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ABSTRACT

Using a mix of shared and language-specific (LS) parameters has shown promise
in multilingual neural machine translation (MNMT), but the question of when
and where LS capacity matters most is still under-studied. We offer such a
study by proposing conditional language-specific routing (CLSR). CLSR em-
ploys hard binary gates conditioned on token representations to dynamically se-
lect LS or shared paths. By manipulating these gates, it can schedule LS capacity
across sub-layers in MNMT subject to the guidance of translation signals and
budget constraints. Moreover, CLSR can easily scale up to massively multilin-
gual settings. Experiments with Transformer on OPUS-100 and WMT datasets
show that: 1) MNMT is sensitive to both the amount and the position of LS
modeling: distributing 10%-30% LS computation to the top and/or bottom en-
coder/decoder layers delivers the best performance; and 2) one-to-many transla-
tion benefits more from CLSR compared to many-to-one translation, particularly
with unbalanced training data. Our study further verifies the trade-off between
the shared capacity and LS capacity for multilingual translation. We corroborate
our analysis by confirming the soundness of our findings as foundation of our
improved multilingual Transformers. Source code and models are available at
https://github.com/bzhangGo/zero/tree/iclr2021_clsr.

1 INTRODUCTION

Model architecture design injects inductive biases to neural network layouts, allowing a learning
algorithm to favor certain representations over others, independent of the observed data (Mitchell,
1980). In multilingual neural machine translation (MNMT), where the learning objective is com-
monly cast as a multi-task learning problem (Firat et al., 2016a; Ha et al., 2016; Johnson et al., 2017),
the inductive bias researchers usually study is deciding on which components of the neural network
to share between tasks (languages), and which components to leave specific to the task or language.
These components can be entire layer stacks, individual layers or even some sub-layers (Sachan &
Neubig, 2018; Blackwood et al., 2018; Wang et al., 2019; Zhu et al., 2020). Noticeably, the search
space of which parameters to share and at which granularity grows rapidly, as we make neural net-
works large or increase the number of tasks (languages). This rapid expansion of the search space
prevents us from exhaustively exploring the choice of sharing patterns in MNMT.

The incapability of full-space exploration motivates methods relying on heuristics (Sachan & Neu-
big, 2018), that lack flexibility when more languages are covered, or meta-learning (Platanios et al.,
2018), that are often hard to scale. These limitations hinder their generalization to large-scale mul-
tilingual models, which is the very focus of our study. In large scale multilingual models, also
known as massively multilingual models (Aharoni et al., 2019; Arivazhagan et al., 2019; Zhang
et al., 2020b), hundreds of languages with varying amounts of training data, difficulty and linguistic
properties are jointly trained together in a multi-task setup. While the joint training enables positive
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Figure 1: The model architecture used for our experiments. We introduce a CLSR layer after every transformer
sub-layer in the encoder and the decoder. The gating layer learns to route every input through either the LS
projection layer, or a shared projection layer. We analyze the outputs of the gating layers to develop a MNMT
architecture with LS projections.

transfer across languages, it also introduces task-interference between dissimilar languages (Ari-
vazhagan et al., 2019; Wang et al., 2020a;b) and a capacity bottleneck emerges due to the increased
number of languages and data (Huang et al., 2019; Zhang et al., 2020b).

In this paper we adopt an end-to-end data driven approach (conditional language-specific routing,
or CLSR) which permits directly probing a large section of the search space. We let the network
learn the sharing structure from the data itself, by learning to route between language-specific (LS)
or shared pathways. These two routes determine the mode of operation for the network: when
the LS branch is selected, the model is given access to a set of LS layers (implemented as simple
projections per language) and when the shared branch is chosen, the computation is routed to a layer
that is used by all languages. By guiding the (gating) decision process with token level activation
information, the network flexibly learns to alternate between the two modes and naturally lends
itself to a conditional computation approach for multilingual processing (Bengio et al., 2013; Davis
& Arel, 2013; Bapna et al., 2020). The gate states are optimized towards maximizing translation
quality, but regularized with a budget constraint to control the amount of LS capacity1. Reducing
the available budget results in fewer gates routing through the LS paths, enforcing CLSR to identify
the most crucial sub-layers which allows us to observe and study the importance of each sub-layer
for multilingual processing. Our approach is visually depicted in Figure 1.

We verify our proposal on WMT and the massively multilingual OPUS-100 dataset, with models
building on the Transformer architecture (Vaswani et al., 2017). We explore target-specific and
source-specific modeling for one-to-many2 and many-to-one translation, respectively. To measure
the degree of each sub-layer’s tendency to be language-specific, we propose LSScore metric. Our
results show that CLSR successfully navigates the trade-offs in LS modeling, outperforming several
strong baselines. Our main findings are summarized below:

• Both the amount and the position of LS layers matter for MNMT. The best perfor-
mance is achieved by distributing 10%-30% LS computation to the top and/or bottom en-
coder/decoder layers.

• Feed-forward sub-layers utilize more LS capacity compared to other sub-layers on one-to-
many translation.

• One-to-many translation benefits more from CLSR (with target LS parameters) compared
to many-to-one translation (with source LS parameters), particularly when the training data
is imbalanced.

• The induced sharing pattern learned by CLSR is highly similar across languages.

1We use the term “the amount of LS capacity” to refer to the proportion of open gates where CLSR selects
to route information through the LS path instead of its shared counterpart, which is directly regularized and
guided by the budget constraint p as in Eq. 6.

