddings that encode
multi-hop structural context and can be used for tasks such as node classification, link prediction,
and graph-level inference (Kipf, 2016; Hamilton et al., 2017; Veličković et al., 2017).

Contributions. The main contributions of this paper are threefold:

1. We publicly release a dataset of large-scale Bitcoin transaction graphs with a substantial num-
ber of clusters, enabling the training and evaluation of clustering algorithms at scale.

2. We propose a methodology for learning address embeddings consistent with traditional
blockchain heuristics, supported by theoretical guarantees and empirical validation.

3. We show how these learned representations can refine heuristic-based clustering by detect-
ing and correcting cluster collapses and by providing a hierarchical clustering that improves
intelligibility and visualization.

2 RELATED WORKS

Heuristics-Based Clustering. To achieve address clustering, a variety of human-made, rule-based
heuristics have been proposed (Schnoering et al., 2024), often based on behavioral patterns and hu-
man biases. The most prominent is the common-input heuristic, which assumes that all addresses
providing inputs to the same transaction are controlled by a single entity. Clustering heuristics play
a crucial role in Bitcoin analysis by approximating user-level structures from pseudonymous trans-
action data. They allow researchers and investigators to reduce complexity, uncover patterns of
address ownership, and make sense of large-scale transaction graphs. Beyond their methodological
value, such heuristics have become essential tools in several domains: in forensic contexts (Meikle-
john et al., 2013; Foley et al., 2019); in compliance and anti–money-laundering efforts (Möser et al.,
2013; Yang et al., 2023), and in privacy research (Androulaki et al., 2013).

Other Methods for Address Clustering. Aside from heuristic clustering, other methods have
been used on bitcoin transaction networks to similar tasks. Machine-learning based methods tend
to focus more on the orthogonal task of address classification (Toyoda et al., 2018; Lin et al., 2019;
Garin & Gisin, 2023; Sie et al., 2025; Jia et al., 2018; Lee et al., 2020), which consists in identifying
the usage of addresses (e.g. scams, marketplaces). Some of those approaches (Kang et al., 2020)
use heuristic clustering as a first step before training a classifier. More recently, approaches leverage
GNNs to obtain powerful representation of transaction graphs for downstream tasks (Zhao et al.,
2025; Zhang et al., 2025; Huang et al., 2022).

Enhancing Clustering Heuristics with GNNs. Despite their usefulness, heuristic methods have
notable limitations. They yield only flat cluster assignments—single-level groupings in which ad-
dresses are either linked or not—making large clusters difficult to interpret. Some heuristics also
merge addresses based on a single transaction, which can erroneously combine unrelated users and
cause cluster collapse (Androulaki et al., 2013; Harrigan & Fretter, 2016). Only a few studies at-
tempt to refine or correct the traditional heuristics. Möser & Narayanan (2022) use a random forest to
estimate the likelihood that a heuristic-based merge is valid and block merges with low confidence,
thereby mitigating cluster collapse. Similarly, Ermilov et al. (2017) uses off-chain information as
votes for separating clusters.

Our method differs in key ways. Instead of assigning confidence scores to individual merges, we
learn address embeddings that capture the global transaction structure while staying consistent with
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heuristic clusters. Agglomerative hierarchical clustering on these embeddings yields a dendrogram
that reveals nested substructures and provides a principled criterion for detecting suspicious merges,
producing both a refined flat clustering and a multi-resolution view of the address graph.

3 METHODOLOGY

3.1 METHODOLOGY OVERVIEW

We present a method to learn address embeddings consistent with standard heuristics, mapping
nodes from the same cluster close together and pushing nodes from different clusters apart. These
embeddings are then used to build dendrograms whose hierarchical structure reveals discrepancies
in the heuristic partitions—most notably cases of cluster collapse—and to propose corresponding
corrections. Throughout the paper, let G = (V,E) denote the graph, where V is the set of nodes
(Bitcoin addresses) and E the set of edges (value transfers). We write C = {C1, . . . , Ck} for a
partition of V (e.g., obtained via heuristics), with k the number of clusters.

Rationale for the Two-Stage Methodology. Our approach is in line with a broad body of prior
work and offers a key practical advantage: it naturally accommodates dynamic graphs with contin-
uously arriving addresses and transactions, closely reflecting real-world blockchain conditions. In
contrast, most end-to-end GNN pooling methods (Ying et al., 2018; Bianchi et al., 2020) construct
a fixed hierarchy of merged nodes whose depth and cluster sizes are predetermined by the network
architecture. Such constraints hinder adaptation to a continually growing transaction graph and re-
duce the interpretability of the resulting merges. Other pooling approaches (Lee et al., 2019) merely
score and retain important nodes without producing a true hierarchical clustering, offering saliency
rather than an interpretable dendrogram of successive merges.

3.2 DATA ACQUISITION AND GRAPH CONSTRUCTION

We construct our graphs using the pipeline of Schnoering & Vazirgiannis (2025)1. The procedure
follows the steps outlined in the introduction—parsing the blockchain, extracting transactions, and
forming entity-to-entity links—but, unlike the original work, we do not pre-cluster addresses into
user entities. The resulting network is a directed graph with nodes as addresses. User clusters serving
as ground truth for supervised learning are obtained with the same set of address-clustering heuristics
as in Schnoering et al. (2024), also implemented in the above GitHub repository. Constructing a
graph from the entire history would yield billions of nodes and edges, rendering most algorithms
intractable. We therefore sample a subset of transactions from a contiguous block interval to build
the graph; the sampling strategy is described in the Appendix A.1.1. For complete implementation
details, we refer readers to the original paper and accompanying code. The raw blockchain data for
graph construction and clustering were obtained by running Bitcoin Core2.

3.3 LEARNING NODE EMBEDDINGS WITH GNNS AND CONTRASTIVE LOSS

We train a GNN g to produce node embeddings consistent with the clustering C: nodes within the
same cluster (user) should have similar embeddings, whereas embeddings of nodes from different
clusters should be dissimilar. To enforce this, we adopt the contrastive InfoNCE loss (Oord et al.,
2018; Chen et al., 2020)

L = EPα

[
− log

exp
(
g(X)·g(X+)/τ

)
exp
(
g(X)·g(X+)/τ

)
+
∑p

i=1exp
(
g(X)·g(X−

i )/τ
)] , (1)

where Pα is the sampling distribution over anchor nodes, τ is a temperature hyperparameter, and p is
the number of negative samples. For each anchor X ∈ V , the positive sample X+ is drawn from the
same cluster, while the negatives {X−

i }pi=1 come from different clusters. Clusters are drawn from
a mixture of uniform and size-proportional sampling controlled by α, and nodes are then sampled
uniformly within each chosen cluster. Full details of this sampling scheme are provided in Appendix.

1https://github.com/hugoschnoering2/BTCGraphConstruction
2https://bitcoin.org/en/bitcoin-core
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Although the formula omits explicit normalization, we normalize embeddings in practice so that the
dot product computes cosine similarity.

3.4 DETECTING AND CORRECTING CLUSTER COLLAPSE

We perform agglomerative hierarchical clustering on the embeddings using cosine distance, consis-
tent with the contrastive loss. Starting from the coarse partition C, we cluster each Ci independently,
building a dendrogram that records the merge distances within every initial community.

Given a threshold λ > 0, we define a collapse
as any merge whose cosine distance exceeds λ.
This provides a principled way to flag suspicious
merges—likely combining addresses from dif-
ferent users—and highlights potential failures
of the original flat clustering. To correct such
collapses, we split the affected clusters into their
hierarchical subcomponents, yielding a refined
partition that better reflects the true user structure.

