From Generalization Analysis to Optimization Designs for State Space Models

Fusheng Liu ' 2

Abstract

A State Space Model (SSM) is a foundation model
in time series analysis, which has recently been
shown as an alternative to transformers in se-
quence modeling. In this paper, we theoretically
study the generalization of SSMs and propose
improvements to training algorithms based on
the generalization results. Specifically, we give a
data-dependent generalization bound for SSMs,
showing an interplay between the SSM parame-
ters and the temporal dependencies of the training
sequences. Leveraging the generalization bound,
we (1) set up a scaling rule for model initialization
based on the proposed generalization measure,
which significantly improves the robustness of the
output value scales on SSMs to different temporal
patterns in the sequence data; (2) introduce a new
regularization method for training SSMs to en-
hance the generalization performance. Numerical
results are conducted to validate our results.

1. Introduction

Sequence modeling has been a long-standing research topic
in many machine learning areas, such as speech recognition
(Hinton et al., 2012), time series prediction (Li et al., 2019),
and natural language processing (Devlin et al., 2019). Vari-
ous machine learning models have been successfully applied
in sequence modeling to handle different types of sequence
data, ranging from the (probabilistic) Hidden Markov model
(Baum & Petrie, 1966) to deep learning models, e.g., Re-
current Neural Networks (RNNs), Long Short-Term Mem-
ory units (Hochreiter & Schmidhuber, 1997), Gated Recur-
rent Unit (Chung et al., 2014), and transformers (Vaswani
et al., 2017). In this paper, we focus on the state space
model (SSM), which has a simple mathematical expression:
K (t) = Ah(t) + Bx(t),y(t) = Ch(t) + Dx(t) where h(t)
is the hidden state, x(¢) is the input sequence, y(¢) is the

"Department of Mathematics, National University of Singa-
pore *Institute of Data Science, National University of Singapore.
Correspondence to: Qianxiao Li <qianxiao@nus.edu.sg>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Qianxiao Li'

output sequence and A, B, C, D are trainable parameters.
To simplify the analysis, we omit the skip connection by
letting D = 0. In fact, our analysis can also applied to
the case when D is included (see the discussions in Sec-
tion 4.2). Recent studies have demonstrated the power of
SSMs in deep learning. For example, it was shown in Gu
et al. (2022a) that by a new parameterization and a carefully
chosen initialization, the structured state space sequence
(S4) model achieved strong empirical results on image and
language tasks. Following the S4 model, more variants of
SSMs are proposed, e.g., diagonal SSMs (Gu et al., 2022b;
Gupta et al., 2022) S5 (Smith et al., 2023), H3 (Fu et al.,
2023), GSS (Mehta et al., 2023), Hyena Hierarchy (Poli
et al., 2023), and Mamba (Gu & Dao, 2023).

Theoretical analysis and understanding of the approximation
and optimization of SSMs are well studied in the literature
such as (Li et al., 2021; 2022; Gu et al., 2022a; 2023). Since
the SSM can be regarded as a continuous linear RNN model
(Li et al., 2022), most generalization analysis of SSMs is
based on the generalization theory of RNNs (Zhang et al.,
2018; Chen et al., 2019; Tu et al., 2019). However, these
previous works did not study the effects of the temporal de-
pendencies in the sequence data on the SSM generalization
(see more details on the comparison in Section 4.1). As an
attempt to understand the relationship between the temporal
dependencies and the generalization performance, this paper
aims to provide a generalization bound that connects the
memory structure of the model with the temporal structure
of the data. We can, in turn, use the proposed bound to guide
us in designing new algorithms to improve optimization and
generalization. Specifically, we discover two roles for the
proposed generalization measure: (1) generalization bound
as an initialization scheme; (2) generalization bound as a
regularization method. The common initialization method
for the S4 model and its variants follows from the HiPPO
framework (Gu et al., 2022a; 2023), which is based on the
prerequisite that the training sequence data is stable. To
improve the robustness of the output value scales on SSMs
to different temporal patterns in the sequence data, we con-
sider to rescale the initialization of SSMs with respect to
the generalization measure. This new initialization scheme
makes the SSMs more resilient on their initial output value
scales to variations in the temporal patterns of the training
data. Except for the initialization setup, our generalization

From Generalization Analysis to Optimization Designs for State Space Models

bound can also be served as a regularizer. Regularization
methods like weight decay and dropout are widely applied
to training SSMs, but the hidden state matrix A is not reg-
ularized because its imaginary part controls the oscillating
frequencies of the basis function A B (Gu et al., 2022b).
By taking into account the interaction between the SSM
structure and the temporal dependencies, we introduce a
new regularization method based on our bound, and it can
be applied to the hidden state space to improve the general-
ization performance. Combining the initialization scheme
and the regularization method, our method is applicable to
various tasks, ranging from image classification to language
processing, while only introducing a minimal computational
overhead. To summarize, our contributions are as follows:

* We provide a data-dependent generalization bound for
SSMs by taking into account the temporal structure.
Specifically, the generalization bound correlates with the
memory structure of the model and the (auto)covariance
process of the data. It indicates that instead of the weight
or the data norm, it is the interplay between the memory
structure and the temporal structure of the sequence data
that influences the generalization.

* Based on the proposed generalization bound, we setup an
initialization scaling rule by adjusting the magnitude of
the model parameters with respect to the generalization
measure at initialization. This scaling rule improves the
robustness of the initial output value scales on SSMs
across different temporal patterns of the sequence data.

* Apart from the initialization scheme, we design a new
regularizer for SSMs. Unlike weight decay, our regular-
izer does not penalize the parameter norm but encourages
the model to find a minimizer with lower generalization
bound to improve the generalization performance.

2. Related Works

Since a SSM is also a continuous linear RNN, there are three
lines of related work: generalization of RNNs, temporal
structure analysis on RNNs, and optimization of SSMs.

Generalization of RNNs. Existing works on the general-
ization of RNNs focus on the generalization error bound
analysis. Specifically, in the early two works of Dasgupta &
Sontag (1995) and Koiran & Sontag (1998), VC dimension-
based generalization bounds were provided to show the
learnability of RNNs. In recent studies, Zhang et al. (2018);
Chen et al. (2019); Tu et al. (2019) proved norm-based
generalization bounds, improving the VC dimension-based
bounds by the Rademacher complexity technique (Bartlett
& Mendelson, 2002) under the uniform-convergence frame-
work. In the overparameterization settings, it was shown
in Allen-Zhu & Li (2019) that RNNs can learn some con-
cept class in polynomial time given that the model size is

large enough. These generalization bounds, however, do
not take into account the temporal dependencies and their
effects on generalization. In this work, we provide a new
generalization bound by combining the memory structure
of the model and the temporal structure of the data.

Temporal structure analysis on RNNs. Sequence data has
long-range temporal dependencies across the time domain,
which notably set it apart from non-sequence data. Recent
studies have studied the effects of such temporal dependen-
cies on the approximation and optimization of RNNs. For
example, in the two works of Li et al. (2021; 2022), a “curse
of memory” phenomenon was discovered when using lin-
ear RNNs to model the temporal input-output relationships.
Particularly, when the target relationship between the input
and output has a long-term memory, then both approxima-
tion and optimization become extremely challenging. In
Wang et al. (2023), the “curse of memory” phenomenon on
approximation and optimization was extended to non-linear
RNNs based on the temporal relationships. In this paper,
we conduct a fine-grained analysis on the effects of the
temporal structure analysis on the generalization of RNNs.

Optimization of SSMs. RNN optimization is known for
two issues: training stability and computational cost (Bengio
et al., 1994; Pascanu et al., 2013). To address these issues
and capture the long dependencies efficiently in sequence
modeling, the S4 model was proposed by new paraemter-
ization, initialization and discretization (Gu et al., 2022a).
Recent variants for the S4 model simplified the hidden state
matrix by a diagonal matrix to enhance computational ef-
ficiency (Gu et al., 2022b; Gupta et al., 2022; Smith et al.,
2023; Orvieto et al., 2023). Regularization methods are also
applied for SSMs to prevent overfitting, such as dropout,
weight decay and the data continuity regularizer (Qu et al.,
2023). However, the principled way to regularize and initial-
ize the parameters still remains to be explored. In this study,
we design a new regularization and initialization scheme to
improve both optimization and generalization.

3. Preliminaries

In this section, we briefly introduce the SSM in Section 3.1

and the motivation for optimization designs based on the

generalization analysis in Section 3.2.

3.1. Introduction to SSMs

We consider the following single-input single-output SSM,
h'(t) = Ah(t) + Bx(t), y(t)=Ch(t),t>0, (1)

where x is the input from an input space! X :=
Co(R>o,R); y(t) € R is the output at time ¢; h(t) € R™

'A linear space of continuous functions from Rx¢ to R that
vanishes at infinity.

From Generalization Analysis to Optimization Designs for State Space Models

is the hidden state with A(0) = 0; A € R™*™ B ¢
R™*L C € RY™™ are trainable parameters. Then (1)
has an explicit solution y(t) = fot po(s)x(t — s)ds, where
po(s) := Ce?*B with § = (C, A, B). The function pg(s)
captures the memory structure of the model and the tem-
poral input-output relationship (Li et al., 2022). For the
S4 model and its variants (Gu et al., 2022a;b; Gupta et al.,
2022; Gu et al., 2023), (1) is usually discretized by the
Zero-Order Hold method, i.e., given a timescale A € R,
hgt1 = Ahk + Bitk, Y = Chk7 k= 0,1,...,
where A = e24, B = (A —1,)A"'B,C = C. Then,
yr = CA*Bxg + CA*'Bxy + ...+ OBxy, = [K * 7]
where K = (CB,CAB,...,CA¥B) and * represents to
convolution.

3.2. Motivation: a linear regression model

In this subsection, we use a linear regression model on non-
sequential data as an example to illustrate the connection
between the generalization analysis and the optimization
designs. This example then motivates us to extend the con-
nection to SSMs on sequential data.

