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ABSTRACT

Despite the sustained popularity of Q-learning as a practical tool for policy deter-
mination, a majority of relevant theoretical literature deals with either constant
(ηt ≡ η) or polynomially decaying (ηt = ηt−α) learning schedules. However, it
is well known that these choices suffer from either persistent bias or prohibitively
slow convergence. In contrast, the recently proposed linear decay to zero (LD2Z:
ηt,n = η(1 − t/n)) schedule has shown appreciable empirical performance, but
its theoretical and statistical properties remain largely unexplored, especially in
the Q-learning setting. We address this gap in the literature by first considering a
general class of power-law decay to zero (PD2Z-ν: ηt,n = η(1− t/n)ν). Proceed-
ing step-by-step, we present a sharp non-asymptotic error bound for Q-learning
with PD2Z-ν schedule, which then is used to derive a central limit theory for a
new tail Polyak-Ruppert averaging estimator. Finally, we also provide a novel
time-uniform Gaussian approximation (also known as strong invariance principle)
for the partial sum process of Q-learning iterates, which facilitates bootstrap-based
inference. All our theoretical results are complemented by extensive numerical
experiments. Beyond being new theoretical and statistical contributions to the
Q-learning literature, our results definitively establish that LD2Z and in general
PD2Z-ν achieve a best-of-both-worlds property: they inherit the rapid decay from
initialization (characteristic of constant step-sizes) while retaining the asymptotic
convergence guarantees (characteristic of polynomially decaying schedules). This
dual advantage explains the empirical success of LD2Z while providing practical
guidelines for inference through our results.

1 INTRODUCTION

With the advent of generative AI models and its continuing ascent towards ubiquity, the use of
reinforcement learning (RL) to train multiple agents to undertake complex sequential decisions
seamlessly, has occupied a central role in modern learning theory. In that regard, Q-learning (Watkins
et al., 1989; Watkins & Dayan, 1992; Sutton & Barto, 2018; Chi et al., 2025), represents a classical,
yet practically relevant model-free approach to estimate the optimal policy of a Markov decision
process (MDP). Research on the statistical properties of the Q-learning algorithm has been extensive;
in particular, treatment of asymptotic and non-asymptotic error bounds have ranged from techniques
particular to synchronous Q-learning (Jaakkola et al., 1993; Tsitsiklis, 1994; Szepesvári, 1997; Shi
et al., 2022), to the more modern lens of stochastic approximation (SA) algorithms (Chen et al., 2020b;
Qu & Wierman, 2020; Chen et al., 2021). Specifically, these latter works cast the Q-learning algorithm
as an SA targeting the Bellman equation, and thereby, more general tools can be employed to derive
finer theoretical results on these algorithms. This direction also has been, arguably, adequately
explored with central limit theory, and functional central-limit-theorems, appearing in (Xie & Zhang,
2022; Li et al., 2023b;a; Panda et al., 2024). A special case of Q-learning with a singleton action
space, is the Temporal-difference (TD) learning, for which Berry-Esseen theorems and subsequent
Gaussian approximations and bootstrap strategies have been discussed (Wu et al., 2024b; 2025;
Samsonov et al., 2025).

A very important, but often ignored aspect in these theoretical studies is the choice of step-sizes or
learning rates. Indeed, it has become widely common in statistical inference literature to analyze
either the constant learning rates or the polynomially decaying learning rate. Such choices are not
without their own advantages; the constant learning rate enjoys experimental evidence of a much
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faster convergence, however a proof similar to (Li et al.) shows that the Q-learning with constant
learning rate will converge to a stationary distribution around the optimal Q⋆; in other words, the
asymptotic bias is non-negligible, and requires further jackknifing to ensure convergence. On the other
hand, the polynomially decaying learning rate is theoretically attractive; the aforementioned results
establishing Gaussian approximations and other inferential results extensively use a polynomially
decaying learning rate. This choice has been guided by theory of stochastic gradient descent at least
since (Ruppert, 1988; Polyak & Juditsky, 1992), however its theoretical optimality often masks its
excruciatingly slow convergence, as also observed by (Zhang & Xie, 2024). These criticisms have
been echoed by the broad stochastic optimization community, leading to a recent proposal of linearly
decaying to zero (LD2Z) learning rate ηt,n = η(1− t/n) (Devlin et al., 2019; Touvron et al., 2023).
Despite a requirement of pre-specified number of schedules, this step-size choice achieves a balance
between the rapid initial dissipation of initialization effects provided by a constant learning rate and
the asymptotic convergence guarantees of a polynomially decaying learning rate. In this article,
we establish a number of sharp asymptotic results for the Q-learning algorithm with this particular
learning rate schedule. To the best of our knowledge, our results are the first-of-its-kind theory using
this step-size for Q-learning; the theoretical results and subsequent numerical exercise definitively
showcases the effectiveness and superiority of this learning rate over the ones usually employed in
theoretical analyses.

