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ABSTRACT

Despite the sustained popularity of Q-learning as a practical tool for policy deter-
mination, a majority of relevant theoretical literature deals with either constant
(ηt ≡ η) or polynomially decaying (ηt = ηt−α) learning schedules. However, it
is well known that these choices suffer from either persistent bias or prohibitively
slow convergence. In contrast, the recently proposed linear decay to zero (LD2Z:
ηt,n = η(1 − t/n)) schedule has shown appreciable empirical performance, but
its theoretical and statistical properties remain largely unexplored, especially in
the Q-learning setting. We address this gap in the literature by first considering a
general class of power-law decay to zero (PD2Z-ν: ηt,n = η(1− t/n)ν). Proceed-
ing step-by-step, we present a sharp non-asymptotic error bound for Q-learning
with PD2Z-ν schedule, which then is used to derive a central limit theory for a
new tail Polyak-Ruppert averaging estimator. Finally, we also provide a novel
time-uniform Gaussian approximation (also known as strong invariance principle)
for the partial sum process of Q-learning iterates, which facilitates bootstrap-based
inference. All our theoretical results are complemented by extensive numerical
experiments. Beyond being new theoretical and statistical contributions to the
Q-learning literature, our results definitively establish that LD2Z and in general
PD2Z-ν achieve a best-of-both-worlds property: they inherit the rapid decay from
initialization (characteristic of constant step-sizes) while retaining the asymptotic
convergence guarantees (characteristic of polynomially decaying schedules). This
dual advantage explains the empirical success of LD2Z while providing practical
guidelines for inference through our results.

1 INTRODUCTION

With the advent of generative AI models and its continuing ascent towards ubiquity, the use of
reinforcement learning (RL) to train multiple agents to undertake complex sequential decisions
seamlessly, has occupied a central role in modern learning theory. In that regard, Q-learning (Watkins
et al., 1989; Watkins & Dayan, 1992; Sutton & Barto, 2018; Chi et al., 2025), represents a classical,
yet practically relevant model-free approach to estimate the optimal policy of a Markov decision
process (MDP). Research on the statistical properties of the Q-learning algorithm has been extensive;
in particular, treatment of asymptotic and non-asymptotic error bounds have ranged from techniques
particular to synchronous Q-learning (Jaakkola et al., 1993; Tsitsiklis, 1994; Szepesvári, 1997; Shi
et al., 2022), to the more modern lens of stochastic approximation (SA) algorithms (Chen et al., 2020b;
Qu & Wierman, 2020; Chen et al., 2021). Specifically, these latter works cast the Q-learning algorithm
as an SA targeting the Bellman equation, and thereby, more general tools can be employed to derive
finer theoretical results on these algorithms. This direction also has been, arguably, adequately
explored with central limit theory, and functional central-limit-theorems, appearing in (Xie & Zhang,
2022; Li et al., 2023b;a; Panda et al., 2024). A special case of Q-learning with a singleton action
space, is the Temporal-difference (TD) learning, for which Berry-Esseen theorems and subsequent
Gaussian approximations and bootstrap strategies have been discussed (Wu et al., 2024b; 2025;
Samsonov et al., 2025).

A very important, but often ignored aspect in these theoretical studies is the choice of step-sizes or
learning rates. Indeed, it has become widely common in statistical inference literature to analyze
either the constant learning rates or the polynomially decaying learning rate. Such choices are not
without their own advantages; the constant learning rate enjoys experimental evidence of a much faster
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convergence, however a proof similar to Li et al. (2024b) shows that the Q-learning with constant
learning rate will converge to a stationary distribution around the optimal Q⋆; in other words, the
asymptotic bias is non-negligible, and requires further jackknifing to ensure convergence. On the other
hand, the polynomially decaying learning rate is theoretically attractive; the aforementioned results
establishing Gaussian approximations and other inferential results extensively use a polynomially
decaying learning rate. This choice has been guided by theory of stochastic gradient descent at least
since (Ruppert, 1988; Polyak & Juditsky, 1992), however its theoretical optimality often masks its
excruciatingly slow convergence, as also observed by (Zhang & Xie, 2024). These criticisms have
been echoed by the broad stochastic optimization community, leading to a recent proposal of linearly
decaying to zero (LD2Z) learning rate ηt,n = η(1− t/n) (Devlin et al., 2019; Touvron et al., 2023).
Despite a requirement of pre-specified number of schedules, this step-size choice achieves a balance
between the rapid initial dissipation of initialization effects provided by a constant learning rate and
the asymptotic convergence guarantees of a polynomially decaying learning rate. In this article,
we establish a number of sharp asymptotic results for the Q-learning algorithm with this particular
learning rate schedule. To the best of our knowledge, our results are the first-of-its-kind theory using
this step-size for Q-learning; the theoretical results and subsequent numerical exercise definitively
showcases the effectiveness and superiority of this learning rate over the ones usually employed in
theoretical analyses.

1.1 MAIN CONTRIBUTIONS

The paper develops a comprehensive theoretical framework for Q-learning with power-law decay to
zero (PD2Z-ν) learning schedules. Our results advance the theoretical understanding of Q-learning
and offer new insights into its statistical properties and practical performance. The main contributions
are summarized below:

• Non-asymptotic concentration inequality. Under standard regularity conditions, we derive
explicit non-asymptotic bounds on the p-th moments of the Q-learning iterates for any fixed
p ≥ 2. In particular, our L2 bounds can be summarized as follows.
Theorem 1.1 (Theorem 3.1, Informal). If Qn denotes the final Q-learning iterate with the
PD2Z-ν step-size, then it follows that

∥Qn −Q⋆∥2 ≲ exp(−cn)|Q0 −Q⋆|+ n− ν
2(ν+1) ,

where Q⋆ is the long term reward corresponding to the optimal policy π⋆.

These bounds serve as fundamental tools underpinning the empirical success of Q-learning
with PD2Z-ν schedules compared to their polynomially decaying counterparts (Section 3.1).
In particular, the exponential decay from the initialization is empirically observed in Figure
1, further validating our theory.

• Distribution theory. We propose a novel averaging scheme that aggregates a batch of the
most recent Q-learning iterates, referred to as the tail Polyak-Ruppert averaging estimator,
and establish its asymptotic normality (Section 3.2). This is, to the best of our knowledge, a
novel contribution in stochastic approximation literature. For the PD2Z-ν learning schedules,
our simulation (in §5.4) also establishes the superiority of tail PR averaged estimator over
the usual PR averaged ones.

• Strong invariance principle. We establish strong invariance principles with covariance
matching for the partial sum processes of Q-learning with both PD2Z-ν and polynomially
decaying learning schedules. This is accomplished via a novel construction of the coupling
Gaussian process, enabling a more refined probabilistic analysis of the stochastic dynamics
(Section 4).

1.2 RELATED LITERATURE

Linearly decaying-to-zero (LD2Z) learning-rate schedules have recently gained substantial traction
in applications characterized by highly non-smooth or complex optimization landscapes, including
state-space models (Touvron et al., 2023), large language models (Devlin et al., 2019; Liu et al.,
2019; Bergsma et al., 2025), and vision transformers (Wu et al., 2024a). A number of studies further
advocate for the so-called “knee schedule” (Howard & Ruder, 2018; Hoffmann et al., 2022; Iyer
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et al., 2023; Defazio et al., 2023; Hägele et al., 2024; Bergsma et al., 2025), which employs an initial
large learning rate (a “warm start”) followed by a LD2Z phase. Despite their empirical popularity,
the asymptotic properties of LD2Z schedules remain poorly understood—even in relatively simple
convex problems. To the best of our knowledge, Goldreich et al. (2025) provides the first theoretical
analysis of LD2Z schedules in strongly convex stochastic gradient descent; but their results are not
directly applicable to Q-learning, and they only establish an L2 control of the terminal iterates Qn,n.
This gap in theory presents a significant obstacle to principled statistical inference and uncertainty
quantification, motivating the need for a more systematic analysis.

Figure 1: Comparison between polynomially decaying (ηt = 0.05t−0.65), LD2Z(ηt = 0.05(1−t/n))
and Constant (ηt = 0.05) step-sizes

1.3 NOTATION

In this paper, we denote the set {1, . . . , n} by [n]. The d-dimensional Euclidean space is Rd, with
Rd

>0 the positive orthant. For a vector a ∈ Rd, |a| denotes its Euclidean norm. The set of m× n real
matrices is denoted by Rm×n, and correspondingly, for M ∈ Rm×n, |M |F denotes its Frobenius
norm. For a random vector X ∈ Rd, we denote ∥X∥ :=

√
E[|X|2]. We also denote in-probability

convergence, and stochastic boundedness by oP and OP respectively. The weak convergence is
denoted by w→. We write an ≲ bn if an ≤ Cbn for some constant C > 0, and an ≍ bn if
C1bn ≤ an ≤ C2bn for some constants C1, C2 > 0.