Linear regression. We consider a simple linear model
y = 07z with input z € R, output ¥ € R and parameter
0 € R?. Let the training data {(x;,y;)}"; be i.i.d. sam-
pled from a distribution D such that ||z;|2 = 7, |y:| <
1(Vi € [1 : n]). Define the empirical risk £, (0) :=
L5 (0Tx; — y;)? and the population risk Lp(6) =
E, ,[(0 2 — y)?]. Then given a norm-constrained space
O := {0 € R?: ||0|]2 < R}, with probability at least 1 — 4,

21618 |£,(0)—Lp(0)] < (rR+1)*-0(\/log(1/8)/n). (2)

This is a well-known norm-based generalization bound
based on the Rademacher theory (Mohri et al., 2012), and
we provide a proof in Appendix B for completeness. Notice
that the key term 72 R? in the generalization bound (2) is
also an upper bound for the magnitude of the linear model
output, i.e., supyee (0" 2;)? < r?R%. Thus, we connect
the model stability with the generalization bound stability,
and this connection induces an initialization scheme for the
initialization 0) by setting ||6(®)|| ~ O(1/r). In particu-
lar, if we normalize each input x; such that r is also O(1),
then [|0(®) ||y ~ O(1). Since #(*) € R?, one possible initial-
ization scheme is that 6(°) follows a Uniform distribution
U[—1/+/d,1/+/d], which corresponds to the Kaiming ini-
tialization (up to some constant) (He et al., 2015). When
treating the term 72 R? as a regularizer to improve the gen-
eralization, we get the weight decay method, i.e., the {5
regularization w.r.t. ||f]|3. We summarize the above logic
chain that connects the generalization analysis with opti-
mization designs in Figure 1. Now for SSMs, we extend the
generalization analysis from non-sequential data to sequen-
tial data by taking into account the temporal structure of the

Initialization scheme: set 6, s.t. Complexity(6y) = O(1)

1

Generalization Estimate: GenError(6)

|

Regularization method: penalize Complexity ()

~ Complexity (0)
n

Figure 1. The logic diagram goes from generalization analysis to
optimization designs.

data. This linear regression example motivates us to apply
the same logic diagram (Figure 1) to the SSMs, and this is
exactly what we are going to present in the following part
of this paper.

4. Main results

In this section, we first give a generalization bound for SSMs
in Section 4.1, then we design a new initialization scheme
in Section 4.2 based on this proposed bound. Apart from
the initialization scheme, we introduce a new regularization
method in Section 4.3. Finally, we conduct experiments to
test the initialization scheme and the regularization method
in Section 4.4.

4.1. A generalization bound of SSMs

In this section, we present a generalization bound for the
SSM (1) and reveal the effects of the temporal dependencies
on the generalization performance. We show that our bound
gives a tighter estimate compared with previous norm-based
bounds through a toy example. Following the same notation
in Section 3.1, we define the empirical risk R,,(#) and the
population risk R, () as

n 2

)

T
/ po(T — s)x;(s)ds — y;
0

2

R, (0) :=E, /0 po(T — s)x(s)ds —y

where T' > 0 is some finite terminal time, the training se-
quence data {x;(¢)}?, are independently sampled from a
stochastic process with mean E[z(t)] := u(t) and covari-
ance E[(x(s)—p(s))(z(t)—p(t))] := K(s,t), and the label
y is generated by some underlying functional Hy : X — R,
ie., y = Hp(z). We assume that |y| < 1 forany z € X,
otherwise, we truncate the value of the label to 1. In the
next, we make an assumption on the normalized process

T(t) = (2(t) — u(t))/ K(t,1):
Assumption 4.1. The normalized process Z(t) is (1): al-
most surely Holder continuous, i.e., AL, H > 0, s.t.Vs,t €

From Generalization Analysis to Optimization Designs for State Space Models

[0,T),|2(s) — 2(t)] < L|s — t|fa.s.; (2): is o2-sub-
Gaussian for every ¢ € [0,7], i.e,, o > 0,s.t.Vu >
0, P (|Z(t)| > u) < 2exp(—u?/20?) forany t € [0, 7.

We leave the discussion of the assumption after the state-
ment of the main theorem. Now we proceed to bound gen-
eralization gap |R,(0) — R, (6)| by establishing uniform
convergence of the empirical risk to its corresponding popu-
lation risk, as stated in following theorem:

Theorem 4.2. For a SSM fOT po(T — s)x(s)ds, fol-
lowing notations and settings in Section 3.1 & 4.1,

T
we define Yo = supgeg [y |po(T —)| /K (s,5)ds +
SUPyco ‘fOT po(T — s)u(s)ds‘. Then under Assumption

4.1, given a parameter space © for 0, for any § € (0,1),
with probability at least 1 — § over the training sequences,

aip R.(0) — Ba®)] < (o170 2 GE))
oco T Vo)
Where O hides a constant that depends on o, L, H. The
proof is given in Appendix E. We see that this bound de-
creases to zero as the sample size n — oo, provided that the
terminal time 7 is finite and 1o grows slower than y/n. For
example, when the data statistics (e.g., u(s) and K (s, s))
are uniformly bounded along the time horizon, by the ex-
ponentially decay property of the SSM function py(s), we
have 1g is finite, then the generalization bound is O(1/+/n),
yielding that the mean and variance at each length position
together play important roles in generalization analysis.

Proof sketch. The proof is based on Rademacher theory
(Bartlett & Mendelson, 2002). The main difficulty is to
bound the Rademacher complexity of the SSM function
fOT po(T — s)x(s)ds for a stochastic process x(s). We
first use the Holder inequality to get an upper bound for
the Rademacher complexity w.r.t. the normalized process
Z(s), then combining Holder continuity and the heavy-
tail property in Assumption 4.1, we show the finiteness
of sup,c(o,7] Z(s). Finally we use an e-net argument to give
an explicit bound for the Rademacher complexity, which
then finishes the proof.

Discussions of Assumption 4.1. This assumption con-
tains two parts. Holder continuity is used to bound
SUp,¢(o,7] Z(s) and the Rademacher complexity of the SSM
function class. By the Kolmogorov continuity theorem
(Stroock & Varadhan, 1997), Holder continuity covers a
wide range of random process that satisfies certain inequal-
ities for its moments. For the sub-Gaussian property, it
ensures Z(s) is bounded in a finite time set with high proba-
bility. Sub-Gaussian random variables include Gaussian and
any bounded variables. Specifically, for image classification
tasks with flattened image pixels, if the range of the pixel
values is a finite class (e.g., integer numbers from 0 to 255),

then the Holder continuity condition can be dropped. We
leave more detailed discussions and provide some concrete
examples that satisfy Assumption 4.1 in Appendix C.

Comparison to previous bounds. Since a SSM is also a
continuous linear RNN model, we compare (3) with previ-
ous bounds for linear RNNs. In Chen et al. (2019), a gener-
alization bound O (||z||2||B||2||C]l2l|All2/+/n) is provided,
where ||z]|2 is the 2-norm of the discrete input sequence.
In the continuous case, ||z||2 corresponds to the L* norm
w.rt. a Dirac measure. By changing the matrix 2-norm
to matrix 1-norm, Tu et al. (2019) shows another similar
generalization bound. These bounds separate the data com-
plexity and the model complexity by the data norm and the
model parameter norm individually, and do not account for
the temporal dependencies across the time domain. In this
work, instead, we incorporate the temporal dependencies via
the sequence statistics (mean and variance) to get a general-
ization bound. Next, we use a toy example to illustrate that
our bound gives a tighter estimation. Given a stochastic pro-
cess {x(t)}+ejo,7) With mean p(t) and covariance K (s, t),
we consider the following two upscale transformations (by
increasing 1" to 27"):

1. left zero padding:
e 21(t) =0, €[0,7);21(t) = x(t = T),t € [T, 2T
2. right zero padding:

o x9(t) = x(t),t € [0,T];z2(t) = 0,t € (T, 27

Then the two SSM outputs are given by y;(27) =

fozT po(2T — s)z;(s)ds for i = 1,2. Hence,

T
y1(2T) = C/ eAT=%) Ba(s)ds,
0

T
y2(2T) = C’eAT/ eT=%) By (s)ds.
0

We see that the magnitude of y; (27") and y-(27) differs
with an exponential factor e4”. Since all the eigenval-
ues of A have negative real part, y2(27) — 0 as T in-
creases. Hence, the right zero padding transformation de-
generates the SSM function class to a zero function class
for large 7', inducing a minimal generalization gap that only
contains the statistical sampling error (see (3) by letting
K (s, s) = p(s) = 0). Therefore, a desired generalization
bound should reflect such a difference caused by the differ-
ent temporal dependencies. However, previous norm-based
generalization bounds do not capture such a difference for
these two transformations as they produce the same L? norm
for the input sequence. Let us see what happens for our pro-
posed generalization measure. For the left zero padding, the

From Generalization Analysis to Optimization Designs for State Space Models

key term in (3) becomes

T
1+/ ‘CeA(Tfs)B‘ VK (s,s)ds
0

T “
+ / CeT=%) Bu(s)ds
0
For the right zero padding, the key term in (3) becomes
T
1+ / ‘C’eATeA(T_s)B‘ VK (s,s)ds
0
&)

T
+ / CeATeAT=5) By(s)ds
0

The detailed derivations are given in Appendix D. By the
same argument, our bound (3) indeed captures the difference
on the magnitude of the generalization performance for
these two sequence transformations. In particular, as 7' —
o0, (5) reduces to 1, which yields a minimal generalization
gap as expected for the zero function class. In that sense,
we get a tighter bound for the SSMss.

Zero shot transferability. One benefit of SSMs is the zero-
shot transferability to other sampling frequencies (i.e., the
timescale measure in continuous case). For example, for
aSSM yr = fOT po(T — s)x(s)ds, if we downscale the
input sequence x(s) by half of the sampling frequency, then
the SSM output becomes yr = fOT/2 po(T — 25)x(25)ds,
which equals to fOT 1p9(T — s)z(s)ds. Now for a new
SSM parameter § = (2C, A, B), we have pg(s) = 2pe(s),
indicating that by simply modifying the SSM parameters,
one can transfer the model to half the sampling frequency
while keeping the output invariant. One advantage for our
generalization measure is that it is also zero shot transfer-
able. To see this, we use the same example here. Under the

downscale sampling, both fOT lpo (T — s)| /K (s,s)ds and
‘ fUT po(T — s) u(s)ds‘ remain invariant for the new param-

eter 0 because /K (s, s) and 1(s) have the same scaling as
x(s). Similarly, other sampling frequencies are also zero
shot transferable for our generalization measure by simply
adjusting the SSM parameters.