2In a one-to-many machine translation setup, a single source side language (commonly English) is tasked
to be translated into multiple target languages, one at a time.
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• We can use the learned patterns to hard-code better parameter sharing strategies for multi-
lingual Transformers.

2 RELATED WORK

Our work closely relates to language-specific (LS) modeling for multilingual NMT and conditional
computation for sequential data which we will recap both here. Early research on MNMT focused
on improving shared capacity for separate bilingual models to enhance cross-lingual transfer. These
efforts included sharing encoders for one-to-many translation (Dong et al., 2015), sharing decoders
for many-to-one translation (Zoph & Knight, 2016; Lee et al., 2017) and sharing sub-layers (atten-
tion) for many-to-many translation (Firat et al., 2016a;b). These studies corroborated the feasibility
of accommodating multiple languages with shared NMT sub-components, motivating researchers to
explore universal MNMT. Ha et al. (2016) and Johnson et al. (2017) proposed such an implemen-
tation that performs multilingual translation with a single monolithic NMT model where the entire
network is shared across languages, thanks to a target language token informing the model which
language to translate into. Although this paradigm shows great scalability (Aharoni et al., 2019),
the language token alone affords little flexibility in handling language diversity with a rigid share-all
layout. Follow-up studies thus resort to LS modeling in an attempt to seek a better trade-off between
sharing and not sharing. Methods in this category involve specializing neural attentions (Blackwood
et al., 2018; Sachan & Neubig, 2018; Wang et al., 2019), broadening encoder outputs and normal-
izations (Zhang et al., 2020b), decoupling multilingual encoders and/or decoders (Vázquez et al.,
2019; Escolano et al., 2020), using a fixed mix of LS and shared parameters (Wang et al., 2018), in-
serting lightweight adapters (Bapna & Firat, 2019) and separately modeling languages for different
clusters (Tan et al., 2019), to name a few. Nevertheless, these methods heavily depend on heuristics,
providing little evidence about how to optimally distribute LS capacity across the model.

By contrast, our proposed CLSR forces the model to learn LS behaviour. It can be treated as a sim-
plified differentiable neural architecture search (NAS) model (Liu et al., 2019) with a search space
defined by the presence/absence of LS projections after every transformer sub-layer. However, in
contrast with NAS, we utilize conditional computation (Bengio et al., 2013) to make the choice of
executing the shared or LS path conditional on the input representations. This allows us to compare
and contrast the choice of LS vs shared paths on different inputs and languages. Conditional com-
putation has previously been successfully applied to adapt the amount of computation to the input in
recurrent models (Graves, 2016) and transformers (Dehghani et al., 2019; Elbayad et al., 2020), or to
significantly scale up model capacity by utilizing sparsely-gated Mixture-of-Experts layers (Shazeer
et al., 2017; Lepikhin et al., 2020). Zhang et al. (2020a) applied conditional computation to sparsify
encoder outputs in sequence-to-sequence models in order to reduce attention costs, while Bapna
et al. (2020) introduced conditional execution of Transformer sub-layers to control the amount of
computation expended by the model at inference. Sukhbaatar et al. (2019) learn parameters that limit
the attention spans, in order to make the attention operation more efficient, while Fan et al. (2020)
utilize structured dropout to prune transformer layers at inference. Ruder et al. (2019) propose the
sluice network that learns the inter-task (shared) sub-spaces on top of task-specific models. By con-
trast, CLSR starts with a totally shared model, and learns how to inject task-specific projections
into it, which scales more easily to massively multilingual settings. Different from previous studies,
we explore conditional computation as an analysis tool to understand the ideal arrangement of LS
capacity for MNMT. Utilizing conditional computation to search for better LS sharing patterns in
multilingual translation, to the best of our knowledge, has never been investigated before.

3 BACKGROUND: MNMT

Given a source sentence X ′ = {x1, x2, . . . , xI} and its target translation Y = {y1, y2, . . . , yJ},
we follow Johnson et al. (2017) to reuse standard bilingual NMT models for multilingual trans-
lation by altering the source input with a language token lang, i.e. changing X ′ to X =
{lang, x1, x2, . . . , xI}. Note that lang denotes the target language in one-to-many translation but
source language in many-to-one translation.

We model translation from X to Y with Transformer (Vaswani et al., 2017). Transformer relies on
the following residual-normalization structure (He et al., 2015; Ba et al., 2016) to smooth informa-
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tion flow and avoid gradient vanishing and explosion:

zl+1 = LN
(
zl + f

(
zl
))
, (1)

where l denotes layer depth and LN(·) is layer normalization (Ba et al., 2016). Function f(·) rep-
resents the basic building block in Transformer, such as attention network or feed-forward network.
The encoder in Transformer is a stack of L identical layers, with each layer involving a self-attention
sub-layer (SAN) and a feed-forward sub-layer (FFN). The decoder uses a similar structure except
for an extra cross-attention sub-layer (CAN) inserted in-between the above two sub-layers.

