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Abstract. Graph-based learning attracted attention recently due to its
efficiency analyzing data lying on graphs. Unfortunately, graphs in real-
world are usually either not-given, noisy, or incomplete. In this work,
we design a novel algorithm that addresses this issue by training a G2G
(Graph to Graph) model with a bilevel optimization framework to learn
a better graph in a supervised manner. The trained model operates not
only on training data, but generalizes to unseen data points. A bilevel
problem comprises two optimization problems, referred to as outer and
inner problem. The inner problem aims to solve the downstream task,
e.g., training a GCN (Graph Convolutional Network) model, whereas
the outer one introduces a new objective function to evaluate the in-
ner model performance, and the G2G model is trained to minimize this
function. To solve this optimization, we replace the solution of the inner
problem with the output of any gradient-based algorithm proven to give
a good surrogate. Then, we use automatic differentiation to compute the
gradient of this output w.r.t. the G2G weights, which we consequently
learn with a gradient-based algorithm. Experiments on semi-supervised
learning datasets show that the graph learned by the G2G model out-
performs the original graph by a significant margin.

Keywords: Graph learning · Bilevel optimisation.

1 Introduction

Graph-based learning has received increasing attention since data lying on graph
structures is ubiquitous in many fields, ranging from social networks [20] to
knowledge base[14], chemistry and medicine [29, 21] and traffic [39]. Also see [6,
15]. In these domains, it is important to deploy graph structures together with
the given features to extract the sought for information. In social networks for
example, users form the nodes of a graph and friendship connections between
them form its edges. The thoughts and beliefs of an individual are likely to
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be shared by his community and affected by what is called belief propagation
through the network. Thus, leveraging the graph network is vital when solving
member-level or network level problems.

To exploit graph structures along with the features of samples (also called
nodes in this context), many methods can be used. The graph Laplacian regular-
ization introduces a penalty term to the objective function to promote smooth-
ness on the graph [32, 27]. This approach proved to have a good performance in
many reconstruction problems, e.g., image filtering [24]. Another method is using
Graph Convolutional Networks (GCNs) that adopts the message passing model,
where a new embedding of each node is computed based on its features and the
features of its neighbor nodes [12, 38]. GCNs may also be interpreted as per-
forming spectral filtering on graphs [5, 16]. Comparing the two procedures, graph
Laplacian regularization promotes similarity between connected nodes but, un-
like GCNs, is not a supervised-based method, which is why it generally yields
lower performance.

However, graphs in practice are often noisy or not given. Usually in the former
case the given graph is considered ground-truth, while in the latter case samples
are processed as they were mutually independent. This degrades the performance
and leads to a sub-optimal solution. In this work, we alleviate this difficulty
solving a bilevel optimization problem to train a model on reconstructing graphs
of higher quality, in a way that improves performance in any supervised or semi-
supervised learning problem. We refer to this model by G2G (Graph to Graph),
named with inspiration from Set2Graph models [31]. Indeed when the graph is
edgeless, G2G is a function from sets to graphs. In this bilevel framework, the
inner problem is a semi-supervised (or supervised) learning problem using the
G2G output graph, while the outer problem optimizes the G2G weights s.t. the
trained model in the inner problem performs well w.r.t. a well-designed objective
function. To our knowledge, this is the first work that trains a G2G model
through a bilevel optimization framework, where such trained model constructs
the underlying graph not only for data used in training, but also generalizes to
new points.

Notations: A graph G is a pair (V,E), where V is a set of n nodes and E ⊆
V ×V is a set of edges. We represent a graph by its adjacency matrix A ∈ Rn×n,
where Ai,j is the weight of the edge between nodes i, j. We denote by X ∈ Rn×p
the features matrix whose rows include the features of corresponding nodes, and
by Y ∈ Rns the available labels of ns nodes.

