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ABSTRACT

Extensive fine-tuning of the synthesis between multimodal encoders and Large
Language Models (LLMs) on modality-specific data can expand the modalities
that LLM can handle, leading to the formation of Multimodal Large Language
Models (MLLMs). However, this paradigm to expanding modalities heavily relies
on initiating fine-tuning from scratch with new multimodal data, which is both
resource-intensive and inflexible. In this paper, we propose MMER (Multi-modality
Expansion and Retention), a novel training-free approach that reuses and com-
poses existing MLLMs to facilitate effective multimodal expansion while retaining
the original performance of each MLLM. In particular, MMER maintains the
multimodal encoders of the MLLMs while merging their LLM parameters. By
comparing the original LLM parameters with the merged ones, MMER can create
binary masks that enable an approximate separation of the LLM parameters for each
modality. This process allows the decoupled parameters to independently process
modality-specific inputs, thereby reducing parameter conflicts and maintaining
the fidelity of the original MLLMs. Additionally, MMER integrates strategies
to prevent catastrophic forgetting by employing a similar approach to separately
decouple the parameters fine-tuned on new tasks from the original parameters. Ex-
periments on three multimodal tasks and fourteen dual-modal tasks show significant
improvements over recent baselines, demonstrating that MMER can effectively
expand multimodal capabilities of LLMs while retaining 99.6% of the original per-
formance. Further experiments in both single-task and cross modalities multi-task
scenarios reveal that MMER significantly mitigates catastrophic forgetting.

1 INTRODUCTION

Large Language Models (LLMs) (Kenton & Toutanova, 2019; Touvron et al., 2023; Wu et al., 2023b)
have recently become a cornerstone in artificial intelligence due to their exceptional performance.
Building upon the capabilities of LLMs, researchers (Li et al., 2023b; Liu et al., 2023; Bai et al.,
2023) integrate encoders for additional modalities and utilize extensive modality-text data for align-
ment. These integrated systems are then fine-tuned to develop Multimodal Large Language Models
(MLLMs), which excel at processing multimodal information. This paradigm has led to the successful
creation of numerous MLLMs across various modalities (Wu et al., 2024; Jiang et al., 2023).

Most MLLMs are specialized in dual modalities, with examples including vision-oriented LLMs
like LLaVA (Liu et al., 2023) and MiniGPT-4 (Zhu et al., 2024b), as well as video LLMs (Lin et al.,
2023; Maaz et al., 2024) and audio LLMs (Chu et al., 2023; Deshmukh et al., 2023). Despite these
advancements, there is a growing impetus to expand the number of modalities that MLLMs can
handle in order to address diverse applications. A straightforward method involves adding multiple
new modality encoders or employing a unified multimodal encoder, followed by re-fine-tuning the
MLLMs with fresh modality-text data. For instance, X-LLMs (Chen et al., 2023a) and MACAW-
LLMs (Lyu et al., 2023) integrate encoders for images, videos, and audio with an LLM simultaneously,
while OneLLM (Han et al., 2024) connects a universal encoder that handles eight distinct modalities
with an LLM. These different architectures are then aligned and fine-tuned using new multimodal
instruction data (e.g., image-speech chat). However, this kind of method lacks flexibility because it
requires fine-tuning from scratch on new modality-text data to expand the multimodal capabilities
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Figure 1: Illustration of the key idea of our MMER approach. Multi-Modality Expansion creates a versatile
model from existing MLLMs through a training-free and extensible process. Multi-Modality Retention
reconstructs the original MLLMs or new task MLLMs to retain their performance and mitigate catastrophic
forgetting.

of MLLMs. Moreover, it necessitates the generation or acquisition of high-quality multimodal
instruction data (Zhao et al., 2023), consuming substantial computational and human resources.

To overcome the aforementioned limitations, researchers have explored model merging or compo-
sition (Chen et al., 2024; Shukor et al., 2023; Panagopoulou et al., 2023) to facilitate multimodal
expansion in MLLMs. For instance, Chen et al. (2024) proposed NaiveMC, a basic, training-free
framework that reuses and combines modality-specific encoders from multiple MLLMs into the
merged LLM, enabling it to handle multiple modalities. They further introduced the DAMC frame-
work (Chen et al., 2024), which retrains existing MLLMs by separating modality parameters from
language model parameters. This approach mitigates parameter interference in the merged MLLM,
thereby enhancing the performance of multimodal expansion. However, these two frameworks
encounter a trade-off: NaiveMC is train-free but delivers lower performance, whereas DAMC, though
requiring training, yields better results. Nevertheless, both frameworks share a common drawback:
they struggle to retain the original modality performance of the MLLMs due to parameter interference.