Mathematically, each dendrogram induces an ul-
trametric du on the node set V , where du(x, y)
is the height of the lowest common ancestor of x
and y. Two nodes x and y are grouped together
if they belong to the same initial cluster Ci and
satisfy du(x, y) < λ. This refinement process is
illustrated in Figure 1.

1 2 3 4 5 6 71 2 3 4 5 6 7
D
istan

ce

λ1

λ2

λ3

λ4

λ5

λ6

Nodes in cluster Ci

Figure 1: Example of a refinement. The dotted
line represents the cut. Sub-clusters are distin-
guished by node fill patterns. Merges above the
threshold are treated as collapses.

A practical variant of this approach uses heuristic-generated clusters as the initial partition, moti-
vated by the observation that such heuristics often merge distinct communities (i.e., distinct Bitcoin
users).

4 THEORETICAL FOUNDATIONS OF THE METHODOLOGY

We show that node embeddings learned by GNNs naturally separate nodes according to cluster
membership in a hierarchical dendrogram, under appropriate conditions. Let d be the working
distance on V , and build a dendrogram from d using single, average, or complete linkage. Assume
the ground-truth clusters are well d-separated: there exist constants 0 < r < s such that d(x, y) ≤
r < s ≤ d(x, z) for all x, y ∈ Cℓ and every z ∈ Cm with ℓ ̸= m. It then follows that any horizontal
cut of this dendrogram at a threshold λ ∈ (r, s) exactly recovers C; the resulting flat clustering
coincides with the ground truth. Although these conditions are stronger than typically encountered
in practice, they provide a clean theoretical framework for the analysis that follows and already
motivate the use of a contrastive loss. The proofs of these results are provided in Appendix D.

Notation. Let L be the Laplacian of G with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn and associated
orthonormal eigenvectors u1, . . . , un, which form an orthonormal basis of Rn. Let U ∈ Rn×n

be the matrix whose columns are these eigenvectors. The spectral decomposition of L is L =
UDU⊤, where D = diag(λ1, . . . , λn) is the diagonal matrix of eigenvalues. Let Uk ∈ Rn×k

be the matrix formed by the first k eigenvectors. For a node i ∈ V , its spectral embedding is
esi = (ui,1, ui,2, . . . , ui,k) ∈ Rk, where k is the number of clusters in the partition C. We write
∥x∥2 for the Euclidean norm of a vector x. For any matrix A, A⊤ denotes its transpose, σmin(A)
the smallest singular value of A, and ∥A∥op for the operator norm of A induced by ∥ · ∥2.

4.1 RESULTS

Building on the perfect–cut criterion above, our goal is to derive a separability condition on the
problem data that guarantees a dendrogram built from GNN embeddings admits such a perfect cut.
Both results in this section assume that the working distance is Euclidean. The arguments, however,
remain valid for cosine distance provided that the GNN embeddings lie on a common sphere. As a
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first step, Lemma 1 establishes an analogous condition for spectral embeddings. This intermediate
result is natural because GNNs typically act as low-pass spectral filters (Nt & Maehara, 2019), so
their embeddings concentrate in the subspace spanned by the Laplacian eigenvectors with the small-
est eigenvalues, i.e., the classical spectral embeddings (Von Luxburg, 2007). The result involves the
spectral distance between the Laplacian L and the Laplacian L◦ of an ideal cluster graph, where
two nodes are connected if and only if they belong to the same cluster. This ideal graph represents
a perfectly homophilic scenario in which edges exist only within clusters. The appearance of this
quantity is motivated by empirical observations on data, where addresses controlled by the same
user tend to form connected subgraphs.

Lemma 1. The spectral embeddings are cluster–separable whenever

M := 4
√
2k
(
1− 1

Smax

)
∥L− L◦∥op <

1√
2Smax

.

where Smax is the size of the largest cluster, and L◦ the Laplacian of the ideal cluster graph.

The proof in Appendix D.1 relies on a version of the Davies–Kahan theorem from matrix perturba-
tion theory. The separability condition is satisfied whenever the graph Laplacian L is sufficiently
close to the ideal block–diagonal Laplacian.

We assume that the node embeddings H produced by the GNN can be written as H = p(L)XW ,
where p is a polynomial, X the matrix of initial node features, and W the learned weight matrix (as
in the linearized GCN (Kipf, 2016), for example). Using the spectral decomposition L = UDU⊤,
this becomes

H = U D̃ U⊤XW,

where D̃ = diag(p(λ1), . . . , p(λn)). The polynomial p acts as a spectral filter, selectively ampli-
fying or attenuating the eigencomponents of L according to their eigenvalues. In the special case
of an ideal low-pass filter, p(λi) = 1{i≤k}, so the embeddings lie entirely in the subspace spanned
by the first k eigenvectors.To measure how well a GNN approximates this ideal filter, we define
α = maxi≤k |p(λi)|, β = maxi>k |p(λi)|, and γ = mini≤k |p(λi)|. Theorem 2 transfers this
spectral result to the learned GNN embeddings, yielding an equivalent separability condition for the
perfect cut—a result that, to our knowledge, is novel.

Theorem 2. The GNN embeddings are cluster–separable whenever

∥XW∥op
(
β + αM

)
< γ σmin

(
U⊤
k XW

) (√
2/Smax −M

)
.

The embeddings learned by the GNN inherit the geometric separability of the spectral embeddings,
up to perturbations controlled by the low-pass approximation quality of p and by the alignment of
the feature matrix XW with the leading eigenspace. Because the left-hand side of the inequality is
positive, the separability condition holds only if three requirements are met: (i) γ > 0, so the GNN
retains all eigencomponents of the informative subspace; (ii) σmin(U

⊤
k XW ) > 0, ensuring that the

transformed features are not orthogonal to this subspace; and (iii) M ≤
√
2/Smax, meaning the ob-

served graph is sufficiently close to the ideal block-diagonal Laplacian so that spectral embeddings
themselves already separate the clusters.

4.2 RELATED WORKS

Spectral embeddings have long been central to graph clustering (Von Luxburg, 2007). Most the-
oretical analyses relate these embeddings to the optimal solutions of node-partitioning problems,
including RatioCut minimization (Von Luxburg, 2007), k-way partitioning (Peng et al., 2015), and
maximum-margin clustering (Hofmeyr, 2020). The guarantees in these works require the reference
clustering to coincide with the optimal solution of the respective problem. Our approach makes
no such assumption. We instead study graphs that are small perturbations of an ideal cluster graph
whose connected components match the ground-truth clusters, and we apply matrix perturbation the-
ory to obtain our guarantees. This technique was also used by Ng et al. (2001) to bound intra-cluster
variance. In contrast, we establish pairwise bounds—both within and across clusters—yielding sep-
arability conditions that ensure a perfect cut.

5
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5 EXPERIMENTAL SETUP

All experiments were performed on a Mac M3 Max equipped with 36 GB of RAM, using only CPU
computation and no GPU acceleration.

We use the pipeline described in Section 3 to generate graphs from Bitcoin transactions. To avoid
information leakage, transaction sets are sampled from non-overlapping block intervals so that no
transaction appears in more than one graph. In total, we construct three graphs for training, one for
validation, and one for testing. The main characteristics of these graphs are provided in Appendix A,
and all datasets, including the graphs used in the experiments with ground truth labels in Section 6.3,
are publicly available at *** under the CC BY 4.0 license.

Before being fed to the GNNs, features undergo the normalization and log-scaling procedure de-
tailed in Appendix B.2. This step ensures consistent feature distributions across the different graphs.