Problem of interest: Although our framework can be deployed in both su-
pervised and Semi-Supervised Learning (SSL) settings, we choose to specialize
in the range of SSL problems, where we have a set of data points, a subset of
which is labelled, and the goal is to approximate the labelling function on un-
labelled points. Formally, we have (X, Gobs, Y ), where Gobs is the observed
graph, and Y ∈ Rns contains the labels of a subset of points Vs ⊂ V . The task is
to train a graph-based model parameterized by the weights W to predict labels
Ŷ W (X,Aobs). To train such model, we search for a good realization of W that
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minimizes an objective function Fin:

arg min
W

Fin(Y , Ŷ W (X,Aobs),Aobs) , (1)

where Fin might have Aobs as an explicit input, e.g., objective functions coupled
with the Laplacian regularization as in Eq. (5).

However, real-world graphs are noisy or non-given, which degrades the so-
lution of Eq. (1). In this work, we alleviate this problem by training a G2G
model to learn a pair-wise similarity metric between nodes to construct high-
quality graphs. This boosts performance and induces better generalization for
both structure refinement/inference problems. This implies that a new objec-
tive function Fout is designed to optimize the G2G model. We consider the case
where this objective is a function of the output of Eq. (1), after replacing Aobs

by G2G’s output. So, we look at a bilevel optimization:

Θ? ∈ arg min
Θ

Fout(Y , Ŷ WΘ
(X,AΘ),AΘ) , (2a)

such that
WΘ = arg min

W
Fin(Y , Ŷ W (X,AΘ),AΘ) , (2b)

where Θ is the weights of the G2G model, AΘ = G2G(X,Aobs) is its output
adjacency matrix. More details on the G2G structure is available in Section 3.1.
We refer to Eq. (2a) by the outer problem and to Eq. (2b) by the inner problem.

Seeking better generalization, we split labeled nodes in two sets Vtr1 and Vtr2 ,
each is used to optimize one objective function. The outer objective function
writes:

Fout =
1

|Vtr1|
∑
i∈Vtr1

`
((
Ŷ WΘ

(X,AΘ)
)
i
,Y i

)
, (3)

where Vtr1 ⊂ Vs is the outer training set, ` is a loss function commonly chosen
to be the Categorical Cross Entropy (CCE) loss for classification, and the Mean
Square Error (MSE) for regression. One may add a regularization term to Fout to
impose some regularity or priors on the generated graph, but this isn’t considered
here. Regarding the inner loss function, there are two main roles a graph can
play in graph-based methods. The first of which is when the graph explicitly
appears as input to the adopted model (e.g., message passing models and spectral
filtering), unlike the other role where the graph is used to regularize the model
but not as input of it. To show the capacity of our method under both settings,
we fairly choose a representative method for each role, namely GCN models and
the Laplacian regularization, respectively. For a GCN model Ŷ W (X,A) with
weights W , whose variant is described in Appendix A, this leads to:

Fin =
1

|Vtr2|
∑
i∈Vtr2

`
((
Ŷ W (X,AΘ)

)
i
,Y i

)
, (4)

whereas in the case of using the Laplacian regularization, it reads:

Fin =
1

|Vtr2|
∑
i∈Vtr2

`(Ŷ i,Y i) +
λ

|E|
∑

(i,j)∈E

(AΘ)i,j(Ŷ i − Ŷ j)
2, (5)
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where Vtr2 ⊂ Vs is the inner training set, and λ is the regularization magnitude.
Note that we directly optimize for Ŷ when using the Laplacian regularization,
unlike the GCN case where we have the weights W . However, we keep writing
Ŷ W for both cases seeking unity of notation.

The bilevel problem in Eq. (2) is intractable as neither the solution of the
inner problem nor its gradient w.r.t. Θ has a closed form expression. Hence, Θ?

cannot be evaluated nor computed iteratively by a gradient-based algorithm. In
addition, and as it is usually the case in modern machine learning, the outer
problem is non-convex, thus we don’t adopt finding an optimizer Θ?, but rather
a good set of weights that proves the efficiency of our algorithm compared to
baselines operating on the given graph.