In this paper, we propose a novel training-free approach named MMER (Multi-modality Expansion
and Retention), which achieves multimodal expansion while bypassing the trade-off of previous
methods and retains the performance of each original MLLM (See Figure 1). First, we merge the task
vectors (Ilharco et al., 2023), which represent the difference between the fine-tuned parameters and
the pre-train LLM parameters, into a single merged task vector. Next, by comparing the Directional
Congruence and Dominant Significance of the merged task vector with the original task vectors, we
construct modality-specific binary masks. These masks effectively identify the modality-specific
information retained in the merged task vector and approximately decouple it back into the original
modality parameters without requiring additional training. This decoupling strategy enables the
merged MLLM to independently process non-textual modality information using its corresponding
reconstructed parameters, thereby significantly reducing interference from other modalities.

Additionally, by re-adding the decoupled modality task vectors back to the base LLM parameters and
integrating the corresponding encoders, we are able to reconstruct the original MLLMs approximately.
This strategy not only retains the performance of the original modalities but also saves storage space.
Remarkably, our MMER approach exhibits strong resistance against catastrophic forgetting (Yang
et al., 2023; Goodfellow et al., 2013) when handling new tasks. It can enhance performance on new
tasks without diminishing effectiveness on previous tasks. The process begins with selecting the
corresponding original MLLM based on the modality of the new task for fine-tuning. Then, the task
vector of the newly fine-tuned MLLM is merged with the task vectors of all original MLLMs to create
a merged task vector, and a corresponding mask is generated. This strategy effectively separates the
parameters of the new task from the original parameters, thereby preventing damage to the original
parameters during fine-tuning and significantly mitigating catastrophic forgetting.

We demonstrated the effectiveness of our MMER approach by composing four MLLMs (i.e., image,
audio, video, and point cloud) and conducted extensive experiments across three scenarios. Firstly,
in benchmarks like MCUB (Chen et al., 2024), which involve more than two modalities, MMER
achieves a significant improvement compared to NaiveMC framework and various model merging
methods such as TA (Ilharco et al., 2023) and TIES (Yadav et al., 2023). This confirms that MMER
realizes and enhances the multimodal expansion capabilities of LLMs without requiring additional
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training. Secondly, we examined the performance of MLLMs approximately reconstructed by MMER
on fourteen dual-modal benchmarks covering four modalities. The experiments reveal that these
MLLMs fully retain their original performance. Lastly, we verified MMER’s resistance to catastrophic
forgetting in both single-task and cross modalities multi-task scenarios. Our results show that MMER
retained 98% of its performance on previous tasks while efficiently adapting to new tasks.

In summary, our work makes several significant contributions: (i) We propose a training-free MMER
approach that enables seamless multimodal expansion for LLMs through multimodal parameter
merging and decoupling. (ii) We demonstrate two additional practical applications of the MMER
approach: retaining the performance of original MLLMs and mitigating catastrophic forgetting in
MLLMs. (iii) We conduct extensive and rigorous experiments on various multimodal benchmarks
across three scenarios, and the experimental results confirm the effectiveness of the MMER approach.

2 RELATED WORK

2.1 MULTIMODAL LARGE LANGUAGE MODELS

As text-based LLMs are insufficient to meet evolving demands, significant research (Dai et al., 2023;
Li et al., 2023a; Achiam et al., 2023; Ye et al., 2023) efforts are focused on developing LLMs that
can effectively handle multimodal inputs. Vision LLMs (Alayrac et al., 2022; Li et al., 2023b;
Liu et al., 2023), as trailblazers in this field, have excelled across numerous vision-language tasks
by connecting pre-trained visual encoders to LLMs through various alignment layers. Similarly,
other modalities like audio (Rubenstein et al., 2023; Deshmukh et al., 2023) and video (Lin et al.,
2023; Maaz et al., 2024) have rapidly followed suit, resulting in a surge of dual-modality MLLMs.
Meanwhile, researchers have explored unifying multiple modalities into a single LLM. Approaches
like Pandagpt (Su et al., 2023) and ImageBind-llm (Han et al., 2023) connect a unified multimodal
encoder like ImageBind (Girdhar et al., 2023) with an LLM but rely only on image-text data, leading
to suboptimal performance. OneLLM (Han et al., 2024) improves on this by introducing a versatile
encoder for eight modalities and aligning all of them with language. However, these methods cannot
expand modalities due to the encoders have fixed input modalities. Another approach connects
multiple modality-specific encoders to an LLM, as seen in X-LLM (Chen et al., 2023a) and MACAW-
LLM (Lyu et al., 2023), which integrate encoders for images, videos, and audio. AnyMAL (Moon
et al., 2023) further adds an IMU encoder. These methods typically require high-quality multimodal
data for joint training and still struggle with modality expansion. In contrast, our MMER approach
provides an efficient, training-free solution for seamless multimodal expansion in LLMs.