5.1 TRAINING

Setup. We train two-layer GNNs to minimize the contrastive loss of Equation equation 1, moni-
toring progress by evaluating the same loss on a validation graph. We experiment with three popular
architectures: Graph Convolutional Network (GCN) (Kipf, 2016), GraphSAGE (Hamilton et al.,
2017), and Graph Attention Network (GAT) (Veličković et al., 2017). Optimization uses Adam
(Kingma & Ba, 2014) with a learning rate halved when the validation loss does not improve for 20
consecutive epochs. Because we have three training graphs, we cycle through them every 15 epochs
to promote generalization. To accelerate training, we adopt neighborhood sampling (Hamilton et al.,
2017), drawing 15 neighbors for the first GNN layer and 5 for the second. All experiments rely on
the PyTorch Geometric implementations of GNN models, the Adam optimizer, learning-rate
scheduler, and neighbor sampling. The code used in this study is publicly available at ***. Unless
otherwise specified, all hyperparameters are listed in Table 6 of Appendix B.3.

Model Variations. We evaluate three main variations of the base model. (1) Because the con-
structed graphs are directed, we optionally symmetrize them before input to the GNN. (2) Since
edges carry attributes, we can include or ignore these edge features whenever the architecture sup-
ports them. (3) We optionally add a structural positional encoding to enhance locality. GNN mes-
sage passing tends to make nodes with similar neighborhoods appear similar—even when they are
far apart (Xu et al., 2019)—which can spuriously cluster structurally alike but unrelated nodes. Yet
Bitcoin addresses belonging to the same user are usually close in the graph, as they often participate
in the same transactions. To exploit this property, we follow the position-aware GNN framework
(You et al., 2019): we select the highest-degree nodes as landmarks and represent each node by its
vector of shortest-path distances to these landmarks. These distances are converted to similarities
via x 7→ (1 + x)−1 and normalized dimension-wise. The resulting distance-based vector is then
concatenated with the original node feature vector before message passing.

5.2 EVALUATION

We evaluate our method by its ability to recover both hierarchical and flat clusterings consistent with
the ground truth. For the hierarchical step, we apply agglomerative clustering with cosine distance
on the GNN embeddings using average linkage. Because the graphs are large and computing the full
pairwise distance matrix is impractical, we first obtain a coarse partition with the Leiden algorithm
(Traag et al., 2019), limiting the maximum community size to 65 000 nodes to control memory
usage, following the strategy described in Section 3.4.

Metrics. We score the resulting dendrograms with dendrogram purity (Heller & Ghahramani,
2005), which ranges from 0 to 1 and measures how well nodes from the same ground-truth cluster
merge together. Flat clusterings are obtained by cutting each dendrogram at a threshold λ (Figure 1),
selected by grid search to maximize the silhouette score (Rousseeuw, 1987), a standard criterion for
choosing the cut level in hierarchical clustering. We then compare the flat partition to the ground
truth using Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI) (Vinh et al.,
2009): NMI captures global agreement and is robust to cluster-size imbalance, while ARI empha-
sizes local consistency but is more sensitive to class imbalance. Additional implementation details
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Model Sym. Edge feat. # LM DP NMI ARI
Louvain ✓ na na na 0.642 (±0.000) 0.289 (±0.000)
Leiden ✓ na na na 0.665 (±0.000) 0.311 (±0.000)

Random GAT ✓ × 0 0.691 (±0.004) 0.759 (±0.011) 0.586 (±0.009)
GAE ✓ × 0 0.741 (±0.006) 0.746 (±0.006) 0.325 (±0.213)
DIG ✓ × 0 0.684 (±0.004) 0.755 (±0.008) 0.607 (±0.041)
GAT × × 0 0.649 (±0.011) 0.714 (±0.010) 0.320 (±0.043)

× × 64 0.689 (±0.003) 0.745 (±0.004) 0.611 (±0.025)
× × 128 0.693 (±0.002) 0.743 (±0.004) 0.590 (±0.004)
× × 256 0.685 (±0.002) 0.741 (±0.003) 0.589 (±0.002)

GAT × ✓ 0 0.642 (±0.011) 0.705 (±0.012) 0.333 (±0.046)
× ✓ 64 0.688 (±0.002) 0.743 (±0.003) 0.593 (±0.003)
× ✓ 128 0.692 (±0.004) 0.743 (±0.004) 0.596 (±0.006)
× ✓ 256 0.686 (±0.004) 0.739 (±0.004) 0.587 (±0.003)

GAT ✓ × 0 0.783 (±0.004) 0.775 (±0.008) 0.702 (±0.033)∗

✓ × 64 0.796 (±0.003)∗∗ 0.770 (±0.002) 0.707 (±0.012)∗∗

✓ × 128 0.793 (±0.002) 0.770 (±0.008) 0.672 (±0.029)
✓ × 256 0.792 (±0.002) 0.771 (±0.003) 0.665 (±0.029)

GAT ✓ ✓ 0 0.778 (±0.005) 0.782 (±0.012)∗ 0.677 (±0.031)
✓ ✓ 64 0.794 (±0.003)∗ 0.765 (±0.005) 0.661 (±0.052)
✓ ✓ 128 0.789 (±0.004) 0.771 (±0.004) 0.691 (±0.043)
✓ ✓ 256 0.787 (±0.005) 0.765 (±0.004) 0.639 (±0.053)

GCN ✓ × 0 0.724 (±0.003) 0.767 (±0.002) 0.592 (±0.006)
GraphSage ✓ × 0 0.768 (±0.004) 0.791 (±0.002)∗∗ 0.622 (±0.016)

Table 1: Performance across different variations: graph symmetrization (Sym.), edge features (Edge
feat.), number of landmarks (# LM), with evaluation metrics NMI, ARI, and dendrogram purity
(DP), non applicable (na). The best score for each metric is marked with ∗∗, the second-best with ∗

and the performance of the model with all default parameters is underlined.

on how these metrics are computed, as well as their formal definitions, are provided in Appendix B.4.
For all metrics we evaluate only nodes with degree ≥ 2, excluding peripheral addresses that often
lack sufficient transactional context for reliable user clustering and can artificially inflate cluster
counts, making global metrics less informative.

Baselines. To highlight the added value of the contrastive loss, we compare our model to three
unsupervised baselines: (i) an untrained GAT, (ii) a GAT trained as a non-probabilistic Graph Auto-
Encoder (GAE) (Kipf & Welling, 2016), and (iii) a GAT trained with Deep Graph Infomax (DGI)
(Veličković et al., 2018), which maximizes mutual information between local and global represen-
tations. All baselines produce node embeddings that are clustered exactly as in our contrastive
pipeline. Implementation details are provided in Appendix B.5.

6 RESULTS

6.1 ABLATION STUDY

We report in Table 1 the performance results for different variations, including graph symmetriza-
tion, use of edge features, and the number of landmarks in the structural embedding. For each model
variation, we averaged the results over five runs with different random seeds on the test graph. Ad-
ditional experiments on the embedding dimension, the sampling parameter α, and the number of
negative anchors in the contrastive loss, as well as empirical evidence that our method approaches
the conditions required by the theoretical results, are reported in Appendix C.

All baselines achieve ARI scores above zero—better than random—showing that graph topology
alone conveys cluster information and supporting the homophily hypothesis. An untrained GAT
already surpasses Louvain and Leiden, highlighting the strong signal in the input features. GAE
yields higher dendrogram purity than the random GAT but lower NMI and ARI, consistent with
its link-prediction loss, which encourages neighbors to share embeddings and can merge unrelated
users. DGI matches the untrained GAT on dendrogram purity and NMI while achieving a stronger
ARI, suggesting that its mutual-information objective promotes sharper local separation.

