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ABSTRACT

With the growing generative capabilities of large language models (LLMs) in
question answering, their practical deployment is hindered by unreliable outputs.
Conformal methods have been introduced to control sub-claim factuality with the-
oretical guarantees. In this paper, we propose AggLCF, a Localized Conformal
Factuality framework enhanced by multi-model Aggregation with rigorous fac-
tuality rate control. By semantically clustering diverse responses from multiple
LLMs and extracting structured features, AggLCF learns a localized threshold to
construct a filtered set of sub-claims that ensures local factuality while preserving
more outputs through aggregation. AggLCF outperforms the previous state-of-
the-art in conditional conformal methods on the MedLFQA benchmark with the
highest number of retained valid sub-claims.

1 INTRODUCTION

The rapid advancement of autoregressive generative pre-training techniques (Vaswani et al., 2017)
has propelled large language models (LLMs) such as ChatGPT (Achiam et al., 2023), Claude (An-
thropic, 2024), LLaMA (Touvron et al., 2023), and Deepseek (Liu et al., 2024; Guo et al., 2025) from
academic research into broad industrial applications. These LLMs with billions or even hundreds of
billions of parameters, leveraging transfer learning capabilities from massive general-purpose cor-
pora, can not only accomplish fundamental language tasks such as text completion, summarization,
QA dialogue, and code generation, but also demonstrate fluency and diversity in more advanced sce-
narios like creative writing, knowledge retrieval, and knowledge integration. However, LLMs are
prone to the phenomenon of hallucination (Ji et al., 2023; Nadeau et al., 2024; Varshney et al., 2023;
Manakul et al., 2023b), wherein they generate semantically plausible but factually ungrounded or in-
ternally inconsistent content. This poses particularly critical challenges in high-risk domains such as
finance (Wu et al., 2023), healthcare (Li et al., 2023), and legal applications (Shi et al., 2024), where
unreliable outputs may lead to erroneous decisions, compliance failures, or legal risks, underscoring
the urgent need for “Trustworthy AI”.

To mitigate hallucination, both academia and industry have proposed various methods for uncer-
tainty quantification and factuality guarantee of LLM outputs, including confidence-based posterior
adjustment (Kuleshov et al., 2018), temperature scaling Guo et al. (2017), deep ensembles (Lak-
shminarayanan et al., 2017), Bayesian entropy estimation (Gal & Ghahramani, 2016), retrieval-
augmented generation (Lewis et al., 2020, RAG), and self-consistency checks via natural language
inference (Manakul et al., 2023a, SelfCheckGPT). However, for black-box models like LLMs,
these methods have fundamental limitations of inability to access model parameters, difficulty in
conducting structural-level interventions, and lack of theoretical factuality guarantees.

Conformal prediction (Vovk et al., 2005; Lei et al., 2018) has gained increasing attention in the
last decade, particularly with the rise of black-box models. Its distribution-free and finite-sample
coverage guarantee provides a robust framework for uncertainty quantification. Recent works have
adapted conformal methods to LLMs such as conformal factuality (Mohri & Hashimoto, 2024),
which filters sub-claims from LLM responses via a unified confidence threshold. CF ensures the
factuality rate is bounded by a predefined level α marginally. However, the global threshold, cho-
sen under a worst-case scenario, overlooks the needs of localized or domain-specific error control
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Table 1: Comparison of outputs filtered with Conformal Factuality (CF), Conditional Boosting (CB),
and Aggregation enhanced Localized Conformal Factuality (AggLCF). The source model of filtered
sub-claims is in different colors.

Question: Does Vitamin D Help polymorphic light eruptions?
CF Vitamin D has immunomodulatory effects and plays a role in skin health;

some studies suggest that it may help reduce inflammation and improve
skin barrier function, potentially benefiting individuals with PMLE.

CB Polymorphic light eruption (PMLE) is a common skin condition triggered
by exposure to sunlight; Vitamin D has immunomodulatory effects and
plays a role in skin health, and some studies suggest it may help reduce
inflammation and improve skin barrier function, potentially benefiting
individuals with PMLE.

AggLCF Polymorphic light eruption (PMLE) is a skin condition characterized
by an itchy, blistering, or papular rash that occurs in response to
sunlight exposure; Vitamin D may help mitigate symptoms of polymorphic
light eruption (PMLE) due to its anti-inflammatory and immunomodulatory
effects; Some studies suggest Vitamin D may help reduce inflammation
and improve skin barrier function, potentially benefiting individuals
with PMLE; Vitamin D levels should be checked in PMLE patients to
determine if supplementation is necessary, and combination therapy
with photoprotective measures or topical corticosteroids may enhance
effectiveness.

llama2-13b gpt-3.5-turbo qwq-32b

across different inputs (e.g., varying question types, contexts, or difficulty levels) and is often overly
conservative. Building upon the conditional conformal prediction framework (Gibbs et al., 2025),
Cherian et al. (2024) (denoted as CC) provides greater claim retention by learning adaptive confi-
dence thresholds that optimize the number of retained sub-claims for different types of queries or
sub-tasks. Although CC retains more valid information while maintaining approximate conditional
factuality guarantee, its performance is sensitive to function class selection when estimating the con-
ditional quantile, and its reliance on recomputing conformal predictions for conditional boosting to
improve sub-claim retention rate introduces significant computational overhead.