4.2. Generalization bound as an initialization scheme

In this section, we design a scaling rule for the SSM pa-
rameters at initialization based on the generalization bound
(3). This new initialization scheme improves the robustness
of the initial output value scales on SSMs across different
temporal patterns of the sequence data.

Our proposed initialization scheme is built on the HiPPO
based initialization (Gu et al., 2023), which is a data in-
dependent initialization method. Specifically, the HiPPO

framework initializes the hidden state matrices A, B to pro-
duce orthogonal basis functions, and the matrix C' to be
standard normal for training stability. However, the argu-
ment for the training stability relies on the prerequisite that
the input sequence is constant along the time index (Gu et al.
(2023, Corollary 3.4)), which has some limitations in appli-
cability as the long-range dependencies may lead to very
different temporal patterns on the input sequence. As the
dashed lines in the left and the right part of Figure 2 show,
the SSM output value scale and the loss value scale under
the HiPPO based initialization vary much across different
temporal dependencies, making the loss values inconsistent
during training. To address this issue, we follow the logic
diagram in Figure 1 by adjusting the generalization com-
plexity to be O(1). Specifically, we extract the dominant
term in the generalization bound (3):

T
7(0) := (/o lpo (T — s)| /K (s,s)ds

) 2
Notice that pg(s) = C'e®* B, if we rescale C'to £C for some
¢ € R, we have 7() = €2 - 7(0) for 0 = (£C, A, B). This
induces a new initialization scheme, i.e., once the parame-

ters ¢ = (C, A, B) are initialized by the HiPPO method, we
rescale C' to C' such that

(6

+ / po(T — s)u(s)ds

1
7(0)

é:

C. 7

This rescaling method guarantees the SSM output value
is bounded at initialization for any stochastic process that
satisfies Assumption 4.1, ensuring the robustness of the
initial loss value scales on SSMs across different temporal
structures. We formalize the statement in Proposition 4.3.

Proposition 4.3. Consider a SSM fOT po(T — s)x(s)ds
with 6 = (C, A, B), for any random process x(s) sat-
isfies Assumption 4.1, let ~C~’ be given by the rescal-
ing method (7), then for 0 := (C,A,B), we have

E, HfoT pg(T — s)x(s)ds } < O(1ogT). Here O hides
a constant that only depends on o and L as described in
Assumption 4.1.

The proof is provided in Appendix F. Proposition 4.3 shows
that the expected SSM output value are bounded for any
stochastic processes that satisfies Assumption 4.1, even
when the input sequence is not almost surely bounded. This
improves the robustness of the output value scales on SSMs
in the sense that the scale of the output value does not de-
pend on the variations of the temporal structures. It is worth
noting that different from normalization methods such as
min-max normalization and standardization, our method

From Generalization Analysis to Optimization Designs for State Space Models

Algorithm 1 Training an ¢-layer SSM with the scheme (7)

Algorithm 2 Training an ¢-layer SSM with the scheme (8)

1: Input: training sequences with length L, model dimension d,
projection matrix Cj of i-th layer, number of epochs S.
2: fors=0to S —1do

3: if s = 0 then

4: Sample a minibatch from the training sequences.

5 fori =1to¢do

6 Compute mean y; € RE*? and variance K; € RL*¢

for inputs of the i-th layer along the batch dimension.
{Inputs of the i-th layer depend on model parameters
of the first i — 1 layers.}

7: Calculate the SSM kernel k; € RE*¢ by the model
parameters of the i-th layer.

8: Ti [|ki*\/E+|k¢*,ui\]L€Rd

9: Averaging over the feature dimension: 7; < ||7:||3/d

10: Update: C; < Ci/\/Ts

11: end for

12: endif

13: Regular training procedure for the updated initialization
14: end for

1: Input: training sequences with length L, model dimension
d, initialization 6o, loss function L, regularization factor A,
optimizer OPT, number of epochs S.

2: fors=0to S —1do
3: Sample a minibatch from the training sequences.
4: Set total complexity 7 = 0.
5: fori=1to/do
6: Compute mean y; € R¥*¢ and variance K; € R**?
for inputs of the ¢-th layer along the batch dimension.
7: Calculate the SSM kernel k; € R**? by the model
parameters of the ¢-th layer.
9: Averaging over the feature dimension: 7; ||7;||3/d
10: Add the complexity of the i-th layer: 7 <— 7+ 7;
11: end for

12: Compute the training loss: £ < L+ X - T
13: Parameters update: 0; 41 < OPT(6;, L)
14: end for

output Updated model parameter 0,

only changes the model parameters. This is important be-
cause normalization on data numerical values in language
tasks can lead to loss of crucial information. For example,
mathematical expressions like “max(1,9) = 9” have a con-
textual meaning where normalization may result in the loss
of structured information that is essential to understand.

Implementation for high-dimensional, multi-layer SSMs.
In the practical training, the SSMs used for tasks such
as image classification or language processing are usually
deep and high dimensional (d > 1), while our initializa-
tion scheme (7) is designed based on the one-dimensional
shallow SSM. To extend to high-dimensional SSMs, we
empirically treat all features to be independent and calculate
7(0) by its average along the feature dimension. For an
£-layer SSM with the initial projection matrix C1, ..., Cy at
each layer, we first calculate the complexity measure 7y for
the first layer and rescale C, by C/ /71. Then we calculate
the complexity measure 75 for the second layer by the up-
dated input sequence of layer 2 and rescale Cy by C3//T2.
We repeat this process until the last layer. We describe the
complete procedures in Algorithm 1, where the | - | and
y/- in Line 8 represent to element-wise absolute value and
element-wise square root. [-];, extracts the last position of
an element obtained from the convolution. The extension of
our theory to the multi-layer case is an interesting direction,
which we leave for future work.

Skip connections and nonlinearities. There are several
gaps between the theory and the methodologies in this paper.
The first one that the skip connection matrix D is omitted in
our defined model (1). This will not affect our generalization
bound because we may express the explicit solution for (1)
asy(t) = fg (po(s)+Dd(s))x(t—s)ds where §(-) is a delta
function. In that case, the SSM is still a convolution model

but with a new kernel function py(s) + Dd(s). However,
the initialization scheme (7) only adjusts C' and requires the
kernel function to be linear in C'. Hence, (7) may not work
well when Dz (t) is much larger than fot po(s)x(t — s)ds.
However, we can still derive a proper rescaling scheme for
this case. One straightforward way is that we first calcu-
late 7(0) for a given initialization, and then rescale C, D as
C+/7(0) and D/+/7(0) respectively. This reinitialization
method guarantees that 7(0) = 1 after rescaling. The sec-
ond gap is that our theory is for single-layer linear SSMs.
When nonlinearities are added, our generalization bound
still works for single-layer SSMs if the nonlinearity does not
affect the Holder condition and the sub-Gaussian property
(Assumption 4.1). For Lipschitz (also Holder continuous)
nonlinearities, there are some known examples (see Ap-
pendix G) where the sub-Gaussian condition still remains
after the nonlinearity.

4.3. Generalization bound as a regularization method

In addition to its role as an initialization scheme, the general-
ization measure can also be regarded as a regularizer. In this
section, we utilize the bound (3) to design a regularization
method to improve the generalization performance, and si-
multaneously bring a little extra computational cost. For the
generalization bound (3), we consider to use the dominant
term (for large T) 7(6) defined in (6) as a regularizer. Then,
the new empirical risk with regularization is given by

R, (0) := Ry (0) + X - 7(6), ®)

where A > 0 is the regularization coefficient. When training
multi-layer SSMs, we calculate the complexity 7(6) in (8)
at each layer and add them together as a total regularization.
We describe the training procedures in Algorithm 2, where
the notations follow Algorithm 1.

From Generalization Analysis to Optimization Designs for State Space Models

Output norm at initialization

Gradient norm at initialization

Training loss for L = 1000

22 l“u\,mlhw\N*,\'\'\“\,-«‘\I"’/’-—\/,’\\\’l\,\-\,'* 28 AAL
z l”\n’,‘I' b
v {\llru | 0L
. U 1
21 _ 26 W HEALT
= 20)
=2 =
= _ i~ \ AR AL AL s a o A
Qz 11 =A%, VAL WX LY, 5 V"ot E
2—2
2—3

200 400 600 800 1000
length

0 0

---- No rescale, b=0.01
No rescale, b=0.1
---- Norescale, b=1

200 400 600 800 1000
length

0

—— + rescale, b=0.01
—— +rescale, b=0.1
—— +rescale, b=1

Figure 2. Effects of the initialization scheme (7) on the model output scale, the gradient norm and the training loss under different temporal
dependencies by varying the moment coefficient b = 0.01, 0.1, 1. (Left) The output E.[|yz|] at initialization w.r.t. the Gaussian white

noise sequence (1, . ..

,xr) forlength L from 1 to 1000; (Middle) The gradient norm ||V R,,(0)|| at initialization w.r.t. the mean squared

error (MSE) for varied sequence length; (Right) The training MSE curve for the Gaussian white noise with length L = 1000.

Computational cost analysis. From the training proce-
dures in Algorithm 2, we can see that the newly introduced
training complexity mainly comes from the calculation for
the convolution between the SSM kernel and the sequence
statistics (u, K). Since the convolution can be conducted by
the fast Fourier transform (Gu et al., 2022a) with complex-
ity O(bdLlog L) where b is the batch size. Then the new
complexity for Algorithm 2 becomes O((b + 2)dLlog L),
which is acceptable in the practical training. We also include
a concrete comparison of the running times in training real
datasets to confirm this in Table 2.

4.4. Experiments

This section contains experiments to demonstrate the effec-
tiveness of the proposed initialization scheme (7) and the
regularization method (8). We use a synthetic dataset and
the Long Range Arena (LRA) benchmark (Tay et al., 2021)
for numerical validations. To simplify the notation, we use
w/o (7, 8), w (7), w (8) and w (7, 8) to represent the baseline
training without rescaling and regularization, training with
rescaling, training with regularization and training with both
rescaling and regularization respectively.