1.1 MAIN CONTRIBUTIONS

The paper develops a comprehensive theoretical framework for Q-learning with power-law decay to
zero (PD2Z-ν) learning schedules. Our results advance the theoretical understanding of Q-learning
and offer new insights into its statistical properties and practical performance. The main contributions
are summarized below:

• Non-asymptotic concentration inequality. Under standard regularity conditions, we derive
explicit non-asymptotic bounds on the p-th moments of the Q-learning iterates for any fixed
p ≥ 2. In particular, our L2 bounds can be summarized as follows.
Theorem 1.1 (Theorem 3.1, Informal). If Qn denotes the final Q-learning iterate with the
PD2Z-ν step-size, then it follows that

∥Qn −Q⋆∥2 ≲ exp(−cn)|Q0 −Q⋆|+ n− ν
2(ν+1) ,

where Q⋆ is the long term reward corresponding to the optimal policy π⋆.

These bounds serve as fundamental tools underpinning the empirical success of Q-learning
with PD2Z-ν schedules compared to their polynomially decaying counterparts (Section 3.1).
In particular, the exponential decay from the initialization is empirically observed in Figure
1, further validating our theory.

• Distribution theory. We propose a novel averaging scheme that aggregates a batch of the
most recent Q-learning iterates, referred to as the tail Polyak-Ruppert averaging estimator,
and establish its asymptotic normality (Section 3.2). This is, to the best of our knowledge, a
novel contribution in stochastic approximation literature. For the PD2Z-ν learning schedules,
our simulation (in §9.1) also establishes the superiority of tail PR averaged estimator over
the usual PR averaged ones.

• Strong invariance principle. We establish strong invariance principles with covariance
matching for the partial sum processes of Q-learning with both PD2Z-ν and polynomially
decaying learning schedules. This is accomplished via a novel construction of the coupling
Gaussian process, enabling a more refined probabilistic analysis of the stochastic dynamics
(Section 4).

1.2 RELATED LITERATURE

Linearly decaying-to-zero (LD2Z) learning-rate schedules have recently gained substantial traction
in applications characterized by highly non-smooth or complex optimization landscapes, including
state-space models (Touvron et al., 2023), large language models (Devlin et al., 2019; Liu et al.,
2019; Bergsma et al., 2025), and vision transformers (Wu et al., 2024a). A number of studies further
advocate for the so-called “knee schedule” (Howard & Ruder, 2018; Hoffmann et al., 2022; Iyer
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et al., 2023; Defazio et al., 2023; Hägele et al., 2024; Bergsma et al., 2025), which employs an initial
large learning rate (a “warm start”) followed by a LD2Z phase. Despite their empirical popularity,
the asymptotic properties of LD2Z schedules remain poorly understood—even in relatively simple
convex problems. To the best of our knowledge, Goldreich et al. (2025) provides the first theoretical
analysis of LD2Z schedules in strongly convex stochastic gradient descent; but their results are not
directly applicable to Q-learning, and they only establish an L2 control of the terminal iterates Qn,n.
This gap in theory presents a significant obstacle to principled statistical inference and uncertainty
quantification, motivating the need for a more systematic analysis.

Figure 1: Comparison between polynomially decaying, LD2Z and Constant step-sizes

1.3 NOTATION

In this paper, we denote the set {1, . . . , n} by [n]. The d-dimensional Euclidean space is Rd, with
Rd

>0 the positive orthant. For a vector a ∈ Rd, |a| denotes its Euclidean norm. The set of m× n real
matrices is denoted by Rm×n, and correspondingly, for M ∈ Rm×n, |M |F denotes its Frobenius
norm. For a random vector X ∈ Rd, we denote ∥X∥ :=

√
E[|X|2]. We also denote in-probability

convergence, and stochastic boundedness by oP and OP respectively. The weak convergence is
denoted by w→. We write an ≲ bn if an ≤ Cbn for some constant C > 0, and an ≍ bn if
C1bn ≤ an ≤ C2bn for some constants C1, C2 > 0.

