
Published in Transactions on Machine Learning Research (03/2025)

f-Divergence Policy Optimization in Fully Decentralized Co-
operative MARL

Kefan Su sukefan@pku.edu.cn
School of Computer Science
Peking University

Zongqing Lu∗ zongqing.lu@pku.edu.cn
School of Computer Science
Peking University

Reviewed on OpenReview: https: // openreview. net/ forum? id= Wj8yFjIpom

Abstract

Independent learning is a straightforward solution for fully decentralized learning in co-
operative multi-agent reinforcement learning (MARL). The study of independent learning
has a history of decades, and the representatives, such as independent Q-learning and
independent PPO, can achieve good performances on several benchmarks. However, most
independent learning algorithms lack convergence guarantees or theoretical support. In this
paper, we propose a general formulation of independent policy optimization, f -divergence
policy optimization. We hope that a more general policy optimization formulation will
provide deeper insights into fully decentralized learning. We demonstrate the generality of
this formulation and analyze its limitations. Based on this formulation, we further propose a
novel independent learning algorithm, TVPO, which theoretically guarantees convergence.
Empirically, we demonstrate that TVPO outperforms state-of-the-art fully decentralized
learning methods on three popular cooperative MARL benchmarks, thereby verifying the
efficacy of TVPO.

1 Introduction

Cooperative multi-agent reinforcement learning (MARL) has shown great potential in many areas, including
power control (Zhang & Liang, 2020), autonomous vehicles (Han et al., 2022), and robot control (Sartoretti
et al., 2019). The main framework for cooperative MARL is centralized training with decentralized execution
(CTDE) (Kraemer & Banerjee, 2016), while the MARL community pays less attention to fully decentralized
learning, also known as decentralized training with decentralized execution (DTDE). Fully decentralized
learning remains significant in cooperative MARL due to its simplicity. From an applications perspective,
fully decentralized learning is useful in various industrial applications where agents may belong to different
parties, such as autonomous vehicles or robots. From a theoretical perspective, fully decentralized algorithms
rely on less information during training and are therefore more general and worthy of further study.

For DTDE or fully decentralized settings, independent learning is a straightforward yet effective approach
that enables agents to directly execute the same single-agent RL algorithm. Representative methods
include independent Q-learning (IQL) (Tan, 1993) and independent actor-critic (IAC) (Foerster et al., 2018;
Papoudakis et al., 2021). Recently, independent PPO (IPPO) (de Witt et al., 2020), which extends PPO
(Schulman et al., 2017) to MARL, has shown good performance on several benchmarks. However, these
independent learning algorithms are still troubled by the non-stationarity problem and lack convergence
guarantees or theoretical support.

∗Corresponding Author

1

https://openreview.net/forum?id=Wj8yFjIpom

Published in Transactions on Machine Learning Research (03/2025)

Additionally, introducing constraints of the policy update or trust region into the policy optimization is
a classic and effective paradigm for ensuring policy convergence guarantees in single-agent RL (Schulman
et al., 2015; 2017; Nachum et al., 2017). Recently, DPO (Su & Lu, 2022b) has proposed a fully decentralized
algorithm with a convergence guarantee by following this approach. However, DPO focuses on the KL-
divergence and can be troubled by trivial policy updates in some cases due to its approximation bias in the
optimization objective. Therefore, we hope that a more general policy optimization formulation can provide
deeper insights into fully decentralized learning.

In this paper, we propose a general formulation of independent policy optimization, f-divergence policy
optimization. We demonstrate the generality of this formulation for independent learning in cooperative
MARL. We also analyze the policy iteration of this formulation and discuss its limitations using a two-player
matrix game. Based on this formulation, we further propose a novel independent learning algorithm, total
variation policy optimization (TVPO). To theoretically study the properties of TVPO and prove its
convergence, we introduce a new set of value functions and policy iteration specifically designed for fully
decentralized learning and prove the monotonicity of this policy iteration. The practical implementation of
TVPO can be effectively realized through an adaptive coefficient, similar to PPO (Schulman et al., 2017).

Empirically, we verify our discussion regarding the limitations of f -divergence policy optimization in the
two-player matrix game and demonstrate the joint policy may converge to a sub-optimal solution with
different f -divergences. Moreover, we evaluate the performance of TVPO across three popular benchmarks
of cooperative MARL including SMAC (Samvelyan et al., 2019), multi-agent MuJoCo (Peng et al., 2021)
and SMACv2 (Ellis et al., 2023). We compare TVPO with four representative fully decentralized learning
methods: IQL (Tan, 1993), IPPO (de Witt et al., 2020), I2Q (Jiang & Lu, 2022), and DPO (Su & Lu, 2022b).
The empirical results show that TVPO outperforms these baselines in all evaluated tasks, thereby verifying
the effectiveness of TVPO in fully decentralized cooperative MARL.

2 Related Work

CTDE. The popular framework to address cooperative multi-agent reinforcement learning (MARL) problems
is centralized training with decentralized execution (CTDE) (Lowe et al., 2017; Foerster et al., 2018; Sunehag
et al., 2018; Rashid et al., 2018; Iqbal & Sha, 2019; Wang et al., 2021a; Zhang et al., 2021; Su & Lu, 2022a;
Wang et al., 2023a). CTDE successfully mitigates the challenge of non-stationarity through centralized
training. This line of research can be categorized into two types: value decomposition algorithms (Sunehag
et al., 2018; Rashid et al., 2018; Son et al., 2019; Yang et al., 2020; Wang et al., 2021a), where the optimum
of the centralized Q-function aligns with the optima of the decentralized Q-functions, allowing the learning of
the centralized Q-function to be factorized into the learning process of the decentralized Q-functions; and
multi-agent actor-critic algorithms (Foerster et al., 2018; Iqbal & Sha, 2019; Wang et al., 2021b; Zhang et al.,
2021; Su & Lu, 2022a; Wang et al., 2023a; Wen et al., 2022; Liu et al., 2023), which leverage a centralized
Q-function to facilitate the learning of decentralized stochastic policies. HAPPO (Kuba et al., 2021) and
MAPPO (Yu et al., 2021) extend the applicability of TRPO (Schulman et al., 2015) and PPO (Schulman
et al., 2017), respectively, to the MARL setting through a centralized state value function. HASAC (Liu et al.,
2023) combines the heterogeneous-agent decomposition with the entropy regularization in SAC. MAT (Wen
et al., 2022) introduces Transformer and sequential modeling into the heterogeneous-agent decomposition.
Nevertheless, it is important to note that these approaches remain constrained by the CTDE
paradigm and are therefore unsuitable for fully decentralized learning.

Fully Decentralized Learning. There have recently been several different views on fully decentralized
learning or decentralized learning. Some works study decentralized learning specifically with communication
(Zhang et al., 2018b; Li et al., 2020) or parameter sharing (Terry et al., 2020). Both communication
and parameter sharing involve exchanging information among agents (Terry et al., 2020). However, in
this paper, we consider fully decentralized learning in the strictest sense – with each agent
independently learning its policy without being allowed to communicate or share parameters as
in Tampuu et al. (2015); Mao et al. (2022b); Wang et al. (2023c). Additionally, there are several studies
(Zhan et al., 2023; Wang et al., 2023b; Mao & Başar, 2023) considering general-sum games in decentralized
MARL, these studies focus on the episodic Markov game(Jin et al., 2021), which is non-cooperative and

2

Published in Transactions on Machine Learning Research (03/2025)

assumes the reward function, transition probability, and policy are related to the time step. The objective of
finding an equilibrium in this setting differs from the fully decentralized learning concerned in this paper.
Independent learning (OroojlooyJadid & Hajinezhad, 2019) has been extensively studied in the field of
cooperative multi-agent reinforcement learning (MARL) as a straightforward approach to fully decentralized
learning. Representatives of this approach include independent Q-learning (IQL) (Tan, 1993; Tampuu et al.,
2015), independent actor-critic (IAC) (Foerster et al., 2018; Papoudakis et al., 2021), and independent
proximal policy optimization (IPPO) (de Witt et al., 2020). It should be noted that all these independent
learning algorithms deviate from the stationary condition of the Markov decision process (MDP) and lack
convergence guarantees, even though IQL and IPPO perform well in various benchmarks (Papoudakis et al.,
2021). Recent studies have emerged with convergence guarantees in fully decentralized MARL, namely
I2Q (Jiang & Lu, 2022) and DPO (Su & Lu, 2022b). I2Q introduces the concept of QSS-value (Edwards
et al., 2020) into independent Q-learning, achieving convergence guarantees. However, its applicability is
restricted to deterministic environments. On the other hand, a novel decentralized surrogate of the joint
TRPO objective is proposed by DPO to ensure convergence. In terms of empirical performance, I2Q
demonstrates superior performance compared to IQL, while DPO outperforms IPPO. Therefore,
in our empirical studies, we comprehensively compare our TVPO with these two state-of-the-art
methods.

Mirror Descent in RL. Recently, mirror descent (Blair, 1985) and similar ideas have been applied in
single-agent RL (Wang et al., 2019; Lan, 2023; Tomar et al., 2020; Yang et al., 2022; Vaswani et al., 2021) as
well as in CTDE algorithms in MARL (Su & Lu, 2022a; Kuba et al., 2022; Liu et al., 2023) for theoretical
guarantees. Mirror descent is a method associated with the Bregman divergence (Bregman, 1967). Although
Bregman divergence is a general divergence class, KL-divergence has been most frequently used in previous
mirror descent studies (Wang et al., 2019; Lan, 2023; Tomar et al., 2020; Yang et al., 2022; Vaswani et al.,
2021). On the other hand, KL-divergence lies at the intersection of Bregman divergence and f -divergence
and our analysis of KL-divergence indicates that it can become trapped in the sub-optimum even in a simple
matrix game. Furthermore, Bregman divergence in mirror descent and f -divergence represent two distinct
classes of divergences, and the latter can provide us with more useful properties for theoretical guarantees
in fully decentralized learning. Extending mirror descent in fully decentralized learning with theoretical
guarantees remains an open challenge and is beyond the scope of this paper.

3 Preliminaries

Cooperative Markov Game. The cooperative Markov Game serves as a general model for cooperative
multi-agent reinforcement learning (MARL) (Chen et al., 2022; Zhang et al., 2018a; Matignon et al., 2012).
It is a special case of the Markov Game (Littman, 1994) where the reward functions of all agents are
identical. It is represented by the tuple G = {S, A, P, I, N, r, γ}, where N denotes the number of agents, and
I = {1, 2, · · · , N} refers to the set of all agents. The state space is denoted as S, and the joint action space is
denoted as A = A1×A2×· · ·×AN , where ai represents the individual action space for agent i. The transition
function P (s′|s, a) : S ×A× S → [0, 1] defines the probability of transitioning from state s to s′ given a joint
action a. The discount factor is denoted as γ ∈ [0, 1), and the reward function r(s, a) : S×A→ [−rmax, rmax]
assigns rewards to state s and joint action a, with rmax serving as the upper bound of the reward function. The
objective of cooperative Markov Game is to maximize J(π) = Eπ [

∑
t=0 γtr(st, at)]. Thus, the optimal joint

policy π∗ = arg maxπ J(π) needs to be determined. In fully decentralized learning, each agent independently
learns an individual policy denoted as πi(ai|s). The joint policy π of all agents can be represented as the
product of each individual policy πi.

Additionally, the V-function and Q-function of the joint policy π can be defined as follows:

V π(s) = Ea∼π [Qπ(s, a)] , (1)
Qπ(s, a) = r(s, a) + γEs′∼P (·|s,a) [V π(s′)] . (2)

Fully Decentralized Critic. The concept of the critic in fully decentralized learning has been explored in
previous studies (Peshkin et al., 2000; Lyu & Xiao, 2021; Su & Lu, 2022b). To facilitate further discussion,
we provide some formulations and deductions regarding the fully decentralized critic.

3

Published in Transactions on Machine Learning Research (03/2025)

In fully decentralized learning, each agent learns independently through its own interactions with the
environment. Consequently, the Q-function for each agent i can be described by the following formula:

Qπi

π−i(s, ai) = rπ−i(s, ai) + γEa−i∼π−i(·|s′)[Qπi

π−i(s′, ai′)], (3)

where rπ−i(s, ai) = Ea−i∼π−i(·|s′)[r(s, ai, a−i)], and π−i and a−i respectively denote the joint policy and joint
action of all agents expect agent i. It can be shown that Qπi

π−i(s, ai) = Ea−i∼π−i(·|s′)[Qπ(s, ai, a−i)]. For
simplicity, in the following, we use Qπ

i to denote Qπi

π−i given a joint policy π, if there is no confusion.