Results show that a GAT trained on a non-symmetrized graph generally performs worse on all met-
rics than an untrained GAT, highlighting the importance of reciprocal connections for capturing
address relationships. Adding the structural positional encoding improves performance in the non-
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symmetric setting, closing the gap with the untrained GAT. In contrast, incorporating edge features
in the non-symmetric case offers no clear benefit and in fact slightly degrades performance.

All models trained on symmetrized graphs outperform the baselines on every metric. Using the
structural positional encoding generally increases dendrogram purity—improving hierarchical clus-
tering—while slightly reducing NMI and ARI, which measure flat clustering quality. This suggests
that the silhouette score may be suboptimal for selecting the dendrogram cut. Among landmark-
based encodings, the best results occur with 64 landmarks, followed by 128 and 256. The decline in
performance as the number of landmarks increases—and the lack of gains from incorporating edge
features despite their additional information—points to potential training instabilities or feature re-
dundancy, highlighting the need for careful tuning.

For the alternative architectures, GCN and GraphSage, only the NMI score of GraphSage exceeds
that of GAT under the same settings, supporting our choice of GAT as the primary architecture.

6.2 ILLUSTRATING CLUSTER REFINEMENT

We address potential cluster collapse using the procedure of Section 3. Starting from the heuristic
clustering, we build a hierarchical clustering within each heuristic cluster and obtain a refined flat
partition by cutting each dendrogram at the threshold λ that maximizes the silhouette score. Figure 2
shows the resulting dendrogram for a representative cluster, with the selected cut level indicated. Its
structure reveals the sequence of merges and highlights several late merges occurring above the
optimal threshold. In particular, the final two subclusters merge at a cosine distance of 0.45, well
above the chosen cut, indicating that they should remain separate. A few other merges also exceed
the threshold, although most nodes merge below it into a single coherent group.

Figure 2: Dendrogram for a representative heuristic cluster. The dashed horizontal line indicates the
cut level λ selected to maximize the global silhouette score.

Figure 3 displays the minimal subgraph induced by the cluster and its neighbors. Cutting the den-
drogram at the optimal threshold reveals coherent sub-groups, offering a clearer view of the cluster’s
internal organization. This approach naturally scales to much larger clusters, tens of thousands of
nodes in our data and potentially millions in larger transaction sets, where direct graph visualization
becomes impractical. Dendrograms provide a hierarchical, navigable representation that exposes
meaningful substructures at multiple resolutions.

6.3 ADDITIONAL EXPERIMENTS WITH GROUND-TRUTH LABELS

In each experiment, we select transactions for which ground-truth labels indicate whether two ad-
dresses do or do not belong to the same cluster. For each transaction with labels, we extract a
local transaction subgraph using a sampling procedure adapted from Section 3.2 (details in Ap-
pendix A.1.2), and construct the corresponding address-level graph. For each graph, we compute
(1) the clustering from standard heuristics, (2) the clustering from our default GNN–HAC pipeline,
and (3) a hybrid clustering where GNN embeddings refine the heuristic output, as described in Sec-
tion 3.4. We evaluate three linkage criteria and three dendrogram-cutting strategies (Appendix ??).
Because some involved addresses are labeled, we can assess clustering quality with standard binary
metrics: correct predictions group same-entity addresses or separate different ones, while errors cor-
respond to incorrect merges or splits. To avoid overweighting transactions with many labels, we
evaluate at most five randomly selected labeled pairs per graph.
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Figure 3: Minimal subgraph induced by the representative cluster and its immediate neighbors.
Nodes belonging to the cluster are numbered, while external neighbors remain unnumbered. Cutting
the dendrogram at the optimal threshold reveals distinct sub-groups, shown here with different gray
shades and marker shapes.

Model Link. Cut TP(%) FP(%) FN(%) TN(%) bACC(%) F1(%)
Heuristics na na 42.9 22.5 16.0 18.6 59.1 59.2
GNN-HAC avg. sil. 46.0 20.9 12.9 20.1 63.7 63.8
GNN-HAC avg. inc. 58.9 41.1 0.0 0.0 50.0 37.1
GNN-HAC avg. gap. 52.1 28.7 6.8 12.4 59.4 57.9
GNN-HAC ward sil. 48.6 22.5 10.3 18.6 63.9 64.0
GNN-HAC com. sil. 38.8 16.1 20.1 25.0 63.4 63.1
Hybrid avg. sil. 40.7 11.7 18.2 29.4 70.3∗∗ 69.7∗∗

Hybrid avg. inc. 42.9 22.5 16.0 18.6 59.1 59.2
Hybrid avg. gap. 42.4 18.5 16.5 22.6 63.5 63.5
Hybrid ward sil. 42.2 22.5 16.7 18.6 58.5 58.6
Hybrid com. sil. 37.6 10.6 21.3 30.5 69.0∗ 67.9∗

Table 2: Clustering performance with ground-truth entity labels. Linkage (Link.) criteria: aver-
age linkage (avg.), Ward linkage (ward), and complete linkage (com.). Dendrogram cut methods:
silhouette-based cut (sil.), inconsistency cut (inc.), and largest-gap cut (gap.). Metrics reported in-
clude true positives (TP), false positives (FP), false negatives (FN), true negatives (TN), along with
balanced accuracy (bACC), defined as the mean of positive and negative recalls, and the macro-
averaged F1 score (F1). The best score for each metric is marked with **, the second-best with *.

6.3.1 ENTITY LABELS

We use the dataset of roughly 100,000 addresses labeled with entity names from Schnoering &
Vazirgiannis (2025). After excluding addresses linked to individuals, we sample 500 transactions
between blocks 550,000 and 700,000 that involve at least two distinct labeled addresses. Addresses
associated with the same entity should fall in the same cluster, while those linked to different entities
should not. Results are reported in Table 2.

The average-linkage / silhouette-score setting yields substantial improvements over the heuristic
baselines. The best results are obtained with the refinement pipeline, underscoring the importance
of the hybrid approach: macro-F1 and accuracy increase by more than 10%, and false positives are
reduced by half, effectively preventing cluster collapses. Complete linkage performs almost as well,
with very similar results. In contrast, Ward linkage is more mixed: it appears particularly effective
only when heuristic clusters are not further refined. The largest-gap criterion improves heuristic
results only within the refinement step. Finally, the inconsistency criterion is not well suited to our
task, as it leads to over-clustering, reflected by the high false-positive rate.

6.3.2 COINJOIN TRANSACTION LABELS

CoinJoin transactions involve many users and are specifically designed to defeat the common-input
heuristic (Schnoering & Vazirgiannis, 2025). Based on analyses of open-source CoinJoin proto-
col implementations, Schnoering & Vazirgiannis (2023) proposed heuristics capable of detecting
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Model Link. Cut TN(%)
Heuristics na na 0.
GNN-HAC avg. sil. 6.5
GNN-HAC ward sil. 11.5
GNN-HAC com. sil. 25.5
Hybrid avg. sil. 2.0
Hybrid ward sil. 0.3
Hybrid com. sil. 8.0

Table 3: Clustering performance with ground-truth CoinJoin labels. Results are shown for average
linkage (avg.) combined with three dendrogram cut methods: silhouette-based cut (sil.), inconsis-
tency cut (inc.), and largest-gap cut (gap.). The evaluation metric is the true-negative rate (TN).

most such transactions. In these transactions, all input addresses are expected to belong to different
clusters. For each protocol examined in Schnoering & Vazirgiannis (2023), we randomly selected
100 transactions between blocks 550,000 and 700,000. As these transactions contain only negative
cases, performance is measured solely through the true-negative rate. Classical heuristics without
CoinJoin-aware protections, as noted in Schnoering et al. (2024), achieve a score of zero. Results
for the different clustering methods are reported in Table 3.