In the present paper, we propose to train the G2G model by replacing the
inner problem in Eq. (2b) by a repeated application of any gradient-based al-
gorithm, that is guaranteed to converge to a good proxy. Then, we use auto-
matic differentiation [1, 37], more precisely higher-order automatic differentiation
through the Higher package [13], to trace these dynamics and finally compute
∇ΘFout. Remark here that the Higher package evaluates gradients of gradients
as it: 1) computes ∇WΘ

Fin for the inner updates, 2) evaluates the gradient of the
output after these updates w.r.t. Θ. We optimize Θ afterwards using a gradient-
based algorithm, and the resulted G2G model can be employed to reconstruct
the underlying graph, even when adding new points to the dataset. In addition,
we show that it is sufficient to trace the last few updates, here 10 iterations,
in the inner problem to get a good approximation ∇ΘFout, which significantly
reduce memory and time costs. Experiments on SSL datasets prove that our
framework considerably outperforms models operating on the observed graph.

2 Related work

Bilevel optimization is used in many applications like multi-task and meta learn-
ing [2, 9, 10]. See [7] for a review of applications in different fields. Graph structure
learning, on the other hand, gained in importance since the success of GCNs
in relational learning, stemming from the fact that real-world graphs usually
have corrupted edges. The first way used to construct these graphs might be the
k-nearest neighbors technique [30, 34] and its variants, but with shortcomings:
we have to choose k and the associated similarity criterion. Here, we look at
situations where the graph learning problem can be naturally formulated as a
supervised bilevel optimization problem.

In [11], authors learn the parameters of Bernoulli probability distributions
over independent random edges. The problem is similarly framed as a bilevel op-
timization, where these parameters are optimized to minimize the GCN ’s valida-
tion loss. This method includes learning n2 parameters which limits scalability,
and it suffers from not generalizing to new points, as this requires re-running
the optimization process to learn the parameters of added points. This is miti-
gated in our proposed method, as the G2G model can be dynamically applied on
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new points to expand the constructed graph, and the number of its parameters
doesn’t depend on the dataset size, but rather on the problem complexity.

In [33], a method referred to as Graph Agreement Model (GAM) is trained
to learn graphs for SSL problems by penalizing the absence of an edge between
nodes with the same label, thus it isn’t explicitly a function of the used GCN
model, and the problem isn’t bilevel. After training the GAM model, its output
graph is used to train the GCN model, which is then used to augment the set
of labelled nodes by considering its confident predictions as ground truth. This
training process is repeated for k iterations, and is called co-training [4].

The weights between nodes computed by our G2G bears similarity with
attention mechanisms. After each GCN layer, the importance of edges is re-
evaluated based on the similarity between nodes representation in that layer.
The similarity criterion can be user-defined like the dot product [23, 35], learned
locally at each layer by a single-layer feed-forward network [36], or a combination
of both schemes [17]. In contrast to our method, these mechanisms are trained
and used within a GCN model in one optimization problem, while the use of
G2G explicitly derive a graph of better quality as a by-product.

3 Proposed method

We first present the structure of the G2G model adopted in our framework.
Then, we state the bilevel learning routine we propose to train this model, with
Higher package as a key ingredient to compute gradients of Eqs. (2a) and (2b).

3.1 G2G model design

Our proposed model takes as input the features Xi,Xj of any two nodes i, j,
their edge weight in the observed graph (Aobs)i,j , and outputs a scalar edge
weight (AΘ)i,j . It can be expressed as a combination of three functions:

(AΘ)i,j = γ
(
β
(
α(Xi), α(Xj)

)
, (Aobs)i,j

)
, (6)

where:

– the encoder α : Rp → Rpα is a Multi-Layer Perceptron MLP (see Ap-
pendix A for the model formula), that computes a new representation vector
for a node in a new embedding space of dimension pα.