4 CONDITIONAL LANGUAGE-SPECIFIC ROUTING (CLSR)

The success of MNMT comes at the cost of expressivity and model’s ability to capture language-
specific characteristics. It has been empirically shown that the language signals from language
indicator tokens alone are not sufficient (Arivazhagan et al., 2019), making architectures dedicated
to LS modeling a necessity (Blackwood et al., 2018; Sachan & Neubig, 2018; Zhang et al., 2020b).
Nevertheless, the question when and where LS modeling matters most in MNMT still remains to be
answered. To this end, we propose conditional language-specific routing (CLSR) which specializes
f(·) and changes the formulation in Equation 1 as follows:

zl+1 = LN
(
zl + CLSR

(
f
(
zl
)))

. (2)

CLSR learns a hard binary (scalar-valued) gate g(·) for each input token based on its hidden repre-
sentation zl ∈ Rd. These gates endow each sub-layer in Transformer with the capability of routing
information selectively through either LS path hlang or shared path hshared:

CLSR
(
f
(
zl
))

= g(zl)hlang + (1− g(zl))hshared, (3)

with hlang = f
(
zl
)
Wlang, hshared = f

(
zl
)
Wshared, (4)

where Wshared is a weight matrix shared across languages, while parameter Wlang is only used
for modeling language lang which endows NMT with source or target LS modeling capacity.3 Intu-
itively, a closed gate, corresponding to shared capacity, encourages maximal cross-lingual informa-
tion transfer; an open gate, corresponding to LS capacity instead, improves language awareness for
translation albeit it blocks knowledge transfer. CLSR balances between the two modes as controlled
by the gates.

Following Bapna et al. (2020), we parameterize the gate g(·) with a two-layer feed-forward network
G(·), and inject zero-mean Gaussian noise during training to discretize it (Chiu & Raffel, 2018) :

g(zl) = σ
(
G(zl) + α(t)N (0, 1)

)
, G(zl) = Relu

(
zlW1 + b

)
w2, (5)

where σ(·) is the logistic-sigmoid function, dg is the gating feed-forward hidden dimension, and
W1 ∈ Rd×dg ,w2 ∈ Rdg are trainable parameters. α is linearly increased along with training steps
t. In this way, the gating parameters can be optimized with accurate gradients when α is small at
the beginning so as to measure the degree to which each position in each sub-layer benefits from LS
modeling. As training progresses, α grows larger, forcing the gating network to emit hard outputs.
At inference time, we discretize the gate based on a simple decision rule: g(zl) = δ

(
G(zl) ≥ 0

)
,

where δ(·) is a Dirac measure.

We train the gates based on the standard maximum likelihood objective, along with an additional
budget regularization term that enables control over the amount of LS capacity used for translation.
Let the set of all CLSR layers in the encoder beMenc and the decoder beMdec. Then the amount of
LS computation utilized by a sentence pair (X,Y ) is given byG(X,Y ) =

∑
x∈X

∑
m∈Menc

gm(x)+∑
y∈Y

∑
m∈Mdec

gm(y). Given a budget constraint p ∈ [0, 1] and a batch of sentence pairs, B, the
training loss function of CLSR is formulated below:

L (B) =
∑

(X,Y )∈B

MLE (X,Y ) +

∣∣∣∣∣
∑

(X,Y )∈BG(X,Y )∑
(X,Y )∈B(|X||Menc|+ |Y ||Mdec|)

− p
∣∣∣∣∣ , (6)

3We maintain a set of language-specific weight matrices in order to compute hlang for each language. To
make the number of parameters manageable, we share the set of LS matrices Wlang across all encoder or
decoder sub-layers, but distinguish Wlang

enc and Wlang
dec , LS matrices for the encoder and decoder, respectively.
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Intuitively, the budget constraint tries to regulate the amount of LS computation available to all to-
kens in the batch as a fraction p of the total LS computation in the model. Given that we make
a binary decision for every input for every CLSR layer, this corresponds to a search space of
O(2|X||Menc|+|Y ||Mdec|). This gating space not only grows with respect to the model depth and
sub-layer types, but also is highly input dependent. This dependency makes it difficult to search the
entire space using heuristic methods (Blackwood et al., 2018).

The constraint in Equation 6 is imposed upon the aggregated gates. As a consequence, the model
can learn to trade-off LS capacity for certain layers and inputs for others. Decreasing the budget
encourages gate closure, such that the LS path is chosen only in the critical sub-layers. Thus, a
properly learned gating function reveals the activations of LS paths and helps gain insights into the
model behavior.

5 EXPERIMENTS

Data and Evaluation We report results on two benchmarks: OPUS-100 (Zhang et al., 2020b)
and WMT-14 (Barrault et al., 2019). OPUS-100 is a massively multilingual dataset collected from
OPUS (Tiedemann, 2012), including 100 languages in total with 99 languages to-and-from English.4
It consists of 55M training sentence pairs with up to 1M samples per language pair, and covers 94
dev/test language pairs, each with 2000 samples at most. WMT-14 is another multilingual English-
centric dataset composed of 13 widely-used WMT benchmarks following Siddhant et al. (2020) but
excluding Kazakh and Gujarati due to their poor parallel resource. Compared to OPUS-100, WMT-
14 involves much fewer languages but its training data distribution is highly skewed across diverse
language pairs, ranging from 0.2M (En-Tr) to 60M (En-Cs) training examples, thus posing severe
challenges. We show more details about the train, dev and test data for WMT-14 in Appendix A.

We apply byte pair encoding (BPE) algorithm (Sennrich et al., 2016) using SentencePiece (Kudo
& Richardson, 2018) to preprocess multilingual sentences with a vocabulary size of 64K. We use
BLEU (Papineni et al., 2002), offered by SacreBLEU (Post, 2018)5, for translation evaluation. Fol-
lowing Zhang et al. (2020b), we split the 94 test language pairs in OPUS-100 into three groups
based on their training data size to ease model evaluation: high resource (>0.9M, 45 languages),
low resource (<0.1M, 26 languages) and medium resource (others, 28 languages). Similarly, we
split the 13 test language pairs in WMT-14 as follows: High (>10M, 5), Low (<1M, 5) and Med
(others, 3).