Using the embeddings reduces the number of false positives arising from CoinJoin transactions.
This effect is particularly strong in the setting without heuristic-cluster refinement, where complete
linkage lowers false positives by roughly one quarter. In the refinement setting, however, the gain
remains modest, either because the threshold selection is suboptimal or because the dendrogram
structure does not sufficiently expose dubious merges. Robustness to CoinJoin transactions could
also be improved by explicitly incorporating them as true negative examples in the contrastive loss.

CONCLUSION AND LIMITATIONS

This work presents a principled framework for refining heuristic-based Bitcoin address clustering
through contrastive GNN embeddings that remain consistent with standard heuristics while uncov-
ering richer hierarchical structure. Starting from classical clustering rules, our method learns embed-
dings that separate users in latent space and applies agglomerative hierarchical clustering to reveal
substructures and flag suspicious merges. Together, these elements provide a unified toolkit—data,
theory, and methodology—for moving from flat heuristic clusters to interpretable, multi-resolution
user graphs. A key limitation, however, is the limited amount of ground-truth labels available for
evaluating user clusters at scale.

An important direction for future work is to adapt this procedure to a dynamic transaction graph
that grows as new blocks and addresses appear, enabling online refinement of user clusters. A key
challenge will be scalability. While node embeddings can be approximated by sampling subgraphs
of manageable size, constructing the hierarchical structure is far less scalable, as illustrated in Ap-
pendix E. Nevertheless, this limitation can be partially mitigated by sampling very local subgraphs,
either around specific transactions or within narrow temporal windows, which keeps graph sizes
controlled while maintaining strong clustering performance. Future research should therefore focus
on scalable hierarchical clustering techniques capable of handling continuously evolving blockchain
graphs.

LLM Usage The research ideas, work and content presented in this paper was fully designed and
made by the authors. LLMs were solely used in improving grammar and language a-posteriori, with
no contribution besides reformulating for clarity purpose. In particular, no new idea or element was
introduced through the use of an LLM.
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A DATASET

A.1 TRANSACTIONS SAMPLING STRATEGY

A.1.1 SAMPLING FROM COINBASE TRANSACTIONS

Constructing a graph from the full history of Bitcoin transactions would yield a network with several
billions of nodes and edges, rendering most graph algorithms computationally infeasible. To obtain
a manageable subgraph, we sample transactions occurring between two block indices t1 < t2.

A Bitcoin transaction transforms input value units into new output value units (TXOs), with unspent
outputs known as UTXOs. Inputs originate from previous transactions, while outputs can be spent
by future transactions. The only exception is the coinbase transaction—the first transaction in each
block—which has no inputs and generates new currency units as a mining reward.

This structure naturally defines a directed acyclic graph (DAG): sources correspond to coinbase
transactions; an edge exists from transaction A to transaction B whenever outputs from A are con-
sumed by B; sinks correspond to transactions whose no output has been spent. An example of such
a transaction DAG is shown in Figure 4.
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Figure 4: Bitcoin transaction graph. Circles represent transaction nodes, directed edges indicate the
flow of bitcoin between transactions. Double–circled nodes denote coinbase transactions.

Our sampling procedure performs a breadth-first search (BFS) on this transaction DAG, initialized
from a coinbase transaction chosen uniformly at random between blocks t1 and t2. Because block
indices increase monotonically along transaction paths, all sampled transactions necessarily have
indices greater than t1, and exploration is truncated at block t2, ensuring that every sampled trans-
action lies within the interval [t1, t2]. To further control the graph size, we cap the exploration depth
at 15 and limit the number of transactions expanded at each BFS step to 5,000.

A.1.2 SAMPLING FROM TRANSACTIONS WITH LABELS

In contrast to the directed exploration used for coinbase-based sampling, we perform a breadth-first
search on the undirected transaction graph. This allows the procedure to explore not only future
transactions consuming outputs of the seed, but also past transactions whose outputs were used as
inputs to it.

To preserve locality, we use a maximum BFS depth of 3 and limit the number of expanded trans-
actions per depth to 100. These constraints ensure that the sampled subgraph remains compact
while capturing the relevant transactional context surrounding the labeled addresses. Aside from
these modifications, the overall exploration logic follows the same structure as the coinbase-based
sampling procedure described above in Appendix A.1.1.

A.2 GRAPH CHARACTERISTICS

Table 4 summarizes the key statistics of the sampled Bitcoin transaction graphs used for training,
validation, and testing.
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Split Blk int. Blk dates int. #Tx #Nodes #Edges #Clust.
Train (1) [599k, 600k] 12/10/19 - 19/10/19 57k 643k 5.3M 105k
Train (2) [624k, 625k] 02/04/20 - 08/04/20 48k 491k 3.7M 96k
Train (3) [674k, 675k] 10/03/21 - 17/03/21 44k 923k 15.1M 164k

Valid [649k, 650k] 19/09/20 - 26/09/20 57k 828k 7.0M 137k
Test [699k, 700k] 04/09/21 - 11/09/21 56k 1071k 4.2M 141k

Table 4: Dataset statistics. Abbreviations: Blk int. = block interval, #Tx = number of transactions
sampled, #Nodes = number of nodes, #Edges = number of edges, #Clust. = number of clusters.

A.3 NODE AND EDGE FEATURES

Table 5 lists the columns and their descriptions for each table (nodes, edges, and clusters) in the
released graph dataset.

Table Column name Description
Nodes node id Identifier of the node

degree in The number of incoming edges to the node
degree out The number of outgoing edges from the node

total transaction in Total count of transfers received by the node
total transaction out Total count of transfers initiated by the node
first transaction in Block index of the first transfer received
last transaction in Block index of the last transfer received

first transaction out Block index of the first transfer sent
last transaction out Block index of the last transfer sent

min sent Smallest value sent out in a single transaction
max sent Largest value sent out in a single transaction

total sent Cumulative value of all outgoing transfers
min received Smallest value received in a single transaction
max received Largest value received in a single transaction

total received Cumulative value of all incoming transfers
Edges a Node id of the sender

b Node id of the recipient
reveal Block index of the first transaction

last seen Block index of the last transaction
total Total number of transactions

min sent Minimum sent in a single transaction
max sent Maximum sent in a single transaction

total sent Total sent in a single transaction
Clusters node id Identifier of the node

alias Identifier of the cluster

Table 5: Description of the columns of the different tables constituting the graph.

B TRAINING

B.1 SAMPLING FUNCTION FOR CONTRASTIVE LEARNING

We assume a ground-truth clustering C = {C1, . . . , Ck} over the node set V . Let the latent vari-
ables (Z,Z−

1 , . . . , Z−
p ) denote the cluster labels of (X,X−

1 , . . . , X−
p ) under C. The joint sampling

distribution of equation 1 is

Pα(x, x
+, x−

1 , . . . , x
−
p ) =

∑
z,z−

1 ,...,z−
p

Pα(z)P(x | z)P(x+ | z, x)
p∏

i=1

Pα(z
−
i | z)P(x−

i | z−i ).

where Pα(Z = z) = α |Cz|
|V | + (1−α) 1

|C| is a mixture between size-proportional sampling (α = 1),
P(X = x | Z = z) is uniform over all nodes in cluster Cz , P(X+ = x+ | Z = z,X = x) is uniform
over Cz \ {x}, Pα(Z

−
i = z−i | Z = z) is uniform over all z−i ̸= z and P(X−

i = x−
i | Z−

i = z−i ) is
uniform over all nodes in cluster Cz−

i
.
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This scheme provides a principled sampling strategy for contrastive learning: positive pairs are
always drawn from the same cluster as the anchor, while negatives come from different clusters.
The parameter α balances diversity and representativeness by interpolating between uniform and
size-proportional cluster sampling.