– the aggregator β : Rpα×Rpα → Rpα takes the embeddings of a pair of nodes
from the previous stage α, and merge them to have a single representation
vector in output. Let X̃i, X̃j be the embeddings of nodes i, j, the aggregator
we consider is the function:

β : (X̃i, X̃j) 7→ (X̃i − X̃j)
2, (7)

where (·)2 is the square function applied at each dimension. One notices that
this function is invariant to the order of its inputs.
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Algorithm 1 Learning algorithm

Input: X,Y ,Aobs

Output: Θ : G2G trained weights.
Hyperparameters: ηout, ηin (learning rates), τin, τout (number of iterations), q
(number of unrolled inner iterations, in our work q = 10).
Randomly initialize Θ.
for k = 1 to τout do

AΘ ← G2G(X,Aobs)
Randomly initialize WΘ.
for t = 1 to τin do

Ŷ WΘ (X,AΘ)← evaluate inner model.
∇WΘFin ← PyTorch AD on Fin(Y , Ŷ WΘ ,AΘ)
WΘ ← Adam-step(WΘ,∇WΘFin, ηin)
if t == τin − q then

Track next q inner updates as a function of Θ with Higher package.
end if

end for
Ŷ WΘ (X,AΘ)← evaluate inner model.
∇ΘFout ← Higher AD on Fout(Y , Ŷ WΘ ,AΘ)
Θ ← Adam-step(Θ,∇ΘFout, ηout)

end for
Return: Θ, WΘ (optional).

– the regressor γ : Rpα × R → [0, 1] is an MLP with sigmoid as the output
activation function. For two nodes, γ takes the according aggregator output,
the observed edge weight if provided, and outputs the sought for edge weight.

The proposedG2G architecture can be easily shown to be permutation-equivariant,
that is, permuting the input graph permutes the output graph in the same man-
ner. In mathematical terms, given any permutation function ρ : [n]→ [n], where
[n] = {1, . . . , n}, and P ∈ {0, 1}n×n the according permutation matrix, then the
following condition holds:

G2G(PX,PAobsP ) = PG2G(X,Aobs)P . (8)

Permutation equivariance (or invariance) is a critical attribute to enforce in
graph processing. Here, it guarantees that the structure of the output graph is
independent to relabelling the points in the input dataset, and can generalize to
new graphs.

3.2 Learning routine

Neither the minimizer of Eq. (2b) nor its gradient as a function of the graph used
in training have a closed-form expression in general. This makes it impossible to
evaluate G2G optimal weights Θ? or learn it with a gradient-based algorithm.
We propose to replace WΘ by the output of an iterative algorithm known to
converge to a good proxy. For example, if we consider the Adaptive Moment
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Estimation algorithm (Adam) as an optimizer [18], and we fix the number of
iterations τin, the step size ηin, then we assume that WΘ is close to Wτin,Θ,
with:

Wt,Θ = Wt−1,Θ − ηinm̂t/(
√
v̂t + ε) , (9)

where m̂t = mt/(1 − ζt1), v̂t = vt/(1 − ζt2) are the bias-corrected moment
estimates, ζ1, ζ2 are exponential decay rates defined by user (so is ε), mt =
ζ1mt−1 + (1 − ζ1)∇Wt−1,Θ

Fin, vt = ζ2vt−1 + (1 − ζ2)(∇Wt−1,Θ
Fin)2 are the bi-

ased moment estimates with m0 = v0 = 0.
Although the output WΘ is computed thanks to AD, which evaluates the

gradient ∇Wt,Θ
Fin for each update in Eq. (9), AD is still capable of looking at

the sequence of such updates as an algorithm, and evaluates the Jacobian of
its output as a function of Θ, i.e., JWΘ

(Θ). That is to say, we have a double
application of AD, the first is the traditional one used to train models in most
machine learning problems, while the second differentiates the resulting trained
models w.r.t. other variables, which is not trivial. Therefore, AD can evaluate
∇ΘFout. Furthermore, if we assume convergence in the inner problem (large value
of τin), then JWτin,Θ

(Wτin−1,Θ) ≈ 0. Thus from the chain rule, it is sufficient to
trace the last few updates, 10 in our case, to compute ∇ΘFout. This significantly
saves memory and execution time compared to unrolling all τin updates.