2.2 MODEL MERGING AND MODEL COMPOSITION

The proliferation of various model checkpoints has sparked concerns over data privacy and resource
efficiency, shifting focus toward model merging and composition (Yang et al., 2024; Lu et al.,
2024). Model merging, which merges multiple models fine-tuned from the same initialization, can
improve single-task performance (Gupta et al., 2020; Wortsman et al., 2022), out-of-distribution
generalization (Arpit et al., 2022; Ramé et al., 2022), or combine their capabilities (Wan et al., 2024;
Ilharco et al., 2022). For example, TA (Ilharco et al., 2023) defines the concept of task vectors
and uses arithmetic operations like addition to merge models. TIES (Yadav et al., 2023) mitigates
interference during merging by pruning redundant parameters and resolving sign conflicts, while
DARE (Yu et al., 2024) proposes a preprocessing step that randomly drops and scales parameters to
achieve the same goal. TALL-masks (Wang et al., 2024) proposes an algorithm to identify original
task information from the merged task vector and eliminate harmful parameters to enhance merging
performance. Model merging has been further applied to multimodal models (Aiello et al., 2024;
Wu et al., 2023a). Sung et al. (2023) and Sundar et al. (2024) investigated merging multimodal
transformers to improve performance in specific tasks, such as speech recognition. Model Tailor (Zhu
et al., 2024c) merges the original model with a fine-tuned model to mitigate catastrophic forgetting in
MLLMs. However, they do not explore the merging of multiple MLLMs. The NaiveMC and DAMC
frameworks (Chen et al., 2024) address this by using model merging and composition to create a
unified MLLM that inherits the modality capabilities of multiple MLLMs, thus enabling seamless
expansion into new modalities. Nonetheless, each framework has its limitations: one necessitates
additional training, while the other delivers subpar performance. In contrast, MMER approach
avoids both of these drawbacks. It enhances the multimodal expansion capabilities of MLLMs
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Figure 2: Illustration of the details of our MMER approach with only Image and Point Cloud modalities are
considered for clarity. Each block corresponds to the same weight matrix, with empty blocks denoting zero
value. The symbol "≈" signifies similar performance. We separate modality-specific components from the base
fine-tuned LLMs, then apply parameter merging and decoupling to these LLMs to generate masks and merged
task vector. Different task vectors are decoupled to reconstruct original MLLMs based on the specific scenario.

without requiring additional training, while nearly retaining the original modalities’ performance.
Additionally, it demonstrates impressive resistance to catastrophic forgetting when adapting to new
tasks. Appendix A provides a detailed comparison of MMER approach with related methods.

3 METHODOLOGY

In our MMER approach, we first merge the LLM parameters {θ1, θ2, . . . , θn} from multiple MLLMs,
all fine-tuned from the same base LLM θpre, into a unified LLM. However, such a merged model
is particularly susceptible to interference between parameters from different modalities, which can
degrade the performance of modality-specific representations. To overcome this challenge, we adopt
a training-free parameter decoupling method to effectively enhance the multimodal performance of
the merged LLM while also ensuring that the performance of each original modality is retained. This
method approximately decouples modality-specific parameters within the merged parameter, ensuring
that the representation of each non-text modality is processed independently by their respective
parameters. A visual workflow illustrating our MMER approach is depicted in Figure 2.

3.1 MULTIMODAL PARAMETER MERGING AND DECOUPLING

The key idea of the MMER approach is its mechanism of the training-free multimodal parameter
merging and decoupling. Specifically, we commence by employing the advanced model merging
technique Ties (Yadav et al., 2023) to merge {θ1, θ2, . . . , θn}. Ties first calculates the task vectors
for each MLLM as τi,pre = θi − θpre. Subsequently, it refines these task vectors τi,pre by selecting
the Top K% extreme values to filter out non-essential parameters, which yields sparse task vectors τi.
These sparse task vectors are then merged according to sign consistency to generate the merged task
vector τ∗ = merge(

∑n
i=1 τi) and the final merged LLM parameter is θ∗ = θpre +α · τ∗, where α > 0
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is a scaling factor determined by the accuracy of the validation dataset. This dataset is constructed by
selecting one task from each modality and combining their respective validation sets.