Independent Learning. Independent learning is a straightforward method to solve cooperative MARL
problems, which makes each agent learn through the same single-agent RL algorithm, such as IQL (Tan,
1993), IAC (Foerster et al., 2018), and IPPO (de Witt et al., 2020). Though independent learning faces the
non-stationarity problem, it still has the advantage of absorbing the benefit of single-agent RL. The policy
iteration πnew = arg maxπ

∑
a π(a|s)Qπold(s, a) is fundamental in single-agent RL, which ensures that πnew

improves monotonically over πold and guarantees the convergence. We draw inspiration from policy iteration
in single-agent RL, introduce a general formulation of independent policy optimization, and try to find an
independent learning algorithm that can guarantee convergence in cooperative MARL.

4 A General Formulation for Independent Policy Optimization

u0
B u1

B

Alice
Bob

qt 1 − qt

u0
A pt a b

u1
A 1 − pt c d

Table 1: The two-player matrix game for Alice
and Bob with policies after the number t of
policy iterations. Alice will take action u0

A

with probability pt and take action u1
A with

probability 1 − pt; Bob will take action u0
B

with probability qt and take action u1
B with

probability 1− qt.

Given the condition of fully decentralized learning in coop-
erative MARL, we first propose a general formulation of
independent policy optimization, f -divergence policy opti-
mization, and discuss its generality and limitation. Then,
based on this formulation, we propose total variation policy
optimization (TVPO), prove the convergence of TVPO in
fully decentralized learning, and provide a practical algo-
rithm.

Before diving into the discussion, we need to introduce a
simple two-player matrix game for later use. In this matrix
game, the two agents, Alice and Bob, each have two actions,
denoted as {u0

A, u1
A} for Alice and {u0

B , u1
B} for Bob. Each

episode of this matrix game consists of only one step. The
rewards for the joint actions (u0

A, u0
B), (u0

A, u1
B), (u1

A, u0
B)

and (u1
A, u1

B) are a, b, c, and d respectively. The policies of Alice and Bob can be described with pt and qt as
that Alice will take action u0

A with probability pt and Bob will take action u0
B with probability qt, where t

represents the number of policy iterations. The full information of this matrix game is illustrated in Table 1.

4.1 f-Divergence Policy Optimization

The f -divergence policy optimization is formulated as follows:
Definition 4.1. Given any fixed s and πi

old

πi
new = arg max

πi

∑
ai

πi(ai|s)Qπold
i (s, ai)− ωDf

(
πi(·|s)∥πi

old(·|s)
)

, (4)

where Df (p∥q) ≜
∑

i qif
(

pi

qi

)
is f -divergence (Ali & Silvey, 1966) and according to the definition of

f -divergence, f : [0,∞)→ (−∞, +∞] is convex and f(1) = 0.

This formulation contains an additional term Df

(
πi(·|s)∥πi

old(·|s)
)
, which describes the distance between πi

and πi
old.

There are several studies considering the distance between πold and πnew. The trust region in TRPO
(Schulman et al., 2015) and PPO (Schulman et al., 2017) is actually KL-divergence between πold and πnew,

4

Published in Transactions on Machine Learning Research (03/2025)

while Nachum et al. (2017) extend entropy regularization to a more general formulation with KL-divergence.
Unlike these studies that just use KL-divergence as the distance measure, we would like to discuss a more
general formulation. So we use f -divergence, which is widely used for describing the distance between two
distributions. Also, KL-divergence is a special case of f -divergence with f(x) = x log x and we have many other
choices for f -divergence, such as f(x) = |x−1|

2 corresponding to total variation distance Df (p∥q) = 1
2
∑

i |pi−qi|
and f(x) = (1−

√
x)2 corresponding to Hellinger distance Df (p∥q) =

√∑
i(
√

pi −
√

qi)2.

To further discuss f -divergence policy optimization, we need to find the solution to the optimization objective
(4) and we have the following lemma.
Lemma 4.2. Given a fixed function f and the corresponding f -divergence Df , let g(x) = (f ′)−1(x), then the
solution to Equation (4) is

πi
new(ai|s) = max{πi

old(ai|s)g
(

λs + Qπold
i (s, ai)
ω

)
, 0}, (5)

where λs satisfies ∑
ai

max{πi
old(ai|s)g

(
λs + Qπold

i (s, ai)
ω

)
, 0} = 1.

This proof is included in Appendix A.1 and follows Yang et al. (2019).

We use the two-player matrix game between Alice and Bob (i.e., Table 1) to discuss the limitation of
f -divergence policy optimization. As for the policy iteration in the matrix game, we have the following
proposition.
Proposition 4.3. Suppose g(x) ≥ 0 and let M = b + c− a− d, p̂ = c−d

M , and q̂ = b−d
M . If the payoff matrix

of the two-player matrix game satisfies M > 0, and Alice and Bob update their policies with

πi
t+1 = arg max

πi

∑
ai

πi(ai|s)Qπt
i (s, ai)− ωDf

(
πi(·|s)∥πi

t(·|s)
)

, (6)

then we have (1) pt ≥ p̂ ⇒ qt+1 ≤ qt; (2) pt ≤ p̂ ⇒ qt+1 ≥ qt; (3) qt ≥ q̂ ⇒ pt+1 ≤ pt; (4) qt ≤ q̂ ⇒
pt+1 ≥ pt.

The proof is included in Appendix A.2. With Proposition 4.3, we can build a case where the joint policy
sequence can only converge to the sub-optimum. We assume the matrix game satisfies the condition
b > c > max{a, d}, then the optimal joint policy is (pt, qt) = (1, 0) corresponding to the joint action (u0

A, u1
B)

and reward b. Moreover, the condition b > c > max{a, d} also means p̂ ∈ (0, 1) and q̂ ∈ (0, 1). If at iteration
t, the condition qt > q̂, pt < p̂ is satisfied, then qt+1 > qt > q̂, pt+1 < pt < p̂. By induction, we know that
∀t′ ≥ t, qt′+1 > qt′ > q̂, pt′+1 < pt′ < p̂. As the sequence {pt} and {qt} are both bounded in the interval [0, 1],
we know the sequence {pt} and {qt} will converge to p∗ and q∗. As for p∗ and q∗, we have the following
corollary.
Corollary 4.4. If at iteration t, the condition qt > q̂, pt < p̂ is satisfied, then the sequence {pt} and {qt}
will converge to p∗ = 0 and q∗ = 1 respectively.

The proof is included in Appendix A.3. Corollary 4.4 tells us if once qt > q̂, pt < p̂, then the joint policy
converges to the sub-optimal solution (p∗, q∗) = (0, 1) corresponding to the joint action (u1

A, u0
B) and reward

c. So if the initial policy p0 and q0 satisfies the condition q0 > q̂, p0 < p̂, then the joint policy converges to
the sub-optimal policy. We further illustrate this in the experiment.

4.2 Total Variation Policy Optimization

The f -divergence formulation (4) can be trapped in the sub-optimal joint policy even in a simple two-
player matrix game. This shows the upper bound of f -divergence policy optimization, so we should not
expect such a policy iteration could obtain the optimal joint policy in fully decentralized learning in all
MDPs. Fortunately, we have found an algorithm that accords with the f -divergence formulation and has

5

Published in Transactions on Machine Learning Research (03/2025)

the convergence guarantee. This algorithm uses the total variation distance for f -divergence, so we call it
total variation policy optimization (TVPO). The convergence guarantee of TVPO shows the potential of the
f -divergence formulation.

Before we introduce TVPO and prove its convergence, we need some definitions and lemmas. We use
DTV(p∥q) ≜ 1

2
∑

i |pi − qi| to represent the total variation distance. We define a new V-function V π
ρ (s) and a

new Q-function Qπ
ρ (s, ai, a−i) given joint polices π and ρ as follows:

Definition 4.5.

V π
ρ (s) = 1

N

∑
i

∑
ai

πi(ai|s)
∑
a−i

ρ−i(a−i|s)Qπ
ρ (s, ai, a−i)− ωDf

(
πi(·|s)||ρi(·|s)

)
, (7)

Qπ
ρ (s, ai, a−i) = r(s, ai, a−i) + γE

[
V π

ρ (s′)
]

. (8)

As the definition (7) is a fixed-point equation, we need to prove that this definition is well-defined. So we
define an operator Γπ

ρ as follows:

Γπ
ρ V (s) = 1

N

∑
i

∑
ai

πi(ai|s)
∑
a−i

ρ−i(a−i|s)
(
r(s, a) + γE [V (s′)]

)
− ωDf

(
πi(·|s)∥ρi(·|s)

)
. (9)

Then for any value function V1 and V2, we have∥∥Γπ
ρ V1(s)− Γπ

ρ V2(s)
∥∥

∞ = γ
∥∥∥ 1

N

∑
i

∑
ai

πi(ai|s)
∑
a−i

ρ−i(a−i|s)
(
E [V1(s′)]− E [V2(s′)]

)∥∥∥
∞

≤ γ∥V1(s)− V2(s)∥∞.

So the operator Γπ
ρ is a γ-contraction, which means V π

ρ (s) is the unique fixed-point of (7) and the definition
(7) is well-defined.

To apply total variation distance to independent policy optimization, we have the following lemma.
Lemma 4.6. Suppose πnew, πold, and π are three joint policies. Let L = 2rmax

1−γ , then for any state s, we
have ∑

a

πnew(a|s)Qπ(s, a) ≥ 1
N

N∑
i=1

∑
ai

πi
new(ai|s)

∑
a−i

π−i
old(a−i|s)Qπ(s, ai, a−i)

− (N − 1)L
N

N∑
i=1

DTV
(
πi

new(·|s)∥πi
old(·|s)

)
. (10)

The proof is included in Appendix A.4. Lemma 4.6 is a critical bridge between normal value function V π

and our new value function V π
ρ , and we can witness its effect in our later discussion. Moreover, we also know

that V π
π = V π and Qπ

π = Qπ.

We can also realize the monotonic improvement with a fully decentralized optimization objective via the
following proposition.
Proposition 4.7. Given a fixed joint policy ρ and an old joint policy πold, if all the agents update their
policies according to

πi
new = arg max

πi

∑
ai

πi(ai|s)
∑
a−i

ρ−i(a−i|s)Qπold
ρ (s, a)− ωDf

(
πi(·|s)∥ρi(·|s)

)
, (11)

then we have V πold
ρ (s) ≤ V πnew

ρ (s), Qπold
ρ (s, a) ≤ Qπnew

ρ (s, a), ∀s ∈ S, a ∈ A.

The proof is included in Appendix A.5. According to (11), by taking πold = ρ = πt and πnew = πt+1, we can
design a policy iteration as follows:

πi
t+1 = arg max

πi

∑
ai

πi(ai|s)
∑
a−i

π−i
t (a−i|s)Qπt(s, ai, a−i)− ωDf

(
πi(·|s)||πi

t(·|s)
)

. (12)

6

Published in Transactions on Machine Learning Research (03/2025)

This policy iteration resolves the f -divergence formulation (4). According to Proposition 4.7, we know
the joint policy sequence {πt} has the property V

πt+1
πt (s) ≥ V πt

πt
(s) = V πt(s). By taking Df = DTV and

ω = (N−1)L
N , we can combine these results with Lemma 4.6 to obtain the convergence guarantee.

Theorem 4.8. Let ω = (N−1)L
N . If all agents update their policies according to

πi
t+1 = arg max

πi

∑
ai

πi(ai|s)
∑
a−i

π−i
t (a−i|s)Qπt(s, ai, a−i)− ωDTV

(
πi(·|s)∥πi

t(·|s)
)

= arg max
πi

∑
ai

πi(ai|s)Qπt
i (s, ai)− ωDTV

(
πi(·|s)∥πi

t(·|s)
)

, (13)

then we have V
πt+1

πt (s) ≥ V πt(s) ≥ V πt
πt−1

(s) ≥ V πt−1(s). Moreover, the sequence {V πt} and {πt} converge
to V ∗ and π∗ respectively, which satisfy the fixed-point equation,

πi
∗ = arg max

πi

∑
ai

πi(ai|s)
∑
a−i

π−i
∗ (a−i|s)

(
r(s, ai, a−i) + γE [V ∗(s′)]

)
− ωDTV

(
πi(·|s)||πi

∗(·|s)
)

.

The proof is included in Appendix A.6.