Indeed, we use AD to get ∇ΘFout and apply a gradient-based algorithm,
Adam, to converge to a good set of weights Θ, as described in Algorithm 1.

4 Experiments

We design a synthetic dataset to examine the capacity of the G2G model in our
framework, by trying different schemes to generate the ground-truth graph as a
function of points features. We also investigate the sensitivity of our framework
w.r.t. the number of unrolled iterations. On real datasets, we show that using
G2G yields significant benefits over the observed graph.

Synthetic dataset: we sample i.i.d. latent variables X ′ ∈ Rn×p for each point
uniformly at random from [0, 1]p with n = 256, p = 2, unless otherwise specified.
The ground-truth graph A? is then constructed s.t. an edge between points i, j
has the weight exp (−‖X ′i −X ′j‖22/2σ2). We generate observed features X as a

function of latent variables too X = f(X ′) ∈ Rn×p. Each point i in the inner
training set Vtr2 is labeled as follows:

Y i = r(e
− (X′i−µ1)2

2(0.2)2 + e
−(X′i−µ2)2

2(0.2)2 + e
−(X′i−µ3)2

2(0.2)2 ) ,

where µ1,µ2,µ3 are randomly sampled from [0, 1]p, and r is a scaling factor
such that labels lie in [0, 1]. By this construction, the prior that the labelling
function on the graph is smooth is met, and the Laplacian regularization can be
applied as in Eq. (5). To generate labels in the outer training and the validation
sets Vtr1, Vval, respectively, we plug the labels of Vtr2 and A? in Eq. (5) with
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λ = 1, and the solution holds the sought for labels. This way, if the G2G model
learns the ground-truth graph, the validation and outer losses equal to zero.
To generate the observed graph Aobs, we consider a classical model of random
graphs:

(Aobs)i,j ∼ Ber
(
A?
i,j

)
.

Each dataset is evenly divided into 4 subsets: inner training, outer training,
validation, and unlabelled sets. σ is user-defined, our choice was s.t. the average
number of edges in Aobs equals n log n (balance between a sparse and a complete
graph). Experiments on this dataset use Laplacian regularization as in Eq. (5).

Real world datasets: we demonstrate the capacity of our method on com-
mon SSL benchmark datasets for node classification: Cora [22], CiteSeer [3], and
PubMed [26]. These are citation datasets where points represent research publi-
cations described by means of a bag of words, and edges stand for citations. The
task is to classify the unlabelled ones w.r.t. their main topic. From the default
train/validation/test split in [40, 19], we use the training set as the inner training
set Vtr2, while we use half of the validation set as the outer training set Vtr1.
The other half is kept as a validation set as in [11].

Models: our G2G and GCN models are implemented using PyTorch [28] and
PyTorch Geometric [8], respectively. The encoder β and the regressor γ in the
G2G model are an MLP of 1 hidden layer each. Likewise, the GCN has 1 hidden
layer. All hidden layers in all models have 128 hidden neurons, and equipped
with the ReLu activation function. The GCN output layer is equipped with the
softmax function, while the one of the G2G model with the sigmoid function.