A synthetic dataset. We consider a synthetic sequence
dataset generated by a Gaussian white noise. To more
closely resemble real datasets, we generate training in-
puts by sampling data from non-centered Gaussian white
noise with mean p(s) 1 and covariance K (s,t)
|b‘1/;€7((87t)/b)2’ which is a stationary Gaussian process
and satisfies Assumption 4.1 (see Section 4.1). Then we can
get different temporal dependencies by varying the coeffi-
cient b, i.e., as the magnitude of b decreasing, the temporal
dependence of the corresponding Gaussian white noise de-

i 1 _e—(x/b)?
creases as well. In particular, as b — 0, BT €

becomes a delta function §(z), entailing a zero temporal
dependence for the sequence data.

In the following experiment, we generate the sequence data
by the Gaussian white noise with b = [1,0.1,0.01]. For
each input sequence (z1,...,xr), its corresponding label
is obtained by sin(x[z,/9]), i.e., the sine value of the time-
lagged input. We use the S4-Legs model (Gu et al., 2022a)
(that only contains the convolution layer) to train the se-
quence data. More details about the experiment setup are
provided in Appendix A.1. In Figure 2, we plot the model
output E; [|yL|], the gradient norm ||V R,,(6)]| at initializa-
tion, and the training loss (w (7)) with different temporal
patterns by varying the Gaussian white noise parameter b.
We see that the initialization scheme (7) enhances the robust-
ness of the output value scales (matches with Proposition
4.3), gradient norm at initialization and also the training loss
value across different temporal structures. In Table 1, we
report the training loss, test loss and the dominant general-
ization measure 12 /\/n after convergence. By comparing
the final training loss with and without (7) in Table 1 (w/o
(7, 8) vs w (7) and w (8) vs w (7, 8)), we see that adding the
rescaling scheme (7) also improves the training performance
and makes the final training error more robust on different
temporal dependencies (by varying b). For the regularization
method (8), we compare the final test loss with and without
(8) in Table 1 (w/o (7, 8) vs w (8) and w (7) vs w (7, 8)).
We can see that the our regularization method improves the
generalization performance. Moreover, combining (7) and
(8), the model get the best test performance across various
temporal structures of the sequence data. The positive corre-
lation between the generalization measure 1 /y/n and the
test loss across different b indicates that our generalization
bound is able to capture different temporal dependencies.

LRA benchmark. For real datasets, we investigate the ef-

From Generalization Analysis to Optimization Designs for State Space Models

Table 1. Training loss, test loss and generalization measure 103 /+/n on Gaussian white noise sequences with different coefficients b
after convergence. By adding the initialization scheme (7), SSMs achieve better optimization performance and are more robust on the
final training loss value across different temporal dependencies. By adding the regularization term (8), SSMs get better generalization

performance (lower test loss).

Training loss (MSE) Test loss (MSE) Generalization measure ¥2 /y/n

b=1 b=0.1 b=0.01 b=1 b=0.1 b=0.01 b=1 b=0.1 b=0.01
w/o (7,8) | 0.1540.002 0.6710.00 2.501052 | 0.2540.01 1.014014 4701077 | 0.934020 5.1640814 46.2317.49
w (7) 01110006 0271002 0.2010.01 | 0.2010.003 0.7510.05 1.0610.12 | 0.4510.03 2.3610.44 7.19+1.60
w (8) 02110008 0971012 4.83+0.52 | 0.2210.008 0.87+0.07 3.99+0.09 | 0.5540.05 2.7610.23 22.4910.7s
w(7,8) | 0.1510.005 0.37£0.04 0.35:0.02 | 0.1810.004 0.59+003 0.601001 | 0.231001 0461012 0.461007

Table 2. Test accuracy and running time (per epoch on A100 GPU) on the LRA benchmark under different settings for different models.

Mean and standard error are reported based on 3 independent runs.

\ | ListOps | Text | Retrieval | TImage [Pathfinder | PathX | Average |
wlo (7, 8) 61.1610.32 | 88.6910.07 | 91.2110.17 | 87411014 | 95.8910.10 | 96.9710.31 86.89
w (7) 60.7910.26 | 88.5810.201 | 91.29 0.9 | 87.67+0.29 | 95.79+0.31 | 95.9910.18 86.69
w (8) 61.6310.10 | 88.80+0.27 | 91.1740.17 | 88.2710.14 | 96.02¢ 15 | 97.1819.20 87.18
S4-Legs w (7, 8) 61.04:‘:0‘25 88.53:‘:0‘04 9121:!:0.31 88.63i0_21 95.92:‘:0‘45 96.51i0.53 86.97
Time / epoch, w/o (7, 8) | Smin 39s 3min 24s 17min 21s Imin 55s 3min 25s 67min 41s | 16min 34s
Time / epoch, w (8) 6min 03s 4min 03s 19min 19s 2min 08s 3min 50s 73min 10s 18min 6s
wlo (7, 8) 60.8010.39 | 87.8710.03 | 90.6810.14 | 86.6910.29 | 94.8710.06 | 97.3410.07 86.38
w (7) 60.97i0_27 87.83i0_16 91.08i0_19 87.89i0_11 94-72i0.21 95~86i0.66 86.40
S4D-Legs w (8) 61.3210.43 | 88.0210.06 | 91.1040.11 | 87.9810.09 | 95.04 07 | 97.4610 15 86.82
w (7, 8) 61.48.10.00 | 88.19.10.42 | 91.25. 017 | 88121025 | 94.93 030 | 95.6310.4s 86.60
Time / epoch, w/o (7,8) | Smin 10s 3min 07s 16min 37s Imin 42s 3min 02s | 49min 39s | 13min 13s
Time / epoch, w (8) Smin 33s 3min 13s 18min 43s 1min 56s 3min 28s | 55min 33s | 14min 44s

fects of the initialization scheme (7) and the regularization
method (8) on the LRA benchmark, which contains 6 tasks
ranging from image classification to language processing.
We consider to train two base models: 6-layer S4-Legs (Goel
et al., 2022) and 6-layer S4D-Legs (Gu et al., 2022b). For
the S4-Legs model, the hidden state matrix A is a full matrix
while for the S4D-Legs model, A is a diagonal matrix. We
follow the training rules as described in Gu et al. (2023).
When training with regularization (8), we vary the regu-
larization coefficient A with 1073,10~%, 107 for ListOps,
Text, Retrieval, Image and Pathfinder tasks. For the most
challenging task PathX,)\ is taken from 10~*,1075,1076.
We report the best test accuracy when training with regu-
larization (8), and we include the exact running time for
each epoch in Table 2. Note that the reproduction of the
baseline numbers (w/o (7, 8)) is inconsistent with the results
in (Gu et al., 2022b). This is because we do not use the
same PyTorch version and CUDA version as suggested in
the official codebase, which may lead to the performance
difference. However, these slight differences do not affect
the scientific conclusions we draw from this paper.

By comparing the best test accuracy for w/o (7, 8) vs w (8)
and w (7) vs w (7, 8) in Table 2, we see that adding the

regularization (8) enhances the generalization performance
(test accuracy) in almost all the tasks for both S4-Legs and
S4D-Legs models. When only adding the initialization
scheme, by comparing w (7) vs w/o (7, 8), the rescaling
method becomes less effective compared to the synthetic
case. This is because for the LRA benchmark, we follow
the the original S4 paper (Gu et al., 2023) to add the batch
norm/layer norm to the model, which may potentially help
to decrease the temporal dependencies of the data, and thus
the rescaling method is not so much effective as in the syn-
thetic case. However, when combining the initialization
scheme (7) and the regularization (8), one can still get the
best test performance in half of tasks, indicating that our
proposed optimization designs help to improve the gener-
alization performance. We also compare the running time
without or with the proposed optimization designs. Since
(7) is conducted before training which will not introduce
additional training complexity, we report the running time
for w/o (7, (8)) and w (8) in Table 2. The results show
that the regularization brings a little extra computational
cost, matching the computational cost analysis in Section
4.3. We provide an ablation study for the regularization
coefficient A in Appendix A.2. Results in Table 5 and Table
6 show that the test accuracy is much more sensitive to A

From Generalization Analysis to Optimization Designs for State Space Models

for the Pathfinder and PathX tasks compared to other tasks,
which aligns with the findings of in Gu et al. (2023) that
challenging tasks are more sensitive to the hyperparameters.
More details on the dataset description and the experiment
setup are given in Appendix A.2. We include additional
experiment results in Appendix A.3 for small S4-Legs and
S4D-Legs with either smaller depth or smaller feature di-
mension. We can see in Table 9 that the improvements for
small models are more significant (e.g., nearly 2% on the
most challenging PathX tasks for S4-Legs and > 1% on the
average accuracy for S4D-Legs). We also provide compar-
isons for different regularization schemes for both synthetic
and real dataset. One regularization method is filter norm
regularization, i.e., we regularize the ¢, norm of the filter
po, and another is weight decay on the hidden matrix A.
Experiment results and details are shown in Appendix A.4.

5. Discussions

In this work, we study the optimization and the general-
ization for SSMs. Specifically, we give a data-dependent
generalization bound, revealing an effect of the temporal
dependencies of the sequence data on the generalization.
Based on the bound, we design two algorithms to improve
the optimization and generalization for SSMs across dif-
ferent temporal patterns. The first is a new initialization
scheme, by which we rescale the initialization such that the
generalization measure is normalized. This initialization
scheme improves the robustness of SSMs on the output
scales across various temporal dependencies. The second
is a new regularization method, which enhances the gen-
eralization performance in sequence modeling with only
little extra computation cost. However, our theory does
not apply to multi-layer SSMs and we do not address the
feature dependencies when calculating the generalization
measure (6) for high-dimensional SSMs, but simply treat all
the features independent. It is interesting to understand the
effects of depth and feature structures on optimization and
generalization of SSMs, which we leave for future work.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgement

We would like to thank the anonymous reviewers for their
constructive comments. Q. Li is supported by the National
Research Foundation, Singapore, under the NRF fellowship
(project No. NRF-NRFF13-2021-0005).

References

Allen-Zhu, Z. and Li, Y. Can sgd learn recurrent neural
networks with provable generalization? Advances in
Neural Information Processing Systems, 32, 2019.

Azmoodeh, E., Sottinen, T., Viitasaari, L., and Yazigi, A.
Necessary and sufficient conditions for holder continuity
of gaussian processes. Statistics & Probability Letters,
94:230-235, 2014.