We perform experiments for one-to-many translation (O2M) and many-to-one translation (M2O).
In addition to using the original training data as is, we also report results with a temperature-based
strategy to balance the training data distribution by over-sampling low-resource languages with a
temperature of T = 5 (Arivazhagan et al., 2019).

We report average BLEU, and also show win ratio (Zhang et al., 2020b, WR), informing the propor-
tion of language pairs on which our method beats our baseline. To evaluate how often each sub-layer
is LS, we introduce a new metric, LSScore, formulated as follows:

LSScoref (l, p) =
1

|P|
∑
p∈P

g̃pl,f − p, (7)

where g̃pl,f denotes the gating value averaged over all test tokens for the l-th sub-layer f(·) trained
under a budget of p. Recall that we pose the budget constraint to the summed gate value instead of
each individual gate, as in Equation 6. This gives CLSR the freedom to close more gates in some
language-insensitive sub-layers (i.e. g̃pl,f < p) while preserve more for the others (i.e. g̃pl,f > p). A
larger LSScore, > 0 in particular, indicates that this sub-layer utilizes more LS modeling.

Model Settings We adapt Transformer base for our experiments: L = 6, d = 512, 8 attention
heads with FFN middle size of 2048. Dropout of rate 0.1 is applied to residual connections and
attention weights. We optimize parameters using Adam (Kingma & Ba, 2015) (β1 = 0.9, β2 = 0.98)
with label smoothing of 0.1. Learning rate is scheduled according to the inverse square root of
running steps with a warmup step of 4K (Vaswani et al., 2017). We limit training sequence length

4http://opus.nlpl.eu/opus-100.php
5Signature: BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.4.10.
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to 100, and train all models with a batch size of 1920. We set the maximum running step to 500K
and 600K for OPUS-100 and WMT-14, respectively. We perform beam search decoding with beam
size of 4 and length penalty of 0.6. We average the last 5 checkpoints for evaluation. For CLSR,
we set dg to 128, and linearly increase α from 0 to 5 along training steps (Bapna et al., 2020).6 We
vary the budget p in the range of P = {0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0} to study its impact on model
performance.

5.1 RESULTS ON OPUS-100
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Figure 2: Average BLEU 2(a),2(b) and win ratio 2(c),2(d) over all test language pairs for O2M and M2O on
OPUS-100 when varying the budget p. Baseline: multilingual baseline on the original training data; Oversam-
ple: oversampling low-resource data with a temperature of 5.

On the trade-off between shared and language-specific capacity. Using more LS modeling
fails to deliver increasingly better translation performance, as shown in Figure 2(a) and 2(b) when
p approaches 1.0. At the point of full LS capacity for Transformer, i.e. p = 1.0, CLSR even un-
derperforms its corresponding multilingual baseline by a large margin of 1.0-2.0 BLEU on M2O,
Figure 2(b). Similarly, sharing all model parameters across language pairs, p → 0.0, also yields
suboptimal performance with either original or oversampled training data. CLSR achieves its best
translation quality at p = 0.3 (+2.0/3.0 BLEU) and p = 0.1 (+0.5/1.5 BLEU) for O2M and M2O, re-
spectively. The win ratio curves in Figure 2(c) and 2(d) further confirm the robustness of these qual-
ity improvements, where properly scheduling LS capacity outperforms the baselines on >∼ 80%
language pairs. These results clearly show the trade-off between these two kinds of capacity.

When does language-specific capacity matter for multilingual translation? Results in Figure 2
show that O2M favors more LS modeling and benefits more from it compared to M2O (p = 0.3 vs.
p = 0.1, and +3.0 vs. +1.5 BLEU on the original training data). We conjecture that translations
on M2O share the same target language (English), so information can be easily transferred through
shared modeling; by contrast, MNMT has to handle languages of diverse typological features for
O2M, demanding stronger capacity delivered to each translation direction. Results in Figure 2 also
show that CLSR yields more aggressive improvements on the original training data, compared to the
oversampled counterpart (+3.0 vs. +2.0 BLEU on O2M and +1.5 vs. +0.5 BLEU on M2O). Fine-
grained analysis on each resource group, as shown in Figure 7 (Appendix B), reveals that CLSR
yields more improvements for low-resource translation where the oversampling strategy partially
offsets these improvements.

Where should we add language-specific capacity in multilingual Transformer? Figure 2 sug-
gests that CLSR uses 10-30% LS capacity to reach its best performance. We next study how CLSR
schedules this capacity across all Transformer sub-layers, in order to determine the ideal arrange-
ment of LS layers for translation. Figure 3 shows the results. Regardless of layer types, CLSR
schedules more LS capacity to the top and/or bottom encoder/decoder layers rather than the middle
ones. We find that more LS capacity is allocated to feed-forward sub-layers for O2M (both encoder
Figure 3(a) and decoder Figure 3(b)), while the cross-attention sub-layers use more LS capacity for
M2O (decoder, Figure 3(d)). Regarding the encoder for M2O, we observe no significant LSScore

6Note that, there are 99×2 and 13×2 independent Wlang weight matrices when CLSR is used for OPUS-
100 and WMT-14, respectively. This corresponds to each language having a weight matrix in the encoder and
the decoder.
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Figure 3: LSScore of encoder and decoder sub-layers for O2M 3(a), 3(b) and M2O 3(c), 3(d) on OPUS-100.
The solid lines correspond to models trained on the original data, while the dashed lines are on the oversampled
data. We also include a red, dotted line to indicate the LSScore of 0.