Setup: we use Adam as the inner and outer optimizer with the default parame-
ters of PyTorch, except for the learning rate set with a grid search to: ηin = 0.1
with Laplacian regularization, ηin = 0.06 with GCN models, and ηout = 0.003.
We use Higher package to track unrolled inner iterations and apply the second-
order automatic differentiation to compute ∇ΘFout [13]. We fix τin = 300 with
a GCN model and τin = 100 with Laplacian regularization. We unroll the last
10 iterations, unless otherwise mentioned. GCN weights WΘ and Ŷ when using
the Laplacian regularization are initialized at random after each outer iteration,
using Xavier initialization and U(0, 1), respectively. The Laplacian regulariza-
tion magnitude λ is fed to the algorithm in the experiments on the synthetic
dataset, while set with a grid search to λ = 0.01 for Cora and CiteSeer datasets,
and to λ = 1 for PubMed. We apply early stopping on the validation loss.

4.1 G2G capacity

To examine the expressive power of the G2G model in our proposed method,
we try several options for the choice of the function f , which maps from latent
variables to observed features f : Rn×p → Rn×p;X ′ 7→ X. Let (x′1, x

′
2) ∈

R2 be the latent variable of a point, the considered options are: f0(x′1, x
′
2) =
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Fig. 1: The capacity of G2G when varying X as a function of X ′. We try three
functions as in Section 4.1. Left: we plot the outer loss. Right: we plot the error
between the ground-truth graph A? and the G2G’s output in the case of f2.

(x′1, x
′
2), the linear transformation f1(x′1, x

′
2) = (x′1 + x′2, x

′
1 − x′2), and the non-

linear function f2(x′1, x
′
2) = (cos(πx′1), cos(π2 (x′1 + x′2)). In contrast to other

experiments, we tend not to feed the observed graphAobs to theG2Gmodel here.
Fig. 1 shows convergence in the outer loss in all cases, and that the G2G model
manages to notably outperform Aobs for Laplacian regularization in Eq. (5).
More importantly, the G2G’s output converges to the ground-truth graph even
with the non-linear mapping f2. As G2G doesn’t have access to Aobs during
training, this implies the capacity of this framework processing onlyX to extract
X ′, and then capture the rules governing the construction of the graphA?, while
being only guided by maximizing regression performance in Eq. (2a). This proves
the power of the G2G model, and the efficiency in computing gradients using the
package Higher, as well as indicates some information-preservation phenomenon
when constructing the latent position graph and its labels, which will be analyzed
theoretically in future work.

4.2 Sensitivity to the number of unrolled inner iterations

We observe the quality of AD-based gradients evaluated by Higher package for
Fout as a function of the number of traced dynamics in the inner problem. We
set τin = 800 and vary the number of unrolled inner iterations q on the interval
[1, τin], then we run our algorithm for each value. As seen in Fig. 2, Higher
package successfully evaluates gradients when the number of unrolled updates
goes from 1 up to 200, where we observe convergence and a good generalization
on the validation set compared to Aobs. Surprisingly, results degrade gradually
with larger values and become unstable, which is not justified theoretically, as
unrolling the few last or all inner updates at convergence should lead to the same
Jacobian JWΘ

(Θ). We conclude that Higher package becomes less accurate when
it operates on large-scale computations. To verify this hypothesis, we designed a
simpler bilevel problem and applied our algorithm. Our results show that Higher
package indeed fails to track gradients with accelerated optimization methods,
e.g., Adam or SGD with momentum, as the number of unrolled inner iterations
gets large. This problem is also reported in [11], but the source was not precisely
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Fig. 2: Sensitivity to the number of unrolled inner iterations. We run the bilevel
regime and plot the best validation loss for each value. τin = 800.

detected to be the AD framework used in the according work. Based on this
experiment, a good choice of this value would be from the range [1, 200]. To save
memory and reduce training time, we choose to unroll q = 10 iterations.