Bartlett, P. L. and Mendelson, S. Rademacher and gaussian
complexities: Risk bounds and structural results. Journal
of Machine Learning Research, 3(Nov):463-482, 2002.

Baum, L. E. and Petrie, T. Statistical inference for proba-
bilistic functions of finite state markov chains. The annals
of mathematical statistics, 37(6):1554—-1563, 1966.

Bengio, Y., Simard, P., and Frasconi, P. Learning long-term
dependencies with gradient descent is difficult. /EEE
transactions on neural networks, 5(2):157-166, 1994.

Boucheron, S., Lugosi, G., and Massart, P. Concentration
Inequalities: A Nonasymptotic Theory of Independence.
OUP Oxford, 2013.

Chen, M., Li, X., and Zhao, T. On generalization bounds
of a family of recurrent neural networks. arXiv preprint
arXiv:1910.12947, 2019.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. Empirical
evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555, 2014.

Dasgupta, B. and Sontag, E. Sample complexity for learn-
ing recurrent perceptron mappings. Advances in Neural
Information Processing Systems, 8, 1995.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pp. 4171-4186.
Association for Computational Linguistics, June 2019.

Fu, D. Y., Dao, T., Saab, K. K., Thomas, A. W., Rudra, A.,
and Re, C. Hungry hungry hippos: Towards language
modeling with state space models. In The Eleventh Inter-
national Conference on Learning Representations, 2023.

Goel, K., Gu, A., Donahue, C., and Ré, C. It’s raw! audio
generation with state-space models. In International Con-
ference on Machine Learning, pp. 7616-7633. PMLR,
2022.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

From Generalization Analysis to Optimization Designs for State Space Models

Gu, A., Goel, K., and Re, C. Efficiently modeling long
sequences with structured state spaces. In International
Conference on Learning Representations, 2022a.

Gu, A., Gupta, A., Goel, K., and Ré, C. On the parameteri-
zation and initialization of diagonal state space models.
Advances in Neural Information Processing Systems, 35,
2022b.

Gu, A., Johnson, I., Timalsina, A., Rudra, A., and Re, C.
How to train your HIPPO: State space models with gen-
eralized orthogonal basis projections. In International
Conference on Learning Representations, 2023.

Gupta, A., Gu, A., and Berant, J. Diagonal state spaces are
as effective as structured state spaces. In Advances in
Neural Information Processing Systems, 2022.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-

national conference on computer vision, pp. 1026—1034,
2015.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r.,
Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath,
T. N, et al. Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research
groups. IEEE Signal processing magazine, 29(6):82-97,
2012.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735-1780, 1997.

Koiran, P. and Sontag, E. D. Vapnik-chervonenkis dimen-
sion of recurrent neural networks. Discrete Applied Math-
ematics, 86(1):63-79, 1998.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Ledoux, M. and Talagrand, M. Probability in Banach
Spaces: isoperimetry and processes. Springer Science &
Business Media, 2013.

Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y.-
X., and Yan, X. Enhancing the locality and breaking the
memory bottleneck of transformer on time series forecast-

ing. Advances in neural information processing systems,
32,2019.

Li, Z.,Han, J., E, W,, and Li, Q. On the curse of memory in
recurrent neural networks: Approximation and optimiza-
tion analysis. In International Conference on Learning
Representations, 2021.

Li, Z., Han, J., E, W,, and Li, Q. Approximation and opti-
mization theory for linear continuous-time recurrent neu-

ral networks. The Journal of Machine Learning Research,
23(1):1997-2081, 2022.

10

Linsley, D., Kim, J., Veerabadran, V., Windolf, C., and Serre,
T. Learning long-range spatial dependencies with horizon-
tal gated recurrent units. Advances in neural information
processing systems, 31, 2018.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y.,
and Potts, C. Learning word vectors for sentiment anal-
ysis. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Lan-
guage Technologies, pp. 142—-150. Association for Com-
putational Linguistics, June 2011.

Mehta, H., Gupta, A., Cutkosky, A., and Neyshabur, B.
Long range language modeling via gated state spaces.
In The Eleventh International Conference on Learning
Representations, 2023.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. Founda-
tions of Machine Learning. The MIT Press, 2012.

Nangia, N. and Bowman, S. R. Listops: A diagnostic dataset
for latent tree learning. arXiv preprint arXiv:1804.06028,
2018.

Orvieto, A., Smith, S. L., Gu, A., Fernando, A., Gul-
cehre, C., Pascanu, R., and De, S. Resurrecting recur-
rent neural networks for long sequences. arXiv preprint
arXiv:2303.06349, 2023.

Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty
of training recurrent neural networks. In International

conference on machine learning, pp. 1310-1318. Pmlr,
2013.

Poli, M., Massaroli, S., Nguyen, E., Fu, D. Y., Dao, T.,
Baccus, S., Bengio, Y., Ermon, S., and Ré, C. Hyena
hierarchy: Towards larger convolutional language models.
arXiv preprint arXiv:2302.10866, 2023.

Qu, E., Luo, X., and Li, D. Data continuity matters: Im-
proving sequence modeling with lipschitz regularizer. In
The Eleventh International Conference on Learning Rep-
resentations, 2023.

Radev, D. R., Muthukrishnan, P., and Qazvinian, V. The
ACL Anthology network corpus. In Proceedings of the
2009 Workshop on Text and Citation Analysis for Schol-
arly Digital Libraries (NLPIR4DL), pp. 54-61. Associa-
tion for Computational Linguistics, August 2009.

Smith, J. T., Warrington, A., and Linderman, S. Simplified
state space layers for sequence modeling. In The Eleventh

International Conference on Learning Representations,
2023.

Stroock, D. W. and Varadhan, S. S. Multidimensional diffu-
sion processes, volume 233. Springer Science & Business
Media, 1997.

From Generalization Analysis to Optimization Designs for State Space Models

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham,
P, Rao, J., Yang, L., Ruder, S., and Metzler, D. Long
range arena : A benchmark for efficient transformers. In
International Conference on Learning Representations,
2021.

Tu, Z., He, F., and Tao, D. Understanding generalization in
recurrent neural networks. In International Conference
on Learning Representations, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Vershynin, R. High-dimensional probability. University of
California, Irvine, 2020.

Wang, S., Li, Z., and Li, Q. Inverse approximation theory
for nonlinear recurrent neural networks. arXiv preprint
arXiv:2305.19190, 2023.

Zhang, J., Lei, Q., and Dhillon, I. Stabilizing gradients for
deep neural networks via efficient svd parameterization.
In International Conference on Machine Learning, pp.
5806-5814. PMLR, 2018.

11

From Generalization Analysis to Optimization Designs for State Space Models

A. Experiments details

In this section, we provide more details for the experiments of the synthetic dataset and the LRA benchmark in Section 4.4.

A.1. The synthetic experiment

For the Gaussian white noise sequences, we generate 100 i.i.d. sequences for training and 1000 i.i.d. sequences for test.
The timescale for the discrete sequences is set to be 1, i.e., to generate a Gaussian white noise sequence with length L,
we sample from a multivariate normal distribution with mean 1 and covariance matrix K; ; = h(¢ — j) for4,j € [1: L],

where h(t) = lb‘tﬁe’(t/ 5” The model that we use is the one-layer S4 model that only contains the FFTConv (fast Fourier
transform convolution) layer and without activation and the skip connection (D = 0) (Gu et al., 2022a). The state space
dimension for the FFTConv layer is 64, other settings such as the discretization, the initialization and the parameterization
follow the default settings in Gu et al. (2023), i.e., we use the ZOH discretization, the LegS initialization and the exponential

parameterization for the hidden state matrix A.

For the optimizer, we follow Gu et al. (2023) to set the optimizer by groups. For the (ZOH) timescale A, the hidden state
matrices A, B, we use Adam optimizer with learning rate 0.001, while for the matrix C, we use AdamW with learning rate
0.01 and decay rate 0.01. For all the parameters, we use the cosine annealing schedule. The batch size is set to be 100 (full
batch) and the training epochs is 100. The regularization coefficient A used for training with (8) is set to be 0.01 across all
the temporal patterns.

A.2. LRA benchmark

Datasets. The datasets in the LRA benchmark contain (1) ListOps (Nangia & Bowman, 2018), a dataset that is made
up of a list of mathematical operations with answers; (2) Text (Maas et al., 2011), a movie review dataset collected from
IMDB, which is used for sentiment analysis; (3) Retrieval (Radev et al., 2009), a task of retrieving documents utilizing
byte-level texts from the ACL Anthology Network. (4)Image (Krizhevsky et al., 2009), a sequential CIFAR10 dataset used
for sequence classification; (5) Pathfinder (Linsley et al., 2018), a task that requires a model to tell whether two points in
an image are connected by a dashed path. (6) PathX, a similar but more challenge task as Pathfinder with a higher image
resolution increased from 32 x 32 to 128 x 128.

Models. The models consist of S4-Legs and S4D-Legs. Both models use the default Legs initialization. Discretization and
model parameterization are set to be consistent with Gu et al. (2023). For the optimizer, we also follow the standard setup in
Gu et al. (2023) that the hidden state matrices are trained in a relatively small learning rate with no weight decay, while
other parameters are trained with AdamW with a larger learning rate. Let D, H, N denote the depth, feature dimension and
hidden state space dimension respectively, we summarize the model hyperparameters for S4-Legs and S4D-Legs in Table 3
and Table 4 respectively.

Table 3. List of the S4-Legs model hyperparameters for the LRA benchmark.