2 PRELIMINARIES OF Q-LEARNING

Subsequently, we consider a discounted, infinite horizon Markov Decision Process (MDP) M =
(S,A, γ,P, R). Here S = {1, . . . , S} is the finite state space, A is the finite action space, and γ ∈
(0, 1) is the discount factor. For simplicity, we define D = |S × A|. We use P : S × A → ∆(S)
to represent the probability transition kernel with P(s′|s, a) the probability of transiting to s′ from
a given state-action pair (s, a) ∈ S × A. Let R : S × A → [0,∞) stand for the random reward,
i.e., R(s, a) is the immediate reward collected in state s ∈ S when action a ∈ A is taken. We
represent the distribution P(s′|s, a) using quantile transformation: there exists a measurable function
N(s, a, U), where U ∼ Uniform(0, 1), such that

P(N(s, a, U) = s′) = P(s′|s, a) for all s, s′ ∈ S and a ∈ A.

Similarly, we can write the reward function as R(s, a,U), where U ∼ Uniform(0, 1). Let π be a
policy, meaning that for each s ∈ S, π(·|s) is a probability distribution over actions a ∈ A. Define
the expected long-term reward

Qπ(s, a) = Eπ

{ ∞∑
i=0

γiR (st, at,Ut) | s0 = s, a0 = a

}
.

Let Q∗ = (Q∗
sa)(s,a)∈S×A where Q∗

sa = maxπ Q
π(s, a) is the maximizer.

To estimate Q∗, the Q-function vector Qt ∈ RD is updated by (e.g., Watkins & Dayan (1992))

Qt,n = (1− ηt,n)Qt−1,n + ηt,nB̂tQt−1,n, Q0,n = Q0, (2.1)
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where B̂t is the empirical Bellman operator given by

(B̂tQ)(s, a) = R(s, a, Vt,n) + γmax
a′∈A

Q(N(s, a, Ut), a
′), Q ∈ RD. (2.2)

Here Ut,Ut, t ∈ Z, are i.i.d. Uniform(0, 1) random variables. With a slight abuse of notations, define
the matrix P ∈ RD×|S| with rows P(s,a),· = (P(s′|s, a))⊤s′∈S . If Ππ ∈ RS×D is a projection matrix
associated with a given policy π:

Ππ = diag
{
π(·|1)⊤, · · · , π(·|S)⊤

}
,

then we define the Markov transition kernel Hπ = PΠπ ∈ RD×D.

3 Q-LEARNING DYNAMICS WITH LD2Z SCHEDULE AND BEYOND

Before introducing our key results on Q-learning with the LD2Z schedule and its generalization, it is
crucial to state the regularity conditions that guarantee the validity of the theoretical excursion. In
particular, we require the following assumptions.
Assumption 3.1. It holds that E|R(s, a)|p < ∞ for all (s, a) ∈ S ×A, for some p ≥ 2.
Assumption 3.2. There exist π∗ ∈ Π∗ and a positive constant L < ∞ such that for any function
estimator Q ∈ RD, we have

|(HπQ −Hπ∗
)(Q−Q∗)|∞ ≤ L|Q−Q∗|2∞,

where πQ(s) := argmaxa∈A Q(s, a) is the greedy policy w.r.t. Q.

Assumption 3.1 establishes a uniform control over the p-th moment of the reward function. In contrast,
often the statistical literature on this topic imposes a severely restrictive condition of a bounded
reward, usually constrained in the interval [0, 1] or [−1, 1] (Li et al., 2021; Shi et al., 2022; Panda
et al., 2024; Li et al., 2024a; Zhang & Xie, 2024; Chen, 2025). We also remark that Assumption 3.1
is objectively weaker than the corresponding bounded fourth moment assumption in Li et al. (2023b).
On the other hand, conditions of the type of Assumption 3.2 were first introduced in Puterman &
Brumelle (1979), and have since been employed in Q-learning literature (Li et al., 2023b; Xia et al.,
2024) as a means to establish a local attraction basin around the optimal policy π⋆. Interestingly, this
can also be derived from a mild margin condition, as is described in Appendix §9. The corresponding
versions of Assumptions 3.1-3.2 is pervasive in non-asymptotic analysis of SA algorithms (Ruppert,
1988; Polyak & Juditsky, 1992; Borkar, 2023; Bottou et al., 2018; Chen et al., 2020a; Zhu et al.,
2023; Wei et al., 2023).

3.1 NON-ASYMPTOTIC ERROR BOUND

Before establishing inferential results involving LD2Z schedules, it is crucial to ascertain their non-
asymptotic convergence properties. On the other hand, it is conceivable to broaden our view to the
class of learning schedules ηt,n = η(1 − t/n)ν , ν > 0, of which LD2Z is but a special case with
ν = 1. This perspective raises another pertinent question; due to the lack of previous theoretical
justifications, it is somewhat unclear as to why the linear decay-to-zero is less effective, in any sense,
compared to some iteration-dependent choice of ν. We address both the questions through our first
result. For brevity, we subsequently refer to the schedule ηt,n = η(1− t/n)ν as the Power-law decay
to zero (abbreviated as PD2Z-ν).

Let the Bellman noise be given by

Zt(s, a) = B̂t(Q
∗)(s, a)−B(Q∗)(s, a), (3.1)

which, via (2.2) immediately implies that Zt are i.i.d. D-dimensional random vectors. Our first
theorem is presented below.
Theorem 3.1. Consider the Q-learning iterates in (2.1). Suppose for some p ≥ 2, the Bellman
noise satisfies Θp := E[|Zt|p] < ∞. Then, with the PD2Z-ν learning schedule with η > 0, ν ≥ 1/p
satisfying

η <
2(1− γ)

(1− γ)2 + 2(p− 1)γ2
,
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it holds that

∥Qt,n −Q⋆∥p ≤ exp
(
− c3ηt(1− n−1)ν

)
|Q0 −Q⋆|

+ 2
√

p− 1Θ1/p
p


√
C1(c3, ν, 2)

√
ηt,n, t ≤ n− 2

(c3η)
1

ν+1
n

ν
ν+1 ,√

C2(c3, ν, 2)n
− ν

2(ν+1) , t > n− 2

(c3η)
1

ν+1
n

ν
ν+1 ,

(3.2)

where c3 = ηc1−η2c2
2η with c1 = 2(1− γ), c2 = (1− γ)2 + 2(p− 1)γ2, and C1(c, ν, p), C2(c, ν, p)

are positive constants given by

C1(c, ν, p) :=
2ν(p+1)(1 + 2−pΓ(νp+ 1))

c
, and,

C2(c, ν, p) := ηp4νp exp(
2ν+1

ν + 1
)(ν + 1)(p−1) ν

ν+1 (cη)−
νp+1
ν+1 Γ(

νp+ 1

ν + 1
).

Theorem 3.1 is proved in Appendix §7.
Remark 3.1 (A sample complexity version of Theorem 3.1). Let N(ϵ, γ, ν) denotes the minimal
number of samples required to ensure ∥Qn,n−Q∗∥q ≤ ϵ. In the worst case, Θ1/p

p ≲ 1
1−γ . Therefore,

from Theorem 3.1 , we obtain the following iteration complexity:

N(ϵ, γ, ϵ) = O

(
1

(1− γ)2
log

(
|Q0 −Q∗|

ϵ

)
+

1

(1− γ)4+2/νϵ2(ν+1)/ν

)
.

We note that for large ν, the rate approximately matches that derived by Li et al. (2024a). The gap
for a finite value of ν can also be explained by the much weaker assumption that we work with. For
example, we do not assume the rewards to be bounded, and therefore, are only constrained to work
with finite p-th moments of the Bellman noise. In contrast, Li et al. (2024a) assumes the rewards
∈ [0, 1], which makes the Bellman noise sequences bounded and allows them to use finer tools from
subGaussian theory, such as Freedman’s inequality (in contrast to the Burkholder’s inequality which
is sharp in absence of boundedness). It is conceivable that in presence of stricter assumption, the
worst-case sample complexity can be further improved, but that is non-trivial.

The non-asymptotic bound in (3.2) is convenient since it covers a general class of learning schedules
with an explicitly quantified bound. Crucial is also the two distinct regimes with two different rates.
We pause for a moment to parse the bound carefully. In the transient regime with t ≤ n− Cη,νn

ν
ν+1 ,

the L2 error decays with ηt,n. In particular, for any choice of ν > 0, ηt,n ≍ 1 as long as t ≤ nc
for any fixed constant c ∈ (0, 1). Therefore, in the early regime, the class of PD2Z-ν learning
schedules behave like a constant learning rate while decaying polynomially. The corresponding L2

error displays a diminishing bias, but this constant learning rate is a crucial key to its much faster
convergence, pushing it towards its convergence regime where t > n− Cη,νn

ν
ν+1 . In this regime the

Q-learning chain has converged with an error-rate n− ν
2(ν+1) , enabling an early stopping at any steps

in [n− Cη,νn
ν

ν+1 , n].