We further discuss the coefficient ω. Intuitively, if ω is too large, then the policy will not be updated by
(13), i.e., (13) only has a trivial solution πi

t+1 = πi
t. A similar conclusion has been mentioned in Schulman

et al. (2015). For the total variation distance case, the threshold value of ω is M = 2rmax
1−γ = 2∥Q∥∞. For any

ω̃ > M , we can show that (13) only has a trivial solution πi
t+1 = πi

t. From the property of (13), we have〈
πi

t+1, Qπt
〉
− ω̃

2
∥∥πi

t+1 − πi
t

∥∥
1 ≥

〈
πi

t, Qπt
〉
⇒
〈
πi

t+1 − πi
t, Qπt

〉
− ω̃

2
∥∥πi

t+1 − πi
t

∥∥
1 ≥ 0

⇒
(
∥Qπt∥∞ −

ω̃

2

)∥∥πi
t+1 − πi

t

∥∥
1 ≥ 0. (14)

The step (14) is from the inequality
〈
πi

t+1 − πi
t, Qπt

〉
≤
∥∥πi

t+1 − πi
t

∥∥
1∥Q

πt∥∞. Thus, the condition ω̃ > M

indicates
∥∥πi

t+1 − πi
t

∥∥
1 = 0 which results in the trivial solution. Our choice of ω = (N−1)L

N has two critical
properties. On the one hand, if N = 1, then ω = 0 and (13) degenerates to a single-agent policy update.
On the other hand, ω < M indicates the possibility of the non-trivial update πi

t+1 ̸= πi
t. We can show the

non-trivial update of (13) in a two-player matrix game in Table 1 with both theoretical and empirical results.
More details about the non-trivial update are included in Appendix F.4 and Section 5.2.

Remark. The policy optimization objective of TVPO is (13). An important property of (13) is that it
can be optimized individually and independently by each agent and the joint policy converges according
to Theorem 4.8. Although (13) is similar to the surrogate of DPO (Su & Lu, 2022b), there are two main
differences between TVPO and DPO. The first difference is that from the property D2

TV(p∥q) ≤ DKL(p∥q),
the bound DTV of TVPO is tighter than

√
DKL in DPO. The second difference is that TVPO obtains the

convergence guarantee through policy iteration while DPO obtains the convergence guarantee through the
surrogate of joint TRPO objective. A tighter bound means the iteration is less likely to be influenced by
the trivial update. We also investigated their empirical performance in the experiments. More details of the
discussion about the difference between TVPO and DPO are included in Section 5.2.

4.3 The Practical Algorithm of TVPO

Practically, if we use the objective (13) directly, then the large coefficient ω will greatly limit the step size of
the policy update, and the algorithm will not work (Schulman et al., 2015). So we follow previous studies such
as PPO (Schulman et al., 2017) to use an adaptive coefficient βi to replace ω, then the policy optimization
objective can be rewritten as

πi
t+1 = arg max

πi

∑
ai

πi(ai|s)Aπt
i (s, ai)− βiDTV

(
πi(·|s)∥πi

t(·|s)
)

, (15)

7

Published in Transactions on Machine Learning Research (03/2025)

0 10 20 30 40 50
iterations

5.5

6.0

6.5

7.0

m
ea

n
ep

iso
de

 re
wa

rd
s

Matrix Game

KL_init_1
KL_init_2
KL_init_3
KL_init_4

0 10 20 30 40 50
iterations

5.5

6.0

6.5

7.0
Matrix Game

TV_init_1
TV_init_2
TV_init_3
TV_init_4

0 10 20 30 40 50
iterations

5.5

6.0

6.5

7.0
Matrix Game

Chi_init_1
Chi_init_2
Chi_init_3
Chi_init_4

0 10 20 30 40 50
iterations

5.5

6.0

6.5

7.0
Matrix Game

H_init_1
H_init_2
H_init_3
H_init_4

Figure 1: Learning curves of KL-iteration, TV-iteration, χ2-iteration, and H-iteration over four different sets
of initialization in the matrix game (Table 1).

where Aπt
i (s, ai) = Qπt

i (s, ai)− Eπi
t

[
Qπt

i (s, ai)
]

= Qπt
i (s, ai)− V πt(s). Here we use the baseline V πt(s) to

reduce the variance in training.

The update rule of βi follows the practice of PPO. We can choose a hyperparameter d, which means we
expect the total variation distance should be around d. Then we can update βi according to the value of
DTV

(
πi

t+1(·|s)∥πi
t(·|s)

)
in training as follows:

if DTV
(
πi

t+1(·|s)∥πi
t(·|s)

)
> d ∗ δ, then βi ← βi × α

if DTV
(
πi

t+1(·|s)∥πi
t(·|s)

)
< d/δ, then βi ← βi/α,

(16)

where δ and α are two constants and we choose δ = 1.5 and α = 2 like the choice of PPO.

For the critic, since the policy update needs to calculate Aπt
i (s, ai) = Eπ−i

t
[r(s, ai, a−i) + γV πt(s′)− V πt(s)],

we take an individual state value function V i(s) as the critic for each agent i and approximate Aπt
i (s, ai)

with Âi = r + γV i(s′)− V i(s). The critic is updated as follows:

Li
critic = E

[
(V i(s)− yi)2] , (17)

where yi = r + γV i(s′) or other target values.

When facing continuous action space, we usually use Gaussian distribution as the policy. However, there is
no closed-form solution for total variation distance between two Gaussian distributions, to the best of our
knowledge. To avoid optimization difficulties, we replace total variation distance with Hellinger distance
DH(p∥q) =

√∑
i(
√

pi −
√

qi)2 in the environment with continuous action space, since there is a closed-form
solution for Hellinger distance between two Gaussian distributions. Moreover, Hellinger distance has a critical
property related to total variation distance that DTV(p∥q) ≤ DH(p∥q) and the proof is included in Appendix
A.7.

With this property, we can replace DTV with DH in Lemma 4.6 and Theorem 4.8, while we can still obtain the
same convergence guarantee. Thus, for the continuous action space, we use the following policy optimization
objective:

πi
t+1 = arg max

πi

∑
ai

πi(ai|s)Aπt
i (s, ai)− βiDH

(
πi(·|s)∥πi

t(·|s)
)

. (18)

The practical algorithm of TVPO is summarized in Algorithm 1 in Appendix C.

5 Experiments

The experiments contain four main parts. The first part is to verify the limitation of f -divergence policy
optimization as we have discussed in Section 4.1 through the matrix game. The second part is to compare
TVPO with DPO in a matrix game. The third part is to evaluate the performance of TVPO in three popular
cooperative MARL benchmarks including SMAC (Samvelyan et al., 2019), multi-agent MuJoCo (Peng et al.,
2021) and SMACv2 (Ellis et al., 2023), compared with state-of-the-art fully decentralized algorithms. The
last part is the ablation study about the hyperparameters d, α and β. All learning curves correspond to
five different random seeds and the shaded area corresponds to the 95% confidence interval. To ensure
reproducibility, our codes are included in the supplementary material and will be open source upon acceptance.
Due to the space limit, additional experiments are included in Appendix E.

8

Published in Transactions on Machine Learning Research (03/2025)

0 5 10 15
iterations

2

3

4

5

re
wa

rd
s

Matrix Game Case 4

TV_iteration
DPO_iteration

0 5 10 15
iterations

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ilit

y

Matrix Game Case 4

TV_iteration_p
TV_iteration_q
DPO_iteration_p
DPO_iteration_q

Figure 2: Learning curves of the iteration (13) and the DPO iteration in the matrix game (a, b, c, d) =
(−4, 7, 6, 4), where x-axis is iteration steps. The first and second figures show the expectation J(πt) and the
policies p and q of two iterations in the matrix game case 4 respectively, where J(πt) is calculated by the
joint policy πt = (pt, qt) and the payoff matrix.

0 5 10 15
iterations

0

1

2

3

4

re
wa

rd
s

Matrix Game Case 4

DPO_init_1
DPO_init_2
DPO_init_3
DPO_init_4
DPO_init_5

DPO_init_6
DPO_init_7
DPO_init_8
DPO_init_9

0 5 10 15
iterations

0.2

0.4

0.6

0.8

pr
ob

ab
ilit

y

Matrix Game Case 4

DPO_init_1_p
DPO_init_2_p
DPO_init_3_p
DPO_init_4_p
DPO_init_5_p

DPO_init_6_p
DPO_init_7_p
DPO_init_8_p
DPO_init_9_p

0 5 10 15
iterations

0.2

0.4

0.6

0.8

pr
ob

ab
ilit

y

Matrix Game Case 4

DPO_init_1_q
DPO_init_2_q
DPO_init_3_q
DPO_init_4_q
DPO_init_5_q

DPO_init_6_q
DPO_init_7_q
DPO_init_8_q
DPO_init_9_q

Figure 3: Learning curves of the DPO iteration with different initial policies in the matrix game (a, b, c, d) =
(−4, 7, 6, 4), where x-axis is iteration steps. The three figures show the expectation J(πt), the policies p and
q of nine different initial policies in the matrix game case 4 respectively, where J(πt) is calculated by the
joint policy πt = (pt, qt) and the payoff matrix.

5.1 Verification in Matrix Game

Table 2: The policy update types of DPO itera-
tion with different initial policies in the matrix
game (a, b, c, d) = (−4, 7, 6, 4). T represents the
trivial policy update and NT represents the non-
trivial policy update.

p0

q0 0.2 0.55 0.8

0.2 T T T

0.55 T T T

0.8 T T T

In this section, we choose a = 5, b = 7, c = 6, d = 4
for the matrix game, which satisfies the condition b >
c > max{a, d} as mentioned in Section 4.1. We use four
different specific f -divergences: KL-divergence, total vari-
ation distance, χ2-distance, and Hellinger distance to build
four different iterations of (4). We call these four itera-
tions as KL-iteration, TV-iteration, χ2-iteration, and H-
iteration respectively. We test these iterations over four
sets of initialization: init_1 (p0, q0) = (0.4, 0.8); init_2
(p0, q0) = (0.6, 0.6); init_3 (p0, q0) = (0.49, 0.76); init_4
(p0, q0) = (0.51, 0.74). For the matrix game, we can calcu-
late that (p̂, q̂) = (0.5, 0.75) as defined in Proposition 4.3.
From the discussion in Section 4.1 we know that init_1 and
init_3 satisfy the condition p0 < p̂, q0 > q̂, which means
the converged policy should be the sub-optimal policy (p∗, q∗) = (0, 1) with reward c = 6, and init_2 and
init_4 satisfy the condition p0 > p̂, q0 < q̂, which means the converged policy should be the optimal policy
(p∗, q∗) = (1, 0) with reward b = 7. The empirical results are illustrated in Figure 1. We can find that the
empirical results agree with our theoretical derivation for all four iterations over the four sets of initialization.
The learning curves of the policy p and q are included in Figure 9 in Appendix E. These empirical results
corroborate our discussion about the limitation of f -divergence formulation.

9

Published in Transactions on Machine Learning Research (03/2025)

0.0 0.5 1.0 1.5 2.0
steps 1e6

0.0

0.2

0.4

0.6

0.8

wi
n

ra
te

s

2s3z

DPO
IPPO
IQL
TVPO
I2Q

0 1 2 3 4 5
steps 1e6

0.0

0.2

0.4

0.6

0.8

wi
n

ra
te

s

3s5z

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

wi
n

ra
te

s

8m

0.0 0.5 1.0 1.5 2.0
steps 1e6

2

4

6

8

10

m
ea

n
ep

iso
de

 re
wa

rd
s

MMM2

0.0 0.5 1.0 1.5 2.0
steps 1e6

5

10

15

m
ea

n
ep

iso
de

 re
wa

rd
s

27m vs 30m

Figure 4: Learning curves of TVPO compared with IQL, IPPO, I2Q, and DPO on the maps 2s3z, 3s5z, 8m,
MMM2 and 27m_vs_30m in SMAC.

0.0 0.5 1.0 1.5 2.0
steps 1e6

0

1000

2000

3000

m
ea

n
ep

iso
de

 re
wa

rd
s

Hopper-v2 3x1

DPO
IPPO
IDDPG
TVPO
I2Q

0 1 2 3 4 5
steps 1e6

0

1000

2000

3000

4000

Walker2d-v2 3x2

0.0 0.5 1.0 1.5 2.0
steps 1e6

0

1000

2000

3000

4000
HalfCheetah-v2 3x2

0 1 2 3 4
steps 1e6

0

1000

2000

3000

Ant-v2 4x2

Figure 5: Learning curves of TVPO compared with IDDPG, IPPO I2Q, and DPO in 3-agent Hopper, 3-agent
Walker2d, 3-agent HalfCheetah and 4-agent Ant in multi-agent MuJoCo.

5.2 Comparing TVPO with DPO

From the discussion in Section 4.2, we have an intuitive idea about the difference between DPO and TVPO
that the bound DTV of TVPO is tighter than

√
DKL in DPO. A tighter bound means the iteration will

be less influenced by the trivial update. We would like to build a matrix game to show this phenomenon.
Fortunately, the matrix game (a, b, c, d) = (−4, 7, 6, 4) satisfies our requirement. The DPO iteration has no
closed-form solution and we haven’t found any useful properties like Appendix F.4. Thus, we use a numerical
method to solve the DPO iteration. First, we keep the initial policy (p0, q0) = (0.55, 0.8) for two iterations.
The empirical results are included in Figure 2. We can find that the TVPO iteration has a non-trivial update
but the DPO iteration only has trivial updates. This result can be evidence for our conclusion about the
difference between TVPO and DPO.