Previous studies (Panigrahi et al., 2023; Wang et al., 2024) have shown that after merging multiple
different task vectors, the majority of their parameter information is retained and embedded into the
resulting merged task vector τ∗. By comparing the original MLLM task vectors τi with the merged
task vector τ∗, we can identify the relevant parameter subsets specific to each original modality task
vector. This enables the construction of modality-specific binary masks mi, which allow decoupling
and approximating of the parameters for the original modality task vectors mi ◦ τ∗. These binary
masks filter out irrelevant parameters in the merged task vector, preserving only modality-specific
information and reconstructing the original model parameters θ̂i:

θ̂i = θpre +mi ◦ τ∗ ≈ θi (1)

We construct the binary masks mi by minimizing the Manhattan distance ℓ∗1 between the reconstructed
model parameters θ̂i and the LLM parameters θi of original MLLMs:

argmin
mi∈{0,1}P

∣∣∣θ̂i − θi

∣∣∣ = argmin
mi∈{0,1}P

|mi ◦ τ∗ − τi| = argmin
mi∈{0,1}P

P∑
p=1

∣∣∣m(p)
i ◦ τ (p)∗ − τ

(p)
i

∣∣∣ (2)

where P represents the total number of parameters. If the sign of τ (p)i is inconsistent with that of τ (p)∗ ,
i.e., sign(τ (p)i ) ̸= sign(τ (p)∗ ), the binary masks m(p)

i is set to 0 to avoid directional conflict. This step
is referred to as Directional Congruence. Conversely, when the sign of τ (p)i aligns with τ

(p)
∗ and∣∣∣τ (p)i

∣∣∣ ≥ ∣∣∣τ (p)∗ − τ
(p)
i

∣∣∣, i.e.,
∣∣∣τ (p)i

∣∣∣ ≥ 50%
∣∣∣τ (p)∗

∣∣∣, this indicates that τ (p)i is a dominant component

of the merged parameter τ (p)∗ . Thus, τ (p)∗ can be approximated as τ (p)i , and m
(p)
i is set to 1, which

we refer to as Dominant Significance. Additionally, we introduce a scaling factor λi to refine the
selection process of Dominant Significance to accommodate the varying numbers and modalities of
original MLLMs. A smaller λi results in the selection of more parameters. The choice of λi is guided
by validation dataset accuracy, enabling different masks mi to be assigned with different values of λi.
The final mask mi is constructed using the following formula:

mi =

{
1 if |τ (p)i | ≥ λi · 50%|τ (p)∗ | and sign(τ (p)i ) = sign(τ (p)∗ )

0 otherwise
(3)

Our subsequent experiments validate the effectiveness of this parameter decoupling strategy. As illus-
trated in Figure 4, by employing binary masks to separate the pertinent subset of critical parameters,
the original parameters can be approximately decoupled, thereby retaining the original performance.

3.2 THE MMER APPROACH

We now present a comprehensive exposition of how the aforementioned multimodal parameter
merging and decoupling method not only facilitates both the multi-modality expansion and retention
but also addresses the challenge of catastrophic forgetting in MLLMs.

3.2.1 MULTI-MODALITY EXPANSION

Typical MLLMs are composed of two key elements: modality-specific components, including
modality encoders and alignment layers, and a base fine-tuned LLM. Our MMER approach begins by
disentangling these components. MMER proceeds by applying the multimodal parameter merging
and decoupling strategy to these base fine-tuned LLMs of multiple MLLMs, yielding a merged
task vector τ∗, the pre-trained LLM parameter θpre, and n modality-specific binary masks mi. The
corresponding modal-specific components, including their weights, are retained and reutilized directly,
enabling the merged MLLM to seamlessly process all original modalities without loss of functionality.

As depicted in Figure 3, upon receiving multimodal data, MMER initially identifies the pertinent
modality-specific components according to the data type and respectively encodes them into rep-
resentation inputs X = [XM1

, . . . , XMn
, Xt], where XMi

and Xt represent the modality-specific
sequences and text sequences. MMER then dynamically decouples the approximate modality-specific

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

parameters θpre +mi ◦ τ∗, adeptly separating the parameters for each modality. This crucial step
ensures that non-text modality representations are processed independently with their corresponding
modality parameters. It is noteworthy that text representations are processed with the merged parame-
ter θpre +m ◦ τ∗, where m represents the average of all modality-specific masks mi. For example,
when the representations progress to the attention mechanism at the l-th layer, MMER first decouples
the modality-specific parameter weights WQ

∗,l of the queries weights in the l-th layer from τ∗, before
proceeding with the subsequent computation:

Ql =
[
XM1,l

(
mQ

1,l ◦W
Q
∗,l +WQ

pre,l

)
, . . . , Xt,l

(
mQ

l ◦WQ
∗,l +WQ

pre,l

)]
(4)

where WQ
pre,l represents the weights of the queries in the l-th layer form θpre. Subsequently, MMER sequentially

decouples the modality-specific parameters for the keys and values in the l-th layer, and executes the computations
to derive Kl and Vl. Following this, we carry out the attention operation:

Xa
l = Attention(Ql,Kl,Vl) (5)

[Xa
M1,l, . . . , X

a
Mn,l, X

a
t,l] = Split(Xa

l ) (6)

Please note that the output representation should be partitioned according to the different modalities to match the
input form. Consequently, the final output of the attention mechanism at the l-th layer is:

[Xo
M1,l, . . . , X

o
t,l] =

[
Xa

M1,l

(
mO

1,l ◦WO
∗,l +WO

pre,l

)
, . . . , Xa

t,l

(
mO

l ◦WO
∗,l +WO

pre,l

)]
(7)

Such an implementation effectively alleviates parameter conflicts across different modalities, thereby ensuring
that the merged MLLM can maintain relative fidelity when processing multimodal data.