2 PRELIMINARIES OF Q-LEARNING

Subsequently, we consider a discounted, infinite horizon Markov Decision Process (MDP) M =
(S,A, γ,P, R). Here S = {1, . . . , S} is the finite state space, A is the finite action space, and γ ∈
(0, 1) is the discount factor. For simplicity, we define D = |S × A|. We use P : S × A → ∆(S)
to represent the probability transition kernel with P(s′|s, a) the probability of transiting to s′ from
a given state-action pair (s, a) ∈ S × A. Let R : S × A → [0,∞) stand for the random reward,
i.e., R(s, a) is the immediate reward collected in state s ∈ S when action a ∈ A is taken. We
represent the distribution P(s′|s, a) using quantile transformation: there exists a measurable function
N(s, a, U), where U ∼ Uniform(0, 1), such that

P(N(s, a, U) = s′) = P(s′|s, a) for all s, s′ ∈ S and a ∈ A.

Similarly, we can write the reward function as R(s, a,U), where U ∼ Uniform(0, 1). Let π be a
policy, meaning that for each s ∈ S, π(·|s) is a probability distribution over actions a ∈ A. Define
the expected long-term reward

Qπ(s, a) = Eπ

{ ∞∑
i=0

γiR (st, at,Ut) | s0 = s, a0 = a

}
.

Let Q∗ = (Q∗
sa)(s,a)∈S×A where Q∗

sa = maxπ Q
π(s, a) is the maximizer.

To estimate Q∗, the Q-function vector Qt ∈ RD is updated by (e.g., Watkins & Dayan (1992))

Qt,n = (1− ηt,n)Qt−1,n + ηt,nB̂tQt−1,n, Q0,n = Q0, (2.1)
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where B̂t is the empirical Bellman operator given by

(B̂tQ)(s, a) = R(s, a, Vt,n) + γmax
a′∈A

Q(N(s, a, Ut), a
′), Q ∈ RD. (2.2)

Here Ut,Ut, t ∈ Z, are i.i.d. Uniform(0, 1) random variables. With a slight abuse of notations, define
the matrix P ∈ RD×|S| with rows P(s,a),· = (P(s′|s, a))⊤s′∈S . If Ππ ∈ RS×D is a projection matrix
associated with a given policy π:

Ππ = diag
{
π(·|1)⊤, · · · , π(·|S)⊤

}
,

then we define the Markov transition kernel Hπ = PΠπ ∈ RD×D.

3 Q-LEARNING DYNAMICS WITH LD2Z SCHEDULE AND BEYOND

Before introducing our key results on Q-learning with the LD2Z schedule and its generalization, it is
crucial to state the regularity conditions that guarantee the validity of the theoretical excursion. In
particular, we require the following assumptions.

Assumption 3.1. It holds that E|R(s, a)|p < ∞ for all (s, a) ∈ S ×A, for some p ≥ 2.

Assumption 3.2. There exist π∗ ∈ Π∗ and a positive constant L < ∞ such that for any function
estimator Q ∈ RD, we have

|(HπQ −Hπ∗
)(Q−Q∗)|∞ ≤ L|Q−Q∗|2∞,

where πQ(s) := argmaxa∈A Q(s, a) is the greedy policy w.r.t. Q.

Assumption 3.1 establishes a uniform control over the p-th moment of the reward function. In contrast,
often the statistical literature on this topic imposes a severely restrictive condition of a bounded reward,
usually constrained in the interval [0, 1] or [−1, 1] (Li et al., 2021; Shi et al., 2022; Panda et al., 2024;
Li et al., 2024; Zhang & Xie, 2024; Chen, 2025). We also remark that Assumption 3.1 is objectively
weaker than the corresponding bounded fourth moment assumption in Li et al. (2023b). On the
other hand, conditions of the type of Assumption 3.2 were first introduced in Puterman & Brumelle
(1979), and have since been employed in Q-learning literature (Li et al., 2023b; Xia et al., 2024) as a
means to establish a local attraction basin around the optimal policy π⋆. The corresponding versions
of Assumptions 3.1-3.2 is pervasive in non-asymptotic analysis of SA algorithms (Ruppert, 1988;
Polyak & Juditsky, 1992; Borkar, 2023; Bottou et al., 2018; Chen et al., 2020a; Zhu et al., 2023; Wei
et al., 2023).