Data
Setting Model O2M M2O

High Med Low All WR High Med Low All WR

Original

Baseline 21.39 22.36 18.02 20.93 - 28.55 30.10 29.71 29.27 -
LS� +0.75 +1.83 +3.96 +1.79 94.68 -0.54 -0.16 -0.46 -0.41 32.98
CLSR-S +0.06 -0.09 -0.34 -0.08 41.49 -0.14 -0.06 +0.02 -0.08 37.23
CLSR-L +0.39 +1.54 +4.37 +1.62 84.04 -1.13 -0.47 -0.46 -0.78 21.28
CLSR? +1.45 +2.83 +6.40 +2.97 95.74 +0.65 +1.52 +3.79 +1.61 96.81
Top-Bottom +1.27 +2.71 +6.60 +2.89 96.81 +0.38 +1.16 +3.06 +1.21 78.72
Dedicated +1.35 +2.75 +6.46 +2.90 97.87 +0.61 +1.50 +2.85 +1.38 89.36

Over
Sample

Baseline 19.95 24.22 25.27 22.41 - 26.98 30.69 34.26 29.71 -
LS� +0.99 +1.30 +0.94 +1.07 90.43 -0.55 -0.61 -3.96 -1.33 12.77
CLSR-S +0.02 +0.13 +0.30 +0.11 44.68 -0.04 +0.06 -0.84 -0.19 35.11
CLSR-L +0.62 +0.60 +0.34 +0.55 69.15 -1.02 -1.11 -4.56 -1.84 7.45
CLSR? +1.76 +2.04 +1.94 +1.89 93.62 +0.82 +0.84 -0.13 +0.62 76.60

Top-Bottom +1.73 +1.91 +1.83 +1.81 96.81 +0.83 +1.05 -1.36 +0.41 73.40
Dedicated +1.79 +2.03 +2.07 +1.92 94.68 +0.99 +0.92 -0.88 +0.55 77.66

Table 1: Translation quality for O2M and M2O on OPUS-100 with the original and oversampled training data.
We list average BLEU↑ for High, Med, Low and All language groups, as well as WR↑ over all language pairs.
Baseline: the vanilla multilingual baseline; LS�: the LS model proposed by Zhang et al. (2020b); CLSR-S:
CLSR but always using shared modeling, i.e. g(zl) = 0 for all inputs; CLSR-L: CLSR but always using LS
modeling, i.e. g(zl) = 1 for all inputs; CLSR?: the best CLSR model; Top-Bottom: applying LS modeling
only to the top and bottom Transformer layers; Dedicated: dedicated model that allocates LS modeling based
on LSScore distribution. Best results are highlighted in bold.

difference among different sub-layers as in Figure 3(c). Overall, CLSR tends to make the “M” side
more LS, i.e. the encoder side of M2O (Figure 3(c)) and the decoder side of O2M (Figure 3(b)).

Does CLSR schedule language-specific capacity based on linguistic similarity? It is intriguing
to explore how the capacity scheduled by CLSR is actualized, especially whether CLSR learns
to organize LS capacity according to linguistic characteristics or not. The heatmap in Figure 6,
Appendix B shows that the LSScore distribution over different sub-layers (y-axis) has only subtle
difference across different language pairs (x-axis). This suggests that the capacity schedule has little
to do with linguistic characteristics. More results in other settings are given in Figure 6, Appendix
B, which reflect similar observation. In short, CLSR allocates LS capacity to specific sub-layers
rather than specific languages. This could be ascribed to the design of CLSR. CLSR shares the
gating parameters and the budget, p, across all languages, which might impose some inductive bias
discouraging its LS behavior. Besides, the structure of the gating in CLSR (Eq. 5) might fail to offer
enough flexibility for controlling the gates in different ways across languages and layers. We leave
further study of LS gating to future work.

On detailed results and comparison to other baselines. Table 1 summarizes our results.7 Al-
though LS� (Zhang et al., 2020b) improves O2M, it fails to surpass the vanilla Baseline on M2O,
indicating that the position of its LS layer, i.e. on top of the encoder outputs, is sub-optimal for

7We list the number of trainable parameters for each model in Table 6, Appendix D.
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many-to-one translation. Compared to LS�, CLSR-S uses no LS modeling while CLSR-L injects
LS projection into each sub-layer, both of which delivers inferior performance on O2M (against
LS� and Baseline) and M2O (against Baseline), echoing our findings from Figure 2. By contrast,
CLSR?, which uses an optimized budget p, yields promising results, beating Baseline on O2M and
M2O, underlining the importance of seeking balances between sharing and not sharing.

Can we use these insights to improve multilingual Transformer? We answer this question by
transferring our findings from Figure 3 into the following two Transformer variants: one enhances
the top and bottom encoder/decoder layers with LS projections (Top-Bottom), while the other makes
high-LSScore sub-layers LS (Dedicated).8 Results of these experiments, in Table 1, demonstrate
that incorporating our findings into Transformer helps to improve translation performance. The
dedicated model in particular recovers and even surpasses the performance of CLSR?.