3.2.2 MULTI-MODALITY RETENTION

Point Mask Image Mask Merged Mask

Merged Task Vector
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Attention
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Figure 3: Details of dynamic parameter decoupling in
MMER for handling multimodal data. and repre-
sent the Hadamard product and addition operation.

Previous studies, such as model merging (Ilharco
et al., 2023; Yadav et al., 2023) and NaiveMC (Chen
et al., 2024), have demonstrated that performance
tends to degrade (See Table 2) when handling the
original tasks, primarily due to the discrepancies be-
tween the merged model parameter and the original
model parameters. However, MMER effectively cir-
cumvents this issue, ensuring the original MLLMs’
performance is retained. When dealing with tasks that
are specific to the modalities of the original MLLMs,
MMER can directly reconstruct an approximate ver-
sion of the original MLLMs to perform inference
on these tasks. The procedure is as follows: First,
decouple the modality-specific task vector mi ◦ τ∗
from the merged task vector, then add it to the pre-
trained LLM parameter θpre to obtain the restored
LLM θ̂i = θpre +mi ◦ τ∗. Finally, integrate the cor-
responding modality-specific components with the
restored LLM to construct the final reconstructed
MLLM. This strategy effectively mitigates interfer-
ence from parameters of other MLLMs and retains the original performance of each MLLM. Subsequent
experiments, as illustrated in Table 2 validate the effectiveness of this strategy.

3.2.3 MITIGATING CATASTROPHIC FORGETTING

Typically, fine-tuning MLLMs on new data enhances their performance on newly introduced tasks, but it often
comes at the cost of diminished performance on the previous tasks (Goodfellow et al., 2013). This degradation
in performance, referred to as catastrophic forgetting, arises when fine-tuning for new tasks. Drawing on the
insight that most parameter information from individual task vectors is retained in the merged task vector, we can
leverage MMER to additionally mitigate catastrophic forgetting. Specifically, we first select the corresponding
original MLLM based on the modality of the new task and proceed to fine-tune its LLM using the new data, while
keeping the modality-specific components frozen. Next, we apply the parameter merging and decoupling method
to the fine-tuned MLLM, alongside all original MLLMs, generating a new merged task vector and modality-
or task-specific binary masks. For the new task, we apply the task-specific mask to recover the fine-tuned
MLLM for processing. For the previous tasks, we maintain the use of the previously proposed multi-modality
expansion or retention strategy. This method enables MMER to effectively adapt to new tasks while retaining its
performance on previous tasks, thereby substantially mitigating the risk of catastrophic forgetting.
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Table 1: Accuracy (%) results on multimodal benchmarks with different combinations of video (V), image (I),
audio (A), point cloud (P), and text (T) inputs. MCUB and MUSIC-AVQA consist of five and three subsets,
respectively. TA and TIES serve as alternatives to the average merging method utilized in NaiveMC framework.
Optimal results are highlighted in boldface, while sub-optimal results are underlined.

Task (→) ModelNet40 MUSCI-AVQA MCUB
Method (↓) PI-T IA-T VI-T VA-T AVI-T AVP-T AIP-T VIP-T AVIP-T

Avg

NaiveMC[ACL24] (Chen et al., 2024) 60.53 39.31 47.65 47.40 53.64 56.28 60.53 54.60 59.16 53.23
TA[ICLR23] (Ilharco et al., 2023) 62.04 40.22 47.97 46.70 53.44 56.28 63.36 55.40 59.72 53.90
TIES[NeurIPS23] (Yadav et al., 2023) 61.74 43.27 49.27 48.60 53.64 55.47 61.74 54.60 58.55 54.10
NaiveMC (w/ DARE[ICML24] (Yu et al., 2024)) 60.32 39.78 47.98 47.67 53.64 56.68 60.73 54.80 59.53 53.46
TA (w/ DARE) 62.75 40.46 47.98 46.92 54.25 56.48 64.17 55.40 60.08 54.27
TIES (w/ DARE) 61.96 43.78 49.54 48.98 54.25 55.87 62.55 55.20 59.06 54.57
MMER (ours) 62.15 47.25 51.27 51.77 56.48 59.31 65.59 56.00 61.63 56.82

4 EXPERIMENTS SETUP

4.1 IMPLEMENTATION

In our forthcoming experiments, we explored our MMER approach across four MLLMs: Image, Audio, Video,
and Point Cloud LLMs, all built upon Vicuna-7B-v1.5 (Zheng et al., 2023). To ensure fairness and comparability
in our analysis, we fine-tuned these four MLLMs in the same environment, following previous works (Liu et al.,
2024; Lin et al., 2023; Xu et al., 2024; Panagopoulou et al., 2023). Details regarding the fine-tuning of these
MLLMs are provided in Appendix B.2. For the hyperparameters in the parameter merging and decoupling
process, we set α to 1 and K to 80%, while λ was calibrated according to the different modalities.