The afore-mentioned fast decay, followed by a stabilization in the latter phase, is exemplified
empirically in Figure 1. For a more detailed insight into this early phase decay, it is instrumental to
specify one immediate corollary to Theorem 3.1.
Corollary 3.2. Under the assumptions of Theorem 3.1, it follows that for all t ∈ [n],

∥Qt,n −Q⋆∥p ≤ exp
(
− c3η(1− n−1)νt

)
|Q0 −Q⋆|+Oc3,ν(

√
ηt,n ∨ n− ν

2(ν+1) ),

where Oc3,ν hides constants pertaining to c3 and ν. We note that at t = n, the right hand side is
minimized at ν ≍ log2 log n.

Corollary 3.2 has some interesting connotations, which we will discuss in successive remarks.
To initiate our first discussion, it is illuminating to recall the following well-known result for the
often-used polynomially decaying learning schedules.
Theorem 3.3 (Chen et al. (2020b), Corollary 4.1.2; Li et al. (2023b), Theorem E.1). Consider the
Q-learning iterates in (2.1) with the polynomially decaying step-size ηt ≍ t−α, α ∈ (1/2, 1). Then,
it follows that for all t ∈ [n],

∥Qt −Q⋆∥p ≲ exp(−ct1−α)|Q0 −Q⋆|+O(t−α/2).
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In light of Theorem 3.3, Corollary 3.2 sheds more light on the faster decay of the LD2Z and in general
PD2Z-ν schedules in the transient phase.
Remark 3.2. Assume ν > 0 is fixed. Note that, in particular, when t = n, i.e. at the final iterate,
Q-learning with PD2Z-ν schedule instructs that

∥Qn,n −Q⋆∥p ≲ exp(−4−1n)|Q0 −Q⋆|+ n−1/4.

The dominating decay rate in the convergence phase (the second term in the rates on the right) is
similar in both PD2Z-ν and polynomial decay schedules (n− ν

2(ν+1) versus n−α/2); however, the
effect of initial point is much less pronounced in the former, with an exponential rate exp(−ct) of
forgetting the initialization for all t ∈ [n]. This explains the fast initial convergence of this linearly
decaying rate to a neighborhood of Q⋆, as also seen in Figure 1. In contrast, the polynomial step-size
only achieves a forgetfulness of exp(−ct1−α). This explains the competitive advantage of linearly
decaying rate over its polynomial counterpart- an advantage that has also been recently studied in
the empirical literature (Defazio et al., 2023; Bergsma et al., 2025). To the best of our knowledge,
this is the first such theoretical exposition highlighting the benefits of linear decay rate LD2Z and its
generalization in the context of Q-learning, while building on the previous works of Goldreich et al.
(2025) in the more general context of Stochastic Approximation algorithms.

Next, we explore another interesting assertion from Corollary 3.2 regarding the optimal choice of ν
in the class of PD2Z-ν learning schedules.
Remark 3.3. The optimal ν balances the fact that C2(c3, ν, 2) increases with ν, while n− ν

2(ν+1)

decreases with ν for large n ∈ N. This trade-off yields the threshold ν ≍ log2 log n, which grows
extremely slowly with n, justifying fixed, iteration-independent choices of ν in practice. This aligns
with the empirical success of ν = 1, motivating deeper statistical study under the assumption of
constant ν. In particular, to round off our discussion on choices of ν, we state a clean result on
Q-learning dynamics with LD2Z schedule.
Corollary 3.4. Under the assumptions of Theorem 3.1, for the LD2Z learning schedule it follows
that for t ∈ [n],

∥Qt,n −Q⋆∥p ≤ exp
(
− c3η2

−1t
)
|Q0 −Q⋆|+

{
O(

√
ηt,n), t ≤ n− 2√

cη

√
n

O(n−1/4), t > n− 2√
cη

√
n,

(3.3)

where O(·) hides constants depending on γ and η.

Subsequently, we assume that ν is fixed, and move towards sharper asymptotic result beyond L2

control.

3.2 TAIL POLYAK-RUPPERT AVERAGES AND CENTRAL LIMIT THEORY

As a means of variance reduction and faster convergence, Polyak-Ruppert averaging (Ruppert, 1988;
Polyak & Juditsky, 1992) has a relatively long history of application in policy evaluation (Bhandari
et al., 2018; Khamaru et al., 2021), Q-learning (Li et al., 2023a;b; 2024a) and Temporal Difference
(TD) learning (Mou et al., 2020; Samsonov et al., 2024; 2025). However, our L2 error-bounds reveal
a crucial insight into whether usual Polyak-Ruppert averaging would ensure asymptotic normality
with these LD2Z and PD2Z-ν schedules. Consider ν = 1. Write

n−1
n∑

t=1

Qt,n =
1

2

∑n/2
t=1 Qt,n

n/2
+

1

2

∑n−
√
n

t=n/2 Qt,n

n/2
+

1

2

∑n
t=n−

√
n Qt,n

n/2
:= An +Bn + Cn. (3.4)

Observe that as long as t ≤ n/2, it holds ηt,n ≥ η
2ν . Therefore, based on the intuition from stochastic

approximation literature with constant step-size, we do not expect An to even converge to Q⋆, let
alone achieve asymptotic Gaussianity. It is not yet clear if Cn may achieve Gaussianity individually;
at the very least, its Lp convergence to Q⋆ is guaranteed through an argument similar to Theorem
3.1. Therefore, unless one shows that the asymptotic distribution of Bn exactly cancels that of An,
it is conceivable that the error of n−1

∑n
t=1 Qt,n is in effect, much larger compared to Q⋆. This

theoretical insight can also be empirically validated (Figure 4). Therefore, it is arguably more prudent
to investigate the inferential properties of the term Cn, which we refer to as Tail Polyak-Ruppert
Averages.
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Theorem 3.5. For any constant c > 0 and ν ≥ 1/p with p ≥ 2 is same as in Assumption 3.1, let

Q̄n =
1

⌊cn
ν

ν+1 ⌋

n∑
t=n−⌊cn

ν
ν+1 ⌋+1

Qt,n.

Grant Assumptions 3.1 and 3.2 for the MDP. Further assume that Q0,Q
⋆ ∈ K where K is a compact

set. Then with the PD2Z-ν learning rate for (2.1) with,

0 < η <
2(1− γ)

(1− γ)2 + 2(p− 1)γ2
,

there exists a positive definite matrix Σ ⪰ 0 independent of n, such that

n
ν

2(ν+1) (Q̄n −Q⋆)
w→ N(0,Σ). (3.5)

Theorem 3.5 is proved in Appendix §7. We remark that an exact expression for Σ is highly intractable,
nullifying any direct approach to estimate Σ. In §4 we indicate a direct bootstrap-based approach to
perform valid inference.

4 STRONG INVARIANCE PRINCIPLE

Moving beyond the asymptotic normality of the Q-iterates, the primary goal of this section is
to further deepen the understanding of their stochastic dynamics and to better characterize the
asymptotic distributional approximation of the associated partial sum process by deriving a powerful
probabilistic tool known as the strong invariance principle. Due to space constraints, we include a
broad discussion on the relevant literature in §8. Due to the non-stationary nature of the sequence
(Qt,n)t≥1, its stochastic dynamics cannot be well captured by the standard Brownian process.
Motivated by Bonnerjee et al. (2024), we instead propose approximating the partial sum process
of (Qt,n) by that of a non-stationary Gaussian process specifically designed for matching the
covariance structure. Specifically, let ℵ1, . . . ,ℵn ∈ RD be i.i.d. centered Gaussian random vectors
with covariance matrix Cov(ℵt) = Cov(Zt). Then, in light of (2.1) and the linear approximation
in (7.18), we define the Gaussian process (Yt)t≥1 via Y0 = 0 and

Yt = (I − ηt,nG)Yt−1 + ηt,nℵt, t ≥ 1, (4.1)

where G = I − γHπ⋆ ∈ RD×D. Throughout this section, we focus on the LD2Z schedule.
Theorem 4.1. Grant Assumptions 3.1 and 3.2 for the MDP. Consider the learning rate PD2Z-ν
learning rate and grant the assumptions of Theorem 3.5. Then, for all sufficiently large n, there exists
a probability space on which one can define random vectors Qc

1, . . . ,Q
c
n such that (Qc

t,n)
n
t=1

D
=

(Qt,n)
n
t=1 and

max
kn≤t≤n

∣∣∣∣∣
n∑
l=t

(Qc
l −Q⋆ − Yl)

∣∣∣∣∣
∞

= oP(n
1/p),

where kn = n− ⌊cn
ν

ν+1 ⌋+ 1, and c > 0, ν > 1/p are constants.
Remark 4.1. Theorem 4.1 provides the first strong Gaussian approximation for the partial sum
process of Q-iterates with PD2Z-ν schedule. In the context of Q-learning, only functional central
limit theorem is established Li et al. (2023b) for the polynomially decaying step sizes. A similar
time-uniform approximation can also be established for the polynomially decaying learning schedule,
which may be of independent interest.
Theorem 4.2. Grant Assumptions 3.1 and 3.2 for the MDP. Consider the learning rate η̃t = ηt−β

in (2.1) for η > 0, β ∈ (1 − 1/p, 1), where p is same as in Assumption 3.1. Then, there exists