5.2 RESULTS ON WMT-14
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Figure 4: Average BLEU 4(a),4(b) and win ratio 4(c),4(d) over all test language pairs for O2M and M2O on
WMT-14 when varying the budget p.

Data
Setting Model O2M M2O

High Med Low All WR High Med Low All WR

Original

Baseline 27.24 16.27 8.72 17.58 - 30.64 24.37 18.66 24.58 -
LS� +0.06 +0.66 +1.68 +0.83 84.62 -0.06 -0.37 -0.92 -0.46 23.08
CLSR-S +0.00 +0.16 +0.20 +0.12 53.85 +0.04 +0.16 +0.28 +0.17 69.23
CLSR-L -0.52 +0.43 +2.06 +0.70 61.54 -0.82 -0.50 +0.00 -0.43 15.38
CLSR? +0.46 +1.46 +3.10 +1.71 100.0 +0.12 +0.73 +1.52 +0.80 84.62
Top-Bottom +0.10 +0.96 +2.78 +1.34 84.62 -0.08 +0.70 +1.26 +0.62 61.54
Dedicated +0.26 +1.00 +2.98 +1.48 92.31 +0.04 +0.86 +1.90 +0.95 84.62

Over
Sample

Baseline 26.10 19.00 15.52 20.39 - 29.96 26.33 23.56 26.66 -
LS� +0.30 +0.60 +0.26 +0.36 84.62 -0.44 -0.56 -0.80 -0.61 00.00
CLSR-S -0.12 +0.03 +0.04 -0.02 46.15 +0.06 +0.04 -0.26 -0.07 46.15
CLSR-L -0.56 -0.10 -0.32 -0.36 7.69 -0.90 -1.00 -1.24 -1.05 00.00
CLSR? +0.50 +0.67 +0.64 +0.59 100.0 +0.26 +0.30 +0.50 +0.36 100.0
Top-Bottom +0.12 +0.40 +0.56 +0.36 84.62 -0.08 +0.00 -0.50 -0.22 30.77
Dedicated +0.46 +0.57 +0.66 +0.56 100.0 +0.16 +0.17 +0.22 +0.19 84.62

Table 2: Translation quality for O2M and M2O on WMT-14 with the original and oversampled training data.

Figure 4 shows the capacity trade-off on WMT-14, reconfirming the ability of CLSR. One noticeable
difference is that the relative improvements become smaller. We ascribe this to the smaller number
of language pairs in WMT-14, where the effect of introducing LS capacity into the model is smaller
compared to the massively multilingual setting (Arivazhagan et al., 2019). Table 2 shows similar
results as Table 1, where CLSR? outperforms both fully-shared (CLSR-S) and fully-LS (CLSR-
L) baselines, and both Top-Bottom and Dedicated improve multilingual translation compared to
Baseline (except for M2O with oversampling). More results are given in Appendix C. Our results
demonstrate that the CLSR approach generalizes to different datasets, with varying number of lan-

8Detail about which sub-layers are specialized in Dedicated is given in Table 4, Appendix B.
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guages and resource sizes. We provide additional experiments ablating different elements on CLSR
in Table 7, Appendix E.

6 CONCLUSION AND FUTURE WORK

Share or not? This is an open question when developing MNMT models. In this paper, we attempt
to answer this question by proposing conditional language-specific routing (CLSR). Our empirical
results demonstrate that CLSR learns to balance between shared and LS paths across all NMT sub-
layers, improving the quality of multilingual translation. Our analysis on OPUS-100 and WMT-14
suggest that both the position and the amount of LS capacity greatly affects MNMT. Scheduling
10%-30% LS layers to the top and/or bottom encoder/decoder layers reaches CLSR’s peak perfor-
mance. We also demonstrate how our findings can be leveraged to design a multilingual Transformer
with an optimal sharing pattern. We believe that our work improves our understanding on the trade-
off between sharing and not sharing, paving the way for better multilingual models.

In the future, we plan to extend our study to many-to-many translation as well as larger-capacity
models. We also plan to adapt CLSR to other multilingual multi-task learning settings to better
handle knowledge transfer among different tasks, especially for cross-lingual downstream transfer.
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A DATASET DETAILS

Table 3: Statistics of train, dev and test data for WMT-14.

Language
Pair

Data Sources # Samples

Train Dev Test Train Dev Test

En-Cs WMT19 WMT17 WMT18 64336053 3005 2983
En-Fr WMT15 WMT13 WMT14 40449146 3000 3003
En-Ru WMT19 WMT18 WMT19 38492126 3000 2000
En-Zh WMT19 WMT18 WMT19 25986436 3981 2000
En-Es WMT13 WMT13 WMT13 15182374 3004 3000
En-Fi WMT19 WMT18 WMT19 6587448 3000 1996
En-De WMT14 WMT13 WMT14 4508785 3000 3003
En-Et WMT18 WMT18 WMT18 2175873 2000 2000
En-Lv WMT17 WMT17 WMT17 637599 2003 2001
En-Lt WMT19 WMT19 WMT19 635146 2000 1000
En-Ro WMT16 WMT16 WMT16 610320 1999 1999
En-Hi WMT14 WMT14 WMT14 313748 520 2507
En-Tr WMT18 WMT17 WMT18 205756 3007 3000

Figure 5: Training data distribution over language pairs for OPUS-100 and WMT-14.
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Table 3 lists the statistics for WMT-14. We collect these datasets following Siddhant et al. (2020).
Figure 5 shows the training data distribution. Training data in WMT-14 is more imbalanced across
different language pairs compared to OPUS-100.