Moreover, we study the influence of the initial policies on the DPO iteration. We select three candidate
values C = {0.2, 0.55, 0.8} for the initial policies. We traverse all the values in C for (p0, q0) and conclude the
performances of all 9 combinations in Figure 3 and Table 2. We can find all 9 initial policies fall into the trap
of the trivial update due to the regularization term

√
DKL in DPO. These empirical results can partially

exclude the impact of initial policies on the performances of the DPO iteration in this matrix game.

5.3 Evaluation of TVPO

We compare TVPO with four baselines: IQL (Tan, 1993), IPPO (de Witt et al., 2020), I2Q (Jiang & Lu, 2022),
and DPO (Su & Lu, 2022b). A brief introduction of these baseline algorithms is included in Appendix F.1.
In our experiments, all the algorithms use the independent parameter to agree with the fully decentralized
setting, and parameter sharing is banned. More details about the experiment settings and hyperparameters
are available in Appendix B and D.

SMAC is a popular benchmark in cooperative MARL with high-dimensional features and partial observability
property. We select five maps in SMAC, 2s3z, 8m, 3s5z, MMM2 and 27m_vs_30m for our experiments.
These maps cover all three difficulty levels in SMAC: 2s3z and 8m are easy maps; 3s5z is a hard map; MMM2
and 27m_vs_30m are super-hard maps.

We show the empirical results of these algorithms in Figure 4. In the super-hard maps MMM2 and
27m_vs_30m, all the algorithms can hardly win, so we use episode rewards as the evaluation metric to show
the difference more clearly. As illustrated in Figure 4, TVPO has the best performance in all five maps.
The performance of DPO and TVPO is similar in the map 8m, and the reason may be that 8m is very easy
and both of them can obtain nearly 100% win rates within one million steps. In the other four maps, the
differences between TVPO and DPO are more clear.

10

Published in Transactions on Machine Learning Research (03/2025)

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

2.5

5.0

7.5

10.0

12.5

m
ea

n
ep

iso
de

 re
wa

rd
s

5 vs 5 terran

TVPO
DPO
IPPO
IQL
I2Q

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

2.5

5.0

7.5

10.0

12.5

15.0

5 vs 5 protoss

TVPO
DPO
IPPO
IQL
I2Q

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

2

4

6

8

10

5 vs 5 zerg

TVPO
DPO
IPPO
IQL
I2Q

0.0 0.5 1.0 1.5 2.0
steps 1e6

2

4

6

8

10
10 vs 10 terran

TVPO
DPO
IPPO
IQL
I2Q

0.0 0.5 1.0 1.5 2.0
steps 1e6

5.0

7.5

10.0

12.5

15.0

10 vs 10 protoss

TVPO
DPO
IPPO
IQL
I2Q

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

2

4

6

8

10

12
10 vs 10 zerg

TVPO
DPO
IPPO
IQL
I2Q

Figure 6: Learning curves of TVPO compared with IQL, IPPO, I2Q, and DPO in
5_vs_5_terran,5_vs_5_protoss,5_vs_5_zerg,10_vs_10_terran,10_vs_10_protoss and 10_vs_10_zerg in
SMACv2.

Multi-Agent MuJoCo is a robotic locomotion control environment designed for multi-agent scenarios with
continuous state and action spaces, based on the single-agent MuJoCo framework (Todorov et al., 2012). In
this environment, each agent controls a different part of a robot to perform various tasks. We use independent
DDPG (Lillicrap et al., 2016) (IDDPG) to replace IQL for continuous action spaces. As discussed in Section
4.3, we use Hellinger distance to replace total variation distance for continuous action space in TVPO. We
select 4 tasks for our experiments: 3-agent Hopper, 3-agent HalfCheetah, 3-agent Walker2d, and 4-agent Ant.
In all these tasks, we set agent_obsk=2.

The learning curves of the multi-agent MuJoCo tasks are illustrated in Figure 5. We can find that TVPO
substantially outperforms the baselines except in 3-agent HalfCheetah, where DPO obtains similar performance
to TVPO. The difference between the performance of the value-based algorithms and the policy-based
algorithms is larger in multi-agent MuJoCo compared with SMAC. The reason may be that the continuous
action space in fully decentralized learning brings more difficulty in training for the value-based algorithms.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
steps 1e6

6

8

10

12

14

m
ea

n
ep

iso
de

 re
wa

rd
s

10 vs 10 protoss

d=0.0001
d=0.001
d=0.01
d=0.1
d=1.0

Figure 7: Learning curves of the TVPO with different
hyperparameter d in 10_vs_10_protoss in SMAC-v2.

SMACv2 (Ellis et al., 2023) is a more stochastic
and difficult environment based on SMAC, where
each agent controls different units and the initial
position will also be randomly determined. We select
two settings, 5_vs_5 and 10_vs_10, among three
races, terran, protoss and zerg, a total of six tasks
from SMACv2 in our experiments. The empirical
results are illustrated in Figure 6. These tasks are
difficult for fully decentralized learning, so we also
use the cumulative reward as the metric. We find
that TVPO performs better than the four baselines,
similar to the results in SMAC.

In all three environments, TVPO obtains the best
performance in all the evaluated tasks compared with
the four baselines, and the differences between TVPO and the other baselines are obvious in most tasks. The
performance of TVPO empirically verifies our discussion about the convergence guarantee of TVPO and the
effectiveness of TVPO.

5.4 Ablation Study

We select the 10_vs_10_protoss task in SMAC-v2 for the ablation study of the hyperparameters d, α and β.
All the learning curves correspond to three random seeds and the shaded area corresponds to 95% confidence
interval.

For the ablation study of d, we compare the performance of TVPO with d ∈ {0.0001, 0.001, 0.01, 0.1, 1.0}.
The empirical results are illustrated in Figure 7. Intuitively, d represents the expected distance of DTV
between the old policy and the new policy. If d is small, corresponding to the learning curves d = 0.0001 and
d = 0.001, the step size of the policy update is limited, which may result in relatively low performance. If d is
large, corresponding to the learning curves d = 1.0, the policy update may exceed the trust region, which is
away from the convergence condition and results in oscillating curves. There is a trade-off for d. Therefore,
the appropriate choices d = 0.01 and d = 0.1 have the best performance in this task.

11

Published in Transactions on Machine Learning Research (03/2025)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e6

6

8

10

12

14

m
ea

n
ep

iso
de

 re
wa

rd
s

10 vs 10 protoss

=1.1_ =2
=1.1_ =4
=1.1_ =6

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e6

6

8

10

12

14
10 vs 10 protoss

=1.5_ =2
=1.5_ =4
=1.5_ =6

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e6

6

8

10

12

14

10 vs 10 protoss

=3_ =2
=3_ =4
=3_ =6

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
steps 1e6

6

8

10

12

14

m
ea

n
ep

iso
de

 re
wa

rd
s

10 vs 10 protoss

=1.1_ =2
=1.5_ =2
=3_ =2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
steps 1e6

6

8

10

12

14

10 vs 10 protoss

=1.1_ =4
=1.5_ =4
=3_ =4

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
steps 1e6

6

8

10

12

14

10 vs 10 protoss

=1.1_ =6
=1.5_ =6
=3_ =6

Figure 8: Learning curves of the TVPO with different combinations of hyperparameter α and δ in
10_vs_10_protoss in SMAC-v2.

For the ablation study of the hyperparameter α and δ, we choose α ∈ {1.1, 1.5, 3} and δ ∈ {2, 4, 6}. The
empirical results are shown in Figure 8. In the first line, we control α to be the same in each plot. In the
second line, we control δ to be the same in each plot. Intuitively, α represents the adjustment strength of
the coefficient βi and δ represents the tolerance of the expected distance. A smaller δ means more frequent
adjustments. The empirical results show that α should match δ, i.e., a smaller adjustment strength (a smaller
α) should correspond to more frequent adjustments (a smaller δ) and vice versa. A good combination of
(α, δ) means a good ability to keep the coefficient βi close to the expected distance d. Specifically, among the
values of α and δ we chosen, from the perspective of α, α = 1.1 and α = 1.5 are small values corresponding
to the best value δ = 2; from the perspective of δ, δ = 4 and δ = 6 are large values corresponding to the best
value α = 3.

6 Conclusion and Limitations

In this paper, we propose f -divergence policy optimization, a general formulation of independent policy
optimization in cooperative multi-agent reinforcement learning, and analyze the policy iteration of such a
formulation. We discuss the limitation of this formulation, i.e., convergence to only sub-optimal policy, and
verify it by the empirical results in a two-player matrix game. Based on f -divergence policy optimization,
we propose a novel independent learning algorithm, TVPO, and prove its convergence in fully decentralized
learning. Empirically, we evaluate TVPO against four baselines in three environments. The empirical results
show that TVPO outperforms all the baselines, which verifies the effectiveness of TVPO.

The main limitation of our work is the approximations in the practical algorithms which may not preserve
the theoretical properties including the convergence. Additionally, though the learning of decentralized critic
is unbiased, it may be troubled with the variance especially in multi-agent settings. Moreover, TVPO still
requires on-policy updates which is inconvenient especially in multi-agent settings.

References
Akshat Agarwal, Sumit Kumar, Katia Sycara, and Michael Lewis. Learning transferable cooperative behavior

in multi-agent team. In International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
2020.

Syed Mumtaz Ali and Samuel D Silvey. A general class of coefficients of divergence of one distribution from
another. Journal of the Royal Statistical Society: Series B (Methodological), 28(1):131–142, 1966.

Gürdal Arslan and Serdar Yüksel. Decentralized q-learning for stochastic teams and games. IEEE Transactions
on Automatic Control, 62(4):1545–1558, 2016.

Charles Blair. Problem complexity and method efficiency in optimization (as nemirovsky and db yudin).
Siam Review, 27(2):264, 1985.

12

Published in Transactions on Machine Learning Research (03/2025)

Lev M Bregman. The relaxation method of finding the common point of convex sets and its application to
the solution of problems in convex programming. USSR computational mathematics and mathematical
physics, 7(3):200–217, 1967.

Dingyang Chen, Yile Li, and Qi Zhang. Communication-efficient actor-critic methods for homogeneous
markov games. arXiv preprint arXiv:2202.09422, 2022.

Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS Torr, Mingfei
Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft multi-agent challenge?
arXiv preprint arXiv:2011.09533, 2020.

Ashley Edwards, Himanshu Sahni, Rosanne Liu, Jane Hung, Ankit Jain, Rui Wang, Adrien Ecoffet, Thomas
Miconi, Charles Isbell, and Jason Yosinski. Estimating q (s, s’) with deep deterministic dynamics gradients.
In International Conference on Machine Learning (ICML), 2020.

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan, Jakob Nico-
laus Foerster, and Shimon Whiteson. SMACv2: An improved benchmark for cooperative multi-agent
reinforcement learning. In Thirty-seventh Conference on Neural Information Processing Systems Datasets
and Benchmarks Track, 2023. URL https://openreview.net/forum?id=5OjLGiJW3u.

Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson. Counter-
factual multi-agent policy gradients. In AAAI Conference on Artificial Intelligence (AAAI), 2018.

Roy Fox, Stephen M Mcaleer, Will Overman, and Ioannis Panageas. Independent natural policy gradient
always converges in markov potential games. In International Conference on Artificial Intelligence and
Statistics, pp. 4414–4425. PMLR, 2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International Conference on Machine
Learning (ICML), 2018.

Songyang Han, He Wang, Sanbao Su, Yuanyuan Shi, and Fei Miao. Stable and efficient shapley value-
based reward reallocation for multi-agent reinforcement learning of autonomous vehicles. In International
Conference on Robotics and Automation (ICRA), 2022.

Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In International
Conference on Machine Learning (ICML), 2019.

Jiechuan Jiang and Zongqing Lu. I2q: A fully decentralized q-learning algorithm. Advances in Neural
Information Processing Systems (NeurIPS), 35:20469–20481, 2022.

Chi Jin, Qinghua Liu, Yuanhao Wang, and Tiancheng Yu. V-learning–a simple, efficient, decentralized
algorithm for multiagent rl. arXiv preprint arXiv:2110.14555, 2021.

Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforcement learning as a rehearsal for decentralized
planning. Neurocomputing, 190:82–94, 2016.

Jakub Grudzien Kuba, Ruiqing Chen, Munning Wen, Ying Wen, Fanglei Sun, Jun Wang, and Yaodong Yang.
Trust region policy optimisation in multi-agent reinforcement learning. arXiv preprint arXiv:2109.11251,
2021.

Jakub Grudzien Kuba, Xidong Feng, Shiyao Ding, Hao Dong, Jun Wang, and Yaodong Yang. Heterogeneous-
agent mirror learning: A continuum of solutions to cooperative marl. arXiv preprint arXiv:2208.01682,
2022.