D | H | N | Dropout | Learningrate | Batchsize | Epochs | Weight decay
ListOps 6 | 256 | 4 0 0.01 32 40 0.05
Text 6 | 256 | 4 0 0.01 16 32 0.05
Retrieval 6 | 256 | 4 0 0.01 64 20 0.05
Image 6 | 512 | 64 0.1 0.01 50 200 0.05
Pathfinder | 6 | 256 | 64 0.0 0.004 64 200 0.05
PathX 6 | 256 | 64 0.0 0.0005 16 50 0.05

Ablation studies on A. When training with the regularization method (8), we vary the regularization coefficient A for
different magnitudes ranging from 10~% to 10~2 when the model performs best on the validation set. In Table 5 and Table
6, we report the test accuracy on the LRA benchmark with different A for the S4-Legs and S4D-Legs model respectively.
From the results in Table 5 and Table 6, we find that for both models, adding the regularization helps the generalization
performance (test accuracy) for all the tasks except for the Retrieval task trained by the S4-Legs model. In particular, the test
accuracy is much more sensitive to the regularization coefficient A for the Pathfinder and PathX tasks compared to other
tasks. For example, the variance of the test accuracy for the Pathfinder task is very high when A = 0.001. For the PathX
task, both the S4-Legs and the S4D-Legs model can not even learn the dataset when A = 0.0001. The high sensitivity of the

12

From Generalization Analysis to Optimization Designs for State Space Models

Table 4. List of the S4D-Legs model hyperparameters for the LRA benchmark.

D | H | N | Dropout | Learning rate Batch size Epochs Weight decay
ListOps 6 | 256 | 4 0 0.01 32 40 0.05
Text 6 | 256 | 4 0 0.01 16 32 0.05
Retrieval 6 | 256 | 4 0 0.01 64 20 0.05
Image 6 | 512 | 64 0.1 0.01 50 200 0.05
Pathfinder | 6 | 256 | 64 0.0 0.004 64 200 0.05
PathX 6 | 256 | 64 0.0 0.0005 16 50 0.05

Table 5. Test accuracy for S4-Legs on LRA benchmark by varying the regularization coefficient A.

ListOps
A=0 61.1610.32
A=10"° 61.3640.30
A=10"1 61.1149.10
A=10"° 61.63.10
Image
N=0 | 874101
A=10"° 87.43 .33
A=10"1 87.4510.39
A=10"° 88.27 1014

Text

A=0 88.6910.07
A=10"° 88.80.27
A=10"1 88.6640.20
A=10"3 88.7140.12
Pathfinder

A=0 95.8910.10
A=10"° 96.02 16
A=10"1 95.8140.33
A=10"3 89.064+5 31

Retrieval
N=0 | 91.2150.7
A=10"° 91.174+0.17
A=10"+1 89.77 4998
A=10"3 88.2545.66
PathX
X=0 | 96970
A=10"6 97.18_.20
A=10"° 97.1640.13
A=10"* X

Table 6. Test accuracy for S4D-Legs on LRA benchmark by varying the regularization coefficient \.

ListOps Text Retrieval
A= 60.80+9.39 A=0 87.87+0.03 A=0 90.6810.14
A=10"° | 60.851¢.62 A=10"° | 87.6410.17 A=10"° | 91.0440.13
A=10"" [60.8010.44 A=10"" | 87.87 (.36 A=10"" 19095402
A=10"° 61.321(43 A=10"3 88.02. .06 A= x10"3 91.10¢.11
Image Pathfinder PathX
A=0 86.69i0_29 A=0 94-87i0.06 A=0 97~34:t0.07
A=10"" | 86914012 A=10"" | 95.04..07 A=10"% 97321914
A=10"%] 86.9610.22 A=10"%1] 94.38.¢ 15 A=10" [97.46..15
A=10"" | 87.980.09 A=10"7 | 64.56419.94 A=10"* X
Table 7. List of the small S4-Legs model hyperparameters for the LRA benchmark.
D | H | N | Dropout | Learningrate | Batchsize | Epochs | Weight decay
ListOps 4 | 128 | 64 0 0.01 50 40 0.05
Text 4 | 128 | 64 0 0.01 50 50 0.0
Retrieval 419 | 4 0 0.01 64 20 0.05
Image 4 | 128 | 64 0.1 0.01 50 100 0.05
Pathfinder | 6 | 128 | 64 0.0 0.004 64 40 0.01
PathX 4 |1 96 | 64 0.0 0.0005 64 50 0.05

model in the hyperparameter aligns with the numerical findings in Gu et al. (2023).

13

From Generalization Analysis to Optimization Designs for State Space Models

Table 8. List of the small S4D-Legs model hyperparameters for the LRA benchmark.

D | H | N | Dropout | Learning rate Batch size Epochs Weight decay
ListOps 4 | 128 | 64 0 0.01 50 40 0.05
Text 4 | 128 | 64 0 0.01 50 50 0.0
Retrieval 4|1 9 | 4 0 0.01 64 20 0.05
Image 4 | 128 | 64 0.1 0.01 50 100 0.05
Pathfinder | 6 | 128 | 64 0.0 0.004 64 40 0.01
PathX 4 | 96 | 64 0.0 0.0005 64 50 0.05

Table 9. Test accuracy and running time (per epoch on A100 GPU) on the LRA benchmark under different settings for small S4-Legs and
S4D-Legs. Mean and standard error are reported based on 3 independent runs.

‘ | ListOps | Text | Retrieval | Image [Pathfinder | PathX | Average |
w/o (7, 8) 55.3840.76 | 84.7240.40 | 85.75+0.46 | 82.07+0.11 | 89.3610.38 | 88.75+0.62 81.01
w (7) 53721159 | 85214021 | 84471150 | 83. 71021 | 89.16471 38 | 88.9641 2 80.87
w (8) 55431155 | 85124034 | 83.3041,75 | 83.8640.25 | 89.39+10.34 | 90.70.0.61 81.30
S4-Legs w (7, 8) 54971030 | 85271021 | 85.8210.42 | 84.74 015 | 88.6410.36 | 90.1910.90 81.61
Time / epoch, w/o (7, 8) | 2min 06s 50s Smin 57s 33s 2min 13s 10min 33s | 3min 42s
Time / epoch, w (8) 2min 18s 52s 6min 28s 37s 2min 31s 11min 46s | 4min 6s
wlo (7, 8) 55174020 | 83.6010.00 | 89.1210.14 | 81.0710.30 | 87.2810.47 | 89911053 81.03
w (7) 55.80+0.11 | 85.3040.10 | 89.3210.17 | 82.35+0.56 | 88.0010.82 | 90.1510.86 81.82
S4D-Legs w (8) 56.45_ 033 | 84.8610.33 | 89.2110.09 | 82.3910.18 | 87.86+0.31 | 90.95. 021 81.95
w (7, 8) 55821066 85'50i0A06 89-34&0‘04 83.79i029 88.53:&0‘69 90-51i1.01 82.25
Time / epoch, w/o (7, 8) 1min 53s 47s Smin 40s 29s 2min 9min 52s | 3min 27s
Time / epoch, w (8) 2min 11s 48s 6min 15s 34s 2min 16s 11min 05s | 3min 52s
Table 10. Test accuracy for small S4-Legs on LRA benchmark by varying the regularization coefficient \.
ListOps Text Retrieval
A=0 55.3840.76 A=0 84.72¢.40 A=0 85.7510.46
A= 10_5 55‘32i1.03 A= 10_5 84.74i0.21 A= 10_5 83.3011_75
A=10"4 5543, 55 A=10"4 84.621¢.18 A=10"4 82.7141.18
A=10"3 | 5533044 A=10"3 | 85121034 A=10"3 | 82.0910.41
Image Pathfinder PathX
A=0 82.0710.11 A=0 89.361¢.38 A= 88.7510.62
A=10"" | 82.80,0.39 A=10"7°| 89.39 34 A=10"%] 88.511070
A=10"1 82.9840.15 A=10"1 89.2040.19 A=10"° 89.7140.40
A=1073 83.860.25 A=10"3 50.5410.01 A=10"1 90.70+0 61

A.3. Additional experiment results for small SSMs

In this section, we include more experiment results for smaller size of S4-Legs and S4D-Legs on the LRA benchmark. The
best test accuracy results and the running time for the small models are reported in Table 9. The details for the model size
and hyperparmeters are provided in Table 7 and Table 8, where the notations follow from Table 3. The ablation studies on
the regularization coefficient A (without the initialization scheme (7)) for the small S4-Legs and S4D-Legs are given in
Table 10 and Table 11.

From Table 9, by comparing the test performance for w/o (7, 8) vs w (8) and w(7) vs w (7, 8), we can see that the
regularization scheme (8) helps to improve the test performance for all the tasks except the Retrieval task for S4-Legs. This
is also verified in the ablation studies of the regularization coefficient A, as shown in Table 10 and Table 11. Combining the
initialization scheme (7) and the regularization method (8), more than half of the tasks can achieve the best test accuracy. For

14

From Generalization Analysis to Optimization Designs for State Space Models

Table 11. Test accuracy for small S4D-Legs on LRA benchmark by varying the regularization coefficient A.

ListOps Text Retrieval
A=0 55.1719.20 A=0 83.600.09 A=0 89.1210.14
A=10""° 56.45 ¢ 33 A=10"° 84.13 .48 A=1077 89.21. .09
A=10"1 56.0311 36 A=10"1 84.484¢.20 A=10"1 89.1840.11
A=1073 55.4810.50 A=10"3 84.86. 35 A= x1073 88.97 10.07
Image Pathfinder PathX
A=0 81.07+0.39 A=0 87.2810.47 A=0 89.91419.53
A=10"° | 81.394¢.35 A=10"° | 87.86.¢.3; A=10"% | 89.79.1 65
A=10"1 81.7110.39 A=10"1 50.14 19 57 A=10"7 90.95_ ¢ 21
A=10"3 | 82.39.(.15 A =103 | 50.541¢.00 A=10"% | 86.324; 53

Table 12. Test loss for different regularization methods on synthetic data after convergence.
Test loss (MSE)
Weight decay on A Filter norm regularization

w/o (7, 8) w (8)

b=1 02541001 0.22.0.008 0.24+0.004 0.22, ¢ 007
b=0.1 | 1.014914 0.874007 0.9710.07 0.96+0.12
b=0.01 | 4704077 3.594+0.09 4.2340.23 4.6110.73

both S4-Legs and S4D-Legs, integrating the two methods (7) and (8) induces the best average test accuracy across all the 6
tasks in the LRA benchmark. Therefore, our methods also work for small size of SSMs with a little extra computation cost.

A.4. Comparisons with different regularization schemes

In this section, we add two additional regularization schemes for comparison.

1. Filter norm regularization. We regularize the {5 norm of the filter py, i.e., when calculating the regularization measure
7(0), we simply take u(s) = 0 and K (s, s) = 1 to ignore the effects of the temporal structure of the data.