B MORE RESULTS ON OPUS-100

Table 4: Selected sub-layers by Dedicated on OPUS-100. SAN/CAN: self-/cross-attention; FFN: feed-forward.

Data
Setting

Encoder Decoder

Bottom Top Bottom Top

SAN FFN SAN FFN SAN CAN FFN SAN CAN FFN

Original, O2M 3 3 3 3 3 3 3 3
Original, M2O 3 3 3 3

Oversample, O2M 3 3 3 3 3
Oversample, M2O 3 3

Figure 7 shows the translation performance of CLSR on each resource group when varying the
budget p. We find that LS modeling greatly improves translation on low-resource settings, although

14
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Figure 6: Heatmap of LSScore distribution on OPUS-100 trained w/ and w/o oversampling. X-axis denotes
language pairs ranked by training data size, and y-axis denotes encoder (enc) and decoder (dec) sub-layers with
a format of “enc/dec.layer types.layer index”. Darker color indicates a larger LSScore.
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(a) Oversample, M2O
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(b) Oversample, O2M
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this improvement is partially offset by the oversampling strategy. We observe that the success of
oversampling is built on top of sacrificing quality on high-resource languages, where CLSR largely
narrows or even closes the performance gap against the multilingual baseline trained on the original
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Figure 7: Impact of the budget p on average test BLEU for High/Med/Low-resource languages on OPUS-100.

0.0 0.1 0.3 0.5 0.7 0.9 1.0
Shared←− budget p −→ LS

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
∆

B
L

E
U

vs
M

ul
til

in
gu

al
B

as
el

in
e High Languages, O2M

0.0 0.1 0.3 0.5 0.7 0.9 1.0
Shared←− budget p −→ LS

0

1

2

3

4

∆
B

L
E

U
vs

M
ul

til
in

gu
al

B
as

el
in

e Med Languages, O2M

0.0 0.1 0.3 0.5 0.7 0.9 1.0
Shared←− budget p −→ LS

0

2

4

6

8

∆
B

L
E

U
vs

M
ul

til
in

gu
al

B
as

el
in

e Low Languages, O2M

Baseline
+ CLSR
+ Oversample
+ Oversample+CLSR

(a) BLEU for O2M

0.0 0.1 0.3 0.5 0.7 0.9 1.0
Shared←− budget p −→ LS

−2

−1

0

∆
B

L
E

U
vs

M
ul

til
in

gu
al

B
as

el
in

e High Languages, M2O

0.0 0.1 0.3 0.5 0.7 0.9 1.0
Shared←− budget p −→ LS

−0.5

0.0

0.5

1.0

1.5
∆

B
L

E
U

vs
M

ul
til

in
gu

al
B

as
el

in
e Med Languages, M2O

0.0 0.1 0.3 0.5 0.7 0.9 1.0
Shared←− budget p −→ LS

−1

0

1

2

3

4

∆
B

L
E

U
vs

M
ul

til
in

gu
al

B
as

el
in

e Low Languages, M2O

Baseline
+ CLSR
+ Oversample
+ Oversample+CLSR

(b) BLEU for M2O

data. In addition, we find no significant difference in term of the trade-off curve across resource
groups compared to Figure 2.

Figure 6 shows the heatmaps for LSScore distribution. Regardless of translation directions (O2M
or M2O) and data settings (Original or Oversample), there is no clear linguistic pattern behind these
heatmaps. The learning of CLSR is not linguistic driven.

C MORE RESULTS ON WMT-14

Table 5: Selected sub-layers by Dedicated on WMT-14.

Data
Setting

Encoder Decoder

Bottom Top Bottom Top

SAN FFN SAN FFN SAN CAN FFN SAN CAN FFN

Original, O2M 3 3 3 3 3 3 3
Original, M2O 3 3 3 3 3 3

Oversample, O2M 3 3 3 3 3 3 3
Oversample, M2O 3 3 3 3

We show more results on WMT-14 here. Both heatmaps in Figure 9 and fine-grained trade-off curves
in Figure 8 show a very similar story to the one on OPUS-100. In terms of LSScore distribution
in Figure 10(d), we also have similar observation except that the cross-attention sub-layer in the
decoder on M2O shows no clear LS preference.

These results suggest the high generalization of CLSR to different data settings.
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Figure 8: Impact of the budget p on average test BLEU for High/Med/Low-resource languages on WMT-14.
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Figure 9: Heatmap of LSScore distribution on WMT-14.
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(a) Oversample, O2M

cs fr ru zh es fi de et lv lt ro hi tr

Language Pairs Ranked by Training Data Size

enc.san.0
enc.san.1
enc.san.2
enc.san.3
enc.san.4
enc.san.5
enc.ffn.0
enc.ffn.1
enc.ffn.2
enc.ffn.3
enc.ffn.4
enc.ffn.5
dec.san.0
dec.san.1
dec.san.2
dec.san.3
dec.san.4
dec.san.5
dec.can.0
dec.can.1
dec.can.2
dec.can.3
dec.can.4
dec.can.5
dec.ffn.0
dec.ffn.1
dec.ffn.2
dec.ffn.3
dec.ffn.4
dec.ffn.5

L
SS

co
re

fo
rA

ll
Tr

an
sf

or
m

er
Su

bl
ay

er
s

(b) Oversample, M2O
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(c) Original, O2M
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(d) Original, M2O
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Figure 10: LSScore of encoder and decoder sub-layers for O2M 10(a), 10(b) and M2O 10(c), 10(d) on WMT-
14.