B.2 FEATURES PREPROCESSING

Some input features encode amounts denominated in bitcoins (Table 5). Because the bitcoin price
varies substantially across graph samples, we augment these features with their corresponding
U.S.-dollar values, computed from the bitcoin price at each graph’s starting date.

Feature preprocessing is performed independently for each graph. First, all features are log-
transformed using x 7→ log(1 + x) to reduce skewness. Next, we apply min–max normalization
based on the empirical 5th and 95th percentiles of each feature, and missing values are imputed with
zeros.

B.3 HYPERPARAMETERS

Table 6 summarizes the model architecture, preprocessing options, and optimization settings used
for training the GNNs.

Hyperparameter Value
Model Number of attention heads 4

Size of hidden embeddings 64
Size of output embeddings 128
Number of layers 2
Activation function Leaky ReLU
Dropout 0.2

Preprocessing Symmetrize the input graph True
Use edge features False
Number of landmarks in the positional
encoding

0

Optimizer Initial learning rate 2.5× 10−3

Weight decay 10−5

Learning rate scheduler Reduction factor 0.5
Patience 20

Gradient descent Number of epochs 250
Num anchors per batch 512
Num negative samples per anchor (p) 4
Temperature (τ ) 0.07
Parameter of sampling function (α) 0.5

Table 6: Hyperparameters used in the training.

B.4 EVALUATION METRICS

We evaluate hierarchical and flat clusterings using standard information–theoretic and pairwise sim-
ilarity measures.

B.4.1 HIERARCHICAL CLUSTERING

Dendrogram Purity. Following Heller & Ghahramani (2005), let T be a dendrogram with leaves
1, . . . , n and class labels c1, . . . , cn. To compute the purity of T :

1. Sample a leaf ℓ uniformly at random.
2. Sample another leaf j uniformly at random among those with the same class label, cj = cℓ.
3. Let S(ℓ, j) be the smallest subtree of T containing both ℓ and j.
4. Compute the fraction of leaves in S(ℓ, j) that share the class cℓ.
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The expected value of this fraction over the sampling procedure defines the dendrogram purity,
which equals 1 if and only if every ground-truth class forms a pure subtree.

Implementation. We provide an open-source implementation in our public repository. Purity is
estimated by Monte-Carlo with N = 10,000 sampled pairs (ℓ, j). Each pair is drawn within the
same coarse Leiden cluster; because this Leiden partition is identical across all evaluations, this
sampling constraint does not introduce bias.

B.4.2 FLAT CLUSTERING

Normalized Mutual Information (NMI). The uncertainty of a clustering is quantified by its
entropy, H(U) = −

∑
u p(u) log p(u), where p(u) is the probability of cluster u. The sim-

ilarity between two clusterings U and V can then be measured by their mutual information,
I(U ;V ) =

∑
u,v p(u, v) log

p(u,v)
p(u)p(v) , which captures how much knowing V reduces the uncertainty

of U . The NMI score normalizes mutual information to the range [0, 1] via

NMI(U, V ) =
2 I(U ;V )

H(U) +H(V )
.

Because mutual information captures the overall dependency between the two label distributions,
this normalization measures global agreement between entire clusterings rather than only local pair-
wise matches. Moreover, the ratio form compensates for differing cluster entropies, making the
score robust to cluster-size imbalance and directly comparable across datasets of varying class dis-
tributions.

Adjusted Rand Index (ARI). To assess pairwise agreement, the Rand index is defined as RI =
a+b

(n2)
, where a denotes the number of element pairs assigned to the same cluster in both U and V ,

and b denotes the number of pairs assigned to different clusters in both. The Rand index is corrected
for chance agreement with

ARI =
RI−E[RI]

max(RI)− E[RI]
,

placing the score in [−1, 1] and emphasizing local consistency.

Implementation. All NMI and ARI computations use the standard implementations from sklearn.

B.5 TRAINING OF BASELINES

Louvain. We use the Louvain implementation from the NetworkX library. The resolution pa-
rameter, which controls the granularity of the detected communities, is tuned by grid search in the
range [0.5, 3.0] on the validation graph to maximize the modularity score.

Leiden. For Leiden we rely on the leidenalg package, using the
RBConfigurationVertexPartition objective (the standard modularity-based config-
uration). The resolution parameter is likewise tuned by grid search in the range [0.5, 3.0] on the
validation graph, and the number of refinement iterations is fixed to 10 to ensure convergence.

Untrained GAT. We follow exactly the same procedure as for the trained GNN experi-
ments—using the default hyperparameters of Table 6—except that the number of training epochs
is set to zero.

Graph AutoEncoder (GAE). We follow the non-probabilistic graph auto-encoder training proce-
dure of Kipf & Welling (2016). The encoder is a GAT with the default hyperparameters of Table 6,
while the decoder is a simple dot product. Given adjacency matrix A and encoder embeddings H ,
the loss is the binary cross-entropy

LGAE = −
∑
i,j

[
Aij log σ(h

⊤
i hj) + (1−Aij) log

(
1− σ(h⊤

i hj)
)]
,

where σ is the sigmoid function. Embeddings are trained to reconstruct A. We apply the same
neighbor sampling, training-graph rotation, and learning-rate scheduling as in the main experiments,
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monitoring performance via the validation-graph reconstruction loss. The only change in hyperpa-
rameters is a shorter training duration of 20 epochs.

Deep Graph Infomax (DGI). We adopt the training procedure of Veličković et al. (2018) for
Deep Graph Infomax. The encoder is a GAT with the default hyperparameters of Table 6. DGI
learns node embeddings by maximizing mutual information between local node representations and
a global summary vector. Given node embeddings H and a readout summary s = σ

(
1
n

∑
i hi

)
, a

corrupted graph G̃ is produced by randomly shuffling node features to create negative samples H̃ .
The loss is the binary cross-entropy

LDGI = −
∑
i

[
log σ(h⊤

i Ws) + log
(
1− σ(h̃⊤

i Ws)
)]
,

where W is a trainable scoring matrix and σ the sigmoid function. We use the same neighbor
sampling, rotation of training graphs, and learning-rate scheduling as in the main experiments, and
monitor training with the DGI objective on the validation graph. Training is limited to 20 epochs to
match the GAE baseline.

C ADDITIONAL EXPERIMENTS

C.1 EMBEDDING DIMENSION

A critical design choice is the number of dimensions in the embedding space produced by the GNN.
If the dimensionality is too low, the model cannot adequately separate the numerous clusters. Con-
versely, a very high dimensionality increases algorithmic complexity and computational cost, and
may even lead to dimensional collapse (Jing et al., 2021). To investigate this trade-off, we experi-
mented with different embedding sizes, and compared their performance in Table 7. For consistency,
we set the number of hidden dimensions in the GAT to 2×Size of output embedding space

Number of attention heads .