(ℵt)
n
t=1

i.i.d.∼ N(0,Γ) such that, with

Ỹt = (I − η̃tG)Ỹt−1 + η̃tℵt, Y0 = 0, t ≥ 1, G = I − γHπ⋆ , (4.2)

it holds that,

max
1≤t≤n

∣∣∣∣∣
t∑

l=1

(Ql −Q⋆ − Ỹl)

∣∣∣∣∣
∞

= oP(n
1/p).
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The key difference between the results of Theorems 4.1 and 4.2 is in the way partial sums are
uniformly approximated. It is well-known that the polynomially decaying step-sizes offer attractive
asymptotic properties; the optimality of Theorem 4.2, despite being new in the literature, is therefore
not surprising. The strong approximation result is also classical in its expression, strongly echoing
results such as Komlós et al. (1976). In fact, it can be argued that the approximation in Theorem 4.2 is
much sharper than a functional CLT approximation Li et al. (2023b). As a toy example, consider the
vanilla SGD setting, and suppose K = 1. Suppose F (θ) = (θ − µ)2/2, and ∇f(θ, ξ) := θ − µ+ ξ.
In this setting, the Gaussian approximation analogous to (4.2) is

Y G
t,n = (I − ηt,nA)Y G

t−1,n + ηt,nZt, Zt ∼ N(0,Var(ξ)), Y G
0,n = 0. (4.3)

Here A = ∇2F (µ) = I . On the other hand, the vanilla SGD iterates can also be seen as Yt,n − µ =
(I − ηt,nA)(Yt−1,n − µ) + ηt,nξt. Therefore, it can be seen that Yt,n − µ and Y G

t,n have exactly
the same covariance structure, i.e. Cov(Y G

s,n, Y
G
t,n) = Cov(Ys,n, Yt,n); on the other hand, even in

such a simplified setting, an approximation by Brownian motion, such as that by functional CLT,
captures the covariance structure of the iterates {Yt − µ}t≥1 only in an asymptotic sense. The
Gaussian approximation Y G

t in (4.3) is a particular example of covariance-matching approximations,
introduced by Bonnerjee et al. (2024)- but generalized to account for the particular non-stationarity
imposed by Q-learning iterates.

On the other hand, a strong approximation result for PD2Z-ν schedule works on the tail partial sums,
much akin to the tail PR-averaged central limit theory. Moreover, the range of the approximation
is also limited between kn and n, which may mean n− ⌊

√
n⌋ to n for the particular case of LD2Z

schedule. Noticeably, despite the much faster decay from the initialization, for larger values of
ν, PD2Z-ν can also maintain a time-uniform strong approximation for almost the entire range of
its steps. Moreover, in polynomially decaying step-sizes, in aiming for the optimality of strong
invariance principles, the choice of β ≈ 1 implies that the decay of Qt from the initialization Q0 is
O(1); i.e. there is practically or very slow decay, which results in extremely slow convergence to the
asymptotic regime. In contrast, even when uniform Gaussian approximation is assured, the inherent
properties of the PD2Z-ν schedules do not affect convergence. Finally, no functional central limit
theory is even known for these learning schedules.

Finally, we remark that as an immediate result of Theorem 4.1, for p > 2,

sup
z≥0

∣∣∣∣∣P
(

max
kn≤t≤n

∣∣∣∣∣
n∑
l=t

(Qc
l −Q⋆)

∣∣∣∣∣
∞

≤ z

)
− P

(
max

kn≤t≤n

∣∣∣∣∣
n∑
l=t

Yl

∣∣∣∣∣
∞

≤ z

)∣∣∣∣∣→ 0. (4.4)

Beyond theoretical interest, (4.4) hints at practical, bootstrap-based algorithms for time-uniform
inference. In particular, the estimation of covariance matrix of Q̄n, especially for the PD2Z-ν learning
schedule, may be significantly non-trivial. However, estimation of Γ and Hπ⋆

can be essentially
done using (2.2) and the fact that BQ⋆ = Q⋆. This hints at an easily implementable Gaussian
bootstrap procedure by running multiple independent chains of Yt parallelly. Similar inferential
procedures have been proposed in a time-series context in Wu & Zhao (2007), and also more recently
in Bonnerjee et al. (2025) in a local SGD setting.

5 SIMULATION RESULTS

In this section, we present some numerical experiments that empirically explore our theoretical
results. In §5.2, we compare the performance of LD2Z schedule with the polynomially decaying and
the constant learning rates, as well as the PD2Z-ν learning rates with ν = 2, 3. Moving on, In §5.3
we investigate the accuracy of our time-uniform approximations. We also provide some additional
simulation studies involving the central limit theorem in Appendix §5.4.

5.1 SET-UP

For each of the experiments, we consider a 4× 4 gridworld with the slippery mechanism in Frozen-
Lake (Zhang & Xie, 2024), and four actions (left/up/right/down). The discount factor is taken as
γ = 0.1. There are two special states, A and B, from which the agent can only intend to move to A′

and B′, respectively. Once an action is chosen according to the behavior policy, the agent moves in
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the intended direction with probability 0.9, and with probability 0.05 each, it instead moves in one
of the two perpendicular directions. If the agent attempts to move outside the grid, it remains in the
same state and receives a reward of −1. Otherwise, the reward depends on the current state, with
r(A) = 10, r(B) = 5, and r(s) = 0 for all s ̸= A,B.

5.2 COMPARATIVE PERFORMANCE BETWEEN LEARNING RATES.

In these experiments, we consider Q-learning with initialization at 0; since it’s clearly evident in
Figure 1 that LD2Z massively outperforms the polynomially decaying step size, we focus on LD2Z
PD2Z-ν and constant learning schedules. For the experiments in Figure 2 (Left), we fix n = 5000,
and run B = 1000 many Monte-Carlo Q-learning chains. Subsequently, for each learning schedules
considered, we plot the mean error |Qt,n − Q⋆|∞ for 1000 ≤ t ≤ n along with corresponding
shaded bands indicating one standard deviation. On the other hand, for Figure 2 (Right), we run
B = 1000 many independent Q-learning chains for each of n ∈ {500, 100, 1500, 2000, 2500}, and
plot the mean error |Qn,n −Q⋆|∞ against n, along with corresponding shaded bands.

Clearly the PD2Z-ν learning schedules outperforms the constant learning rate, which maintains a
consistent bias having converged to a stationary distribution. On the other hand, increasing ν seems
to have a small effect at reducing the error |Qt,n −Q⋆|∞ when t < n. However, if we focus only on
the final iterate error |Qn,n −Q⋆|∞, the performance is similar across ν ∈ {1, 2, 3}. This hints at a
surprising stability across the PD2Z-ν class, justifying the widespread use of LD2Z schedule.

Figure 2: Performance comparison between LD2Z, PD2Z-ν with ν = 2, 3 and constant learning
schedules.

5.3 EXPERIMENTS ON TIME-UNIFORM APPROXIMATIONS.

In this section, we empirically investigate the time-uniform strong approximation results in Theorems
4.1 and 4.2. Working with the same 4× 4 gridworld setting with number of iterations n = 5000 as in
the previous section, in Figure 3 (Left), we consider the quantiles of maxkn≤t≤n |

∑n
l=t(Q

c
l −Q⋆)|∞,

for the LD2Z step-size ηt = 0.05(1 − t/n) and compare them with the corresponding quantiles
of maxkn≤t≤n |

∑n
l=t Yl|∞. All the quantiles are empirically calculated based on B = 500 Monte

Carlo repetitions. Similarly, Figure 3 (Right) corresponds to the Gaussian approximation in Theorem
4.2 for the polynomially decaying learning rate ηt = 0.05t−0.65. In particular, Figure 3 (Right) also
contains the corresponding quantiles of the Brownian motion based approximation (Theorem 3.1,
Li et al. (2023b)). Despite the ubiquity of functional central limit theory, the sub-optimality of such
approximation in terms of uniform approximation is evident. Together, these experiments establish
the accuracy of the time-uniform approximations in §4, calling for their increased use in bootstrap
procedures.
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Figure 4: L∞ error comparison of PR-averaged and tail PR-averaged iterates.

Figure 3: Q–Q plots of sup-norm distributions.

5.4 CENTRAL LIMIT THEORY IN PRACTICE.

This section is devoted to empirically validating the central limit theory established in §3.2. To that
end, we first establish the efficacy of the tail Polyak-Ruppert averaged iterates (Q̄n) over the usual
PR-averaged versions (denote by Q̃n) for LD2Z learning schedule. For n ∈ {1000, 1500, . . . , 5000},
we estimate E[|Q̄n −Q⋆|∞] and E[|Q̃n −Q⋆|∞] over B = 1000 Monte-Carlo repetitions. From
the corresponding illustration in Figure 4, the superiority of Q̄n over Q̃n is clear.