4.2 BASELINE METHODS

In the multi-modality expansion and retention experiments, we first compared MMER with the training-free
modal composition framework NaiveMC (Chen et al., 2024). We excluded the comparison with DAMC
framework (Chen et al., 2024), as its reliance on additional training introduces variables that could compromise
the fairness of our experimental evaluation. Additionally, since model merging methods can substitute the
average merging strategy in NaiveMC framework to enhance multimodal performance, we also compared against
training-free model merging baselines, including TA (Ilharco et al., 2023) and TIES (Yadav et al., 2023). Given
that DARE (Yu et al., 2024) is complementary to other model merging methods, we combined it with TA,
TIES, and NaiveMC framework in our experiments. Additionally, we included the zero-shot performance of the
original MLLMs as a performance upper bound. We evaluated the performance based on both the evaluation
scores or accuracy and the performance retention, the latter of which is defined in Appendix B.1.

4.3 DATASETS AND BENCHMARKS

In the multi-modality expansion experiments, we evaluated several multimodal benchmarks containing more than
two modalities, including MCUB (Chen et al., 2024), MUSIC-AVQA (Li et al., 2022), and ModelNet40 (Wu
et al., 2015) with images. Furthermore, we assessed the multi-modality retention across fourteen dual-modal
benchmarks spanning four modalities: image, video, audio, and point cloud. Specifically, the image tasks include
VQAv2 (Goyal et al., 2017), GQA (Hudson & Manning, 2019), TextVQA (Singh et al., 2019), VizWiz (Gurari
et al., 2018), ScienceQA (Lu et al., 2022), POPE (Li et al., 2023c), and OK-VQA (Marino et al., 2019). The
audio tasks cover TUT (Mesaros et al., 2017), VocalSound (Gong et al., 2022), and Clotho (Drossos et al., 2020).
The video benchmarks include MSRVTT (Xu et al., 2016) and MSVD (Chen & Dolan, 2011), while the point
cloud tasks focus on ModelNet40 (Wu et al., 2015) and Objaverse (Deitke et al., 2023). Finally, we evaluated
MMER’s resilience to catastrophic forgetting in both single-task and cross modalities multi-task settings across
two new tasks, Flickr30k (Young et al., 2014) and Clotho-AQA (Lipping et al., 2022).

5 MAIN RESULTS

Multi-Modality Expansion. Table 1 summarizes the primary results of the multi-modality expansion exper-
iments across four benchmarks. The notation “XY-T” denotes the combination of modalities included in the
dataset, where A stands for Audio, P for Point Cloud, V for Video, I for Image, and T for Text. For example,
“IA-T” signifies that the dataset comprises Image, Audio, and Text modalities. Regardless of the input data
modalities, we utilized the unified MLLM, derived from merging MLLMs across four distinct modalities, to
process the data. We can draw the following observations: (i) Various advanced model merging methods
improve the performance of the NaiveMC framework, suggesting that training-free model merging methods
can still be effectively applied to the merging of MLLMs. This is a domain that has not been previously
explored. Additionally, this implies that there are considerable parameter conflicts in the merged MLLM, as
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Table 2: Results on fourteen dual-modal benchmarks spanning four modalities. The performance retention from
the original MLLMs are shown in parentheses. Original MLLMs refer to their zero-shot results. “Trimmed Avg”
represents the average result obtained after excluding three point or audio classification tasks.

Task (→) 2 Point Tasks 3 Audio Tasks 2 Video Tasks 7 Image Tasks Trimmed Avg
Method (↓) Score (%) / Acc.(%) Score (%) / Acc.(%) Acc.(%) Acc.(%) Score (%) / Acc.(%)

Original MLLMs 23.15 / 21.27 25.30 / 24.71 39.79 62.23 24.23 / 51.01

NaiveMC [ACL2024] (Chen et al., 2024) 22.65 (97.8) / 20.49 (96.3) 24.59 (97.2) / 30.65 (124.8) 36.92 (93.0) 52.56 (83.6) 23.62 (97.5) / 44.59 (88.3)

TA [ICLR23] (Ilharco et al., 2023) 22.96 (99.2) / 21.02 (98.8) 24.68 (97.5) / 31.88 (129.8) 37.57 (94.5) 54.89 (87.5) 23.82 (98.3) / 46.23 (91.0)