3.1 NON-ASYMPTOTIC ERROR BOUND

Before establishing inferential results involving LD2Z schedules, it is crucial to ascertain their non-
asymptotic convergence properties. On the other hand, it is conceivable to broaden our view to the
class of learning schedules ηt,n = η(1 − t/n)ν , ν > 0, of which LD2Z is but a special case with
ν = 1. This perspective raises another pertinent question; due to the lack of previous theoretical
justifications, it is somewhat unclear as to why the linear decay-to-zero is less effective, in any sense,
compared to some iteration-dependent choice of ν. We address both the questions through our first
result. For brevity, we subsequently refer to the schedule ηt,n = η(1− t/n)ν as the Power-law decay
to zero (abbreviated as PD2Z-ν).

Let the Bellman noise be given by

Zt(s, a) = B̂t(Q
∗)(s, a)−B(Q∗)(s, a), (3.1)

which, via (2.2) immediately implies that Zt are i.i.d. D-dimensional random vectors. Our first
theorem is presented below.

Theorem 3.1. Consider the Q-learning iterates in (2.1). Suppose for some p ≥ 2, the Bellman
noise satisfies Θp := E[|Zt|p] < ∞. Then, with the PD2Z-ν learning schedule with η > 0, ν ≥ 1/p
satisfying

η <
2(1− γ)

(1− γ)2 + 2(p− 1)γ2
,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

it holds that

∥Qt,n −Q⋆∥p ≤ exp
(
− c3ηt(1− n−1)ν

)
|Q0 −Q⋆|

+ 2(p− 1)Θ2/p
p


√
C1(c3, ν, 2)

√
ηt,n, t ≤ n− 2

(c3η)
1

ν+1
n

ν
ν+1 ,√

C2(c3, ν, 2)n
− ν

2(ν+1) , t > n− 2

(c3η)
1

ν+1
n

ν
ν+1 ,

(3.2)

where c3 = ηc1−η2c2
2η with c1 = 2(1− γ), c2 = (1− γ)2 + 2(p− 1)γ2, and C1(c, ν, p), C2(c, ν, p)

are positive constants given by

C1(c, ν, p) :=
2ν(p+1)(1 + 2−pΓ(νp+ 1))

c
, and,

C2(c, ν, p) := ηp4νp exp(
2ν+1

ν + 1
)(ν + 1)(p−1) ν

ν+1 (cη)−
νp+1
ν+1 Γ(

νp+ 1

ν + 1
).

Theorem 3.1 is proved in Appendix §7. The non-asymptotic bound in (3.2) is convenient since it
covers a general class of learning schedules with an explicitly quantified bound. Crucial is also the
two distinct regimes with two different rates. We pause for a moment to parse the bound carefully.
In the transient regime with t ≤ n− Cη,νn

ν
ν+1 , the L2 error decays with ηt,n. In particular, for any

choice of ν > 0, ηt,n ≍ 1 as long as t ≤ nc for any fixed constant c ∈ (0, 1). Therefore, in the early
regime, the class of PD2Z-ν learning schedules behave like a constant learning rate while decaying
polynomially. The corresponding L2 error displays a diminishing bias, but this constant learning
rate is a crucial key to its much faster convergence, pushing it towards its convergence regime where
t > n− Cη,νn

ν
ν+1 . In this regime the Q-learning chain has converged with an error-rate n− ν

2(ν+1) ,

enabling an early stopping at any steps in [n− Cη,νn
ν

ν+1 , n].

The afore-mentioned fast decay followed by a stabilization in the latter phase, is exemplified empiri-
cally in Figure 1. For a more detailed insight into this early phase decay, it is instrumental to specify
one immediate corollary to Theorem 3.1.
Corollary 3.2. Under the assumptions of Theorem 3.1, it follows that for all t ∈ [n],

∥Qt,n −Q⋆∥p ≤ exp
(
− c3η(1− n−1)νt

)
|Q0 −Q⋆|+Oc3,ν(

√
ηt,n ∨ n− ν

2(ν+1) ),

where Oc3,ν hides constants pertaining to c3 and ν. We note that at t = n, the right hand side is
minimized at ν ≍ log2 log n.