6 DISCUSSION & LIMITATIONS

In this article, we develop asymptotic theory for the Q-learning with LD2Z and the more general
PD2Z-ν learning schedules. Despite their increasing use in generative models, these learning
schedules are yet to be thoroughly explored in the theoretical literature of stochastic approximation
algorithms. To the best of our knowledge, this work constitutes the first one to include a systematic
treatment of this step-size for Q-learning. Future extensions include the theory for the potential
bootstrap algorithm and Berry-Esseen bounds to properly quantify the central limit theory.

Moreover, as pointed out by a reviewer, LD2Z step-size schedule is applicable primarily in offline
reinforcement learning settings with pre-collected datasets, where the total sample size n is known
in advance. We acknowledge this as the main limitation of the LD2Z schedule when applied to
Q-learning. However, our methods allow for the case where n is mis-specified. Let n0 ≤ n denote
the true sample size, while n is used in the LD2Z step-size schedule. Then, as long as the mis-
specification satisfies n− n0 ≤ α

√
n for some constant α ∈ (0, 1), our asymptotic results remain

valid. Generalizing LD2Z and PD2Z-ν to online RL set-up constitutes an interesting direction, and
warrants further research.
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7 APPENDIX A

In this section we collect the proofs of Theorems 3.1 and 3.5.

Proof of Theorem 3.1. Denote ∆t,n := Qt,n −Q⋆. Then, it is immediate that

∆t,n = (1− ηt,n)(Qt−1,n −Q⋆) + ηt,n(B̂tQt−1,n −B(Q⋆))

= At∆t−1,n + ηt,nZt + γηt,n(Mt,n + (Hπt−1,n −Hπ⋆

)Qt−1,n), (7.1)

where At = I − ηt,nG, and Mt,n = (Pt − P)(Vt−1,n − V ⋆). From the definition of greedy policy,
it follows that (Hπt−1,n −Hπ⋆

)Q⋆ ≤ 0, where ≤ and ≥ are interpreted element-wise. Therefore,
clearly

∆t,n ≤
(
I − ηt,n(I − γHπt−1,n)

)
∆t−1,n + ηt,n(Zt + γMt,n),

which directly yields, via Proposition 4 of that

∥∆t,n∥2p ≤(1− ηt,n(1− γ))2∥∆t−1,n∥2p + 2(p− 1)η2t,n(∥Zt∥2p + γ2∥Mt,n∥2p)
≤
(
(1− ηt,n(1− γ))2 + 2(p− 1)η2t,nγ

2
)
E[|∆t−1,n|2] + η2t,ncp,

with cp = 2(p− 1)Θ
2/p
p . Recursively, it holds that

∥∆t,n∥2p ≤ Ãt
0|∆0|2 + cp

t∑
s=1

η2s,nÃt
s, (7.2)

where Ãt
s =

∏t
j=s+1(1−ηj,nc1+η2j,nc2), where c1 = 2(1−γ), c2 = (1−γ)2+2(p−1)γ2. From

the choice of η satisfying ηc1 − η2c2 > 0, we can derive

Ãt
s ≤ At

s :=

t∏
j=s+1

(1− ηj,nc3),

for some small constant c3 ∈ (0, 1). In light of
∑t

j=1 ηj,n ≥ ηt(1 − n−1)ν , we have At
0 ≤

exp(−c3η(1− n−1)νt). Therefore, applying Lemma 11.1 the proof is completed.

Proof of Theorem 3.5. We consider deriving the Gaussian approximation through a series of steps.
In particular, our proof strategy is to linearize the Q-learning iterates before applying suitable, off-the-
shelf central limit theory. The steps till linearization are not straightforward, especially in light of the
complications arising out of PD2Z-ν learning rates. In particular, the non-linearity of the Bellman
operator requires careful tempering. We provide the formal proof in the following. Throughout the
proof, we let kn = n− ⌊cn

ν
ν+1 ⌋.

7.1 STEP I

Let Q⋄
0 = Q⋆, and define the oracle Q-learning iterates

Q⋄
t,n = (1− ηt,n)Q

⋄
t−1,n + ηt,nB̂tQ

⋄
t−1,n, t ≥ 1. (7.3)

Note that

|Qt,n −Q⋄
t,n|∞ ≤ (1− ηt,n)|Qt−1,n −Q⋄

t−1,n|∞ + ηt,n|B̂tQt,n − B̂tQ
⋄
t,n|∞

≤ (1− ηt,n(1− γ))|Qt−1,n −Q⋄
t−1,n|∞

...

≤ Y t
0 (1− γ) |Q0 −Q⋆|∞, (7.4)

where for c > 0, Y t
i (c) =

∏t
j=i+1(1 − ηj,nc), and the second inequality in (7.4) follows from

the contraction of Bellman operators (2.2). Elementary calculations show that Y t
0 (1 − γ) ≲γ
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exp(−cν,γ,ηt) for some c > 0, which implies, via (7.4), that

n
ν

2(ν+1) |Q̄n − Q̄⋄
n| ≤ n

ν
2(ν+1) (n− kn)

−1
n∑

t=kn

|Qt,n −Q⋄
t,n|∞

≲ n− ν
2(ν+1)

∫ n

1

exp(−ct) dt

= O(n− ν
2(ν+1) ) almost surely. (7.5)

Therefore, Step I enables us to investigate the asymptotic properties of Q̄⋄.

7.2 STEP II

Define the empirical version of P as
Pt((s, a), ·) = (1st=s′,st−1=s,at−1=a)s′∈S . (7.6)

In other words, Pt ∈ RD×|S| is a matrix with one-hot-coded rows. Moreover, let
Vt,n(s) = max

a′∈A
Qt,n(s, a), and V ⋆(s) = max

a′∈A
Q⋆(s, a), (7.7)

with Vt,n = (Vt,n(s))s∈S ∈ R|S|, and V ⋆ likewise defined. Note that,
PtVt−1,n = max

a′∈A
Qt−1,n (N (s, a, Ut) , a

′) ,

and PVt−1,n = E[PtVt−1,n|Ft−1] where Ft−1 is the σ-field induced by the random variables
(Us, Vs)s≤t. Clearly, PV ⋆ = E[maxa′∈A Q⋆ (N (s, a, U) , a′)], U ∼ U [0, 1]. Observe that

B̂tQ
⋄
t−1,n −BQ⋆ = B̂tQ

⋄
t−1,n − B̂tQ

⋆ + Zt (7.8)

= γPt(Vt−1,n − V ⋆) + Zt (7.9)

= γ

(
Mt,n + (Hπ⋄

t−1,n −Hπ⋆

)Q⋄
t−1,n + γHπ⋆

(Q⋄
t−1,n −Q⋆)

)
+ Zt,

(7.10)

where (7.8) follows from Zt = B̂tQ
⋆ − BQ⋆; (7.9) is implied by (2.2), and (7.10) is obtained

after defining Mt,n = (Pt − P)(Vt−1,n − V ⋆). Note that, in particular Zt are mean-zero i.i.d.
random variables, and (Mt,n)t≥1 is a martingale difference sequence. Now, using B(Q⋆) = Q⋆ and
(7.8)-(7.10), rewrite (7.3) as

∆t,n := Q⋄
t,n −Q⋆ = (1− ηt,n)(Q

⋄
t−1,n −Q⋆) + ηt,n(B̂tQ

⋄
t−1,n −B(Q⋆))

= At∆t−1,n + ηt,nZt + γηt,n(Mt,n + (Hπ⋄
t−1,n −Hπ⋆

)Q⋄
t−1,n), (7.11)

where At,n = I − ηt,nG, G = I − γHπ⋆

, and ∆0 = 0. Define another “sandwich" sequence as
follows:

∆
(L)
t,n = At∆

(L)
t−1,n + ηt,nZt + γηt,nMt,n, ∆

(2)
0 = 0. (7.12)

Following the property of optimal policy, it is immediate that (Hπ⋄
t −Hπ⋆

)Qt−1,n ≥ 0, and hence,

∆
(L)
t,n ≤ ∆t,n. (7.13)

Moreover, it follows that

E[|∆t,n −∆
(L)
t,n |∞] ≤(1− ηt,n(1− γ))E[|∆t−1,n −∆

(L)
t−1,n|∞] + E[|(Hπ⋄

t−1,n −Hπ⋆

)Q⋄
t−1,n|∞]

≤(1− ηt,n(1− γ))E[|∆t−1,n −∆
(L)
t−1,n|∞] + γηt,nE[|(Hπ⋄

t−1,n −Hπ⋆

)∆t−1,n|∞]

(7.14)

≤(1− ηt,n(1− γ))E[|∆t−1,n −∆
(L)
t−1,n|∞] + γLηt,nE[|∆t−1,n|2∞] (7.15)

=γL

t∑
s=0

ηs,nAt
sE[|Qs,n −Q⋆|2∞]

≲
kn∑
s=0

η2s,nAt
s + n− ν

ν+1

t∑
s=kn+1

ηs,nAt
s ≲ n− ν

ν+1 . (7.16)
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where (7.14) follows from noting that (Hπ⋄
t−1,n −Hπ⋆

)Q⋆ ≤ 0; (7.15) follows from Assumption
3.2, and (7.16) involves an application of Theorem 3.1 and Lemma 11.1. Clearly, (7.16) produces

n
ν

2(ν+1)E[|∆̄n − ∆̄(L)
n |∞] = O(n− ν

2(ν+1) )

which implies that

n
ν

2(ν+1)
(
∆̄n − ∆̄(L)

n

) P→ 0. (7.17)

7.3 STEP III

In this step, we will show that both ∆
(L)
t,n is well-approximated by a linear process. To that end,

further define

Xt,n = AtXt−1,n + ηt,nZt, X0 = 0. (7.18)

With this definition established, we can proceed to approximate ∆
(L)
t,n by Xt,n. Indeed, with ∆

(L)
t,n :=

∆
(L)
t,n −Xt,n ∈ RD.