Guanghui Lan. Policy mirror descent for reinforcement learning: Linear convergence, new sampling complexity,
and generalized problem classes. Mathematical programming, 198(1):1059–1106, 2023.

Stefanos Leonardos, Will Overman, Ioannis Panageas, and Georgios Piliouras. Global convergence of
multi-agent policy gradient in markov potential games. arXiv preprint arXiv:2106.01969, 2021.

13

https://openreview.net/forum?id=5OjLGiJW3u

Published in Transactions on Machine Learning Research (03/2025)

Wenhao Li, Bo Jin, Xiangfeng Wang, Junchi Yan, and Hongyuan Zha. F2a2: Flexible fully-decentralized ap-
proximate actor-critic for cooperative multi-agent reinforcement learning. arXiv preprint arXiv:2004.11145,
2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,
and Daan Wierstra. Continuous control with deep reinforcement learning. In International conference on
learning representations (ICLR), 2016.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In Machine
learning proceedings 1994, pp. 157–163. Elsevier, 1994.

Jiarong Liu, Yifan Zhong, Siyi Hu, Haobo Fu, Qiang Fu, Xiaojun Chang, and Yaodong Yang. Maximum
entropy heterogeneous-agent mirror learning. arXiv preprint arXiv:2306.10715, 2023.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. In Advances in Neural Information Processing
Systems (NeurIPS), 2017.

Xueguang Lyu and Yuchen Xiao. Contrasting centralized and decentralized critics in multi-agent reinforcement
learning. In International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2021.

Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic planning and infinite-
horizon partially observable markov decision problems. In AAAI Conference on Artificial Intelligence
(AAAI), 1999.

Weichao Mao and Tamer Başar. Provably efficient reinforcement learning in decentralized general-sum markov
games. Dynamic Games and Applications, 13(1):165–186, 2023.

Weichao Mao, Lin Yang, Kaiqing Zhang, and Tamer Basar. On improving model-free algorithms for
decentralized multi-agent reinforcement learning. In International Conference on Machine Learning, pp.
15007–15049. PMLR, 2022a.

Weichao Mao, Lin Yang, Kaiqing Zhang, and Tamer Basar. On improving model-free algorithms for
decentralized multi-agent reinforcement learning. In International Conference on Machine Learning
(ICML), 2022b.

Laetitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. Independent reinforcement learners in
cooperative markov games: a survey regarding coordination problems. The Knowledge Engineering Review,
27(1):1–31, 2012.

Martin Mundhenk, Judy Goldsmith, Christopher Lusena, and Eric Allender. Complexity of finite-horizon
markov decision process problems. Journal of the ACM (JACM), 47(4):681–720, 2000.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between value and
policy based reinforcement learning. In Advances in Neural Information Processing Systems (NeurIPS),
2017.

Afshin OroojlooyJadid and Davood Hajinezhad. A review of cooperative multi-agent deep reinforcement
learning. arXiv preprint arXiv:1908.03963, 2019.

Christos H Papadimitriou and John N Tsitsiklis. The complexity of markov decision processes. Mathematics
of operations research, 12(3):441–450, 1987.

Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. Benchmarking multi-agent
deep reinforcement learning algorithms in cooperative tasks. In Advances in Neural Information Processing
Systems (NeurIPS), 2021.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr, Wendelin
Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy gradients. In Advances in
Neural Information Processing Systems (NeurIPS), 2021.

14

Published in Transactions on Machine Learning Research (03/2025)

Leonid Peshkin, Kee-Eung Kim, Nicolas Meuleau, and Leslie Pack Kaelbling. Learning to cooperate via
policy search. In Conference on Uncertainty in Artificial Intelligence (UAI), 2000.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. Qmix: monotonic value function factorisation for deep multi-agent reinforcement
learning. In International Conference on Machine Learning (ICML), 2018.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli, Tim GJ
Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The starcraft multi-agent
challenge. arXiv preprint arXiv:1902.04043, 2019.

Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn Wagner, TK Satish Kumar, Sven Koenig, and Howie
Choset. Primal: Pathfinding via reinforcement and imitation multi-agent learning. IEEE Robotics and
Automation Letters, 4(3):2378–2385, 2019.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In International Conference on Machine Learning (ICML), 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning
to factorize with transformation for cooperative multi-agent reinforcement learning. In International
Conference on Machine Learning (ICML), 2019.

Kefan Su and Zongqing Lu. Divergence-regularized multi-agent actor-critic. In International Conference on
Machine Learning (ICML), 2022a.

Kefan Su and Zongqing Lu. Decentralized policy optimization. arXiv preprint arXiv:2211.03032, 2022b.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinícius Flores Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition networks
for cooperative multi-agent learning based on team reward. In International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS), 2018.

Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru, Jaan Aru, and
Raul Vicente. Multiagent cooperation and competition with deep reinforcement learning. arXiv preprint
arXiv:1511.08779, 2015.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In International
Conference on Machine Learning (ICML), 1993.

Justin K Terry, Nathaniel Grammel, Ananth Hari, Luis Santos, and Benjamin Black. Revisiting parameter
sharing in multi-agent deep reinforcement learning. arXiv preprint arXiv:2005.13625, 2020.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012.

Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror descent policy optimiza-
tion. arXiv preprint arXiv:2005.09814, 2020.

Sharan Vaswani, Olivier Bachem, Simone Totaro, Robert Müller, Shivam Garg, Matthieu Geist, Marlos C
Machado, Pablo Samuel Castro, and Nicolas Le Roux. A general class of surrogate functions for stable and
efficient reinforcement learning. arXiv preprint arXiv:2108.05828, 2021.

Nikos Vlassis, Michael L Littman, and David Barber. On the computational complexity of stochastic controller
optimization in pomdps. ACM Transactions on Computation Theory (TOCT), 4(4):1–8, 2012.

Jiangxing Wang, Deheng Ye, and Zongqing Lu. More centralized training, still decentralized execution:
Multi-agent conditional policy factorization. In International conference on learning representations (ICLR),
2023a.

15

Published in Transactions on Machine Learning Research (03/2025)

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling multi-agent
q-learning. In International Conference on Learning Representations (ICLR), 2021a.

Qing Wang, Yingru Li, Jiechao Xiong, and Tong Zhang. Divergence-augmented policy optimization. Advances
in Neural Information Processing Systems (NeurIPS), 32, 2019.

Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang. Dop: Off-policy multi-agent
decomposed policy gradients. In International Conference on Learning Representations (ICLR), 2021b.

Yuanhao Wang, Qinghua Liu, Yu Bai, and Chi Jin. Breaking the curse of multiagency: Provably efficient
decentralized multi-agent rl with function approximation. In Conference on Learning Theory (COLT),
2023b.

Yuanhao Wang, Qinghua Liu, Yu Bai, and Chi Jin. Breaking the curse of multiagency: Provably efficient
decentralized multi-agent rl with function approximation. arXiv preprint arXiv:2302.06606, 2023c.

Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong Yang. Multi-agent
reinforcement learning is a sequence modeling problem. Advances in Neural Information Processing Systems,
35:16509–16521, 2022.

Long Yang, Yu Zhang, Gang Zheng, Qian Zheng, Pengfei Li, Jianhang Huang, and Gang Pan. Policy
optimization with stochastic mirror descent. In AAAI Conference on Artificial Intelligence (AAAI), 2022.

Wenhao Yang, Xiang Li, and Zhihua Zhang. A regularized approach to sparse optimal policy in reinforcement
learning. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong Liu, and Hongyao Tang. Qatten:
A general framework for cooperative multiagent reinforcement learning. arXiv preprint arXiv:2002.03939,
2020.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising effectiveness
of mappo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955, 2021.

Wenhao Zhan, Jason D. Lee, and Zhuoran Yang. Decentralized optimistic hyperpolicy mirror descent:
Provably no-regret learning in markov games. In International Conference on Learning Representations
(ICLR), 2023.

Chengwei Zhang, Xiaohong Li, Jianye Hao, Siqi Chen, Karl Tuyls, Zhiyong Feng, Wanli Xue, and Rong Chen.
Scc-rfmq learning in cooperative markov games with continuous actions. arXiv preprint arXiv:1809.06625,
2018a.

Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. Fully decentralized multi-agent
reinforcement learning with networked agents. In International conference on machine learning, pp.
5872–5881. PMLR, 2018b.

Lin Zhang and Ying-Chang Liang. Deep reinforcement learning for multi-agent power control in heterogeneous
networks. IEEE Transactions on Wireless Communications, 20(4):2551–2564, 2020.

Runyu Zhang, Zhaolin Ren, and Na Li. Gradient play in stochastic games: stationary points, convergence,
and sample complexity. IEEE Transactions on Automatic Control, 2024.

Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu. Fop: Factorizing optimal joint
policy of maximum-entropy multi-agent reinforcement learning. In International Conference on Machine
Learning (ICML), 2021.

16

Published in Transactions on Machine Learning Research (03/2025)

Appendices
A Proofs

A.1 Proof of Lemma 4.2

Proof. The Lagrangian function of (4) is as follows:

L =
∑
ai

πi(ai|s)Qπold
i (s, ai)− ω

∑
ai

πi
old(ai|s)f

(
πi(ai|s)

πi
old(ai|s)

)

+ λs

(∑
ai

πi(ai|s)− 1
)

+
∑
ai

βi(ai|s)πi(ai|s),

where λs and β(ai|s) are the Lagrangian multiplier.

Then by the KKT condition we have

∂L

∂πi(ai|s) = Qπold
i (s, ai)− ωf ′

(
πi(ai|s)

πi
old(ai|s)

)
+ λs + βi(ai|s) = 0,

so we can resolve πi(ai|s) as

πi(ai|s)
πi

old(ai|s) = g

(
Qπold

i (s, ai) + λs + βi(ai|s)
ω

)
(19)

From the complementary slackness we know that β(ai|s)πi(ai|s) = 0, so we can rewrite (19) as

πi(ai|s)
πi

old(ai|s) = max
{

g

(
Qπold

i (s, ai) + λs

ω

)
, 0
}

, (20)

πi(ai|s) = max
{

πi
old(ai|s)g

(
Qπold

i (s, ai) + λs

ω

)
, 0
}

. (21)

A.2 Proof of Proposition 4.3

Proof. To discuss the monotonicity of the policies pt and qt, let QA
t (0) and QA

t (1) represent the expected
reward Alice will obtain by taking action u0

A and u1
A respectively. Simlilarly, we can also define QB

t (0) and
QB

t (1) for Bob.

From the definition, we have QA
t (0) = qt · a + (1 − qt) · b = b + (a − b)qt. Similarly we can obtain that

QA
t (1) = d + (c− d)qt, QB

t (0) = c + (a− c)pt and QB
t (1) = d + (b− d)pt.

Combining (21) with the condition g(x) ≥ 0, then we have

pt+1 = ptg

(
(a− b)qt + b + λA

t

ω

)
, 1− pt+1 = (1− pt)g

(
(c− d)qt + d + λA

t

ω

)

⇒ 1
pt+1

− 1 = (1
pt
− 1)

g
(

(c−d)qt+d+λA
t

ω

)
g
(

(a−b)qt+b+λA
t

ω

) . (22)

17

Published in Transactions on Machine Learning Research (03/2025)

From (22) we can find that

pt+1 ≤ pt ⇔
g
(

(c−d)qt+d+λA
t

ω

)
g
(

(a−b)qt+b+λA
t

ω

) ≥ 1

⇔ (c− d)qt + d ≥ (a− b)qt + b (23)
⇔ (b + c− a− d)qt ≥ b− d

⇔ qt ≥ q̂.

The critical step (23) is from the combination of the condition g(x) ≥ 0 and the property g(x) is non-decreasing.

Similarly we can obtain that pt ≥ p̂ ⇒ qt+1 ≤ qt; pt ≤ p̂ ⇒ qt+1 ≥ qt; qt ≥ q̂ ⇒ pt+1 ≤ pt; and qt ≤ q̂ ⇒
pt+1 ≥ pt.

A.3 Proof of Corollary 4.4

Proof. From the iteration of {pt} we have

pt+1

1− pt+1
= pt

1− pt

g
(

(a−b)qt+b+λA
t

ω

)
g
(

(c−d)qt+d+λA
t

ω

) . (24)

Let t→∞ in both side of (24), we know that

p∗

1− p∗

 g
(

(a−b)q∗+b+λA
∗

ω

)
g
(

(c−d)q∗+d+λA
∗

ω

) − 1

 = 0. (25)

As q∗ > q̂, we know that
g

(
(a−b)q∗+b+λA

∗
ω

)
g

(
(c−d)q∗+d+λA

∗
ω

) < 1. So we can rewrite (25) as p∗

1−p∗ = 0 and resolve p∗ = 0.