2. Weight decay on the hidden matrix A. In the original S4(D) papers (Gu et al., 2022a;b; 2023), the default training
methods do not apply weight decay to the hidden matrix A, and there is no known ablation study on the effect of weight
decay on A. Here we add weight decay to compare with the proposed regularization schemes.

For synthetic task, we follow the experiment settings in the main paper. The filter norm regularization results are obtained by
following the same training settings in the paper. The weight decay results are chosen from the best weight decay coefficient
from 1073,1072,1071,10°, 10'. We report the test loss in Table 12. For the LRA benchmark, we also follow the same
training setup in the paper to compare the performance of different regularization schemes on the S4-Legs model. The
test accuracy for each task is shown in Table 13. From the synthetic results, we see that our regularization scheme can
achieve the best performance compared to the other regularization schemes across different temporal structures. For the
LRA benchmark, the proposed regularization scheme also achieves the best performance on the average accuracy across
different tasks. In particular, for the ListOps task, weight decay performs much worse than the other regularization methods.

B. Proof for the linear regression result in Section 3.2.

In this section, we give the proof for the generalization bound (2). The proof is based on the following uniform-convergence
generalization bound in Mohri et al. (2012).

Lemma B.1. Consider a family of functions F mapping from Z to [a,b]. Let D denote the distribution according to which
samples are drawn. Then for any § > 0, with probability at least 1 — § over the draw of an i.i.d. sample S = {z1,...,z,},

15

From Generalization Analysis to Optimization Designs for State Space Models

Table 13. Test accuracy for different regularization methods on the LRA benchmark for S4-Legs.

S4-Legs ListOps Text Retrieval Image Pathfinder PathX Avg
w/o (7, 8) 61.1610.32 | 88.6910.07 | 91.2140.17 | 87.4140.14 | 95.8940.10 | 96.9710.31 | 86.89
w (8) 61.63.10.10 | 88.8010.27 | 91.1710.17 | 88.2710.14 | 96.0210.16 | 97.1810.20 | 87.18

Weight decay for A 49-90:|:0‘67 86.58:&0.91 91.21:‘:0,17 87.65:&0,15 96.00:‘:0,09 97.22:|:0‘05 84.76
Filter norm regularization 61.53i0_39 88.88i0,13 91-4410408 87.70i0_20 95.83i0,14 97-16i0.16 87.09

the following holds for all f € F:

Beun [f(2)] = = 3 f(z0) < 2Rs(F) +3(b— a) logéﬂ

n 4 n
1=1

where Rg(F) is the empirical Rademacher complexity with respect to the sample S, defined as: Rg(F) =
Eo [supse - LN Loif(z)]. {oi}i, are iid. random variables drawn from U{—1,1} with P(o; = 1) = P(0; =
~1) =0.5.

And the Talagrand’s contraction lemma Ledoux & Talagrand (2013).

Lemma B.2. Let H be a hypothesis set of functions mapping X to R and V1, ..., V,,, u-Lipschitz functions for some
w > 0. Then, for any sample S of m points x1, ..., x,, € X, the following inequality holds

Now we begin our proof:

Proof. First, notice forany ¢ € [1 : n] and € ©, we have
(0T x; —y:)? <2007 2:)% 4+ 22 < 2r°R* + 2

Second, note that (0" x; — y;)? is 2 SUPgeo,ic[iin] |07 2; — y;|-Lipschitz (the maximum gradient norm) with respect to
0T x; — y;, and we can bound the Lipschitz constant as

2 sup |0 @ —y] <2rR+2
0€©,ic[1:n]

16

From Generalization Analysis to Optimization Designs for State Space Models

Then by Lemma B.2, the Rademacher complexity for the linear model is bounded as

n

sup Z oi(0 i — yi)?
I0ll2<R i

2rR+2
n

1
RS(f) = EEU

IN

Ey, | sup oi(0 i — yz)‘|
LeugR;

2rR +2 -
= Q]E(7 sup Z o0z,
n oll2<R %=

2 1
R(rR +)Eo
n

n
E 0idyq
i=1

2
2R(rR +1)

n

Eq

n
E 0i&sg
i=1

2R(rR+1) |
=1

n

< 2rR(rR+1)
AL

Combining with the function value bound, we get the desired bound (2) by Lemma B.1. O

C. Detailed discussions of Assumption 4.1
In this section, we add more discussions on the Assumption 4.1 and provide some concrete examples for the stochastic
processes that satisfy the assumption. We first write down the complete description for the Kolmogorov continuity theorem.

Lemma C.1 (Kolmogorov). Let {X,};>¢ be a real-valued stochastic process such that there exists positive constants
«, B, C satisfying

E[|X; — X,|°] < CJt — s|**+7
for all s,t > 0. Then X has a continuous modification which, with probability one, is locally v-Holder continuous for every
0<vy<f/

In the case of Brownian motion on R, the choice of constants & = 4, 5 = 1, C' = 2 will work in the Kolmogorov continuity
theorem. When it comes to the Gaussian process, we have the following theorem (Azmoodeh et al., 2014, Theorem 1.) that
gives a necessary and sufficient condition for Holder continuity.

Lemma C.2. A centered (mean zero) Gaussian process X is Holder continuous of any order a < H, i.e.,
[X¢ = Xo| < Ceft — 5|77, Ve € (0,H)
if and only if there exists constants c. such that
E[(X; — X,)?] <c(t—s)?H7%, Vee (0,H)

For a stationary Gaussian process with covariance K (s — t), the Holder continuity (in expectation) assumption is equivalent
tol— K(s—1t)/K(0) < co(t —5)?*/2 for any a € (0, H). Now combining these results, we see that for any stationary
Gaussian process with continuous mean 4(t), covariance K (s —t),and 1 — K (s —t)/K(0) < co(t — 5)2%/2,Va € (0, H),
it satisfies Holder continuity in Assumption 4.1. As for the sub-Gaussian property, since the normalized Gaussian process

X, is standard normal at each time ¢, then any Gaussian process that satisfies Holder continuity automatically satisfies the
sub-Gaussian property in Assumption 4.1. Concrete examples include:

* identical sequences: x(t) = x for all t € [0, T, where z ~ N (0, 1)

17

From Generalization Analysis to Optimization Designs for State Space Models

* Gaussian white noise: u(t) = 0, K(s,t) = ‘bltﬁe’((sft)/b)rz for some b # 0

* Ornstein-Uhlenbeck process: uu(t) = 0, K(s,t) = e~ 157l

Relaxations of Assumption 4.1. In fact, Assumption 4.1 is used to show upper bounds for two key terms (13) in the proof
of Theorem 4.2. In particular, the sub-Gaussian property in Assumption 4.1 guarantees that the input random process is
bounded in a finite time set with high probability. The Holder condition then ensures the boundedness in a infinite time
sett € [0, 7). Thus, if the input random process is from a finite subset of R, then the Holder condition can be removed.
For example, in computer vision tasks when the input image is flattened as a sequence, the range for each pixel value is a
finite set (for a MNIST image, each pixel value is a positive integer between 0 to 255). In that case, the Holder continuity
condition in Assumption 4.1 can be dropped.

D. Derivations for (4) and (5) in Section 4.1

For the left zero padding transformation, the key term in (3) becomes

2T
/ 100 (2T — #)| /KL (t, t)dt + +1
0

2T
| ot =t yar

T T
= [oo =) VRGOt | [po(7 Ot +1

For the right zero padding transformation, the key term in (3) becomes

/ T —) Rl Bt + / " 0T — sty + 1
0 0

T T
:/O lpe (2T —)| /K (£, t)dt + /0 po(2T —)pu(t)dt| + 1

T T
:/ ‘CeATeA(T_t)B’ VK (t,t)dt + / CeATeAT=Y By(t)dt| + 1
0 0
Then we get (4) and (5).
E. Proof for Theorem 4.2

In this section, we will prove Theorem 4.2. Before moving into the formal proof, we first introduce some useful lemmas that
help to build the proof.

The first lemma is the Massart Lemma for the Rademacher complexity with finite class.

Lemma E.1 (Massart). Let A be some finite subset of R™ and o1, . .., 0., be independent Rademacher random variables.
Let r = sup,¢ 4 ||a||. Then, we have,

E, lsup Zaiai] < ry/2log|A|
acA i—1

The second lemma is to bound the supremum of a stochastic process that is Holder continuous and sub-Gaussian.

Lemma E.2 (Holder maximal inequality). Suppose { X }¢c(o,1] is a centered Holder process, i.e., AL, H > 0,5.t.| X —
X;| < Lls — t|2,Vs,t € [0,T). If further X; is o-sub-Gaussian for every t € [0,T), i.e., Yu > 0, P (| X;| > u) <
2exp(—u?/20?) for some o > 0. Then with probability at least 1 — §,

sup |X¢| < L+ o0+v/2log(27/6).

t€[0,T]

18

From Generalization Analysis to Optimization Designs for State Space Models

Proof. The proof is based on the £-net and covering number argument. We first discretize the time interval [0, T'] into N parts
[0,T/NJU[T/N,2T/N]---U[(N —1)T/N,T]. Then for any time ¢ € [0, T, there exists aw(t) € {0,T/N,...,(N —
1)T/N} such that [t — 7(t)| < T'/N. Therefore, by Holder continuity, we have

H
T
sup 11 < sup X~ XKoo+ swp [Xagl <2(3p) + _max Xyl
te[0,T] te[0,7T] te[0,T] N i€[0:N—1]

Since X; is sub-Guassian for every time ¢ € [0, T, then for each i € [0 : N — 1], by letting u = o+/210g(2N/d), we have

with probability at least 1 — §/N,
Xir/n < 0y/210g(2N/6).

Taking the union bound over all ¢ € [0 : N — 1], we have with probability at least 1 — 4,

ze[%lz%/x]XzT/N < ov/2log(N/§).

Hence,

T\H
sup X; <L (N) + o+/210g(2N/6)

t€[0,T]

holds for all N. Here we simply take N = [T] 4 1, then we get

sup X; < L+ o+/2log(2T/9).

te[0,7]

Now we are ready to prove the main result Theorem 4.2.