E[|∆(L)
t,n |2∞] ≲D E[|∆(L)

t,n |22] = E[|(I − ηt,n(I − γHπ⋆

))∆
(L)
t−1,n|22] + γη2t,nE[|Mt,n|22]

≤ (1− ηt,n(1− γ))E[|∆(L)
t−1,n|22] + γη2t,n2E[|Vt−1,n − V ⋆|22]

≲
t∑

s=1

η2s,nAt
sE[|Vs−1 − V ⋆|2]

≲
kn∑
s=0

η3s,nAt
s + n− ν

ν+1

t∑
s=kn+1

η2s,nAt
s ≲ n−2 ν

ν+1 (7.19)

where the second equality uses the fact that Mt,n are martingale differences; the inequality in the third
assertion involves (i) using that Hπ⋄

t−1,n is a stochastic matrix to deduce |I − ηt,n(I − γHπ⋆

)|∞ =
1− ηt,n(1− γ), and (ii) using that both Pt and P are stochastic matrices to obtain |Pt − P |∞ ≤ 2 ;
the final assertion invokes Theorem 3.1 and Lemma 11.1. Equation 7.19 immediately results in

n
ν

2(ν+1)E[|∆̄(L)
n − X̄n|∞] = n− ν

2(ν+1)

n∑
t=kn

√
E[|∆(L)

t,n |2∞] = O(n− ν
2(ν+1) ),

which, similar to (7.17) implies that

n
ν

2(ν+1)
(
∆̄(L)

n − X̄n

) P→ 0. (7.20)

7.4 STEP IV

In light of (7.5), (7.17) and (8.3), the proof is complete if one derives a central limit theory of
X̄n = (n− kn)

−1
∑n

t=kn
Xt,n. To that end, re-write
n∑

t=kn

Xt,n =

n∑
s=1

ηs,nVs,nZs, Vs,n =

n∑
t=s∨kn

At
s,n

where At
s,n =

∏t
j=s+1 Aj,n. We proceed step-by-step. Let Ls,n = s ∨ kn. Firstly, note that

n∑
s=1

η2s,n|Vs,n|2F ≲ n
ν

ν+1

n∑
s=1

n∑
t=Ls,n+1

η2s,n|At
s,n|2F ≤ n

ν
ν+1

n∑
t=kn

t∑
s=1

η2s,n|At
s,n|2F = O

(
n

ν
ν+1

∑n
t=kn

(n− t)ν

nν

)
= O(n

ν
ν+1 ),

(7.21)

which establishes the Lindeberg condition that n− ν
2(ν+1) maxs ηs,n|Vs,n| = O(1). Now we shift

focus to showing that

Wn := n− ν
ν+1

n∑
s=1

η2s,nVs,nΓV⊤
s,n → Σ
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for some Σ ≻ 0. Write
Wn = (1− 1/n)

ν
ν+1Wn−1 +Rn,

where

Rn := n− ν
ν+1

n−1∑
s=1

[
(Cs,n − Cs,n−1) ΓC

⊤
s,n−1 + Cs,nΓ (Cs,n − Cs,n−1)

⊤
]
, Cs,n = ηs,nVs,n.

(7.22)

The proof follows by showing that nRn is a Cauchy sequence in Rd×d through an argument mim-
icking Lemma 11.1, and we omit the details for brevity. Finally, our conclusion follows from
equation 7.21 via Lindeberg-Feller central limit theory.

8 APPENDIX B: DISCUSSION ON STRONG APPROXIMATION OF Q-LEARNING
ITERATES

Related Literature. The method of invariance principle was introduced by Erdös & Kac (1946) and
has since been extensively studied, serving as a powerful tool for analyzing distributional properties
in a wide range of statistical inference problems (Csörgö & Hall, 1984; Csörgo & Révész, 2014).
Applications include nonparametric simultaneous inference (Liu & Wu, 2010; Karmakar et al., 2022),
change-point detection and inference (Wu & Zhao, 2007), online statistical inference (Lee et al., 2022;
Zhu et al., 2024; Li et al., 2023b), and construction of time-uniform confidence sequences (Waudby-
Smith et al., 2024; Xie et al., 2024).

For independent and identically distributed (i.i.d.) random variables, Strassen (1964) initialed the
study of almost sure approximation for the partial sums by Wiener process, and was later refined
by Csörgő & Révész (1975a) and Csörgő & Révész (1975b). The optimal strong approximation
in this setting was established in the celebrated work (Komlós et al., 1975; 1976). Specifically, let
ξ1, . . . , ξn ∈ R be i.i.d. centered random variables with Var(ξ1) = σ2 and E|ξ1|p < ∞ for some
constant p > 2. Then, for the sequence of partial sums {St}nt=1, where St =

∑t
j=1 ξj , there exists a

probability space on which one can define random variables ξc1, . . . , ξ
c
n with the partial sum process

Sc
t =

∑t
j=1 ξ

c
j , t ≥ 1, and a Brownian motion B(·) such that {Sc

t }nt=1
D
= {St}nt=1 and

max
1≤t≤n

|Sc
t − σB(t)| = oa.s.(n

1/p).

Extensions of this result to multidimensional independent (but not necessarily identically distributed)
random vectors has been developed by Einmahl (1987), Shao (1995), Götze & Zaitsev (2009), among
others. Another line of research, more relevant to the online learning where the outputs may exhibit
temporal dependence, has focused on generalizing the above strong approximation to dependent data;
see, for example, Heyde & Scott (1973), Lu & Shao (1987), Wu (2007), Liu & Lin (2009), Dedecker
et al. (2012), Merlevède & Rio (2012), among others. A notable contribution in this direction was
made by Berkes et al. (2014), who established the optimal strong approximation for a broad class of
causal stationary sequence {ξt}t≥1. Under mild regularity conditions, they proved that

max
1≤t≤n

|Sc
t − σ∞B(t)| = oa.s.(n

1/p), (8.1)

where σ2
∞ =

∑
t∈Z Cov(ξ0, ξt) = limn→∞ Var(Sn)/n stands for the long-run variance. This

result implies that the process {σ∞B(t)}nt=1 can preserve the second-order properties of {St}t≥1

asymptotically.

However, in the context of Q-learning with time-varying step sizes, these results do not apply due to the
nonstationary nature of the iterates {Qt,n}t≥1 defined in (2.1). Unfortunately, strong approximations
for non-stationary data remain relatively underexplored. Some contributions include Wu & Zhou
(2011), Karmakar & Wu (2020) and Mies & Steland (2023), which lead to the following result: there
exists a Gaussian process {Gt}t≥1 such that Cov(Gt,Gs) ≈ Cov(St, Ss) and

max
1≤t≤n

|Sc
t − Gt| = oP(τn). (8.2)

Compared to {σ∞B(t)} in (8.1), this more general {Gt} can better capture the dependence structure
of {St}, as it allows potentially non-stationary increments {Gt −Gt−1}t≥1. However, until the recent
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work of Bonnerjee et al. (2024), it remained unclear how to explicitly construct such a process with
optimal convergence rate. They provided an optimal Gaussian approximation of the form (8.2) with
optimal τn = n1/p and an explicit construction of the coupling Gaussian process {Gt}. Motivated
by this, one of the main objectives of this paper is to derive an optimal Gaussian approximation for
Q-learning, including an explicit construction of the coupling Gaussian process. It is important to
note that the dependence structure of {Qt,n}t≥1 is significantly more complex than that considered
in Bonnerjee et al. (2024), and thus their results are not directly applicable.

Now we proceed to the proofs of the results in §4.