As for q∗, we can follow a similar idea. From the iteration of {qt} we have

1
qt+1

− 1 = (1
qt
− 1)

g
(

(b−d)pt+d+λB
t

ω

)
g
(

(a−c)pt+c+λB
t

ω

) . (26)

Let t→∞ in both side of (26) , we know that

1− q∗

q∗

g
(

(b−d)p∗+d+λB
∗

ω

)
g
(

(a−c)p∗+c+λB
∗

ω

) − 1

 = 0. (27)

As p∗ < p̂, we know that
g

(
(b−d)p∗+d+λB

∗
ω

)
g

(
(a−c)p∗+c+λB

∗
ω

) < 1. Then we can rewrite (27) as 1−q∗

q∗ = 0 and obtain q∗ = 1.

18

Published in Transactions on Machine Learning Research (03/2025)

A.4 Proof of Lemma 4.6

Proof. For any fixed i, consider the following difference∣∣∣∣∣∣
∑

a

πnew(a|s)Qπ(s, a)−
∑
ai

πi
new(ai|s)

∑
a−i

π−i
old(a−i|s)Qπ(s, ai, a−i)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
ai

πi
new(ai|s)

∑
a−i

(
π−i

new(a−i|s)− π−i
old(a−i|s)

)
Qπ(s, ai, a−i)

∣∣∣∣∣∣ (28)

≤
∑
ai

πi
new(ai|s)

∑
a−i

∣∣π−i
new(a−i|s)− π−i

old(a−i|s)
∣∣ |Qπ(s, ai, a−i)| (29)

≤ M

2
∑
ai

πi
new(ai|s)

∑
a−i

∣∣π−i
new(a−i|s)− π−i

old(a−i|s)
∣∣ (30)

= M

2
∑
a−i

∣∣π−i
new(a−i|s)− π−i

old(a−i|s)
∣∣ (31)

= M

2
∑
a−i

∣∣∣∣∣∣
N∑

k=1,k ̸=i

π1:k−1
new (a1:k−1|s)πk:N

old (ak:N |s)− π1:k
new(a1:k|s)πk+1∼N

old (ak+1:N |s)

∣∣∣∣∣∣ (32)

≤ M

2
∑
a−i

N∑
k=1,k ̸=i

∣∣π1:k−1
new (a1:k−1|s)πk:N

old (ak:N |s)− π1:k
new(a1:k|s)πk+1∼N

old (ak+1:N |s)
∣∣ (33)

= M

2

N∑
k=1,k ̸=i

∑
ak

∣∣πk
new(ak|s)− πk

old(ak|s)
∣∣ (34)

= M

N∑
k=1,k ̸=i

DTV
(
πk

new(·|s)∥πk
old(·|s)

)
(35)

where π1:k−1
new denotes π1

new × π2
new × · · ·πk−1

new and πi
new will be skipped if involved, and a1:k−1 has similar

meanings as a1:k−1 = a1× a2× · · · ak−1. In (29) and (33), we use the triangle inequality of the absolute value.
In (30), we use the property Qπ(s, a) ≤ rmax

1−γ = M
2 from the definition of Q-function. In (32), we insert N − 1

terms between π−i
new(a−i|s) and π−i

old(a−i|s) to make sure the adjacent two terms are only different in one
individual policy.

By rewriting the conclusion above, for any agent i, we have∑
a

πnew(a|s)Qπ(s, a) ≥
∑
ai

πi
new(ai|s)

∑
a−i

π−i
old(a−i|s)Qπ(s, ai, a−i)

−M

N∑
k=1,k ̸=i

DTV
(
πk

new(·|s)∥πk
old(·|s)

)
. (36)

Then, by applying (36) to i = 1, 2, · · · , N and add all these N inequalities together, we have

∑
a

πnew(a|s)Qπ(s, a) ≥ 1
N

N∑
i=1

∑
ai

πi
new(ai|s)

∑
a−i

π−i
old(a−i|s)Qπ(s, ai, a−i)

− (N − 1)M
N

N∑
i=1

DTV
(
πi

new(·|s)∥πi
old(·|s)

)
.

19

Published in Transactions on Machine Learning Research (03/2025)

A.5 Proof of Proposition 4.7

Proof. By the definition of V πold
ρ we have

V πold
ρ (s) = 1

N

∑
i

∑
ai

πi
old(ai|s)

∑
a−i

ρ−i(a−i|s)Qπold
ρ (s, ai, a−i)− ω

∑
i

Df

(
πi

old(·|s)∥ρi(·|s)
)

≤ 1
N

∑
i

∑
ai

πi
new(ai|s)

∑
a−i

ρ−i(a−i|s)Qπold
ρ (s, ai, a−i)− ω

∑
i

Df

(
πi

new(·|s)∥ρi(·|s)
)

(37)

= 1
N

∑
i

∑
ai

πi
new(ai|s)

∑
a−i

ρ−i(a−i|s)
(
r(s, ai, a−i) + γE

[
V πold

ρ (s′)
])

− ω
∑

i

Df

(
πi

new(·|s)∥ρi(·|s)
)

(38)

≤ · · · (expand V πold
ρ (s′) and repeat replacing πi

old with πi
new) (39)

≤ V πnew
ρ (s). (40)

In (37), we use the definition of πi
new in (11). (38) is from the definition of Qπold

ρ (s, ai, a−i). In (39), we
repeatedly expand V πold

ρ according to its definition and replace πi
old with πi

new by the optimality of πi
new like

what we have done in (37). After we replace all πi
old with πi

new, then we obtain V πnew
ρ (s) according to the

definition of V πnew
ρ (s) in (40).

With the result V πold
ρ (s) ≤ V πnew

ρ (s), we know Qπold
ρ (s, a) = r(s, a)+γE[V πold

ρ (s′)] ≤ r(s, a)+γE[V πnew
ρ (s′)] =

Qπnew
ρ (s, a).

A.6 Proof of Theorem 4.8

Proof. From the Proposition 4.7, we know V
πt+1

πt (s) ≥ V πt(s). Thus, we just need to prove V πt(s) ≥ V πt
πt−1

(s).

From the definition of V πt(s) we have

V πt(s) =
∑

a

πt(a|s)Qπt(s, a)

≥ 1
N

N∑
i=1

∑
ai

πi
t(ai|s)

∑
a−i

π−i
t−1(a−i|s)Qπt(s, ai, a−i)

− ω

N∑
i=1

DTV
(
πi

t(·|s)∥πi
t−1(·|s)

)
(41)

= 1
N

N∑
i=1

∑
ai

πi
t(ai|s)

∑
a−i

π−i
t−1(a−i|s) (r(s, ai, a−i) + γE[V πt(s′)])

− ω

N∑
i=1

DTV
(
πi

t(·|s)∥πi
t−1(·|s)

)
(42)

≥ · · · (expand V πt(s′) and repeat replacing π−i
t with π−i

t−1) (43)
≥V πt

πt−1
(s). (44)

(41) is from Lemma 4.6, and (42) is from the definition of Qπt(s, ai, a−i). In (43), we repeatedly expand V πt

and replace the π−i
t with π−i

t−1 by Lemma 4.6 like what we have done in (41). After we replace all π−i
t with

π−i
t−1, then we obtain V πt

πt−1
(s) in (44) according to the definition of V πt

πt−1
(s).

From the inequalities V
πt+1

πt (s) ≥ V πt(s) ≥ V πt
πt−1

(s) ≥ V πt−1(s), we know that the sequence {V πt} improves
monotonically. Combining with the condition that the sequence {V πt} is bounded, we know that {V πt} will
converge to V ∗. According to the definition, the sequence {Qπt} and {πt} will also converge to Q∗ and π∗

20

Published in Transactions on Machine Learning Research (03/2025)

respectively, where π∗ satisfies the following fixed-point equation:

πi
∗ = arg max

πi

∑
ai

πi(ai|s)
∑
a−i

π−i
∗ (a−i|s)Q∗(s, ai, a−i)− ωDTV

(
πi(·|s)∥πi

∗(·|s)
)

.

A.7 Proof of DTV(p∥q) ≤ DH(p∥q)

Proof.

D2
TV(p∥q) = 1

4

(∑
i

|pi − qi|

)2

= 1
4

(∑
i

|√pi −
√

qi| |
√

pi +√qi|

)2

≤ 1
4

(∑
i

|√pi −
√

qi|2
)(∑

i

|√pi +√qi|2
)

(Cauchy–Schwarz inequality)

= 1
4D2

H(p∥q)
(

2 + 2
∑

i

√
piqi

)
≤ D2

H(p∥q).

B Experimental Settings

B.1 MPE

The three tasks are based on the original Multi-Agent Particle Environment (MPE) (Lowe et al., 2017) (MIT
license) and were initially used in Agarwal et al. (2020) (MIT license). The objectives of these tasks are:

• Simple Spread: N agents must occupy the locations of N landmarks.

• Line Control: N agents must line up between two landmarks.

• Circle Control: N agents must form a circle around a landmark.

The reward in these tasks is the distance between all the agents and their target locations. We select these
tasks to maintain consistency with DPO (Su & Lu, 2022b) but set the number of agents N = 10 for these
three tasks in our experiment.

B.2 Multi-Agent MuJoCo

Multi-agent MuJoCo (Peng et al., 2021) (Apache-2.0 license) is a robotic locomotion task featuring continuous
action space for multi-agent settings. The robot is divided into several parts, each containing multiple joints.
Agents in this environment control different parts of the robot. The type of robot and the assignment of
joints determine the task. For example, the task "HalfCheetah-3×2" means dividing the robot "HalfCheetah"
into three parts, with each part containing two joints. Details of our experiment settings in multi-agent
MuJoCo are listed in Table 3. The configuration specifies the number of agents and the joints assigned to
each agent. "Agent obsk" defines the number of nearest agents an agent can observe.

B.3 StarCraft2

SMAC (Samvelyan et al., 2019) (MIT license) is a widely used environment for multi-agent reinforcement
learning (MARL). In SMAC, agents receive rewards when they attack or kill an enemy unit. The rewards for
an episode are normalized to a maximum of 20, regardless of the number of agents, to ensure consistency

21

Published in Transactions on Machine Learning Research (03/2025)

Table 3: The task settings of multi-agent MuJoCo

task configuration agent obsk

HalfCheetah 3×2 2
Hopper 3×1 2

Walker2d 3×2 2
Ant 4×2 2

across tasks. An episode is considered won if the agents kill all enemy units. The observation space for
agents depends on the number of units involved in the task. Typically, the observation is a vector with over
100 dimensions, containing information about all units. Information about units outside an agent’s field of
view is represented as zero in the observation vector. More details on SMAC can be found in the original
paper (Samvelyan et al., 2019). SMACv2 (Ellis et al., 2023) (MIT license) is an advanced version of SMAC.
Unlike SMAC, SMACv2 allows agents to control different types of units in different episodes, where the unit
types are determined by a distribution and a type list. Moreover, the initial positions of agents are randomly
selected in different episodes. With these properties, SMACv2 is more stochastic and difficult than SMAC.
We keep the configuration the same as the original paper (Ellis et al., 2023) among the selected tasks.

C Algorithm

Algorithm 1. The practical algorithm of TVPO
1: for episode = 1 to M do
2: for t = 1 to max_episode_length do
3: select action ai ∼ πi(·|s)
4: execute ai and observe reward r and next state s′

5: collect ⟨s, ai, r, s′⟩
6: end for
7: Update the critic according to (17)
8: Update the policy according to (15) or (18)
9: Update βi according to (16).

10: end for

D Training Details

Our code of IPPO is based on the open-source code1 of MAPPO (Yu et al., 2021) (MIT license). The original
IPPO and MAPPO is actually implemented as a CTDE method with parameter sharing and centralized
critics. We modify the code for individual parameters and ban the tricks used by MAPPO for SMAC. The
network architectures and base hyperparameters of TVPO, DPO and IPPO are the same for all the tasks
in all the environments. We use 3-layer MLPs for the actor and the critic and use ReLU as non-linearities.
The number of the hidden units of the MLP is 128. We train all the networks with an Adam optimizer.
The learning rates of the actor and critic are both 5e-4. The number of epochs for every batch of samples
is 15 which is the recommended value in Yu et al. (2021). For IPPO, the clip parameter is 0.2 which is
the same as Schulman et al. (2017). For DPO, the hyperparameter is set as the original paper (Su & Lu,
2022b) recommends. Our code of IQL is based on the open-source code2 PyMARL (Apache-2.0 license) and
we modify the code for individual parameters. The default architecture in PyMARL is RNN so we just
follow it and the number of the hidden units is 128. The learning rate of IQL is also 5e-4. The architectures
of the actor and critic of IDDPG are 3-layer MLPs. The learning rates of the actor and critic are both

1https://github.com/marlbenchmark/on-policy
2https://github.com/oxwhirl/pymarl

22

Published in Transactions on Machine Learning Research (03/2025)

5e-4. Our code of I2Q is from the open source code3 of the original paper (Jiang & Lu, 2022). We keep the
hyperparameter of I2Q the same as the default value of the open-source code in our experiments.