4.3 Results on real-world datasets

We conduct our experiments on Cora, CiteSeer and PubMed datasets. During
training, we augment the given graph by sampling 1000 edges from all possible
edges at every iteration in the outer problem. We keep up to 10000 edges that
were assigned the highest weights by the G2G model. This way, we don’t just
denoise the given edges, but we are likely to find more helpful edges, while
avoiding processing the complete graph with these datasets, which is memory
consuming and time costly. We run our algorithm two times on these datasets,
where we use the Laplacian regularization in the inner problem in one, and a
GCN model in the second time. As seen in Table 1, GCNs outperform the

Table 1: Benchmark against a GCN model operating on the given graph and the
GAM model on real-world datasets. We report the classification test accuracy.
The subscript of models indicates the number of hidden neurons in each hidden
layer. Results of GAM method are reported from the according paper.

Model
Dataset

Cora CiteSeer PubMed

GCN128 77.0 67.0 75.2
GCN128 +GAM 86.2 73.5 86.0
GCN128 +G2G 79.6 71.8 79.2
Laplacian+G2G 78.9 54.7 70.3

Laplacian regularizer when used in the inner problem, which is expected due to
the message passing model in GCNs. Besides, we see that our algorithm with a
GCN in the inner problem yields significant improvement over the GCN model
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operating on the given graph. On the other hand, the Graph Agreement Model
(GAM) produces higher accuracy on the three datasets, thus our framework is
not state-of-the-art.

5 Conclusion future work

One limitation in relational learning is that real-world graphs are noisy or not
given. To solve this issue, we proposed to train a G2G model to generate a bet-
ter graph by solving a bilevel optimization. The inner optimization comprises
training a traditional model, e.g., GCN , on the output graph of G2G. The outer
optimization uses the trained model to asses the performance of G2G w.r.t. the
outer objective function. This algorithm is the first variant of frameworks that
train G2G models using bilevel regimes, where such models has the advantage
to generalize by expanding the graph on new points. To solve the bilevel prob-
lem, we replaced the inner problem by iterative applications of the Adam opti-
mizer. Then, we used Higher package to perform second-order differentiation on
Adam’s output and compute the gradients to train the G2G model. We showed
empirically that applying Higher on the last 10 iterations is efficient to compute
accurate gradients, which notably saves memory and training time. Experiments
on synthetic data proves the capacity of our method to learn graphs in the ab-
sence of an observed graph, i.e., learning the similarity criterion from features.
Compared to given graphs, experiments on real datasets show that G2G boosts
the performance of GCN models and generalizes well on the validation set.
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on graphs: A model and comprehensive taxonomy. Journal of Machine Learning
Research 23(89), 1–64 (2022)

7. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Annals
of operations research 153(1), 235–256 (2007)

8. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric.
In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)



12 H. Ghanem et al.

9. Flamary, R., Rakotomamonjy, A., Gasso, G.: Learning constrained task similari-
ties in graphregularized multi-task learning. Regularization, Optimization, Kernels,
and Support Vector Machines 103 (2014)

10. Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., Pontil, M.: Bilevel programming
for hyperparameter optimization and meta-learning. In: International Conference
on Machine Learning. pp. 1568–1577. PMLR (2018)

11. Franceschi, L., Niepert, M., Pontil, M., He, X.: Learning discrete structures for
graph neural networks. In: International conference on machine learning. pp. 1972–
1982. PMLR (2019)

12. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. In: International conference on machine learning.
pp. 1263–1272. PMLR (2017)

13. Grefenstette, E., Amos, B., Yarats, D., Htut, P.M., Molchanov, A., Meier, F., Kiela,
D., Cho, K., Chintala, S.: Generalized inner loop meta-learning. arXiv preprint
arXiv:1910.01727 (2019)

14. Ji, S., Pan, S., Cambria, E., Marttinen, P., Philip, S.Y.: A survey on knowledge
graphs: Representation, acquisition, and applications. IEEE Transactions on Neu-
ral Networks and Learning Systems 33(2), 494–514 (2021)

15. Kazemi, S.M., Goel, R., Jain, K., Kobyzev, I., Sethi, A., Forsyth, P., Poupart,
P.: Representation learning for dynamic graphs: A survey. J. Mach. Learn. Res.
21(70), 1–73 (2020)