Proof of Theorem 4.1. From equations (7.4), (7.16) and (7.19) it also follows that

max
kn≤t≤n

|
n∑

s=t

(Qs,n −Q⋆ −Xs,n)| = OP(1). (8.3)

Note that (7.18) can be cast into the following form:

Xt,n =

t∑
s=1

ηsA
t
s−1,nZs, (8.4)

where At
s,n =

∏t
j=s+1 Aj,n, s, t ≥ 0, and At

t := I for t ≥ 1. Moreover, using Theorem 4 of Götze

& Zaitsev (2009), on a possibly enriched probability space, there exists ℵt
i.i.d.∼ N(0,Γ), such that

max
1≤t≤n

|
t∑

s=1

(Zs − ℵs)|∞ = oP(n
1/p). (8.5)

If one defines Yt as
Yt = (I − ηt,n(I − γHπ⋆

))Yt−1 + ηt,nℵt,

then, for t ≥ kn,
n∑
l=t

(Xl − Yl) =

n∑
l=t

l∑
s=1

ηs,nA
l
s−1,n(Zs −Ws)

=

n∑
s=1

n∑
l=s∨t

ηs,nA
l
s−1,n(Zs −Ws)

=

t∑
s=1

n∑
l=t

ηs,nA
l
s−1,n(Zs −Ws) +

n∑
s=t+1

n∑
l=s

ηs,nA
l
s−1,n(Zs −Ws). (8.6)

Let us tackle the terms in (8.6) one-by-one. In particular, a similar treatment as Lemma 11.1 provides
that for all s ∈ [n]

max
kn≤t≤n

max
1≤s≤t

ηs,n

n∑
l=t

|Al
s−1,n|F = O(1).

Therefore, for the first term in (8.6), one obtains

max
kn≤t≤n

|
t∑

s=1

n∑
l=t

ηs,nA
l
s−1,n(Zs −Ws)|∞ ≤

(
max

kn≤t≤n
max
1≤s≤t

ηs,n

n∑
l=t

|Al
s−1,n|F

)
max

kn≤t≤n
|

t∑
s=1

(Zs −Ws)|∞

=oP(n
1/p), (8.7)

where the oP assertion follows from (8.5). The assertion for the second term follows from noting

max
kn≤t≤n

max
t≤s≤n

ηs,n

n∑
l=s

|Al
s−1,n|F ≤ max

kn≤t≤n
max
1≤s≤t

ηs,n

n∑
l=t

|Al
s−1,n|F .

This completes the proof.

Proof of Theorem 4.2. We follow a proof similar to that of Theorem 4.1. Since the learning rates no
longer depend on the number of iterations n, we omit the n from the subscript.
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8.1 STEP I

Similar to Step I in Theorem 4.2, elementary calculations show that Y t
0 (1− γ) ≲γ exp(−ct1−β) for

some c > 0, which implies, via (7.4), that

max
1≤t≤n

|
t∑

s=1

(Qs −Q⋄
s)|∞ ≤

n∑
t=1

|Qt −Q⋄
t |∞ ≲

∫ n

1

exp(−ct1−β) = O(1) almost surely. (8.8)

8.2 STEP II

In this case, it follows that

E[|∆t −∆
(L)
t |∞] ≤(1− ηt(1− γ))E[|∆t−1 −∆

(L)
t−1|∞] + E[|(Hπ⋄

t−1 −Hπ⋆

)Q⋄
t−1|∞]

≤(1− ηt(1− γ))E[|∆t−1 −∆
(L)
t−1|∞] + γηtE[|(Hπ⋄

t−1 −Hπ⋆

)∆t−1|∞]

≤(1− ηt(1− γ))E[|∆t−1 −∆
(L)
t−1|∞] + γLηtE[|∆t−1|2∞]

≤(1− ηt(1− γ))E[|∆t−1 −∆
(L)
t−1|∞] + L2Cη2t , (8.9)

where (8.9) involves an application of Theorem E.2 of Li et al. (2023b). Clearly, in lieu of β > 1−1/p,
(8.9) entails

E[|∆t −∆
(L)
t |∞] = O(ηt),

which produces

max
1≤t≤n

|
t∑

s=1

(∆t −∆
(L)
t )|∞ = oP(n

1/p). (8.10)

8.3 STEP III

In this step, we have,

E[|δ(L)
t |2∞] ≲D E[|δ(L)

t |22] = E[|(I − ηt(I − γHπ⋆

))δ
(L)
t−1|22] + γη2tE[|Mt|22]

≤ (1− ηt(1− γ))E[|δ(L)
t−1|22] + γη2t 2E[|Vt−1 − V ⋆|22]

≤ (1− ηt(1− γ))E[|δ(L)
t−1|22] +O(η3t ), (8.11)

whereupon one invokes Theorem E.2 of Li et al. (2023b) to conclude E[|∆t−1|2∞] = O(ηt). Equation
(8.11) immediately results in

max
1≤t≤n

|
t∑

s=1

(∆
(L)
t −Xt)| = OP(n

1−β) = oP(n
1/p), (8.12)

similar to (8.10).

8.4 STEP IV

This step also follows similar to that of Theorem 4.1 by denoting Bs,n = ηs
∑n

j=s A
j
s−1 and

observing

max
1≤t≤n

|
t∑

s=1

(Xt − Yt)|∞ ≤ max
s,t

|Bs,t|∞ max
1≤t≤n

|
t∑

s=1

(Zs − ℵs)|∞ = oP(n
1/p), (8.13)

where the second inequality employs Lemma A.2 of Zhu et al. (2023) along with (8.5). Note that by
construction, (Xc

t )t≥1
d
= (Xt)t≥1. The proof is concluded by combining (8.8), (8.10), (8.12) and

(8.13).
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9 APPENDIX C: DERIVATION OF ASSUMPTION 3.2

The key insight behind the Assumption 3.2 is ensuring that the optimal policy, and the optimal quality
function is unique. In that regard, we consider the following simple margin condition, that can be
more illuminating in the Q-learning context.

Assumption 9.1. The greedy policy π⋆(s) = argmaxa Q
⋆(s, a) is unique for every state s, and

satisfies

∆ = min
s

(Q⋆(s, π⋆(s))− max
a ̸=π⋆(s)

Q⋆(s, a)) > 0.

Under Assumption 9.1, we derive Assumption 3.2. To that end, suppose |Q−Q⋆|∞ ≤ ∆/2. Then,
by definition of the greedy policy, HπQ = Hπ⋆ , and hence, Assumption 3.2 is trivially satisfied. On
the other hand, if |Q−Q⋆|∞ > ∆/2, then from |HπQ −Hπ⋆ | ≤ 2 it follows

|(HπQ −Hπ⋆

)(Q−Q⋆)|∞ ≤ 2|Q−Q⋆|∞ ≤ 4

∆
|Q−Q⋆|2∞.

10 ADDITIONAL EXPERIMENTS

In this section, we work with a large discount factor γ = 0.99, and consider the step-size choices
polynomially decaying, LD2Z and PD2Z-ν with ν = 2, 3. Firstly, we consider n = 20000 number
of Q-learning iterations, and look at a special case of polynomially decaying step-size, viz. the
linearly decaying step size ηt = 0.25/t. Based on B = 500 Monte Carlo repetitions, we plot
empirical estimates of E[|Qt − Q⋆|∞] against t ∈ [n] for the LD2Zstep-size ηt = 0.25(1 − t/n)
and PD2Z-ν step-size choices ηt = 0.25(1 − t/n)ν with ν = 2, 3, and compare it with empirical
estimates of E[|Q̄t −Q⋆|∞] for the linearly decaying step-size, where Q̄t = t−1

∑t
s=1 Qt denotes

the running Polyak-Ruppert average. It can be seen in Figure 5 that as per our intuition and previous

Figure 5: Comparison between different step-size choices.

results, neither the end-term nor the PR-avergaed iterates have converged even after 20000 iterations
for linearly decaying step-sizes; they will eventually converge, and will eventually obtain better
asymptotic approximation error compared to LDTZ or PDTZ stepsize choices, but this asymptotic
regime kicks in much, much later than is often realistically possible in many scenarios. We can
also replicate corresponding versions of Figure 2 for γ = 0.99 with this particular setting, which we
report below.
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Figure 6: Performance comparison between LD2Z, PD2Z-ν with ν = 2, 3 and constant learning
schedules.

10.1 AFFECT OF LEARNING RATE CONSTANT

To further validate the efficacy of our learning rate schedules, we consider the effect of leading
constant η in the performance of the Q-iterates. In the following, we consider our 4× 4 gridworld
with discount γ = 0.99, and the following step-sizes: polynomially decaying : ηt = ηt−0.55; constant:
ηt = η; LD2Z: ηt = η(1− t/n); PD2Z-ν-2: ηt = η(1− t/n)2; and PD2Z-ν-3: ηt = η(1− t/n)3.
We vary η ∈ {0.1, . . . , 0.9}. For each choice of η and learning-rate, we run the Q-learning iterates for
T = 20, 000 episodes, and report the sum of rewards per epsiodes averaged over 100 initial episodes
(for the initial phase), and 1000 final episodes (for the asymptotic phase). The averaged total rewards
are further averaged over 500 Monte Carlo runs for stability.