Another way to improve the sub-claim retention is to provide diverse responses for sub-claim de-
composition at the beginning. The diversity of responses from one LLM is often limited by its
generative capability, and both Mohri & Hashimoto (2024) and Cherian et al. (2024) decompose
sub-claims generated from a single LLM. This motivates us to enrich the diversity of responses to
the same question by aggregating different responses generated in parallel from multiple LLMs.
Unlike numerous queries from the same LLM, the diversity of different LLMs not only enlarges the
coverage of potential claims but also provides robust performance on questions from various do-
mains. On the other hand, multi-LLMs offer helpful information on sub-claims while constructing
reliable features for them. Intuitively, a sub-claim expressed similarly by multiple LLMs should be
assigned a higher confidence level.

In this paper, we propose a lightweight framework that aggregates responses from multiple LLMs
via semantic clustering and provides localized conformal factuality for aggregation-enhanced sub-
claims. Benefiting from the semantically aggregation of enriched sub-claims generated in parallel by
multi-models, our method increases the number of retained sub-claims while delivering robust local-
ized conformal factuality with rigorous marginal guarantees. Different from Cherian et al. (2024),
our method adaptively learns a local confidence threshold by directly estimating the distribution of
scores conditional on the input, without relying on any user-specified function classes. This one-shot
estimation design further alleviates the limitation of recomputing conformal prediction in Cherian
et al. (2024), while empirically providing the localized conformal factuality guarantee. Additionally,
the framework is model-agnostic (requiring no access to LLMs’ internal parameters or gradients),
operates without additional supervision, and offers a practical solution for deploying LLMs in high-
risk domains such as financial risk management, medical diagnosis, and legal judgment.

The example shown in Table 1 presents the filtered results of three methods (CF, CC with condi-
tional boosting (CB), and our proposed AggLCF) for LLMs’ answers to the question “Does Vitamin
D Help polymorphic light eruptions?”. CF elaborates on the effects of Vitamin D (e.g., its im-
munomodulatory properties and role in skin health), but the number of sub-claims remains limited.
CB expands on CF by explaining the pathogenic mechanism of polymorphic light eruption (i.e.,
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noting it is a skin condition triggered by sunlight exposure); however, constrained by the scarcity
of sub-claims extractable from a single model’s (e.g., GPT-3.5-turbo) original response, CB cannot
further increase the count of valid sub-claims. In stark contrast, AggLCF enriches answers by aggre-
gating outputs from multiple LLMs, integrating diverse perspectives such as the symptoms of PMLE
(itchy, blistering rashes), Vitamin D’s functions, and precautions/recommendations for medication.
This diversity, derived from synthesizing viewpoints across multiple models, better caters to users’
need for comprehensive information in practical scenarios, making AggLCF more appealing.

2 RELATED WORKS, MOTIVATION AND CONTRIBUTIONS

Conformal Factuality (CF): Mohri & Hashimoto (2024) introduced Conformal Factuality (CF),
the first framework to provide rigorous, distribution-free factuality guarantees for black-box LLMs.
Its core insight lies in redefining LLM factuality as an uncertainty quantification problem: (I) Sub-
claim Decomposition: As factuality errors often localize to specific claims rather than entire outputs,
for an input prompt Pi, CF splits the LLM’s response Ri into ki atomic sub-claims Ci = {Cij}ki

j=1
following with the ground truth label (e.g., binary variables, 1 for true, 0 for false) of each sub-
claims Wi = {Wij}ki

j=1; (II) Conformity Scores: CP assigns each sub-claim Cij a confidence
score via the scoring function p(Pi, Cij) ∈ R which also takes the prompt Pi as input. Define
conformity score Si := inf {τ | ∀ Cij ∈ F(Ci; τ),Wij = 1} as the local minimal threshold, where
F(Ci; τ) = {Cij | p(Pi, Cij) ≥ τ} ⊆ Ci is the filtered sub-claim set; (III) Probabilistic Guarantee
with Global Threshold: Based on split conformal prediction (Vovk et al., 2005; Lei et al., 2018), by
setting the ⌈(1− α)(n+ 1)/n⌉-quantile of the conformity scores {Si}ni=1 as the global threshold
τ̂ for all input prompts, Mohri & Hashimoto (2024) provides the probabilistic guarantee that the
filtered sub-claim F̂(Cn+1) = F(Cn+1; τ̂) contains no false claims with high probabilities of
1− α:

P
(
∃ C(n+1)j ∈ F̂(Cn+1) s.t. W(n+1)j = 0

)
≤ α, (1)

for exchangeable {(Pi, Ri,Ci,Wi)}n+1
i=1 . Conformal Factuality provides rigorous factuality guar-

antees for any black-box LLM, requiring few human annotations. However, it suffers from critical
limitations rooted in its global threshold design. Derived from the worst-case set {Si}ni=1, the global
threshold τ̂ ensures only marginal guarantee and fails to capture localized validity across heteroge-
neous inputs (e.g., topics or difficulty levels). Combine with imperfect scoring functions p(·, ·),
this conservative design induces a “say less to err less” phenomenon, excessively filtering true but
low-scoring sub-claims, undermining the completeness and practical utility of generated content.