Table 4: Hyperparameters for all the experiments

hyperparameter value

MLP layers 3
hidden size 128
non-linear ReLU
optimizer Adam
actor_lr 5e-4
critic_lr 5e-4

numbers of epochs 15
initial βi 0.01

δ 1.5
ω 2
d 0.001

clip parameter for IPPO 0.2

The version of the game StarCraft2 in SMAC is 4.10 for our experiments in all the SMAC tasks. We set the
episode length of all the multi-agent MuJoCo tasks as 1000 in all of our multi-agent MuJoCo experiments.
We perform the whole experiment with a total of four NVIDIA A100 GPUs. We have summarized the
hyperparameters in Table 4.

E Additional Empirical Results

Figure 9 illustrates the learning curve of the policy p and q in the matrix game of KL-iteration, TV-iteration,
χ2-iteration, and H-iteration over four different sets of initialization. We can observe the policies of all four
kinds of iterations converge.

MPE is a popular environment in cooperative MARL. MPE is a 2D environment and the objects are either
agents or landmarks. Landmark is a part of the environment, while agents can move in any direction. With
the relation between agents and landmarks, we can design different tasks. We use the discrete action space
version of MPE and the agents can accelerate or decelerate in the direction of the x-axis or y-axis. We choose
MPE for its partial observability.

The empirical results in MPE are illustrated in Figure 10. We find that TVPO obtains the best performance
in all three tasks. In this environment, the policy-based algorithms, TVPO, DPO, and IPPO, outperform the
value-based algorithms, IQL and I2Q. I2Q has a better performance than IQL in all three tasks.

For the comparison with the baseline IPG (Leonardos et al., 2021) and INPG (Fox et al., 2022), we select
three 10_vs_10 SMAC-v2 tasks. The empirical results are illustrated Figure 11. We can find that IPG’s
performance is not stationary and may drop with the progress of training compared with other policy based
algorithms. We think the main reason is that IPG lack the constraints about the stepsize of policy iteration.
We use the adaptive coefficient for INPG, and its performance is similar to DPO, which is reasonable as their
policy objectives are similar except for a square root term.

We also compare the influence of the hyperparameters on IPPO’s performance. We choose clip parameters
with values 0.1, 0.2, 0.3 for ablation study and select the 10_vs_10 protoss task for experiments. The empirical
results are ilustrated in Figure 12. We can see that the impact of this hyperparameter is not significant.

3https://github.com/jiechuanjiang/I2Q

23

Published in Transactions on Machine Learning Research (03/2025)

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00

pr
ob

ab
ilit

y

Matrix Game

KL_p_init_1
KL_q_init_1

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

TV_p_init_1
TV_q_init_1

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

Chi_p_init_1
Chi_q_init_1

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

H_p_init_1
H_q_init_1

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00

pr
ob

ab
ilit

y

Matrix Game

KL_p_init_2
KL_q_init_2

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

TV_p_init_2
TV_q_init_2

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

Chi_p_init_2
Chi_q_init_2

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

H_p_init_2
H_q_init_2

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00

pr
ob

ab
ilit

y

Matrix Game

KL_p_init_3
KL_q_init_3

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

TV_p_init_3
TV_q_init_3

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

Chi_p_init_3
Chi_q_init_3

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

H_p_init_3
H_q_init_3

0 10 20 30 40 50
iterations

0.00

0.25

0.50

0.75

1.00

pr
ob

ab
ilit

y

Matrix Game

KL_p_init_4
KL_q_init_4

0 10 20 30 40 50
iterations

0.00

0.25

0.50

0.75

1.00
Matrix Game

TV_p_init_4
TV_q_init_4

0 10 20 30 40 50
iterations

0.00

0.25

0.50

0.75

1.00
Matrix Game

Chi_p_init_4
Chi_q_init_4

0 10 20 30 40 50
iterations

0.00

0.25

0.50

0.75

1.00
Matrix Game

H_p_init_4
H_q_init_4

Figure 9: Learning curves of the policy p and q in the matrix game of KL-iteration, TV-iteration, χ2-iteration,
and H-iteration over four different sets of initialization. Each row corresponds to one set of initialization and
each column corresponds to one type of iteration.

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

40

35

30

25

20

15

m
ea

n
ep

iso
de

 re
wa

rd
s

simple spread

DPO
IPPO
TVPO
IQL
I2Q

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

50

40

30

20

10
line control

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

40

30

20

10
circle control

Figure 10: Learning curves of TVPO compared with IQL, IPPO, I2Q, and DPO in 10-agent simple spread,
10-agent line control, and 10-agent circle control in MPE.

0.0 0.5 1.0 1.5 2.0
steps 1e6

2

4

6

8

10

m
ea

n
ep

iso
de

 re
wa

rd
s

10 vs 10 terran

TVPO
DPO
IPPO
IQL

I2Q
IPG
INPG

0.0 0.5 1.0 1.5 2.0
steps 1e6

5.0

7.5

10.0

12.5

15.0

10 vs 10 protoss

TVPO
DPO
IPPO
IQL

I2Q
IPG
INPG

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

2

4

6

8

10

12
10 vs 10 zerg

TVPO
DPO
IPPO
IQL

I2Q
IPG
INPG

Figure 11: Learning curves of the TVPO and other baselines including IPG and INPG in the three 10_vs_10
SMAC-v2 tasks.

24

Published in Transactions on Machine Learning Research (03/2025)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
steps 1e6

5.0

7.5

10.0

12.5

15.0

m
ea

n
ep

iso
de

 re
wa

rd
s

10 vs 10 protoss

TVPO
IPPO_clip_param_0.1
IPPO_clip_param_0.2
IPPO_clip_param_0.3

Figure 12: Learning curves of the TVPO and IPPO with different clip parameters in the 10_vs_10 protoss.

F Discussion

F.1 A Brief introduction of baseline algorithms

We select these four baseline algorithms as representatives of fully decentralized algorithms. IQL (Tan,
1993) is a basic value-based algorithm for decentralized learning. IPPO is a basic policy-based algorithm for
decentralized learning. Both IQL and IPPO (de Witt et al., 2020) do not have convergence guarantees, to
the best of our knowledge. DPO (Su & Lu, 2022b) and I2Q (Jiang & Lu, 2022) are the recent policy-based
algorithm and value-based algorithm respectively, and both of them have been proved to have convergence
guarantee.

IQL, IDDPG, and IPPO are relatively simple to understand, where each agent updates its policy through an
independent Q-learning, DDPG, or PPO. These algorithms simply extend the single-agent RL algorithms
into the MARL setting. They are heuristic algorithms without convergence guarantees in fully decentralized
MARL.

The idea of DPO is to find a lower bound of the joint policy improvement objective as a surrogate which can
also be optimized in a decentralized way for each agent. The formulation of DPO is as follows:

πi
t+1 == arg max

πi

∑
ai

πi(ai|s)Qπt
i (s, ai)− M̂ ·

√
DKL

(
πi(·|s)∥πi

t(·|s)
)
− C ·DKL

(
πi(·|s)∥πi

t(·|s)
)

.

DPO has been proven to improve monotonically and converge in fully decentralized MARL.

I2Q uses Q-learning from the perspective of QSS-value Qi(s, s′). The QSS-value is updated with the following
operator:

ΓQi(s, s′) = r + γ maxs′′∈N (s′) Qi(s′, s′′),

where N (s′) is the neighbor set of state s′. In the deterministic environment and with some assumption
about the transition probability, Qi(s, s′) will converge to the same Q-function for each agent i, so the joint
policy of agents will also converge in fully decentralized MARL.

F.2 Unary Formulation

Before proposing the f -divergence formulation, we have studied another formulation. This formulation follows
the idea of entropy regularization and the extra term is only related to the policy πi instead of the divergence
between πi and πi

old. We refer to this approach as the unary formulation. Though we discovered that the
unary formulation has more significant drawbacks, the properties of the unary formulation inspire us in

25

Published in Transactions on Machine Learning Research (03/2025)

the proof of TVPO. So we would like to provide the properties and some empirical results of the unary
formulation here for discussion.

The unary formulation is

πi
new = arg max

πi

∑
ai

πi(ai|s)Qπold
i (s, ai) + ω

∑
ai

πi(ai|s)ϕ
(
πi(ai|s)

)
. (45)

This formulation (45) follows the idea of Yang et al. (2019) which discusses the regularization algorithm in
single-agent RL. From the perspective of regularization, the update rule (45) can be seen as optimizing
the regularized objective J i

ϕ(π) = E
[∑

t γt
(
ri(s, ai) + ωϕ

(
πi(ai|s)

))]
, where ri(s, ai) = Eπ−i [r(s, ai, a−i)].

The choice of ϕ is flexible, e.g., ϕ(x) = − log x corresponds to entropy regularization and independent SAC
(Haarnoja et al., 2018); ϕ(x) = 0 means (45) degenerates to independent Q-learning (Tan, 1993); Moreover,
there are many other options for ϕ corresponding to different regularization (Yang et al., 2019). So we take
(45) as the general unary formulation of independent learning, where the ‘unary’ means the additional terms∑

ai
πi(ai|s)ϕ

(
πi(ai|s)

)
is only about one policy πi.

For further discussion of (45) , we can utilize the conclusion in Yang et al. (2019) as the following lemma.

Lemma F.1. If ϕ(x) in (0, 1] and satisfies the following conditions: (1) ϕ(x) is non-increasing; (2) ϕ(1) = 0;
(3) ϕ(x) is differentiable; (4) fϕ(x) = xϕ(x) is strictly concave, then we have that gϕ(x) = (f ′

ϕ)−1(x) exists
and gϕ(x) is decreasing. Moreover, the solution to the optimization objective (45) can be described with
gϕ(x) as follows:

πi
new(ai|s) = max{gϕ

(
λs −Qπold

i (s, ai)
ω

)
, 0}, (46)

where λs satisfies
∑

ai
max{gϕ

(
λs−Q

πold
i

(s,ai)
ω

)
, 0} = 0.

Though it seems that ϕ(x) needs to satisfy four conditions, actually ϕ(x) = − log x for Shannon entropy and
ϕ(x) = k

q−1 (1− xq−1) for Tsallis entropy are still qualified.

However, unlike the single-agent setting, the update rule in Lemma F.1 may result in the convergence to
sub-optimal policy or even oscillations in policy in fully decentralized MARL.

We further discuss (45) in the two-player matrix game and have the following proposition.

Proposition F.2. Suppose that gϕ(x) ≥ 0 and gϕ(x) is continuously differentiable. If the payoff matrix of
the two-player matrix game satisfies b + c < a + d, and two agents Alice and Bob update their policies with
policy iteration as

πi
t+1 = arg max

πi

∑
ai

πi(ai|s)Qπt
i (s, ai) + ω

∑
ai

πi(ai|s)ϕ
(
πi(ai|s)

)
, (47)

then we have (1) pt > pt−1 ⇒ qt+1 > qt; (2) pt < pt−1 ⇒ qt+1 < qt; (3) qt > qt−1 ⇒ pt+1 > pt; (4) qt <
qt−1 ⇒ pt+1 < pt.

Proof. To discuss the monotonicity of the policies pt and qt, we need the solution in Lemma F.1. Before
applying the update rule (46), we need to calculate the decentralized critic given pt and qt. Let QA

t (0) and
QA

t (1) represent the expected reward Alice will obtain by taking action u0
A and u1

A respectively. We can also
define QB

t (0) and QB
t (1) for Bob.

From the definition, we have QA
t (0) = qt · a + (1 − qt) · b = b + (a − b)qt. Similarly we could obtain that

QA
t (1) = d + (c− d)qt, QB

t (0) = c + (a− c)pt and QB
t (1) = d + (b− d)pt.

26

Published in Transactions on Machine Learning Research (03/2025)

With (46) and the condition gϕ(x) ≥ 0, we have

pt+1 = gϕ

(
λA

t −QA
t (0)

ω

)
= gϕ

(
(b− a)qt + λA

t − b

ω

)
, 1− pt+1 = gϕ

(
(d− c)qt + λA

t − d

ω

)
gϕ

(
(b− a)qt + λA

t − b

ω

)
+ gϕ

(
(d− c)qt + λA

t − d

ω

)
= 1

qt+1 = gϕ

(
(c− a)pt + λB

t − c

ω

)
, 1− qt+1 = gϕ

(
(d− b)pt + λB

t − d

ω

)
gϕ

(
(c− a)pt + λB

t − c

ω

)
+ gϕ

(
(d− b)pt + λB

t − d

ω

)
= 1.