Figure 7: Total sum of rewards on an average reward for the initial phase and asymptotic phase for
different learning rates and different η’s

In Figure 7, the solid lines correspond to the initial phase, and the dashed lines correspond to the
asymptotic phase. It is clear that the polynomially decaying step-size is least performing in the initial
stage. Moreover, even after 50000 episodes, its asymptotic phase hasn’t kicked in. On the other hand,
the fact that Q-learning constant learning rate does not converge, is also evident, as larger learning
rate constant constant results in increasing bias. In comparison, both the LD2Zand PD2Z-νlearning
rates maintain a performance comparable to the constant learning rate in the initial phase, while
providing convergence in the asymptotic stage.
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10.2 ADDITIONAL SIMULATIONS ON CENTRAL LIMIT THEORY

We investigate the asymptotic normality of Q̄n. For n = 5000 and 10, 000, we compute Qn,n −Q⋆,
and project them along 6 randomly chosen directions u ∈ Sd−1. For each random direction u, the
empirical quantiles of n1/4u⊤(Q̄n −Q⋆) - generated based on B = 1000 Monte-Carlo repetitions -
are visualized in a QQ-plot against the corresponding quantiles from a standard normal distribution.
The asymptotic normality is apparent from the QQ-plot being on a straight line. The accuracy of the
scaling n1/4 is also evident from the two QQ -plots, corresponding to n = 5000 and n = 10, 000,
being virtually identical.

Figure 8: QQ-plots of n1/4u⊤(Q̄n −Q⋆) for randomly generated unit vectors u and n = 5000.

Figure 9: QQ-plots of n1/4u⊤(Q̄n −Q⋆) for randomly generated unit vectors u and n = 10000.

11 AUXILIARY RESULTS

In this section, we collect some key mathematical arguments that we have repeatedly used throughout
our proofs.
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Lemma 11.1. Let At
s =

∏t
j=s+1(1 − ηj,nc) for some small c ∈ (0, 1), with ηs,n = η(1 − s

n )
ν ,

η > 0, ηc < 1 and ν ≥ 1. Then for all p ≥ 1, t ∈ [n], it holds that

t∑
s=1

ηps,nAt
s ≤

C1(c, ν, p)η
p−1
t,n , t ≤ n− 2

(cη)
1

ν+1
n

ν
ν+1 ,

C2(c, ν, p)n
− ν

ν+1 (p−1), t > n− 2

(cη)
1

ν+1
n

ν
ν+1 ,

where C1(c, ν, p) and C2(c, ν, p) are defined as in Theorem 3.1.

Proof of Lemma 11.1. Our proof proceeds through a series of steps by first establishing a uniform
bound on At

s, and then carefully establishing control on
∑t

s=1 η
p
s,nAt

s on a case-by-case basis. To
that end, let J (u) = (1− u/n), u ∈ [0, n]. Observe that u 7→ J (u)ν is a non-increasing function
for any ν ≥ 1. Therefore, for any s < t ∈ [n], it follows

t∑
j=s+1

ηj,n ≥ η

∫ t+1

s+1

J (u)ν du =
ηn

ν + 1
(J (s+ 1)ν+1 − J (t+ 1)ν+1) ≥ ηJ (t+ 1)ν(t− s),

(11.1)

where the final inequality in (11.1) follows from the non-increasing property of J . Consequently,
one can use (11.1) to derive that

At
s ≤ exp(−c3

t∑
j=s+1

ηj,n) ≤ exp(−c3ηJ (t+ 1)ν(t− s)). (11.2)

This completes the first step of our argument. Moving on, we use (11.2) to derive sharp upper bounds
on
∑t

s=1 η
p
s,nAt

s. This can be approached as follows.

Case 1. t > n− 2

(c3η)
1

ν+1
n

ν
ν+1 . In this case, we proceed:

t∑
s=1

ηps,nAt
s ≤ ηp

t∑
s=1

J (s)νp exp(−c3
ηn

ν + 1
(J (s+ 1)ν+1 − J (t+ 1)ν+1))

= ηpn−νp
t∑

s=1

(n− s)νp exp
(
− c3η

n−ν

ν + 1
((n− s− 1)ν+1 − (n− t− 1)ν+1)

)
= ηpn−νp

n−1∑
k=n−t

kνp exp
(
− c3η

n−ν

ν + 1
((k − 1)ν+1 − (n− t− 1)ν+1)

)
≤ ηpn−νp

∫ ∞

n−t−1

(u+ 1)νp exp
(
− c3η

n−ν

ν + 1
(uν+1 − (n− t− 1)ν+1)

)
du

≤ ηp4νpn−νp exp(
c3η

ν + 1

(n− t− 1)ν+1

nν
)

∫ ∞

0

(uνp + 1) exp(−c3η
n−ν

ν + 1
uν+1) du

≤ 2ηp4νpn−νp exp(
2ν+1

ν + 1
)(ν + 1)(p−1) ν

ν+1 (c3η)
− νp+1

ν+1 Γ(
νp+ 1

ν + 1
)n

ν
ν+1 (νp+1) (11.3)

≤ 2ηp4νp exp(
2ν+1

ν + 1
)(ν + 1)(p−1) ν

ν+1 (c3η)
− νp+1

ν+1 Γ(
νp+ 1

ν + 1
)n− ν

ν+1 (p−1), (11.4)

where in (11.3) we have invoked n− t < 2

(c3η)
1

ν+1
n

ν
ν+1 .

Case 2: t ≤ n− 2

(c3η)
1

ν+1
n

ν
ν+1 .

First observe that,
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t∑
s=1

ηps,nAt
s ≤ ηp

t∑
s=1

J (s)νp exp(−c3ηJ (t+ 1)ν(t− s))

≤ ηp
t−s∑
k=0

J (t− k)νp exp(−c3ηJ (t+ 1)νk)

≤ ηp
∞∑
k=0

(
J (t) +

k

n

)νp
exp(−c3ηJ (t+ 1)νk) (11.5)

≤ ηp
c3ηJ (t+ 1)ν

1− exp(−c3ηJ (t+ 1)ν)

∫ ∞

0

(
J (t) +

u

n

)νp
exp(−c3ηJ (t+ 1)νu) du (11.6)

≤ ηp
2νp−1

1− exp(−c3ηJ (t+ 1)ν)

(
J (t)νp +

∫ ∞

0

vνp

(c3ηnJ (t+ 1)ν)p
exp(−v) dv

)
(11.7)

≤ ηp
2νp−1

1− exp(−c3ηJ (t+ 1)ν)

(
J (t)νp + (c3ηnJ (t+ 1)ν)−pΓ(νp+ 1)

)
, (11.8)

where (11.5) follows from noting J (t − k) = J (t) + k
n ; (11.6) derives from an application of

Lemma 11.2; (11.7) is obtained by the elementary inequality (x+ y)q ≤ 2q−1(xq + yq) for q ≥ 1.
Finally, in (11.8), Γ(·) denotes the Gamma function. The two terms in (11.8) following the leading
constants are particularly interesting; the first term increases with t, and the second term decays with
t. The interplay between these two terms will naturally lead to two regions on which the rates will be
controlled case-by-case.

Now, recall that in this particular regime, it is immediate that c3ηnJ (t)ν ≥ 2ν+1

J (t) . Moreover, since n

is sufficiently large such that 2

(c3η)
1

ν+1
n

ν
nu+1 > 2, it follows that in this regime, J (t+ 1) ≥ J (t)/2.

Therefore,

J (t)νp + (c3ηnJ (t+ 1)ν)−pΓ(νp+ 1) ≤ J (t)νp(1 + 2−pΓ(νp+ 1)),

which, when plugged in (11.8), implies that
t∑

s=1

ηps,nAt
s ≤ ηp

2νp−1

1− exp(−c3ηJ (t+ 1)ν)
J (t)νp(1 + 2−pΓ(νp+ 1))

≤ 2ν(p+1)(1 + 2−pΓ(νp+ 1))

c3
ηp−1
t,n , (11.9)

where in the final inequality we have used c3η < 1 to deduce

1− exp(−c3ηJ (t+ 1)ν) ≥ c3ηJ (t+ 1)ν

2
≥ c3ηJ (t)ν

2ν
.

Finally, (11.4) and (11.9) completes the proof.

Lemma 11.2. Let f : R → R+ be a non-decreasing function and let κ > 0 be a constant such that∑∞
n=0 f(n) exp(−κn) < ∞. Then

∞∑
n=0

f(n) exp(−κn) ≤ κ

1− exp(−κ)

∫ ∞

0

f(u) exp(−κu) du.

Proof. Since f is non-decreasing, hence for every n ∈ N,

f(n) exp(−κn) =
κ

1− exp(−κ)
f(n)

∫ n+1

n

exp(−κu) du ≤ κ

1− exp(−κ)

∫ ∞

0

f(u) exp(−κu) du.
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