Conditional factuality: While marginal coverage keeps the average error rate of the prediction set
below α across all cases, the error rate for certain local regions can still be much higher than α,
which is unacceptable in high-stakes fields. We therefore seek more localized guarantees, namely,
conditional coverage, which is the goal of conditional conformal prediction, i.e.,

P
(
∃ C(n+1)j ∈ F̂(Cn+1) s.t. W(n+1)j = 0 | Pn+1

)
≤ α, (2)

Although attractive, conditional coverage (2) is unachievable in finite-sample, distribution-free set-
tings (Lei et al., 2013; Barber et al., 2021). In classical regression and classification, recent stud-
ies develop prediction sets that maintain distribution-free marginal guarantees with approximate or
asymptotic conditional coverage guarantees (Romano et al., 2019; Chernozhukov et al., 2021; Lei
et al., 2018; Lei & Wasserman, 2014; Guan, 2023; Hore & Barber, 2025; Gibbs et al., 2025).

Conditional conformal for LLMs: Based upon the conditional conformal prediction frame-
work (Gibbs et al., 2025), Cherian et al. (2024) extended CF to enable conditionally validity. To
build an adaptive threshold conditional on the input feature Xi (gained from prompt Pi and response
Ri) and obtain (approximately) conditionally valid factuality guarantee, Cherian et al. (2024) learns
a conditional threshold function over a user-specified function class F (e.g., finite dimensional lin-
ear class) that estimates the quantile of the conformity scores. Furthermore, to retain as much of
the LLM output as possible while still ensuring validity, Cherian et al. (2024) proposed Conditional
Boosting that learns a parametric combination of base scorers pθ(·) that optimally weights multiple
base scoring functions. However, it incurs substantial computation due to repeated scoring, quantile
estimation (with randomization), and backpropagation through the differentiable surrogate.
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Motivations: Mohri & Hashimoto (2024); Cherian et al. (2024) calibrate a single LLM, relying
on a single LLM to generate limited sub-claims, which misses potential valid sub-claims that the
LLM fails to produce. The lack of diversity in responses not only limits sub-claim factuality but
also weakens the robustness of extracted features from a single LLM. Although this naturally leads
us to consider using multi-LLM to extend sub-claim coverage, directly using existing multi-model
aggregation methods faces the problems of semantic redundancy and inconsistency of sub-claims,
and these methods fail to provide rigorous factuality guarantees.

These limitations motivate our innovations of:

1. Multi-LLM aggregation: Enlarge sub-claim diversity and provide multi-model aggregation
enhanced features on the premise of addressing the semantic redundancy/conflicts of sub-
claims.

2. After semantically clustering the sub-claims produced by all large language models, we
fuse the resulting cluster-level features to derive a unified confidence score p for each clus-
ter, aiming for this score to align as closely as possible with sub-claim correctness.

3. Lightweight localized conformal factuality: By focusing on score–correctness coherence
rather than directly maximizing retained claims in Cherian et al. (2024), we significantly
reduce computation while still improving retention indirectly, as a better-calibrated score
reduces the number of discarded correct claims at any given error threshold.

Contributions. In this paper, our goal is to build a lightweight framework with robust conditional
coverage guarantees, while ensuring marginal guarantees with localized factuality control on ex-
panded sub-claims by multi-LLMs. Our main contributions are summarized below:

• Semantic and logical consistency fusion scoring: We design a composite confidence
function that integrates intra-claim semantic similarity and inter-model consistency. This
scoring mechanism enhances discriminative power by capturing both the robustness of in-
dividual sub-claims and agreement across multiple models.

• Localized conformal factuality: We extend standard conformal prediction in CF to a
conditional setting, learning localized thresholds rather than a global one. We prove that
this approach controls the factuality error rate under α. Numerical results show that our
proposed AggLCF improves the number of retained sub-claims.

• Black-box friendly and lightweight implementation: Our approach relies solely on
model outputs and requires only lightweight post-processing at the sub-claim level. It is
compatible with both open- and closed-source LLMs via API calls, ensuring easy portabil-
ity and reproducibility across tasks and domains.

3 MULTI-MODEL AGGREGATION FOR CONFORMAL INFERENCE

3.1 PROBLEM FORMULATION

Instead of relying on a single LLM as in Mohri & Hashimoto (2024) and Cherian et al. (2024), for
the same question/prompt Pi, we simultaneously query M different LLMs and collect responses

{R(m)
i }Mm=1. Each response R

(m)
i is decomposed into sub-claims C(m)

i = {C(m)
ij }k

(m)
i

j=1 , yielding a
richer dataset: {

Di =
(
Pi, Ti, {R(m)

i }Mm=1, {C
(m)
i }Mm=1

)}n

i=1
, (3)

where Ti is the ground-truth answer to Pi. For the i-th question, the complete set of sub-claims
generated by all models is

Ci =

M⋃
m=1

C
(m)
i = {C(m)

ij | 1 ≤ m ≤ M, 1 ≤ j ≤ k
(m)
i }.

