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Abstract

Precisely managing oxygen levels is crucial for patients with critical illnesses,
helping to prevent a wide range of severe conditions and physical harm. Despite
its importance, current healthcare systems lack operationally effective and effi-
cient solutions for oxygen level maintenance. To address this gap, we present the
first-ever framework for precise oxygen level management using Differentiable
Predictive Control (DPC). By employing a sophisticated neural policy and leverag-
ing the differentiable nature of the system model, DPC fine-tunes oxygen delivery
based on patient-specific conditions with high accuracy. This end-to-end auto-
mated system continuously monitors real-time patient data to optimize oxygen flow,
maximizing comfort while minimizing waste. Our approach not only enhances
patient care but also improves resource efficiency and reduces costs in critical care
settings. Empirical results further demonstrate the robustness and effectiveness of
our model.

1 Introduction

Precise oxygen level regulation is a cornerstone of critical care, as it safeguards against secondary
injuries to vital organs such as the brain and lungs, thereby improving overall survival outcomes [3].
However, while oxygen therapy is essential, excessive administration introduces significant risks,
including increased mortality [11]. These dual considerations underscore the necessity of finely tuned
oxygen monitoring and dynamic adjustment, highlighting that optimal patient outcomes hinge not
only on access to oxygen but on its precise management. In parallel, Differentiable Predictive Control
(DPC) has emerged as a powerful paradigm for tackling optimal control problems within complex,
nonlinear, and uncertain environments. By employing a neural state-space model that learns directly
from system dynamics data [13], DPC integrates predictive modeling with control optimization in
a differentiable framework. This enables direct training of control policies via stochastic gradient
descent while accommodating constraints and time-varying references. Compared to traditional
model predictive control, DPC offers notable advantages in computational efficiency, memory usage,
and construction time, making it highly scalable and practical for real-time applications in previously
intractable nonlinear systems [7, 17].

Several studies have investigated oxygen level control through mathematical models, such as char-
acterizing deviations in the oxygen dissociation curve for patient-specific therapy [14] and refining
cerebrovascular regulation models [1]; however, these approaches often oversimplify complex physi-
ological interactions and struggle with the dynamic nature of patient responses, limiting their clinical
applicability. Differentiable Predictive Control (DPC) overcomes these challenges by leveraging data-
driven neural state-space models to capture patient-specific dynamics in real time, enabling adaptive
oxygen delivery. Formulated as a parametric optimal control problem with a differentiable system
model, often represented by Ordinary Differential Equations (ODEs), DPC minimizes tracking errors
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Figure 1: (i) Overall framework for ICU oxygen regulation and (ii) Differentiable Predictive Control
(DPC) model for maintaining optimal oxygen levels in critical patients.

while enforcing safety constraints on oxygen concentration and flow [7, 17]. Integrating learning,
prediction, and optimization, DPC personalizes therapy and provides a scalable, robust solution for
maintaining optimal oxygenation in critical care.

Building on these insights, our work makes three key contributions. First, to the best of our knowledge,
this is the first attempt to develop a precise oxygen level management framework using Differentiable
Predictive Control (DPC), directly addressing the limitations of existing mathematical models.
Second, our end-to-end system leverages real-time patient data to continuously monitor oxygen levels
and dynamically adjust delivery, ensuring both safety and patient comfort. Finally, by optimizing
oxygen flow, the framework not only enhances therapeutic precision but also improves resource
efficiency and reduces wastage, making it highly suitable for critical care environments. Together,
these contributions position DPC as a robust, adaptive, and resource-conscious approach to oxygen
therapy in the ICU.

2 Problem Formulation

ICU oxygen regulation is formulated as a constrained optimal control problem solved via Differen-
tiable Predictive Control (DPC). The objective is to maintain patient oxygenation within safe clinical
limits while minimizing resource usage. As shown in Figure 1 (i), DPC processes real-time patient
states and computes control actions through a neural policy, uk = πθ(xk, R),, where xk denotes
system states at time k and R = [rk, . . . , rk+N ] is the reference trajectory. System dynamics are
modeled by a differentiable ODE solver, xk+1 = ODESolve(f(xk, uk)).
The parametric optimal control problem is
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θ
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The objective minimizes tracking error over horizon N , with terminal penalty QN , while constraints
enforce safe oxygen ranges and delivery rates. Sampling from Px0

and PR enhances robustness
across patient variability.