16. Keriven, N., Bietti, A., Vaiter, S.: Convergence and stability of graph convolutional
networks on large random graphs. Advances in Neural Information Processing Sys-
tems 33, 21512–21523 (2020)

17. Kim, D., Oh, A.: How to find your friendly neighborhood: Graph attention design
with self-supervision. In: International Conference on Learning Representations
(2021)

18. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. International
Conference on Learning Representations (12 2014)

19. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations (ICLR) (2017)

20. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In:
Proceedings of the twelfth international conference on Information and knowledge
management. pp. 556–559 (2003)

21. Liu, Q., Allamanis, M., Brockschmidt, M., Gaunt, A.: Constrained graph varia-
tional autoencoders for molecule design. Advances in neural information processing
systems 31 (2018)

22. Lu, Q., Getoor, L.: Link-based classification. In: ICML 2003 (2003)
23. Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neu-

ral machine translation. In: Proceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing. pp. 1412–1421. Association for Computational
Linguistics, Lisbon, Portugal (Sep 2015)

24. Milanfar, P.: A tour of modern image filtering: New insights and methods, both
practical and theoretical. IEEE signal processing magazine 30(1), 106–128 (2012)

25. Morris, C., Ritzert, M., Fey, M., Hamilton, W.L., Lenssen, J.E., Rattan, G., Grohe,
M.: Weisfeiler and leman go neural: Higher-order graph neural networks. In: Pro-
ceedings of the AAAI conference on artificial intelligence. vol. 33, pp. 4602–4609
(2019)

26. Namata, G., London, B., Getoor, L., Huang, B., Edu, U.: Query-driven active
surveying for collective classification. In: 10th International Workshop on Mining
and Learning with Graphs. vol. 8, p. 1 (2012)



Supervised graph learning with bilevel optimization 13

27. Pang, J., Cheung, G.: Graph laplacian regularization for image denoising: Analysis
in the continuous domain. IEEE Transactions on Image Processing 26(4), 1770–
1785 (2017)

28. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
Pytorch: An imperative style, high-performance deep learning library. In: Wallach,
H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett, R. (eds.)
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A Models

We refer by MLP (Multi Layer Perceptron) to networks composed of several

fully connected feedforward layers. That is, given the output features X [l] of the
l-th layer, the output of the next layer is computed as follows:

X [l+1] = φ[l+1](X [l]W
[l+1]
1 + b[l+1]) , (10)

where W [l+1] = {W [l+1]
1 , b[l+1]} are the weights of this layer, and φ is the non-

linear activation function. Likewise for a GCN model, the graph convolutional
layer we consider computes X [l+1] as follows [25]:

X [l+1] = φ[l+1](X [l]W
[l+1]
1 +AX [l]W

[l+1]
2 + b[l+1]) ,

where A is the input adjacency matrix, W [l+1] = {W [l+1]
1 ,W

[l+1]
2 , b[l+1]} are

the weights of this layer, and φ is a non-linearity. φ is usually chosen to be the
ReLu function for hidden layers, and for the output layer either softmax when
solving a classification problem, or identity when solving a regression problem.

B Memory and computation costs

Tracking 10 inner iterations to construct gradients, chosen based on Section 4.2,
our algorithm needs memory to place G2G weights, 10 copies of the GCN
weights, or 10 copies of the optimized labels Ŷ when using the Laplacian reg-
ularization method. That is in addition to points in the dataset, and other hy-
perparameters that can be ignored. Since GCN models usually don’t get better
results when having more than 2 layers, the memory need is of the same magni-
tude as the co-training method, e.g., GAM [33], the graph attention models, and
the LDS model. Regarding the computation cost, our algorithm and GAM have
comparable costs when the number of co-training rounds equals the number of
outer iterations. Whereas it costs less compared to the LDS method, thanks to
tracking just the last 10 inner iterations by automatic differentiation. However,
GAT models are still the least expensive among previous algorithms.