Our objective is to select a subset of sub-claims that are mutually semantically distinct, while ensur-
ing that the probability of any factual error among these chosen sub-claims remains below a specific

4
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significance level α. In other words, given a new question Pn+1, we construct a filtered set of
sub-claims F̂(Cn+1) ⊂ Cn+1 such that

P
(
∃ C

(m)
(n+1)j ∈ F̂(Cn+1) s.t. W (m)

(n+1)j = 0
)
≤ α (4)

where W
(m)
(n+1)j = 1 if C(m)

(n+1)j is correct and 0 otherwise, based on the true answer Tn+1.

3.2 PROPOSED METHODOLOGY

Within the full set of sub-claims Ci made by M models for i-th question, it may exist some sub-
claims that are semantic redundant or inconsistent. While filtering on the full set can eliminate sub-
claims with semantic conflicts, the remaining sub-claims with semantic redundancy will introduce
bias into the quantiles. To ensure the filtered sub-claims set F̂(Ci) meets our objective in (4), we
first group the sub-claims into distinct semantic groups via semantic clustering.

Let Cluster(·) denote a text clustering algorithm. Applying the clustering algorithm to Ci yields

Gi = Cluster(Ci) = {G1
i ,G

2
i , . . . ,G

Li
i }, (5)

where Gl
i = {Gl

ij}d
l

j=1 denotes the l-th cluster of dl sub-claims obtained from clustering, and Li is
the number of clusters for the i-th question. They satisfy

G1
i ∪G2

i ∪ · · · ∪GLi
i = Ci, Ga

i ∩Gb
i = ∅ (for a ̸= b).

Cluster Conformity. Unlike Mohri & Hashimoto (2024) and Cherian et al. (2024), which filter
each sub-claim generated by a single LLM, we calculate a confidence score based on the intra-cluster
features of Gl

i. The confidence score function pli is a function of d cluster features f l
i1, f

l
i2, · · · , f l

id
(e.g., intra-cluster median similarity, nearest-neighbor separation, cluster size). In practice, we train
a binary classifier on the training set and treat its predicted probability as the confidence score pli, so
that the score is as well aligned as possible with the true correctness of each subclaim.

Subsequently, we define the score of cluster set Gi for i-th question as

Si := inf
{
τ | ∀Gl

i ∈ F(Gi; τ),W
l
i = 1

}
, where F(Gi; τ) =

{
Gl

i | pli ≥ τ
}

(6)

and W l
i is the correctness indicator assigned by an evaluation function Eval(Ti, g

l
i), where gli is

the representative exemplar selected from the centroids of the cluster Gl
i. The details of the eval-

uation function Eval(Ti, g
l
i) can be found in Appendix C.1. Since the sub-claims are grouped by

semantic similarity, we treat gli as the semantic representative of every sub-claim in its cluster Gl
i.

Accordingly, the correctness of gli is taken as the correctness of the entire cluster Gl
i.

Localized Conformal Factuality. Similar to Romano et al. (2019), our proposed localized con-
formal factuality approach is motivated by the following observation: if the conditional distribution
of the cluster scores Si given the question Pi is know, then the (1− α)-quantile of this distribution
can be used as the threshold, which in turn provides an exact conditional coverage guarantee in the-
ory. However, this conditional distribution is unknown in practice. Moreover, since each question
Pi ∈ P is a complex sentence whose encoded representation would yield a high-dimensional vector,
directly estimating the conditional distribution of Si given Pi is infeasible. To address this, we em-
ploy feature extraction. Specifically, for each question Pi, we extract graph-structured features Xi

based on the responses {R(m)
i }Mm=1 from all large models (feature extraction of Xi are detailed in

Appendix C). We then estimate the conditional distribution fS|X(s | x) of Si given Xi, and denote
f̂S|X(s | x) as the estimator.

Directly using the (1 − α)-quantile of f̂S|X(s | x) as the final threshold τ̂ would not guarantee
marginal coverage. Hence, we perform a calibration process. Specifically, we split the data into
a training set Dtr and a calibration set Dcal. On the training set Dtr, we estimate the conditional
distribution f̂S|X(s | x). On the calibration set, we define

Ei = max
{
Si −Q

(
1− α, f̂S|X(· | Xi)

)
, 0
}
, (7)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where Q
(
1− α, f̂S|X(· | x)

)
is the (1− α)-quantile of f̂S|X(s | x). We then compute

ê = Q

(
1− α,

1

ncal + 1

(
ncal∑
i=1

δEi
+ δ∞

))
, (8)

where δa is the point mass measure at a, and ncal is the size of calibration set Dcal.

For a new question Pn+1, the final localized threshold is taken as

τ̂(Xn+1) = Q
(
1− α, f̂S|X(· | Xn+1)

)
+ ê. (9)

The filtered set is

F̂(Cn+1) :=
{
Gl

n+1 ∈ Gn+1 | pln+1 ≥ τ̂(Xn+1)
}
. (10)

Our proposed localized conformal factuality, through the process of estimating the conditional dis-
tribution and calibration, enjoys desirable local performance as demonstrated in our experiments in
Section 4. Its marginal factuality error rate is theoretically controlled, as established in the following
theorem, with the proof provided in Appendix A.
Theorem 3.1. Assume the calibration set size is ncal and all conformity scores {Ei}ncal

i=1 are ex-
changeable. Then, the set of sub-claims F̂(Gn+1) = F(Gn+1, τ̂(Xn+1)) filtered using the thresh-
old τ̂(Xn+1) obtained from (9) enjoys the following marginal coverage guarantee:

P
(
∃ Gl

n+1 ∈ F̂(Gn+1) s.t. W l
n+1 = 0

)
≤ α. (11)

Algorithm 1 Aggregation Enhanced Localized Conformal Factuality (AggLCF)

Require: Dataset: {Di = (Pi, Ti, {R(m)
i }Mm=1, {C

(m)
i }Mm=1)}ni=1, significance level α ∈ (0, 1),

Clustering algorithm Cluster(·), evaluation function Eval(·, ·), Test question with M LLMs’
responses: (Pn+1, {R(m)

n+1}Mm=1, {C
(m)
n+1}Mm=1)

Ensure: Filtered sub-claim set F̂(Gn+1) for test input (Pn+1, R
(m)
n+1)

1: for each Di = (Pi, Ti, {R(m)
i }Mm=1, {C

(m)
i }Mm=1) in {Di}ni=1 do

2: Extract features Xi from (Pi, {R(m)
i }Mm=1).

3: Compute the union of multi-model sub-claims: Ci =
⋃M

m=1 C
(m)
i .

4: Apply clustering algorithm Cluster(Ci) to get clustered sub-claim set Gi

5: Compute a confidence score pli for each cluster Gl
i in Gi.

6: Validate the correctness of centroid sub-claim gli ∈ Gl
i by W l

i = Eval(Ti, g
l
i).

7: Calculate the overall score Si of clustered set Gi for sample Di using Eq. (6).
8: end for
9: Split the training data {Di}ni=1 (with corresponding Si and Xi) into two disjoint subsets: train-

ing set Dtr and calibration set Dcal.
10: Use Dtr to train the conditional distribution estimator f̂S|X(s | x), and compute conformity

scores for Dcal using Eq. (7).
11: Calculate the empirical quantile of the conformity scores via Eq. (8).
12: For the test sample (Pn+1, {R(m)

n+1}Mm=1, {C
(m)
n+1}Mm=1):

1. Repeat the same step in lines 2 to 5 to obtain Xn+1 and score pln+1 for each Gl
n+1 ∈ Gn+1.

2. Determine the final localized threshold using Eq. (9).
3. Construct the filtered sub-claim set F̂(Gn+1) using Eq. (10).

3.3 CONSTRUCTION OF THE CONFIDENCE SCORE pli

Our filtering rule (10) is most effective when the confidence score pli is aligned with the correctness
of each sub-claim W l

i : if, within a question, all correct sub-claims have larger scores than all in-
correct ones, then the threshold in (6) retains only correct sub-claims and filters all incorrect ones
out.
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After clustering, we extract cluster-level features f l
i = (f l

i1, . . . , f
l
id) (e.g., intra-cluster median

similarity, separation to nearest neighbor) for each cluster Gl
i, and train a binary classifier on the

training set to map f l
i to a correctness probability,

pli = P(W l
i = 1 | f l

i ). (12)

This learning step uses no calibration or test data, and serves only to produce a score that tracks
correctness. We then perform a single split–conformal calibration on the calibration set to estimate a
global quantile threshold. Because calibration and test examples are exchangeable, the assumptions
of Theorem 3.1 hold, so the procedure preserves the desired marginal factuality guarantee while
benefiting from a score pli that is well aligned with W l

i .

In a nutshell, learn pli on train (to increase true-retention at any fixed error level), calibrate once on a
disjoint set (to maintain exchangeability and marginal validity), and evaluate on test. Empirically, the
localized thresholds induced by our learned scores achieve coverage close to 1− α across question
types, while the marginal guarantee is retained by construction. Compared with prior work that relies
on model “confidence” or token-level uncertainty, our design is (a) more hallucination-resistant (no
self-assessment), (b) more robust to prompt/temperature variation (grounded in pairwise similarity
and cluster geometry), and (c) more interpretable (each feature has a clear geometric or reliability
meaning).

4 EXPERIMENTS

Datasets and Evaluation Metrics. Following the same dataset split procedure in Cherian et al.
(2024), we conduct experiments on five medical QA datasets in the MedLFQA benchmark (Jeong
et al., 2024, Medical Long-Form Fact-based Question-Answering), which is a consolidated and
cleaned collection derived from four classic medical QAs. A reference answer and author-annotated
key claims accompany each question. The benchmark details are shown in Table 2. We split the data
into Training set Dtr (50%), Calibration set Dcal (20%), and Test set Dtest (30%) using stratified
sampling across all four QA datasets to ensure consistent category distribution in each subset.

Among the five different data sources, erroneous responses to challenging or rare questions, such as
those on LiveQA and MedicationQA, pose higher risks, particularly those involving precise medica-
tion usage. Thus, we evaluate the marginal coverage and local conformal factuality of each method
on sub-datasets by measuring error frequency (i.e., the proportion of test set samples containing
incorrect sub-claims in the filtered output). On the premise of ensuring coverage, we primarily as-
sess the quality of the filtered sub-claims of these methods using the number of retained sub-claims.
A larger average number of retained sub-claims indicates that, under the guarantee of factuality
control, the method can retain more diverse answers to the problem.