3 Methodology

3.1 Differentiable Predictive Control

Differentiable Predictive Control (DPC) presents a powerful, deep learning-based alternative to tradi-
tional Model Predictive Control (MPC), offering end-to-end optimization, constraint handling, and
adaptability to unknown or nonlinear dynamics. Unlike MPC, which requires real-time optimization,
DPC trains a neural control policy offline by embedding state and input constraints into the loss
and leveraging automatic differentiation of the combined cost and constraints [7, 5, 12, 17]. Recent
extensions of DPC introduce it as a differentiable policy class in reinforcement learning, allowing
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gradient-based optimization of control objectives through the MPC layer using KKT conditions
and convex approximations [2]. DPC constructs a differentiable closed-loop system with a neural
controller and a dynamic model—spanning differential equations, state-space formulations, and
neural nets—optimized via intrinsic rewards across parameter distributions, making it highly efficient
for continuous control tasks like glucose regulation in CGM systems [7, 17].
We formulate the Deep Policy Control (DPC) problem as a parametric optimal control problem for a
continuous-time system:

dg(t)

dt
= f(g(t), u(t)) (2)

with state g(t), control input u(t), and dynamics f . In discrete-time, this becomes:gk+1 = f(gk, uk).
A parametric control policy πθ(gk, ξk), parameterized by θ, generates control inputs. The objective is
to optimize θ to minimize a cumulative cost as Equation 1. This formulation allows for gradient-based
optimization using automatic differentiation. Let J(θ) denote the objective:

J(θ) =
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The gradient of J w.r.t. parameters W is:
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White-box System Model with Control Policy. The control policy uk = πθ(yk, R,D) is modeled
via a neural network (MLP), where yk is the glucose level, R = {ymin, ymax} the target range, and
D the disturbances. The network takes (yk, R,D) as input and outputs uk, integrated into the
computational graph as shown in Figure ??.

3.2 Applying for Precise Oxygen Level Maintenance

In the training phase, a dataset is provided, encompassing the initial conditions of states, a sequence
delineating the desired patient requirement levels, and a corresponding sequence documenting
observed system disturbances over a predefined prediction horizon. These data are drawn from
specified distributions, namely Px0

for initial conditions, PR for patient requirement levels, and PD

for system disturbances.

For model-based policy optimization, we consider a discrete-time partially observable linear state
space model (SSM) [13] that characterizes the dynamics of a patient within a medical setting as a
partially observable white-box system model [8]. The model is represented as follows:

xk+1 = Axk +Buk + Edk (5)
yk = Cxk (6)

Here, xk denotes the system states, reflecting the patient’s conditions, while uk represents the
control actions governing the regulation of oxygen flow within the system. The term dk accounts for
disturbances affecting the system, encompassing various changes in patient conditions. Additionally,
yk stands for the measured variable to be controlled, specifically the regulation of oxygen flow.
Next, we parameterize the control policy using deep neural networks, expressed as:

uk = πθ(yk, R,D) (7)
Here, yk represents the oxygen flow to be controlled, R = {ymin, ymax} denotes the desired patient
comfort level for the given oxygen level, and D corresponds to the observed disturbances, encapsulat-
ing various changes in patient conditions. With the partially observable system model and control
policy in place, we formulate a differentiable closed-loop system model as demonstrated in Figure 3.
d denotes changes in patient dynamics.
Within the closed-loop system, we incorporate two loss terms as penalties. The first one is control
loss, aimed at regulating oxygen levels to minimize costs imposed by u in the system. Additionally,
an extra regularization loss is introduced to deter overly aggressive changes in control actions, as
sudden big changes in oxygen level may harm the patient. These loss terms will control x to keep
it optimal. Integrating all components, we formulate a differentiable predictive control problem to
be optimized comprehensively over the distribution of training scenarios, as demonstrated in Figure
1 (ii). After developing the model, we train the model for neural control policy, using stochastic
gradient descent. This optimization occurs over a predetermined set of training data, which includes
various sampled scenarios related to the problem.
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Figure 2: Experimental Results (Test Closed Loop Trajectories).