Corollary 3.2 has some interesting connotations, which we will discuss in successive remarks.
To initiate our first discussion, it is illuminating to recall the following well-known result for the
often-used polynomially decaying learning schedules.
Theorem 3.3 (Chen et al. (2020b), Corollary 4.1.2; Li et al. (2023b), Theorem E.1). Consider the
Q-learning iterates in (2.1) with the polynomially decaying step-size ηt ≍ t−α, α ∈ (1/2, 1). Then,
it follows that for all t ∈ [n],

∥Qt −Q⋆∥p ≲ exp(−ct1−α)|Q0 −Q⋆|+O(t−α/2).

In light of Theorem 3.3, Corollary 3.2 sheds more light on the faster decay of the LD2Z and in general
PD2Z-ν schedules in the transient phase.
Remark 3.1. Assume ν > 0 is fixed. Note that, in particular, when t = n, i.e. at the final iterate,
Q-learning with PD2Z-ν schedule instructs that

∥Qn,n −Q⋆∥p ≲ exp(−4−1n)|Q0 −Q⋆|+ n−1/4.

The dominating decay rate in the convergence phase (the second term in the rates on the right) is
similar in both PD2Z-ν and polynomial decay schedules (n− ν

2(ν+1) versus n−α/2); however, the
effect of initial point is much less pronounced in the former, with an exponential rate exp(−ct) of
forgetting the initialization for all t ∈ [n]. This explains the fast initial convergence of this linearly
decaying rate to a neighborhood of Q⋆, as also seen in Figure 1. In contrast, the polynomial step-size
only achieves a forgetfulness of exp(−ct1−α). This explains the competitive advantage of linearly
decaying rate over its polynomial counterpart- an advantage that has also been recently studied in
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the empirical literature (Defazio et al., 2023; Bergsma et al., 2025). To the best of our knowledge,
this is the first such theoretical exposition highlighting the benefits of linear decay rate LD2Z and its
generalization in the context of Q-learning, while building on the previous works of Goldreich et al.
(2025) in the more general context of Stochastic Approximation algorithms.

Next, we explore another interesting assertion from Corollary 3.2 regarding the optimal choice of ν
in the class of PD2Z-ν learning schedules.
Remark 3.2. The optimal ν balances the fact that C2(c3, ν, 2) increases with ν, while n− ν

2(ν+1)

decreases with ν for large n ∈ N. This trade-off yields the threshold ν ≍ log2 log n, which grows
extremely slowly with n, justifying fixed, iteration-independent choices of ν in practice. This aligns
with the empirical success of ν = 1, motivating deeper statistical study under the assumption of
constant ν. In particular, to round off our discussion on choices of ν, we state a clean result on
Q-learning dynamics with LD2Z schedule.
Corollary 3.4. Under the assumptions of Theorem 3.1, for the LD2Z learning schedule it follows
that for t ∈ [n],

∥Qt,n −Q⋆∥p ≤ exp
(
− c3η2

−1t
)
|Q0 −Q⋆|+

{
O(

√
ηt,n), t ≤ n− 2√

cη

√
n

O(n−1/4), t > n− 2√
cη

√
n,

(3.3)

where O(·) hides constants depending on γ and η.

Subsequently, we assume that ν is fixed, and move towards sharper asymptotic result beyond L2

control.

3.2 TAIL POLYAK-RUPPERT AVERAGES AND CENTRAL LIMIT THEORY

As a means of variance reduction and faster convergence, Polyak-Ruppert averaging (Ruppert, 1988;
Polyak & Juditsky, 1992) has a relatively long history of application in policy evaluation (Bhandari
et al., 2018; Khamaru et al., 2021), Q-learning (Li et al., 2023a;b; 2024) and Temporal Difference
(TD) learning (Mou et al., 2020; Samsonov et al., 2024; 2025). However, our L2 error-bounds reveal
a crucial insight into whether usual Polyak-Ruppert averaging would ensure asymptotic normality
with these LD2Z and PD2Z-ν schedules. Consider ν = 1. Write

n−1
n∑

t=1

Qt,n =
1

2

∑n/2
t=1 Qt,n

n/2
+

1

2

∑n−
√
n

t=n/2 Qt,n

n/2
+

1

2

∑n
t=n−

√
n Qt,n

n/2
:= An +Bn + Cn. (3.4)