Table 2: MedLFQA Statistics

Data Source Number of Entries Description
HealthSearchQA 3,047 Web health search Q&A pairs
K-QA (Golden) 201 Clinical Q&A pairs with doctor-annotated answers
K-QA (Silver) 876 Clinical Q&A pairs with LLM-generated answers
LiveQA 100 real-time health Q&A pairs
MedicationQA 627 medication consultation Q&A pairs

Comparison baselines. We denote the baseline method (Mohri & Hashimoto, 2024) that first
applies Conformal Inference to Factuality in large language models as CF. Following this work,
the conditional conformal method proposed by Cherian et al. (2024) introduces two approaches to
enhance the sub-claim retention rate: Conditional Boosting (denoted as CB) and Adaptive Level.
Specifically, we denote the original method without CB as Conditional Conformal inference (CC),
and the method incorporating CB as CC+CB. Following the settings in Cherian et al. (2024), gpt-
3.5-turbo is used for response generation to reproduce prior SOTA performance. The objective of
this paper is to maximize the sub-claim retention rate under the premise of strict marginal coverage
guarantees. Notably, the Adaptive Level method proposed in Cherian et al. (2024) enhances the
number of retained claims by relaxing the coverage guarantee of α. Therefore, the Adaptive Level
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method falls outside the scope of this paper. Results with mean and standard deviation are reported
for all methods, obtained from 50 individual trials.
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(a) Localized Conformal Factuality
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(b) Number of Retained Sub-Claims

Figure 1: Comparison of CF (Mohri & Hashimoto, 2024), CC, CC+CB (Cherian et al., 2024), and
AggLCF (ours) on MedLFQA benchmarks with the target level α = 0.1.

Multi-Model Response Generation and Subclaim Decomposition. For each question in the
test set, we query M = 10 often-used LLMs to generate responses in parallel: moonshot-v1-8k,
llama2-7b, llama2-13b, llama3-8b-instruct, llama3-70b-instruct, qwen-plus, qwen-32b, deepseek-
v3, deepseek-r1, gpt-3.5-turbo-0613. Model parameters are uniformly set to temperature= 0.2,
top-p = 0.95. We use the same prompts with GPT-4o in Cherian et al. (2024) to decompose each
response into k ∈ {3, 4, 5, 6} sub-claims, averaging k = 5.915. The decomposition prompts are
detailed in Appendix C.

Performance Comparision For each sub-dataset within the MedLFQA benchmark, we compare
the miscoverage and average number of retained sub-claims of each method. As shown in Figure
1(a), all methods control the miscoverage required by the target level α = 0.1. On the rarer LiveQA
sub-dataset and the more challenging MedicationQA sub-dataset, CF failed to provide local cov-
erage, while both CC/CC+CB and AggLCF demonstrated comparable local factuality control. CB
achieves a significant improvement on CC in the number of retained sub-claims (see Figure 1(b))
at the cost of repeatedly recalculating conformal predictions during the optimization. In contrast,
through multi-model aggregation, AggLCF achieves a noticeably higher number of retained sub-
claims than CB without heavy computational overhead. Specifically, AggLCF enriches responses
with a significantly larger number of valid sub-claims than other methods on both the majority sub-
dataset (HealthSearchQA, n = 3047) and the rare sub-dataset (LiveQA, n = 100), offering robust
enhancement.

We evaluate the error rates across different target levels α and compare the average number of
sub-claims retained by each method at each level. The left panel of Figure 2 demonstrates that
AggLCF consistently maintains strict edge coverage. Since the output of a single model can be
divided into at most 6 semantically distinct sub-arguments, methods relying on a single model can
retain only up to 6 sub-arguments even when the constraint on α is relaxed. In contrast, AggLCF
can continuously enrich the content of the responses. The right panel of Figure 2 demonstrates that
AggLCF consistently increases the number of retained sub-claims, while providing strict guarantees
on overall coverage (as shown in the left panel).

Importance of Cluster-level features. As we discussed in Section 3.3, we extracted five fea-
tures from clusters we obtained after multi-model aggregation. To demonstrate the importance of
integrating these geometrical features in improving the number of retained sub-claims rather than
relying on a single feature, we compare the number of retained sub-claims when each feature is used
individually versus when all clustering features are integrated.
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(b) Number of Retained Sub-Claims at α

Figure 2: Sensitivity analysis with respect to the target level α. The left figure illustrates the perfor-
mance of AggLCF under various 1−α coverage requirements. The figure on the right compares the
average number of retained sub-claims among CF, CB, and AggLCF for each target level.
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Figure 3: Sensitivity analysis on the construction of the confidence score pli. As shown in the figure,
combining multiple cluster-level features into a single confidence score substantially increases the
number of retained subclaims, compared to using any single feature alone.

As illustrated in Figure 3, when each of the five clustering features is used alone as a score for evalu-
ating correctness, the number of retained sub-claims is relatively similar, indicating these individual
cluster-level features are empirically unable to align well with the correctness of the response. In
contrast, when cluster-level features are used together, the number of retained sub-claims is signif-
icantly improved. This indicates that the integrated cluster-level features can better align with the
correctness of answers.