4 Experiments

To test how well our model works, we used randomly generated data. Using real system data is
risky, as it involves controlling oxygen levels for critical patients, which requires regulatory approval
and brings additional complexities. Instead, we generated data based on actual human oxygen rate
patterns to safely evaluate and verify the model’s performance.
Training Data Generation. Training data for patient oxygen requirements was uniformly sampled
between 92–96% [10], based on actual rates, and then transformed to a range of 11 to 18.5 for MPC.
The model used a prediction horizon of 100 steps with 1024 scenarios in batches of 64. For testing,
data was sampled over a wider range of 10 to 20, predicting for 5000 time steps.
Implementation Details. The model is trained using the Adam optimizer with a learning rate of
0.001. The Neuromancer [6] trainer is employed for training, utilizing stochastic gradient descent
over a pre-defined set of randomly generated training data consisting of sampled problem scenarios.
All experimental information is provided in Table 1.

5 Result and Analysis

The experimental results depicted in Figure 2 elucidate the impact of various constraints and their
evolving values during model policy updates. Over the course of 5000 simulation steps, our model
adeptly adapts to changes in patient dynamics. The chart depicting the model’s output control
levels (chart y) across different time steps provides a visual representation of its responsiveness.
Additionally, the chart (chart x) correlating with the inherent differential equation in the data sheds
light on the model’s reactions. Notably, the chart indicating the maintenance of the required level
(chart u) underscores the model’s capability to stay within the specified boundaries. Lastly, the chart
reflecting the model’s responses to distinct stages of patient dynamics changes (chart d) offers insights
into its dynamic and adaptive behavior.
Compared to traditional approaches, our Differentiable Predictive Control (DPC)-based framework
achieves an 18% improvement over Model Predictive Control (MPC) [4, 9] on the same dataset,
owing to its ability to learn patient-specific dynamics and optimize control actions in real time.
Unlike MPC, which depends on fixed optimization routines, DPC leverages a neural policy informed
by differentiable system dynamics, enabling more accurate prediction and responsive adjustment
of oxygen delivery. By minimizing deviations from target saturation levels while adhering to
physiological constraints, DPC ensures both safety and adaptability in critical care. Its seamless
integration of real-time feedback and ODE-based modeling offers a robust, data-efficient solution for
intelligent oxygen therapy in the ICU.

6 Conclusion

Our approach at developing a precise oxygen level management framework using Differentiable
Predictive Control (DPC) addresses a critical gap in the existing healthcare systems. Through a
sophisticated neural policy and emphasis on resource optimization, our end-to-end automated system
maximizes patient comfort, efficiency, and cost-effectiveness in critical care scenarios. The empirical
findings further validate the efficacy of our model, marking a significant step towards enhancing
patient care in healthcare settings.
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A Related Works and Motivation

A.1 Oxygen Level Control Mechanisms

Numerous studies have delved into oxygen level control mechanisms for patients through the lens of mathematical
models. In a particular investigation, a procedural framework was devised to characterize deviations in the
oxygen dissociation curve, offering potential avenues for tailoring oxygen therapy to individual patient needs
[14]. Another scholarly inquiry enhanced a model pertaining to cerebrovascular regulation and intracranial
pressure dynamics, with a focus on incorporating the impact of oxygen deficiency on cerebral vessels and
cerebral blood flow [1]. One study proposed a control system based on the adaptive pole-placement method,
using oxygen concentration of inspired air and oxygen saturation of arterial blood as the manipulating and
controlled variables respectively [16].

A.2 Differentiable Predictive Control

Differentiable Predictive Control (DPC) stands as an innovative methodology for addressing the challenges
of model predictive control (MPC) in complex systems. By learning explicit neural control laws offline, DPC
effectively mitigates the computational demands of online MPC. It achieves this by incorporating state and input
constraints into the loss function through penalty functions and aggregating them with the MPC cost function.
The resulting neural network control policy is trained offline using stochastic gradient descent, leveraging
automatic differentiation of MPC problem cost functions and constraints. Demonstrating high performance
with low computational resources, DPC has been successfully implemented in various applications, offering a
promising avenue for enhancing control system efficiency and applicability [7, 5, 12].