Table 6: Number of parameters for each model on OPUS-100 and WMT-14.

Model OPUS-100 WMT-14

O2M M2O O2M M2O

Baseline 99M 106M
LS� 129M 111M
CLSR-S 102M 109M
CLSR-L 148M 111M
CLSR? 157M 121M

Top-Bottom 153M 116M
Dedicated (Original) 153M 154M 117M 117M
Dedicated (Oversample) 154M 155M 117M 117M

D MODEL PARAMETERS

We list model parameters in Table 6. Note that the source/target vocabulary for O2M is the same
as the target/source vocabulary for M2O, thus models for O2M and M2O have the same number of
trainable parameters except for Dedicated where the network structure differs.

E ABLATION STUDY

We provide two variants of CLSR for ablation. The first one examines whether CLSR could induce
an optimal budget automatically by eschewing the budget constraint in Eq. 6 (CLSR w/o p); the
second one further replaces the hard gating network with a vanilla soft gating network (CLSR-Gate).

Table 7 summarizes the translation results. Without the regularization term, CLSR w/o p yields an
average gating value of 0.37/0.16 and 0.39/0.19 for O2M/M2O on OPUS-100 and WMT-14, re-
spectively9, resonating with our finding that O2M requires more LS capacity compared to M2O.
Compared to CLSR?, CLSR w/o p produces more open gates, achieving comparable but overall
worse performance in all data settings. This highlights the importance of the added regularization
term, where without such regularization the model is likely spending extra learning cycles to auto-
matically optimize for the budget as with CLSR w/o p. This in return hints at the importance of
optimization routines (learning) which we held constant in this study.

By contrast, switching to soft gating network, CLSR-Gate gains translation quality in most settings,
although the quality gains are mostly less than 0.1 compared to CLSR?. Note that, CLSR-Gate relies
on continuous gates, indicating a much higher flexibility in balancing parameter sharing patterns.
However, we also notice that CLSR-Gate performs worse on M2O, even fails to beat the vanilla
Baseline (All) on the oversampled WMT-14. Unlike CLSR-Gate, CLSR? uses hard binary gates
which eases capacity analysis and achieves consistent improvements across data settings.

9We also average the gating value over the original and oversampled data settings.
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Data
Setting Model #Param O2M M2O

High Med Low All WR High Med Low All WR

OPUS-100

Original

Baseline 99M 21.39 22.36 18.02 20.93 - 28.55 30.10 29.71 29.27 -
CLSR? 157M +1.45 +2.83 +6.40 +2.97 95.74 +0.65 +1.52 +3.79 +1.61 96.81
CLSR w/o p 157M +1.37 +2.77 +6.28 +2.88 96.81 +0.53 +1.27 +3.17 +1.34 90.43
CLSR-Gate 157M +1.55 +3.13 +6.21 +3.06 97.87 +0.74 +1.62 +2.87 +1.48 93.62

Over
Sample

Baseline 99M 19.95 24.22 25.27 22.41 - 26.98 30.69 34.26 29.71 -
CLSR? 157M +1.76 +2.04 +1.94 +1.89 93.62 +0.82 +0.84 -0.13 +0.62 76.60

CLSR w/o p 157M +1.72 +1.92 +2.06 +1.86 97.87 +0.73 +0.56 -1.10 +0.27 71.28
CLSR-Gate 157M +2.00 +2.24 +2.35 +2.15 97.87 +1.12 +1.28 -1.04 +0.68 79.79

WMT-14

Original

Baseline 106M 27.24 16.27 8.72 17.58 - 30.64 24.37 18.66 24.58 -
CLSR? 121M +0.46 +1.46 +3.10 +1.71 100.0 +0.12 +0.73 +1.52 +0.80 84.62
CLSR w/o p 121M +0.32 +1.23 +3.00 +1.57 100.0 -0.04 +0.56 +1.72 +0.78 76.92
CLSR-Gate 121M +0.46 +1.43 +3.14 +1.72 100.0 +0.02 +0.73 +1.68 +0.83 84.62

Over
Sample

Baseline 106M 26.10 19.00 15.52 20.39 - 29.96 26.33 23.56 26.66 -
CLSR? 121M +0.50 +0.67 +0.64 +0.59 100.0 +0.26 +0.30 +0.50 +0.36 100.0
CLSR w/o p 121M +0.48 +0.63 +0.66 +0.59 100.0 +0.02 +0.24 -0.12 +0.02 38.46
CLSR-Gate 121M +0.52 +0.77 +0.78 +0.68 100.0 +0.14 +0.30 -0.64 -0.12 61.54

Table 7: Translation quality for O2M and M2O on OPUS-100 and WMT-14 with the original and oversampled
training data. CLSR-Gate: CLSR with g(zl) a normal soft gating network; CLSR w/o p: CLSR trained without
budget constraint.

19


	Introduction
	Related Work
	Background: MNMT
	Conditional Language-Specific Routing (CLSR)
	Experiments
	Results on OPUS-100
	Results on WMT-14

	Conclusion and Future Work
	Dataset Details
	More Results on OPUS-100
	More Results on WMT-14
	Model Parameters
	Ablation Study