5 CONCLUSION

This paper proposes a novel method to provide factuality guarantees for the outputs of LLMs while
maximizing the number of retained sub-claims. Specifically, AggLCF enhances the diversity of
filtered model responses by performing semantic clustering on the aggregated output of multiple
models. Unlike prior approaches, AggLCF directly estimates the conditional distribution on input
features, achieving robust approximate local coverage performance without relying on user-specified
function classes. By leveraging cluster features that can be extracted in an offline manner, AggLCF
constructs a scoring metric with better alignment to the correctness of claims, thereby effectively
increasing the number of filtered sub-claims. Extensive experiments demonstrate that AggLCF con-
sistently improves the number of retained sub-claims under various target level requirements while
providing rigid marginal coverage guarantees and localized conformal factuality.
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A PROOF OF THEOREM 3.1

Proof. Let

Sn+1 := inf
{
τ | ∀ Gℓ

n+1 ∈ F(Gn+1, τ),W
ℓ
n+1 = 1

}
, (13)

where

F(Gn+1; τ) =
{
Gℓ

n+1 | pℓn+1 ≥ τ
}
. (14)

Consider the event{
∃ Gℓ0

n+1 ∈ F̂(Gn+1), s.t. W ℓ0
n+1 = 0

}
=
{
∃ Gℓ0

n+1, p
ℓ0
n+1 ≥ q̂1−α(Xn+1) + ê ∧W ℓ0

n+1 = 0
}
. (15)

Define the set

A =
{
τ | ∀ Gℓ

n+1, p
ℓ
n+1 ≥ τ,W ℓ

n+1 = 1
}
. (16)

For any s < q̂1−α(Xn+1) + ê, we have

pℓ0n+1 ≥ s ∧W ℓ0
n+1 = 0,⇒ s /∈ A (17)

This implies inf A ≥ q̂1−α(Xn+1) + ê, i.e., Sn+1 ≥ q̂1−α(Xn+1) + ê. Therefore,

En+1 = max{Sn+1 − q̂1−α(Xn+1), 0} ≥ ê. (18)

Thus, we have the event inclusion:{
∃ Gℓ

n+1 ∈ F̂(Gn+1), s.t. W ℓ
n+1 = 0

}
⊂ {En+1 ≥ ê}. (19)

We can then bound the desired probability:

P(∃ Gℓ
n+1 ∈ F̂(Gn+1), s.t. W ℓ

n+1 = 0) (20)
≤ P(En+1 ≥ ê) (21)
= E[I{En+1 ≥ ê}] (22)

= E

 1

ncal + 1

ncal∑
i=1

I

Ei ≥ Q

1− α,
1

ncal + 1

ncal∑
j=1

δEj + δ∞




≤ α (23)

By the exchangeability of {Ei}ncal+1
i=1 (where En+1 is exchangeable with the calibration scores), and

by the construction of ê as the (1−α)-quantile of the empirical distribution of the calibration scores
augmented with ∞, standard conformal prediction arguments yield:

E[I{En+1 ≥ ê}] ≤ α. (24)

This completes the proof.

B IMPLEMENTATION DETAILS OF AGGLCF

B.1 CLUSTERLLM METHOD

CLUSTERLLM (Zhang et al., 2023) augments standard embedding-based text clustering with
lightweight LLM judgments to improve cluster reliability without labels. We first encode texts
with a pretrained sentence embedder to generate text embeddings and run a preliminary algorithm
to get provisional clusters. We then identify ‘ambiguous’ points (high-entropy/low-margin cases)
and form triplets—(anchor, choice1, choice2), on which an LLM is queried to decide which choice
is semantically closer to the anchor. These sparse LLM comparisons act as higher-order semantic
constraints that correct assignments and sharpen boundaries, especially for long-tail or subtle top-
ics. Unlike (Zhang et al., 2023), our goal is to obtain more stable and trustworthy semantic clusters
rather than fine-tuning the embedder model.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B.2 CONDITIONAL DISTRIBUTION ESTIMATION METHOD

When estimating the conditional distribution of S | X , we use Engression (energy regression) (Shen
& Meinshausen, 2025) to estimate P (S | X). Given uniform noise ε ∼ Unif(0, 1), construct a
generative mapping

S = gθ(X, ε) (25)

and minimize the negative energy score

L(θ) =
1

n

n∑
i=1

 1

m

m∑
j=1

∥Yi − gθ(Xi, εi,j)∥ −
1

2m(m− 1)

m∑
j=1

m∑
j′=1

∥gθ(Xi, εi,j)− gθ(Xi, εi,j′)∥

 , (26)

where εi,j , εi,j′ ∼ Unif(0, 1). The first term enforces alignment between generated samples and the
observed data, whereas the second term regularizes dispersion by promoting pairwise differences
among samples. Minimizing this objective jointly improves the fidelity and the diversity of the
estimated conditional distribution. After obtaining θ̂, by repeatedly sampling εj and computing
gθ̂(x, εj) on fixed x, we can obtain Monte Carlo samples of P (S | X = x), and thereby estimate

q̂α(x) = Quantileα{gθ̂(x, εj)}
M
j=1. (27)

Due to the use of additive noise and direct matching of the full distribution, Engression theoretically
possesses better extrapolation capabilities than traditional regression.