Observe that as long as t ≤ n/2, it holds ηt,n ≥ η
2ν . Therefore, based on the intuition from stochastic

approximation literature with constant step-size, we do not expect An to even converge to Q⋆, let
alone achieve asymptotic Gaussianity. It is not yet clear if Cn may achieve Gaussianity individually;
at the very least, its Lp convergence to Q⋆ is guaranteed through an argument similar to Theorem
3.1. Therefore, unless one shows that the asymptotic distribution of Bn exactly cancels that of An,
it is conceivable that the error of n−1

∑n
t=1 Qt,n is in effect, much larger compared to Q⋆. This

theoretical insight can also be empirically validated (Figure 4). Therefore, it is arguably more prudent
to investigate the inferential properties of the term Cn, which we refer to as Tail Polyak-Ruppert
Averages.
Theorem 3.5. For any constant c > 0 and ν ≥ 1/p with p ≥ 2 is same as in Assumption 3.1, let

Q̄n =
1

⌊cn
ν

ν+1 ⌋

n∑
t=n−⌊cn

ν
ν+1 ⌋+1

Qt,n.

Grant Assumptions 3.1 and 3.2 for the MDP. Further assume that Q0,Q
⋆ ∈ K where K is a compact

set. Then with the PD2Z-ν learning rate for (2.1) with,

0 < η <
2(1− γ)

(1− γ)2 + 2(p− 1)γ2
,

there exists a positive definite matrix Σ ⪰ 0 independent of n, such that

n
ν

2(ν+1) (Q̄n −Q⋆)
w→ N(0,Σ). (3.5)

Theorem 3.5 is proved in Appendix §7. We remark that an exact expression for Σ is highly intractable,
nullifying any direct approach to estimate Σ. In §4 we indicate a direct bootstrap-based approach to
perform valid inference.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

4 STRONG INVARIANCE PRINCIPLE

Moving beyond the asymptotic normality of the Q-iterates, the primary goal of this section is
to further deepen the understanding of their stochastic dynamics and to better characterize the
asymptotic distributional approximation of the associated partial sum process by deriving a powerful
probabilistic tool known as the strong invariance principle. Due to space constraints, we include a
broad discussion on the relevant literature in §8. Due to the non-stationary nature of the sequence
(Qt,n)t≥1, its stochastic dynamics cannot be well captured by the standard Brownian process.
Motivated by Bonnerjee et al. (2024), we instead propose approximating the partial sum process
of (Qt,n) by that of a non-stationary Gaussian process specifically designed for matching the
covariance structure. Specifically, let ℵ1, . . . ,ℵn ∈ RD be i.i.d. centered Gaussian random vectors
with covariance matrix Cov(ℵt) = Cov(Zt). Then, in light of (2.1) and the linear approximation
in (7.18), we define the Gaussian process (Yt)t≥1 via Y0 = 0 and

Yt = (I − ηt,nG)Yt−1 + ηt,nℵt, t ≥ 1, (4.1)

where G = I − γHπ⋆ ∈ RD×D. Throughout this section, we focus on the LD2Z schedule.
Theorem 4.1. Grant Assumptions 3.1 and 3.2 for the MDP. Consider the learning rate PD2Z-ν
learning rate and grant the assumptions of Theorem 3.5. Then, for all sufficiently large n, there exists
a probability space on which one can define random vectors Qc

1, . . . ,Q
c
n such that (Qc

t,n)
n
t=1

D
=

(Qt,n)
n
t=1 and

max
kn≤t≤n

∣∣∣∣∣
n∑
l=t

(Qc
l −Q⋆ − Yl)

∣∣∣∣∣
∞

= oP(n
1/p),

where kn = n− ⌊cn
ν

ν+1 ⌋+ 1, and c > 0, ν > 1/p are constants.