Embedding dimension DP NMI ARI
16 0.722(±0.004) 0.755(±0.010) 0.649(±0.050)
32 0.745(±0.007) 0.773(±0.006) 0.632(±0.040)
64 0.768(±0.006) 0.785(±0.006)∗ 0.647(±0.040)
128 0.783(±0.002) 0.789(±0.009)∗∗ 0.632(±0.028)
256 0.788(±0.004)∗ 0.773(±0.023) 0.657(±0.040)∗

512 0.798(±0.005)∗∗ 0.778(±0.009) 0.700(±0.025)∗∗

Table 7: Performance across different embedding dimensions with evaluation metrics NMI, ARI,
and dendrogram purity (DP). The best score for each metric is marked with ∗∗ and the second-best
with ∗. All metrics are computed on the test graph / heuristic clustering, and results are averaged
over five runs.

Model performance generally improves as the embedding dimension increases, especially for the
DP and ARI metrics. The DP score rises monotonically, indicating better hierarchical clustering
quality at higher dimensions. The best NMI values occur at 64 and 128 dimensions, suggesting
that an embedding size of 64 is already sufficient to capture the global cluster structure. For finer
local agreement, however, higher dimensions are beneficial, as reflected by the strong ARI scores
observed at 512 dimensions.

C.2 PARAMETER OF THE SAMPLING FUNCTION

In this section, we evaluate the influence of the sampling parameter α on the performance of
our methodology. The sampling parameter α controls the balance between uniform and size-
proportional cluster selection in the contrastive sampling distribution. Table 8 reports the results.
ARI scores are highest for small α (close to uniform sampling), indicating strong local cluster con-
sistency. NMI scores peak at larger α (around 0.7), showing that higher values capture more global
ground-truth information in the flat clustering. Dendrogram purity is maximized for intermediate
α (around 0.4), suggesting the most coherent hierarchical structure. Overall, these trends reveal a
trade-off: small α favors local accuracy, large α enhances global information, and moderate values
balance the two.
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α DP NMI ARI
0. 0.762(±0.006) 0.776(±0.005) 0.733(±0.005)∗∗

0.2 0.776(±0.005) 0.772(±0.005) 0.716(±0.020)∗

0.4 0.782(±0.004)∗∗ 0.773(±0.009) 0.694(±0.019)
0.6 0.773(±0.008) 0.788(±0.007)∗∗ 0.630(±0.036)
0.8 0.779(±0.005)∗ 0.779(±0.015)∗ 0.655(±0.028)
1.0 0.770(±0.012) 0.770(±0.012) 0.655(±0.063)

Table 8: Performance across different α with evaluation metrics NMI, ARI, and dendrogram purity
(DP). The best score for each metric is marked with ∗∗ and the second-best with ∗. All metrics are
computed on the test graph / heuristic clustering, and results are averaged over five runs.

C.3 NUMBER OF NEGATIVE SAMPLES

In this section, we evaluate the impact of the number of negative examples per anchor used in
the contrastive loss on the performance of our methodology. The results are reported in Table 9.
The results suggest that hierarchical clustering quality, as measured by dendrogram purity, tends to
improve as the number of negative anchors in the contrastive loss increases. For the flat-clustering
metrics (NMI and ARI), however, no clear trend emerges, preventing any firm conclusion about their
dependence on the number of negatives.

p DP NMI ARI
1 0.766(±0.004) 0.774(±0.013) 0.675(±0.024)∗

4 0.769(±0.009) 0.780(±0.011) 0.660(±0.045)
16 0.782(±0.003)∗ 0.783(±0.010)∗ 0.674(±0.048)
32 0.779(±0.004) 0.787(±0.012)∗∗ 0.641(±0.033)
64 0.787(±0.004)∗∗ 0.774(±0.012) 0.697(±0.015)∗∗

Table 9: Performance across different p with evaluation metrics NMI, ARI, and dendrogram purity
(DP). The best score for each metric is marked with ∗∗ and the second-best with ∗. All metrics are
computed on the test graph / heuristic clustering, and results are averaged over five runs.

C.4 APPROACHING THE THEORETICAL CONDITIONS

Cluster homophily. Ideally, homophily would be measured by the spectral norm ∥L − L◦∥op
between the graph Laplacian L and the ideal block-diagonal Laplacian L◦, but this is infeasible for
graphs with millions of nodes. As a practical alternative we use the cut ratio, the fraction of edges
that cross between clusters: a low cut ratio indicates that most edges remain inside clusters and
thus reflects strong homophily. On the validation graph the overall cut ratio is 87%; restricted to
subgraphs of size 10–100 it is 77%, for size 100–1000 it is 51%, and for size 1000–5000 it is 49%.
To assess the significance of these scores given the graph topology, we randomly permuted 1% of
node labels and recomputed the cut ratio over 300 trials. For each case we calculated a z-score as the
difference between the original score and the mean of the permuted scores, divided by their standard
deviation. The corresponding p-value is the empirical probability that a random permutation yields
a clustering more homophilic than the original. The resulting z-scores are -9.42 (global), -3.04 (10-
100), -1.09 (100-1000), and -1.49 (1000–5000), with all p-values below 0.01, confirming that the
observed homophily is highly significant for the graph topology.

Low-pass GNN behavior. For embeddings H(ℓ) at layer ℓ, the Dirichlet energy E(H(ℓ)) =

Trace
(
(H(ℓ))⊤LH(ℓ)

)
=

∑n
i=1 λi∥H(ℓ)

i ∥22 measures the concentration of H(ℓ) on high-
frequency eigenvectors. Normalizing by total energy gives the Rayleigh quotient R(H(ℓ)) =
Trace

(
(H(ℓ))⊤LH(ℓ)

)/
Trace

(
(H(ℓ))⊤H(ℓ)

)
. A GNN acting as a low-pass filter should yield small

Rayleigh quotients that decrease across layers. Across five training runs of a two-layer GAT with
default parameters, the Rayleigh quotient decreases from 6.54 for the input embeddings H(0) to 1.29
after the first convolution H(1), then to 1.20 after the first activation (still H(1)), and finally to 0.99
at the output H(2) on the validation subgraph. This monotonic drop confirms the expected low-pass
filtering behavior.
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D PROOFS OF SECTION 4

D.1 PROOF OF LEMMA 1.

We begin by deriving a few spectral properties of the Laplacian L◦ of the ideal cluster graph, in
which two nodes are adjacent if and only if they belong to the same cluster. It is well known that
the Laplacian L◦ of this ideal graph has 0 as an eigenvalue with multiplicity equal to the number of
connected components—equivalently, the number of clusters (Von Luxburg, 2007). For each cluster
Cj , the normalized indicator vector

u◦
j,i =

{
|Cj |−1/2, if i ∈ Cj ,

0, otherwise,

is an eigenvector associated with the eigenvalue 0, and these vectors form an orthonormal basis of
the corresponding eigenspace.

The spectral embedding of node i in the ideal model, using the first k eigenvectors, is its coordinate
vector in this basis:

(e◦i )j =

{
|Cj |−1/2, if i ∈ Cj ,

0, otherwise.
Consequently, if i, j ∈ Ca then e◦i = e◦j ; and if i ∈ Ca and j ∈ Cb with a ̸= b,

∥e◦i − e◦j∥22 =
1

|Ca|
+

1

|Cb|
⇒ ∥e◦i − e◦j∥2 ≥

√
2

Smax
.

We now view the empirical Laplacian L as a perturbation of the ideal Laplacian L◦ and invoke
spectral perturbation theory. Let Uk, U

◦
k ∈ Rn×k collect the eigenvectors associated with the k

smallest eigenvalues of L and L◦, respectively. By the Davis–Kahan–type result of Yu et al. (2015),
there exists an orthogonal matrix Q ∈ Rk×k such that

∥Uk − U◦
kQ∥F ≤ 2

√
2k ∥L− L◦∥op
λk+1(L◦)

,

where ∥ · ∥F is the Frobenius norm and λk+1(L
◦) denotes the (k + 1)-th eigenvalue of L◦.