We can rewrite these equations with some simplifications as follows,

mA(x) ≜ (b− a)x + λA(x)− b

ω
, nA(x) ≜ (d− c)x + λA(x)− d

ω
, hA(x) = gϕ (mA(x))

where λA(x) satisfies gϕ (mA(x)) + gϕ (nA(x)) = 1 (48)

mB(x) ≜ (c− a)pt + λB(x)− c

ω
, nB(x) ≜ (d− b)pt + λB(x)− d

ω
, hB(x) = gϕ (mB(x))

where λB(x) satisfies gϕ (mB(x)) + gϕ (nB(x)) = 1.

With these definitions, we know that pt+1 = hA(qt), qt+1 = hB(pt) and the monotonicity of pt and qt is
determined by the property of function hA(x) and hB(x). By applying the chain rule to (48), we have:

1
ω

g′
ϕ (mA(x)) (b− a + λ′

A(x)) + 1
ω

g′
ϕ (nA(x)) (d− c + λ′

A(x)) = 0

⇒ λ′
A(x) = −

(b− a)g′
ϕ(mA(x)) + (d− c)g′

ϕ(nA(x))
g′

ϕ(mA(x)) + g′
ϕ(nA(x)) . (49)

Then we have:

h′
A(x) = 1

ω
g′

ϕ (mA(x)) (b− a + λ′
A(x)) (Apply chain rule) (50)

= 1
ω

(b + c− a− d)
g′

ϕ(nA(x))g′
ϕ(mA(x))

g′
ϕ(mA(x)) + g′

ϕ(nA(x)) (Substitute (49) for λ′
A(x)). (51)

Let M = b + c− a− d and M ′ = M
ω , then h′

A(x) = M ′ g′
ϕ(nA(x))g′

ϕ(mA(x))
g′

ϕ
(mA(x))+g′

ϕ
(nA(x)) . From the condition and Lemma

F.1 we know that M ′ < 0 and gϕ(x) is decreasing which means g′
ϕ(x) < 0. Combining these conditions

together, we know h′
A(x) > 0 and hA(x) is increasing which means that pt+1 = hA(qt) is increasing over qt,

which means that qt > qt−1 ⇒ pt+1 > pt and qt > qt−1 ⇒ pt+1 > pt.

Similarly, we can obtain that h′
B(x) = M ′ g′

ϕ(nB(x))g′
ϕ(mB(x))

g′
ϕ

(mB(x))+g′
ϕ

(nB(x)) > 0 which could lead to the result that
pt > pt−1 ⇒ qt+1 > qt and pt < pt−1 ⇒ qt+1 < qt.

Proposition F.2 actually tells us pt+1 = hA(qt) is increasing over qt and qt+1 = hB(pt) is increasing over pt

when M = b + c− a− d < 0. Intuitively, we can find two typical cases for policy iterations with Proposition
F.2. In the first case, if in a certain iteration t the conditions pt > pt−1 and qt > qt−1 are satisfied, then we
know that pt′+1 > pt′ qt′+1 > qt′ ∀t′ ≥ t. As the sequences {pt} and {qt} are both bounded in the interval
[0, 1], we know that {pt} and {qt} will converge to p∗ and q∗ . The property of p∗ and q∗ is determined by
lA(x) ≜ hB(hA(x)) and lB(x) ≜ hA(hB(x)) respectively as pt+2 = hB(hA(pt)) and qt+2 = hA(hB(qt)) and
we have the following corollary.
Corollary F.3. |l′

A(x)| ≤M ′2U2
ϕ, |l′

B(x)| ≤M ′2U2
ϕ, where Uϕ is a constant determined by ϕ(x).

27

Published in Transactions on Machine Learning Research (03/2025)

0 10 20 30 40 50
iterations

5.0

5.2

5.4

5.6

m
ea

n
ep

iso
de

 re
wa

rd
s

Matrix Game Case 2

mean_episode_rewards

0 10 20 30 40 50
iterations

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ilit

y

Matrix Game Case 2

p
q

0 10 20 30 40 50
iterations

4.00

4.25

4.50

4.75

5.00

5.25

m
ea

n
ep

iso
de

 re
wa

rd
s

Matrix Game Case 3

mean_episode_rewards

0 10 20 30 40 50
iterations

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y

Matrix Game Case 3

p
q

Figure 13: Learning curves of the unary formulation in two matrix game cases, where x-axis is iteration
steps. The first and second figures show the performance and the policies p and q in the matrix game case 2
respectively. The third and fourth figures show the performance and the policies p and q in the matrix game
case 3 respectively.

Proof. As g′
ϕ(x) is continuous, let U1

A ≜ maxx∈[0,1] |g′
ϕ(mA(x))|, U2

A ≜ maxx∈[0,1] |g′
ϕ(nA(x))|, U1

B ≜

maxx∈[0,1] |g′
ϕ(mB(x))| and U2

B ≜ maxx∈[0,1] |g′
ϕ(nB(x))|. Moreover, let Uϕ = max{U1

A, U2
A, U1

B , U2
B}, then

apply the chain rule to l′
A(x) and we have

|l′
A(x)| = |h′

B(hA(x))h′
A(x)|

= M ′2 |g
′
ϕ(nB(hA(x)))||g′

ϕ(mB(hA(x)))|
|g′

ϕ(mB(hA(x)))|+ |g′
ϕ(nB(hA(x)))|

|g′
ϕ(nA(x))||g′

ϕ(mA(x))|
|g′

ϕ(mA(x))|+ |g′
ϕ(nA(x))| (52)

= M ′2 |g
′
ϕ(nB(y))||g′

ϕ(mB(y))|
|g′

ϕ(mB(y))|+ |g′
ϕ(nB(y))|

|g′
ϕ(nA(x))||g′

ϕ(mA(x))|
|g′

ϕ(mA(x))|+ |g′
ϕ(nA(x))| (Let y = hA(x) ∈ [0, 1])

≤M ′2 |g
′
ϕ(mB(y))|+ |g′

ϕ(nB(y))|
2

|g′
ϕ(mA(x))|+ |g′

ϕ(nA(x))|
2 (53)

≤M ′2U2
ϕ (54)

where (52) is from Proposition F.2, (53) is from the AM-GM inequality ab ≤ (a+b)2

2 , and (54) is from the
definition of Uϕ. Similarly, we can obtain |l′

B(x)| ≤M ′2U2
ϕ.

Combining Corollary F.3 and Banach fixed-point theorem, we can find that as Uϕ is a constant, if |M ′| < 1
Uϕ

,
then we can find a constant L such that |l′

A(x)| ≤ M ′2U2
ϕ ≤ L < 1, which means that the iteration

pt+1 = lA(pt) is a contraction and p∗ is the unique fixed-point of lA. This conclusion can be seen as that
a smaller |M ′| corresponds to a larger probability of convergence. In this convergence case, the converged
policies p∗ and q∗ are usually not the optimal policy as the optimal policy is deterministic, which can be seen
in our empirical results.

In the second case, which may be more general, in iteration t, (pt − pt−1)(qt − qt−1) < 0, which means
pt > pt−1 and qt < qt−1 or pt < pt−1 and qt > qt−1. Without loss of generality, we assume pt > pt−1 and
qt < qt−1, then we know pt+1 < pt and qt+1 < qt from Proposition F.2. By induction we can find that for any
t′ ≥ t, the sequence {pt′} and {qt′} will increase and decrease alternatively, which means that the policies
may not converge but oscillate. We will show this in our experiments. As the unary formulation may result
in policy oscillation, we would like to find other formulations for fully decentralized MARL.

F.3 Verification for Unary Formulation

In this section, we choose ϕ(x) = − log x corresponding to the entropy regularization as the representation
for the unary formulation. We build two cases to show the convergence to the sub-optimal policy and the
policy oscillation. We choose a = 5, b = 6, c = 3, d = 5 as case 2 and a = 7, b = 5, c = 4, d = 6 as case 3. Both
two cases satisfy the condition b + c < a + d as discussed above. We keep ω = 0.1 for all the experiments on
these two matrix games. The empirical results are illustrated in Figure 13. We can find the policies p and q
improve monotonically to the convergence (p∗, q∗) ≈ (0.773, 0.227) in case 2, which is a sub-optimal joint
policy. However, in case 3, the policies p and q oscillate between 0 and 1 and do not converge. These results
verify our discussion about the limitation of the unary formulation.

28

Published in Transactions on Machine Learning Research (03/2025)

0 5 10 15
iterations

2

3

4

5

re
wa

rd
s

Matrix Game Case 4

theory_return

0 5 10 15
iterations

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ilit

y

Matrix Game Case 4

p
q

Figure 14: Learning curves of the iteration (13) in the matrix game (a, b, c, d) = (−4, 7, 6, 4), where x-axis is
iteration steps. The first and second figures show the expectation J(πt) and the policies p and q in the matrix
game case 4 respectively, where J(πt) is calculated by the joint policy πt = (pt, qt) and the payoff matrix.

F.4 Non-Trivial Solution to Iteration (13)

In this section, we will build a two-player matrix game like Table 1 to show the non-trivial solution to iteration
(13). In general, there is no closed-form solution to iteration (13). However, for the matrix game case, we can
show some properties of iteration (13). With the same definitions as previous discussions, we can rewrite (13)
in the matrix game as follows:

pt+1 = arg max
p∈[0,1]

pQA
t (0) + (1− p)QA

t (1)− ω|p− pt|. (55)

Let f(p) = pQA
t (0) + (1− p)QA

t (1)− ω|p− pt|, then pt+1 = arg maxp∈[0,1] f(p).

We know that f(p) is a linear function of p in both intervals [0, pt] and [pt, 1] and the maximums of linear
function are always achieved in the endpoints of one interval. Thus, we have pt+1 = arg maxp∈{0,pt,1} f(p),
which means we only need to consider

f(0) = QA
t (1)− ωpt

f(1) = QA
t (0)− ω(1− pt)

f(pt) = QA
t (1) + pt(QA

t (0)−QA
t (1)).

Next, we can build a matrix game with the property b = max{a, b, c, d} > c > d > 0 > a. In this case,
M = 2∥Q∥∞ = 2b and ω = (N−1)M

N = b. Then we consider the condition f(0) > f(pt). We have

f(0)− f(pt) = −pt

(
QA

t (0)−QA
t (1) + ω

)
= −pt (2b− d− (b + c− a− d)qt)

⇒ f(0) > f(pt) ⇔ qt >
2b− d

b + c− a− d
≜ q̃.

We need q̃ < 1 to ensure a feasible qt can be found, which means b < c− a.

Thus, for a matrix game satisfying the condition c − a > b = max{a, b, c, d} > c > d > 0 > a, we can
find a non-trivial solution to (13). To empirically verify this conclusion, we choose a matrix game with
(a, b, c, d) = (−4, 7, 6, 4) where q̃ = 10

13 ≈ 0.769.... For simplicity, we call this matrix game as matrix game case
4. We also choose (p0, q0) = (0.55, 0.8) to ensure the condition qt > q̃. The empirical results are illustrated in
Figure 14. We can find the non-trivial update for the joint policy which verifies our conclusion discussed
before.

F.5 Discussions about using global state s in theoretical results.

Using the global state s for theoretical analysis has been a common practice in the study of multi-agent
reinforcement learning, especially in the setting of decentralized learning. There are many previous works
containing theoretical results in decentralized learning, which include both cooperative settings (Jiang &
Lu, 2022) and non-cooperative settings (Arslan & Yüksel, 2016; Mao et al., 2022a; Zhang et al., 2024). The

29

Published in Transactions on Machine Learning Research (03/2025)

main reason for this common practice is the difficulty in solving a POMDP, which has been studied for
decades in Papadimitriou & Tsitsiklis (1987); Mundhenk et al. (2000); Vlassis et al. (2012). Additionally,
the theoretical analysis of Dec-POMDP will be even more difficult in the multi-agent setting. If we include
partial observability in the analysis, we may not obtain anything since the problem may be undecidable in
Dec-POMDP (Madani et al., 1999).

30

	Introduction
	Related Work
	Preliminaries
	A General Formulation for Independent Policy Optimization
	f-Divergence Policy Optimization
	Total Variation Policy Optimization
	The Practical Algorithm of TVPO

	Experiments
	Verification in Matrix Game
	Comparing TVPO with DPO
	Evaluation of TVPO
	Ablation Study

	Conclusion and Limitations
	Proofs
	Proof of Lemma 4.2
	Proof of Proposition 4.3
	Proof of Corollary 4.4
	Proof of Lemma 4.6
	Proof of Proposition 4.7
	Proof of Theorem 4.8
	Proof of DTV(pq) DH(pq)

	Experimental Settings
	MPE
	Multi-Agent MuJoCo
	StarCraft2

	Algorithm
	Training Details
	Additional Empirical Results
	Discussion
	A Brief introduction of baseline algorithms
	Unary Formulation
	Verification for Unary Formulation
	Non-Trivial Solution to Iteration (13)
	Discussions about using global state s in theoretical results.