Remark 4.1. Theorem 4.1 provides the first strong Gaussian approximation for the partial sum
process of Q-iterates with PD2Z-ν schedule. In the context of Q-learning, only functional central
limit theorem is established Li et al. (2023b) for the polynomially decaying step sizes. A similar
time-uniform approximation can also be established for the polynomially decaying learning schedule,
which may be of independent interest.
Theorem 4.2. Grant Assumptions 3.1 and 3.2 for the MDP. Consider the learning rate η̃t = ηt−β

in (2.1) for η > 0, β ∈ (1 − 1/p, 1), where p is same as in Assumption 3.1. Then, there exists

(ℵt)
n
t=1

i.i.d.∼ N(0,Γ) such that, with

Ỹt = (I − η̃tG)Ỹt−1 + η̃tℵt, Y0 = 0, t ≥ 1, G = I − γHπ⋆ , (4.2)

it holds that,

max
1≤t≤n

∣∣∣∣∣
t∑

l=1

(Ql −Q⋆ − Ỹl)

∣∣∣∣∣
∞

= oP(n
1/p).

The key difference between the results of Theorems 4.1 and 4.2 is in the way partial sums are
uniformly approximated. It is well-known that the polynomially decaying step-sizes offer attractive
asymptotic properties; the optimality of Theorem 4.2, despite being new in the literature, is therefore
not surprising. The strong approximation result is also classical in its expression, strongly echoing
results such as Komlós et al. (1976). In fact, it can be argued that the approximation in Theorem 4.2 is
much sharper than a functional CLT approximation Li et al. (2023b). As a toy example, consider the
vanilla SGD setting, and suppose K = 1. Suppose F (θ) = (θ − µ)2/2, and ∇f(θ, ξ) := θ − µ+ ξ.
In this setting, the Gaussian approximation analogous to (4.2) is

Y G
t,n = (I − ηt,nA)Y G

t−1,n + ηt,nZt, Zt ∼ N(0,Var(ξ)), Y G
0,n = 0. (4.3)

Here A = ∇2F (µ) = I . On the other hand, the vanilla SGD iterates can also be seen as Yt,n − µ =
(I − ηt,nA)(Yt−1,n − µ) + ηt,nξt. Therefore, it can be seen that Yt,n − µ and Y G

t,n have exactly
the same covariance structure, i.e. Cov(Y G

s,n, Y
G
t,n) = Cov(Ys,n, Yt,n); on the other hand, even in

such a simplified setting, an approximation by Brownian motion, such as that by functional CLT,
captures the covariance structure of the iterates {Yt − µ}t≥1 only in an asymptotic sense. The
Gaussian approximation Y G

t in (4.3) is a particular example of covariance-matching approximations,
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introduced by Bonnerjee et al. (2024)- but generalized to account for the particular non-stationarity
imposed by Q-learning iterates.

On the other hand, a strong approximation result for PD2Z-ν schedule works on the tail partial sums,
much akin to the tail PR-averaged central limit theory. Moreover, the range of the approximation
is also limited between kn and n, which may mean n− ⌊

√
n⌋ to n for the particular case of LD2Z

schedule. Noticeably, despite the much faster decay from the initialization, for larger values of
ν, PD2Z-ν can also maintain a time-uniform strong approximation for almost the entire range of
its steps. Moreover, in polynomially decaying step-sizes, in aiming for the optimality of strong
invariance principles, the choice of β ≈ 1 implies that the decay of Qt from the initialization Q0 is
O(1); i.e. there is practically or very slow decay, which results in extremely slow convergence to the
asymptotic regime. In contrast, even when uniform Gaussian approximation is assured, the inherent
properties of the PD2Z-ν schedules do not affect convergence. Finally, no functional central limit
theory is even known for these learning schedules.

Finally, we remark that as an immediate result of Theorem 4.1, for p > 2,

sup
z≥0

∣∣∣∣∣P
(

max
kn≤t≤n

∣∣∣∣∣
n∑
l=t

(Qc
l −Q⋆)

∣∣∣∣∣
∞

≤ z

)
− P

(
max

kn≤t≤n

∣∣∣∣∣
n∑
l=t

Yl

∣∣∣∣∣
∞

≤ z

)∣∣∣∣∣→ 0. (4.4)

Beyond theoretical interest, (4.4) hints at practical, bootstrap-based algorithms for time-uniform
inference. In particular, the estimation of covariance matrix of Q̄n, especially for the PD2Z-ν learning
schedule, may be significantly non-trivial. However, estimation of Γ and Hπ⋆

can be essentially
done using (2.2) and the fact that BQ⋆ = Q⋆. This hints at an easily implementable Gaussian
bootstrap procedure by running multiple independent chains of Yt parallelly. Similar inferential
procedures have been proposed in a time-series context in Wu & Zhao (2007), and also more recently
in Bonnerjee et al. (2025) in a local SGD setting.