Let esi be the spectral embedding of node i obtained from L. Applying the bound row-wise gives,
for every node i,

∥esi − e◦iQ∥2 ≤ 2
√
2k ∥L− L◦∥op
λk+1(L◦)

.

By the triangle inequality and the orthogonality of Q,
∥esi − esj∥2 ≤ ∥esi − e◦iQ∥2 + ∥(e◦i − e◦j )Q∥2 + ∥e◦jQ− esj∥2

≤ 4
√
2k ∥L− L◦∥op
λk+1(L◦)

+ ∥e◦i − e◦j∥2.

In particular, if i and j lie in the same cluster, then e◦i = e◦j and

∥esi − esj∥2 ≤ 4
√
2k ∥L− L◦∥op
λk+1(L◦)

.

A symmetric argument yields the complementary lower bound

∥esi − esj∥2 ≥ ∥e◦i − e◦j∥2 −
4
√
2k ∥L− L◦∥op
λk+1(L◦)

.

Hence, if i and j belong to different clusters,

∥esi − esj∥2 ≥
√

2
Smax

− 4
√
2k ∥L− L◦∥op
λk+1(L◦)

.

Finally, for the ideal cluster graph—a disjoint union of cliques—one has λk+1(L
◦) = Smax

Smax−1 ,
recovering the explicit constant used earlier.
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D.2 PROOF OF THEOREM 2.

Recall that Uk ∈ Rn×k is the matrix whose columns are the k orthonormal eigenvectors of L associ-
ated with its k smallest eigenvalues. Let U⊥

k denote the matrix whose columns form an orthonormal
basis of the orthogonal complement of span(Uk). The block matrix

U :=
[
Uk U⊥

k

]
is therefore orthogonal and provides a full orthonormal basis of Rn.

Under our structural assumption on the GNN, for input features X ∈ Rn×d and weight matrix
W ∈ Rd×m, the linearized GNN can be written

H = p(L)XW,

where p is a polynomial filter. Using the spectral decomposition L = UDU⊤, this becomes

H = U p(D)U⊤XW.

This representation naturally separates the embedding into its low-frequency and residual compo-
nents,

H = Uk p(Dk)U
⊤
k XW + U⊥

k p(D⊥
k ) (U

⊥
k )⊤XW,

highlighting the projection of H onto the informative subspace spanned by Uk and its complement
along U⊥

k .

Let Pk := UkU
⊤
k denote the orthogonal projector onto the eigenspace spanned by Uk. Then

(I − Pk)H = U⊥
k p(D⊥

k ) (U
⊥
k )⊤XW,

so the leakage of H outside span(Uk) is controlled by

∥(I − Pk)H∥op = ∥ p(D⊥
k ) (U

⊥
k )⊤XW ∥op

≤ ∥p(D⊥
k )∥op ∥XW∥op.

Because D⊥
k is diagonal with entries given by the eigenvalues λk+1, . . . , λn of L, the operator norm

of p(D⊥
k ) is simply the largest absolute value of p(λi) for i > k. Hence

∥(I − Pk)H∥op ≤
(
max
i>k

|p(λi)|
)
∥XW∥op = β ∥XW∥op.

Since for any matrix A one has maxi ∥Ai,:∥2 ≤ ∥A∥op, it follows that for each node i, whose
embedding is the i-th row hi of H ,

∥hi − (PkH)i,: ∥2 ≤ ∥(I − Pk)H∥op ≤ β ∥XW∥op.

Let Z := U⊤
k H ∈ Rk×m; then PkH = UkZ, so that (PkH)i,: = (esi )

⊤Z. Therefore, for any nodes
i, j ∈ V ,

∥hi − hj∥2 ≤ ∥hi − (PkH)i,:∥2 + ∥(esi − esj)
⊤Z∥2 + ∥(PkH)j,: − hj∥2

≤ 2β ∥XW∥2 + ∥(esi − esj)
⊤Z∥2.

Since Z = U⊤
k H = p(Dk)U

⊤
k XW , we obtain

∥Z∥op ≤ ∥p(Dk)∥op ∥U⊤
k XW∥op ≤

(
max
i≤k

|p(λi)|
)
∥XW∥op = α ∥XW∥op.

Consequently,

∥(esi − esj)
⊤Z∥2 ≤ ∥esi − esj∥2 ∥Z∥op ≤ α ∥XW∥op ∥esi − esj∥2.

Combining the two displays gives the upper bound

∥hi − hj∥2 ≤ ∥XW∥op
(
2β + α ∥esi − esj∥2

)
.
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A symmetric lower bound follows from the reverse triangle inequality:

∥hi − hj∥2 ≥ ∥(esi − esj)
⊤Z∥2 − ∥hi − (PkH)i,:∥2 − ∥hj − (PkH)j,:∥2.

Using the fact that ∥(esi − esj)
⊤Z∥2 ≥ σmin(Z) ∥esi − esj∥2 and recalling that Z = p(Dk)U

⊤
k XW ,

we obtain
σmin(Z) ≥

(
min
i≤k

|p(λi)|
)
σmin(U

⊤
k XW ) = γ σmin(U

⊤
k XW ).

Hence,
∥hi − hj∥2 ≥ γ σmin(U

⊤
k XW ) ∥esi − esj∥2 − 2β ∥XW∥op.

Using the bounds from Lemma 1 and substituting them into the inequalities above, we obtain the
following estimates.

For nodes i, j in the same cluster,

∥hi − hj∥2 ≤ ∥XW∥op

(
2β +

4
√
2k α

λk+1(L◦)
∥L− L◦∥op

)
.

For nodes i, j in different clusters,

∥hi − hj∥2 ≥ γ σmin(U
⊤
k XW )

(√
2

Smax
− 4

√
2k

λk+1(L◦)
∥L− L◦∥op

)
− 2β ∥XW∥op.

E COMPUTATIONAL COMPLEXITY ANALYSIS

We summarize here the computational costs associated with each step of our pipeline. Let N =
|V | denote the number of nodes, M = |E| the number of edges, d the embedding dimension, ks
the maximum number of neighbors sampled at each GNN layer, and kl the maximum size of the
Leiden pre-clusters. Table 10 reports asymptotic time and memory requirements for each stage of
the method. These complexity estimates are based on the PyTorch implementations used for the
GNN components, the SciPy implementation used for hierarchical agglomerative clustering, and
the leidenalg package for the Leiden pre-clustering step.

Step Time Memory
Embeddings Forward pass O(Md+Nd2) O(Nd)

Forward pass with sampling O(NkL−1
s d(ks + d)) O(Nd)

Pre-clustering Leiden algorithm O(M) O(N +M)
Distance Matrix Without pre-clustering O(N2d) O(N2)

With pre-clustering O(Nkld) O(Nkl)
HAClustering Linkage vector O(N2) O(N2)
Flat Clustering Dendrogram cut O(N) O(N)

Silhouette score O(N2) O(N)

Table 10: Complexity Analysis.

These results highlight the main computational bottlenecks. Embedding computation scales linearly
in both N and M , especially when neighbor sampling is applied. In contrast, operations involving
pairwise distances or hierarchical clustering scale quadratically in N , which motivates the need for
pre-clustering or highly local sampling strategies. As an illustration, Monath et al. (2021) propose a
scalable HAC algorithm that mitigates these quadratic costs.
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