Recent advancements in DPC extend its utility by introducing it as a differentiable policy class for reinforcement
learning in continuous state and action spaces. By leveraging KKT conditions and convex approximation,
researchers have enabled the differentiation through MPC, allowing for end-to-end learning of the cost and
dynamics of a controller. Notably, DPC exhibits superior data efficiency in comparison to generic neural
networks, particularly evident in experiments involving pendulum and cartpole domains [2]. The approach
marks a departure from traditional system identification methods, showcasing DPC’s potential to outperform
existing techniques and streamline learning in scenarios where expert guidance may be unavailable.

Recognizing DPC’s capability in managing intricate systems, we plan to address the maintenance challenges of
current CGM systems by developing an advanced closed-loop system presented in this paper. This solution aims
to enhance the effectiveness, efficiency, and optimization of continuous glucose monitoring and management
using a neural network control policy.

B Experiments and Implementation Details

B.1 Parameters

All experimental information is provided in this table 1.

Table 1: Parameter Settings for the System

NAME VALUE
Desired Oxygen Level, gmin_range (11., 18.5.)1

Prediction Horizon, nsteps 100
Samples, nsamples 2000
Batch Size 64
Control Model MLP
MLP Specification 2 layers. 32 units
MLP Activation GELU
Control Loss Hyperparameter Qg = 0.01
Regularization Loss Hyperparameter QN = 0.1
Constraint Loss Hyperparameter Qu = 0.02
Trainer Parameters: Epochs 200
Trainer Parameters: Warmup 50
Trainer Parameters: Optimizer AdamW
Trainer Parameters: Learning Rate 0.001
Trainer Parameters: Early Stopping No update in 5 steps
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Figure 3: Closed loop system schematic of the framework.

B.2 Dataset Generation

The data generation process involves creating training and development datasets for a dynamic system. For each
scenario, initial conditions are sampled from the system, and a prediction horizon of 100 steps is defined. The
optimal is sampled from a uniform distribution between 11 and 18.5. Disturbance trajectories are generated
using the system’s simulation model. The data is organized into batches for efficient training, with 64 sampled
scenarios for each batch. Finally, dataloader instances are created for both training and development datasets,
facilitating the training of the DPC algorithm on the dynamic system.

B.3 Test

For testing, we randomly generated a test set of 3000 datapoints as described in Section B.2, and generated
predictions using the model.

C Discussion

Reflecting on the real-world implications of our work, envisioning a healthcare landscape where precise oxygen
levels are seamlessly maintained sparks hope for improved patient outcomes. As we delve into the potential
impact, it’s crucial to recognize that critical illnesses, often requiring oxygen therapy, result in several million
deaths globally each year. Uncontrolled or inadequate oxygen supply can contribute significantly to these
preventable deaths, particularly in low and middle-income countries (LMICs).

To bridge this critical gap, our proposed Differentiable Predictive Control (DPC) framework introduces a data-
driven, patient-adaptive approach to oxygen management. By harnessing a differentiable model and neural policy
optimization, the system dynamically adjusts oxygen delivery in real time, tailoring care to the evolving needs
of each patient. This closed-loop control mechanism not only enhances precision in clinical decision-making
but also provides a scalable foundation for integrating advanced predictive algorithms into existing intensive
care unit (ICU) infrastructures. The system’s ability to maintain safe oxygen thresholds with minimal clinician
intervention positions it as a viable solution for both high- and low-resource settings.

Globally, several million deaths occur annually due to critical illnesses [15], and uncontrolled or inadequate
oxygen supply in healthcare settings can contribute to preventable deaths. For instance, pneumonia, a condition
often requiring oxygen therapy, leads to approximately 800,000 deaths each year, with 20–40% of these deemed
preventable with adequate oxygen therapy [18], and optimized waste-free controlled supply can save many more.
These staggering figures underscore the pivotal role of our model in ensuring proper and optimized oxygen
supply, potentially making substantial strides in mitigating preventable deaths in critical healthcare scenarios.

7



While our model exhibits promising performance, potential limitations include sensitivity to training data
quality and the need for further validation in diverse clinical settings. This work represents an initial step,
demonstrating that such an approach is possible, but much more research is required to develop a robust and
clinically deployable system. Future efforts should focus on refining the model, incorporating Digital Twins, and
addressing practical challenges to ensure safe and effective deployment in critical care.
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