TIES [NeurIPS23] (Yadav et al., 2023) 22.82 (98.6) / 20.83 (97.9) 24.79 (98.0) / 32.15 (130.9) 37.81 (95.1) 54.10 (86.2) 23.80 (98.3) / 45.96 (90.6)

NaiveMC (w/ DARE[ICML2024] (Yu et al., 2024)) 22.83 (98.6) / 20.77 (97.6) 24.72 (97.7) / 31.62 (128.8) 37.63 (94.4) 53.61 (85.3) 23.78 (98.1) / 45.62 (89.8)

TA (w/ DARE) 23.04 (99.5) / 21.25 (99.9) 24.82 (98.1) / 32.44 (132.0) 37.52 (94.4) 55.47 (88.4) 23.95 (98.8) / 46.50 (91.4)

TIES (w/ DARE) 22.76 (98.3) / 20.98 (98.6) 24.92 (98.5) / 33.02 (134.4) 38.00 (95.6) 54.73 (87.2) 23.84 (98.4) / 46.37 (91.4)

MMER (ours) 23.14 (99.9) / 22.49 (105.7) 25.20 (99.6) / 38.51 (155.6) 39.28 (98.5) 62.40 (100.3) 24.17 (99.8) / 50.84 (99.4)

Table 3: Results on previous and new tasks in the single-task scenario and cross-modalities multi-task sce-
nario. MMER-xx refers to merging the MLLM fine-tuned on a new task xx into MMER. MMER-Clotho-
AQA+Flickr30k denotes the merging of both the audio LLM fine-tuned on Clotho-AQA and the vision LLM
fine-tuned on Flickr30k into MMER. The symbol "(∼)" signifies performance retention.

Previous Tasks New Tasks
Task (→)

2 Point tasks 3 Audio tasks 2 Video tasks 7 Image tasks 3 Multimodal tasks Clotho-AQA Flickr30k

Baseline (↓) Score / Acc. Score / Acc. Acc. Acc. Acc. Acc. Score
Original MLLMs 23.15 / 21.27 25.30 / 24.71 39.79 62.23 - 49.40 51.26
Fine-tune on Clotho-AQA - 19.82 / 12.31 (↓) - - - 57.80 (↑) -
Fine-tune on Flickr30k - - - 57.25 (↓) - - 57.71 (↑)
MMER 23.14 / 22.49 25.20 / 38.51 39.28 62.40 56.82 49.28 51.00
MMER-Clotho-AQA 22.95 / 21.87 25.12 / 38.23 (∼) 39.17 62.20 56.53 57.71 (↑) 50.94
MMER-Flickr30k 23.05 / 22.03 24.96 / 37.68 38.90 62.27 (∼) 56.44 48.94 57.08 (↑)
MMER-Clotho-AQA+Flickr30k 22.82 / 21.56 24.88 / 37.69 (∼) 38.53 61.94 (∼) 55.89 57.52 (↑) 56.72 (↑)

these methods primarily focus on mitigating conflicts among merging parameters. (ii) Our proposed MMER
approach significantly outperforms NaiveMC across all input combinations and tasks. This demonstrates that
MMER effectively extends multimodal capabilities and enhances the merged MLLMs’ ability to manage these
modality combinations without requiring additional training for each specific combination. (iii) Furthermore,
MMER achieves superior performance on all tasks, except for ModelNet40, when compared with model merging
methods. This indicates that directly decoupling parameters after merging is more effective than merely reducing
parameter conflicts during the merging process. (iv) We observe that as the number of merging modalities
increases, the relative accuracy improvement of TIES (w/ DARE) compared to NaiveMC diminishes (i.e., from
4.81% to 0.94% to -0.17%), indicating that mutual interference among merging parameters intensifies. However,
although the relative accuracy improvement of MMER declines, it remains significant (i.e., from 9.00% to
5.21% to 4.17%), indicating that parameter decoupling remains effective despite severe parameter conflicts.

Multi-Modality Retention. To evaluate how effectively each method retains the performance of the original
MLLMs, we conducted experiments across tasks corresponding to the original MLLMs. The results are recorded
in Table 2, where we observe the following: (i) Interestingly, all methods demonstrate substantial performance
improvements on specific audio and point cloud tasks, which we attribute to task-specific differences. Specifically,
these tasks, TUT, VocalSound, and ModelNet40, are all classification tasks, whereas the others involve captioning
or question-answering tasks. The original audio and point cloud LLMs are not fine-tuned for classification
tasks, resulting in their failure to follow instructions and leading to poorer zero-shot performance in these tasks.
However, parameter merging unlocks their ability to follow instructions, as the training data for the vision LLM
included similar instructions. This resulted in performance improvements even when the merged parameter
is decoupled. To account for the impact of these tasks, we additionally provide the average performance
trimming these tasks in Table 2 for a more accurate comparison of the various methods. (ii) Although NaiveMC
successfully achieves multimodal expansion for handling multimodal tasks, its performance on the original
tasks shows a substantial deviation from that of the original MLLMs. While varied model merging methods
can partially alleviate the decline in original performance, the gap remains significant. In contrast, our MMER
almost completely retains the original performance. For instance, in the trimmed average performance, our
method attains 99.8% and 99.4% performance retention of the original MLLMs’ evaluation scores and accuracy,
respectively. Detailed performance for each task is provided in Appendix D.2.