For comparison, we also experimented with two classical quantile regression methods—linear quan-
tile regression and gradient boosting quantile regression to estimate the conditional distribution. As
illustrated in the figure 4, the engression-based approach produces a markedly stronger localized-
coverage effect than either of the standard quantile-regression baselines.
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Figure 4: Evaluation of different conditional distribution estimator. Left: marginal and per-question-
type miscoverage compared to the nominal error rate (dashed red line at α = 0.1), showing how
each quantile estimator: linear QR , gradient boosting QR, and engression based QR. Right: cor-
responding average number of sub-claims retained per question, illustrating the trade-off between
retention and error control. Engression yields the most stable, localized miscoverage near the nom-
inal level while preserving the greatest subclaim retention.

C EXPERIMENT DETAILS

Feature extraction of Xi. Following Lin et al. (2024), we build three similarity graphs per ques-
tion (Jaccard, NLI–entailment, NLI–contradiction) and extract, on each graph, the first three non-
zero Laplacian eigenvalues (EigV), the average weighted degree (Deg), and the average node eccen-
tricity (Ecc), yielding 15 initial features. We then remove near–zero-variance (degenerate) features
and append group indicators, resulting in a 17-dimensional feature vector for downstream modeling.
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Vectorization and Initial Clustering.

1. Encoding. We use S-BioBERT-snli-nli-stsb (Deka et al., 2021) to obtain 768-
d sentence embeddings. Vectors are mean-pooled over tokens and ℓ2-normalized so that
cosine similarity is meaningful. The encoder is kept fixed (no fine-tuning) for stability and
reproducibility.

2. Clustering. We apply HDBSCAN (McInnes et al., 2017) for initial grouping; across ques-
tions, the number of discovered clusters averages 10.07 per question (mean over questions).

Cluster-level features extraction After clustering, we derive cluster-level, model-agnostic fea-
tures directly from the grouped generations, rather than from LLM self-reported confidence. Specif-
ically: (i) the intra-cluster mean similarity and (ii) the intra-cluster median similarity, which quantify
cohesion while reducing sensitivity to outliers; (iii) cluster size (the number of models supporting
the sub-claim), capturing consensus strength; (iv) the silhouette coefficient, measuring separabil-
ity from neighboring clusters; and (v) a within-cluster model-ability score, obtained by estimating
each base model’s overall competence and averaging these scores within the cluster. All five sig-
nals are computed offline from the clustering outputs and metadata, without querying the LLM for
self-confidence.

Construction of the confidence score pli. After extracting cluster-level features f l
i =

(f l
i1, . . . , f

l
i5), we learn a data-driven confidence score pli aligned with sub-claim correctness. Con-

cretely, using the training split only, we fit a CATBOOSTCLASSIFIER (Prokhorenkova et al., 2018)
that maps each cluster’s feature vector to a probability of correctness,

pli = P
(
W l

i = 1 | f l
i

)
.

We optimize binary logloss with early stopping (monitoring AUC) and address class imbalance via
scale pos weight (set to Nneg/Npos for each split). CatBoost models the non-linear patterns
in these features and outputs reliable probabilities, which we take as the confidence score pli. Im-
portantly, no calibration or test data are used in this step, preserving exchangeability for subsequent
conformal calibration and ensuring valid marginal coverage.

C.1 PROMPTS

Subclaim decomposition. Using GPT-4o, each response is decomposed into k ∈ {3, 4, 5, 6} sub-
claims, averaging k = 5.915. The decomposition instruction is as follows:

Please divide the following medical question response into
individual sub-claims with the following requirements:
1. Strictly divide the response into 3-6 sub-claims.
2. Each subclaim must strictly be based on the provided response
content, without adding any new information.
3. Remove any non-informative content (e.g., transitional sentences,
repetitive statements) and retain only the key points.
4. Each subclaim must be concise, focusing on one specific medical
fact, treatment, condition, or recommendation.
5. Ensure there is no unnecessary overlap between sub-claims.

CLUSTERLLM correction. We first compute the clustering entropy for each sample. Then, we
select the top 20% high-entropy triplets. Finally, we call GPT-4o to judge similarity and update
labels and obtain stable clusters. The reclassification instruction is as follows:

Given a question and two candidate answers, reply with "Option 1"
or "Option 2" for the answer more semantically related to the question.

Question: {anchor}
Option 1: {choice1}
Option 2: {choice2}
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Sub-claim correctness W l
i . To assess how well each generated subclaim is supported, we prompt

the LLM as follows:

You will be given a list of sub-claims and a text passage.
For each claim, determine whether the passage Supported, Refuteed,
or provides NotEnoughInfo regarding the claim.
Return your judgments as a JSON array, maintaining the same order
and length as the input claims.
The claims are: [...] The text is: [...]

Experiment Setting of Conditional Conformal Method Following the framework of Cherian
et al. (2024), we construct four claim-level scores used in CC: a frequency score, obtained by av-
eraging the cosine similarity between the target claim and answers from M auxiliary models; self-
evaluation, token-level log probability, and an ordinal score, all computed exactly as in Cherian
et al. (2024). For CC, we take the frequency score itself as the confidence score, whereas for CB,
we linearly combine the frequency score with the other three scores to produce a boosted output.
For feature extraction we restrict the function class to be linear and use covariates of the number
of characters in the prompt, the number of characters in the response, the mean frequency score
across claims in the response, the standard deviation of those frequency scores, and one-hot group-
indicators for the source dataset.
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