5 SIMULATION RESULTS

In this section, we present some numerical experiments that empirically explore our theoretical
results. In §5.2, we compare the performance of LD2Z schedule with the polynomially decaying and
the constant learning rates, as well as the PD2Z-ν learning rates with ν = 2, 3. Moving on, In §5.3
we investigate the accuracy of our time-uniform approximations. We also provide some additional
simulation studies involving the central limit theorem in Appendix §9.1.

5.1 SET-UP

For each of the experiments, we consider a 4× 4 gridworld with the slippery mechanism in Frozen-
Lake (Zhang & Xie, 2024), and four actions (left/up/right/down). The discount factor is taken as
γ = 0.1. There are two special states, A and B, from which the agent can only intend to move to A′

and B′, respectively. Once an action is chosen according to the behavior policy, the agent moves in
the intended direction with probability 0.9, and with probability 0.05 each, it instead moves in one
of the two perpendicular directions. If the agent attempts to move outside the grid, it remains in the
same state and receives a reward of −1. Otherwise, the reward depends on the current state, with
r(A) = 10, r(B) = 5, and r(s) = 0 for all s ̸= A,B.

5.2 COMPARATIVE PERFORMANCE BETWEEN LEARNING RATES.

In these experiments, we consider Q-learning with initialization at 0; since it’s clearly evident in
Figure 1 that LD2Z massively outperforms the polynomially decaying step size, we focus on LD2Z
PD2Z-ν and constant learning schedules. For the experiments in Figure 2 (Left), we fix n = 5000,
and run B = 1000 many Monte-Carlo Q-learning chains. Subsequently, for each learning schedules
considered, we plot the mean error |Qt,n − Q⋆|∞ for 1000 ≤ t ≤ n along with corresponding
shaded bands indicating one standard deviation. On the other hand, for Figure 2 (Right), we run
B = 1000 many independent Q-learning chains for each of n ∈ {500, 100, 1500, 2000, 2500}, and
plot the mean error |Qn,n −Q⋆|∞ against n, along with corresponding shaded bands.

Clearly the PD2Z-ν learning schedules outperforms the constant learning rate, which maintains a
consistent bias having converged to a stationary distribution. On the other hand, increasing ν seems
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to have a small effect at reducing the error |Qt,n −Q⋆|∞ when t < n. However, if we focus only on
the final iterate error |Qn,n −Q⋆|∞, the performance is similar across ν ∈ {1, 2, 3}. This hints at a
surprising stability across the PD2Z-ν class, justifying the widespread use of LD2Z schedule.

Figure 2: Performance comparison between LD2Z, PD2Z-ν with ν = 2, 3 and constant learning
schedules.

5.3 EXPERIMENTS ON TIME-UNIFORM APPROXIMATIONS.

In this section, we empirically investigate the time-uniform strong approximation results in Theorems
4.1 and 4.2. In Figure 3 (Left), we consider the quantiles of maxkn≤t≤n |

∑n
l=t(Q

c
l −Q⋆)|∞, and

compare them with the corresponding quantiles of maxkn≤t≤n |
∑n

l=t Yl|∞. All the quantiles are
empirically calculated based on B = 500 Monte Carlo repetitions. Similarly, Figure 3 (Right)
corresponds to the Gaussian approximation in Theorem 4.2. In particular, Figure 3 (Right) also
contains the corresponding quantiles of the Brownian motion based approximation (Theorem 3.1,
Li et al. (2023b)). Despite the ubiquity of functional central limit theory, the sub-optimality of such
approximation in terms of uniform approximation is evident. Together, these experiments establish
the accuracy of the time-uniform approximations in §4, calling for their increased use in bootstrap
procedures.

Figure 3: Q–Q plots of sup-norm distributions.

6 DISCUSSION

In this article, we develop asymptotic theory for the Q-learning with LD2Z and the more general
PD2Z-ν learning schedules. Despite their increasing use in generative models, these learning
schedules are yet to be thoroughly explored in the theoretical literature of stochastic approximation
algorithms. To the best of our knowledge, this work constitutes the first one to include a systematic
treatment of this step-size for Q-learning. Future extensions include the theory for the potential
bootstrap algorithm and Berry-Esseen bounds to properly quantify the central limit theory.
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