Proof. We let gg(x fo po(T — t)x(t)dt — y, then the generalization gap is given by

Cgg(@) + .+ gy(wn)
n

Now let hypothesis space F = {x + g2(z) : § € O}, then its empirical Rademacher complexity is given by
RS(]:) =E, lsup Zazge wz]

pco
/ ()t —

By the Talagrand’s contraction Lemma B.2, since g3 (z;) is 2 SUPgeo,ic[1:n [90(2i)| Lipschitz, we have

fIE sup Z o;

0eo

1
Rs(F) <2 sup |go(i)| —E;
0€0,ic[1:n] n

. 2 SUPgeo,ic[1:n] |99 (xl)|
n

From Generalization Analysis to Optimization Designs for State Space Models

Now we separate the expectation into two parts: the unbiased part invovled with z;(¢) — u(¢) and the biased part p(t), by
noticing that

E, sup/ po(T —1t) Z aixi(t)dt]

0ce Jo

=E, sup/ T —1t) Zaz))dt+/ pg(Tt)Zoi,u(t)dt]

0€O
[T T n

<E, sup/ T—1t) oix;(wu(t))dt| + E, sup/ po(T —t o p(t)dt
[oc0 Jo Z) 0ee Jo (>;)

For the unbiased part, by the Holder’s inequality, for any p, ¢ € [1, oo] such that 1 + = =1,

E, [Sup/ —t ZUZ (x;(t))dt]

0ce

T 1/p T
< sup (/ p§<T—t>|Kp/2<t,t>dt> E, (/
A<(C] 0 0

For the biased part,

- (t) — u(t) ®
Z o, 2 — MY

= K(t,t)

q 1/q
dt>

T
E, / po(T = Du(t)dt| E

T
sup/ po(T —1) ZU““ dt] < sup
0

0€o i—1 UG

< sup (10)

USC]

T
/0 po(T — t)p(t)dt

n sup
0co

/0 po(T — t)u(t)dt

Now for the unbiased part (9), we take p = 1, ¢ = co. Then we have

E, [SUP / po(T — 1)) oilwi(t) — u(t))dt]
=1

0€0 Jo

<sup</0 lpo (T —)|V K ttdt)]E,,lsup

e te[0,T] |;=1

- (t) — p(t) (11)
4CEit 7Mt
2o K(t, 1)

|

Also by the same argument, note that

sup |go(zs)|
0€0,ic[1:n]

= sup
0€0,ic[1:n]

T
/0 po(T — t)as(8)dt — y,

(12)
< sup
0€0,i€[1:n]

T
<sup(/ lpo (T —t)| VK ttdt) sup

0co 1€[1:n],t€[0,T)

+ sup
0€0

T T
/0 po(T — t)(s(t) — plt))dt / po(T — pu(t)dt| + 1

xl(t)

-+ sup
K

0€©

/?Rpg —)ut)dt] + 1

20

From Generalization Analysis to Optimization Designs for State Space Models

Thus, there are two terms that we need to bound:

n

zi(t) — p(t)
K(t,t)

i(t) - p(t)

su
L K1)

i€[1:n],t€[0,T]

(13)

, Eq | sup
te(0,T] |;=1

@i (1) —p(t)
VE(t,t)
continuous and o2-sub-Gaussian on ¢ € [0, T]. Therefore, we can directly apply Lemma E.2 and get with probability at

least 1 — §/3n,

For the first term, notice that the normalized Gaussian process is centered. By Assumption 4.1, it is Holder

z;i(t) — p(t)
K1)

< L+o04/2log(6Tn/é), Vi=1,...,n

Now by taking a union bound over i = 1,.. ., n, we get with probability at least 1 — §/3,

%@%WWWSL+U¢M%wWMﬂ (9

K(t,t)

te[0,T)

sup
i1€[1:n],t€[0,T]

For the second term, we apply the e-net and covering number argument as in Lemma E.2. We discretize the time interval
[0,T] into N parts [0,T/N]U[T/N,2T/N]---U[(N —1)T/N,T], then for any ¢ € [0, T, there exists a sub-interval such
thatt € [(k — 1)T/N, kT /N] for some k € [1 : N]. Therefore, V¢ € [0,T] such that ¢ € [(k — 1)T'/N, kT /N] for some
k € [1: N], by Holder continuity in Assumption 4.1 for the normalized process, we have

n s (55) - (U57) w (UF) 0 (5F) - s
;G \/K (k=1)T 1)T (k— l)T) ZUZ \/K (k=1)T 1)T (k— 1)T) - K(t’,ut)

N

(k—1)T — (k=1)T H
< k:r?,?%{,N Za \</K (k)l)T (E 1;;)) + ||0'||\/7€L (i;_)

- n ((k l)T) _M((k l)T) o <]7\;)H

k:l,...,N \/K (k=1)T 1)T (k— l)T)

Then by the Massart Lemma E.1 and the sup norm bound (14), with probability at least 1 — §/3,

n

xi(t) — p(t)
; 7 K(t,t)

IN

(k—1)T (k—1)T "
(1) — T T
E, | sup M <E, max Zai () () +nlL <T>
te(0,7] |53 K(t,t) k=1,..., \/K (k=1)T 1T (k=1)T 1)) N
< +/2nlogN - sup M +nL <T>H
N i€[1:n],t€[0,T) K(t,t) N

< V2nlog N (L +0+/210g(6Tn/)) + L. <J€)H

Since N is an arbitrary integer number, we let N = [Tnl/ A1 41, then we get

DLzt — ot
Z"i (t) — p(t)

E, | su
l b K(0,1)

te(0,T] |;=1

<O (\/n -log N - log(Tn/6))

< O (v/nlog(NTn/s))
= O (V/nlog(Tn/é)) .

15)

21

From Generalization Analysis to Optimization Designs for State Space Models

Combining (14), (15), (10) and (11), we can further bound (12) as

sup |gg(x;)| < sup (/ lpo (T —t)| /K (t,1) dt) (log Tn/6 + sup
0cO

0€0,ic[1:n] €O

+1 (16)

/afepg — ()t

And the Rademacher complexity is further bounded as

Rs(F)
Zsupee@ i€[1:n] |ge(‘rl)| /T -
< d E, [su T—t oz (t)dt
tesalotily fop [
2su I x;
< pee@,zeT[Ll.n] |90 ()| (/ lpo(T — t)| \/ K (¢, t)dt + sup / po(T — t)u(t)dt > - O (V/nlog(Tn/é))
06@ 0O

§<sup/ lpo (T —)|V K ttdt+sup

e

+Q.0C%f%W®>

Finally, by the symmetrization of R, (#) — R, (), combining it with (16) and (B.1), we have with probability at least 1 — 6,

’ og®/?(Tn
sup |Rz(0) — R,(0)| < (sup/ lpo (T — t)| /K (t,t) dt+sup +1> -0 <1g(\/§/5)>

0O =)
O

/ po(T — t)u(t)dt

/ po(T — t)u(t)dt

F. Proof for Proposition 4.3

Proof. First, notice that by the Holder’s inequality with p = 1, ¢ = oo, we have
T
/ pg(T—t)x(t)dt]
0
T
E, { pg(T—t)x(t)dtH
T T
I 1po(T =)| VR, Dt + ‘fo po(T — t)u(t)dt‘
EmﬁmT4mw—tdﬂ’ﬁwT4mwﬂ
Jy oo™ = 0] VEE)t + |) 00T = ()t
fo lpo (T — t)|\/K(t,t)dt - E, |:Supt€[O,T] 2i)—a) } ‘fo po(T — t)u(t)dt
<

Eg

Iy 10T =) /Rt + | polT - tm(t)dt\

x(t) — p(t)] .

K(t,1)
We let X; = %, then by Assumption 4.1, X; is Holder continuous and o sub-Gaussian for any ¢ € [0, T'|. Again,

we use an e-net argument to bound E [supte[o,T] |Xt|} . By separating the time interval [0, 7] into N parts [0,7/N] U
[T/N,2T/N]---U[(N —1)T/N,T). Then for any time ¢ € [0, T}, there exists a w(¢) € {0,T/N, ..., (N —1)T/N} such
that |t — 7w (t)| < T'/N. Therefore, by Holder continuity,

<E. | sup

te[0,T)

E | sup Xt|] <E [Sup | Xt = Xay|| +E| sup [Xzl
t€[0,T) tel0,T t€[0,T)
<L T\" +E | X |
- max 1 .
- N ie[O:%fl] /N

22

From Generalization Analysis to Optimization Designs for State Space Models

For the maximum over a finite class, notice that for any ug > 0,

E max]|X7,T/N|:| :/ P(maxl] |X1T/N| ZU) du
0

i€[0:N—1 1€[0:N—
uo o0
:/ P(max | Xp/n| > u) du+/ P(max | Xp/n| > u> du
0 i€[0:N—1] wo i€[0:N—1]
o N—1
uo =0

Since X7/ is o2 sub-Gaussian for every i € [0 : N — 1], then Yug > 0,

o] 2
E [max |XiT/N|} <wg+2N exp <— 2) du
i€[0:N—1] wo o

Minimizing the above term over uy > 0, we can simply let ug = 0+/2log 2N, then

< 204/2log2N.

g
E X, <o+/2log2N + ——
{ o]l TW'] SovalessV 2log2N —

i€[0:N—1

Now back to the original upper bound, we get

E | sup |X¢

t€[0,T]

H
T
<L <N) +20+/21log2N.

Since N is an arbitrary positive integer, we simply take N = [T] + 1, finally we get

E

sup Xt|] < L+20+/210g(2T +2) = O(y/logT).

te[0,T]

G. Lipschitz function of sub-Gaussian random variables

In this section, we provide some known examples for the sub-Gaussian random variables that keep the sub-Gaussian property

under a Lipschitz function.

1. For a bounded random variable X € [0, 1], if f : [0, 1] — R is a quasi-convex function, i.e., {z : f(z) < s} is a convex
set for all s € R. If f is further Lipschitz in [0, 1], then f(X) is sub-Gaussian. See Theorem 7.12 in Boucheron et al.

(2013).

2. For a sub-Gaussian random variable X that has density of the form ¢~V (*)

with U being twice continuously differentiable

and U”(z) > 0,Vx € R, then if f is a Lipschitz function, f(X) is also sub-Gaussian. See Theorem 5.2.15 in Vershynin

(2020).

23