Mitigating Catastrophic Forgetting. Finally, Table 3 illustrates that MMER effectively alleviates catastrophic
forgetting, whether in single-task or multi-task scenarios across different modalities. (i) Clotho-AQA represents
an audio task, while Flickr30k represents a visual task. Thus, we fine-tuned the original audio LLM and vision
LLM separately on the respective new task. We observe that while fine-tuning MLLMs improves performance
on new tasks, it tends to degrade performance on previous tasks in the corresponding modalities. In contrast,
the MMER approach, which additionally incorporates a fine-tuned MLLM (i.e., MMER-Clotho-AQA and
MMER-Flickr30k), demonstrates strong robustness. It maintains nearly the original performance across various
previous tasks and adapts effectively to new tasks, achieving results comparable to those of fine-tuned MLLMs.
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Table 4: Performance retention & Storage vs. Mitigating MLLMs’ catastrophic forgetting methods in the
same modality. Let N , P , and P ′ represent the number of new tasks, the total LLM parameters, and the
modality-specific component parameters, assuming each float parameter occupies 32 bits.

One New Task Two New TasksMethod
Previous tasks New task Previous tasks New tasks

Storage

Model Tailor[ICML24] (Zhu et al., 2024c) 96.47 % 91.69 % 99.28 % 87.50 % 32(P + P ′)

MMER (ours) 99.86 % 99.67 % 99.63 % 99.42 % 64P + 32P ′ + NP
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Figure 4: (a). The bar plot illustrates the percentage of parameters selected by different modality masks, while
the lines depict the performance retention of NaiveMC and the MLLMs reconstructed by MMER across various
dual-modal benchmarks. (b). The line plots depict the variations in MCUB average accuracy across different
merging sparsity ratios (Top K%) and Dominant Significance (λ · 50%).

(ii) Additionally, we integrated both fine-tuned MLLMs into the MMER approach together to showcase its
performance in cross modalities multi-task scenario. As the number of integrating MLLMs increases, MMER
continues to maintain performance across various new and previous tasks to some extent. However, its ability to
preserve performance does slightly diminish. Detailed performance for each task is provided in Appendix D.2.

In Table 4, we compare our MMER approach with the latest method for mitigating catastrophic forgetting
in MLLMs within the same modality, since Model Tailor (Zhu et al., 2024c) is unable to accommodate new
tasks across different modalities. The results show that MMER consistently outperforms Model Tailor in both
single-task and multi-task scenarios, highlighting its effectiveness. Furthermore, as the number of new tasks
increases, MMER maintains relatively stable performance, whereas Model Tailor exhibits a significant decline in
performance on new tasks (i.e., from 91.69% to 87.50%), despite some improvement on previous tasks. However,
a minor drawback of MMER is that its storage cost is approximately twice that of Model Tailor. Nonetheless,
as the number of new tasks grows, MMER’s practicality becomes more pronounced, making it a more viable
solution in scenarios where balancing performance and storage efficiency is crucial.

6 ADDITIONAL RESULTS AND ANALYSIS

Modality-Specific Masks Analysis. Figure 4 (a) illustrates the percentage of parameters selected by different
modality masks and compares the performance retention of MLLMs reconstructed with MMER against
NaiveMC. It can be observed that MMER outperforms NaiveMC across all four modalities, with performance
that is close to or even exceeds the original levels. This indicates that all integrated knowledge is preserved
after merging, and the parameter subsets selected by the masks retain crucial modality-specific information.
Additionally, we find that the audio mask, despite retaining only 2.2% of the parameters, still contributes to
performance improvement. This finding is consistent with previous research (Yu et al., 2024), which noted that
"Supervised fine-tuned language models tend to acquire excessively redundant delta parameters (also known as
task vectors)." Our results further confirm that this observation holds true for MLLMs as well.

Hyperparameters Analysis. Figure 4 (b) explores the impact of the hyperparameters Top K% and the scaling
factor λ in multimodal parameter merging and decoupling. Firstly, Top K% controls the sparsity of the original
task vectors. When sparsity is excessively high (e.g., 20% or 40%), performance deteriorates markedly due to the
insufficient information retained in the sparse parameters. Conversely, in the absence of sparsity (e.g., 100%), the
method fails to mitigate parameter conflicts among the original parameters, thereby hindering the approximate
decoupling of modality parameters. The effect of the scaling factor λ is akin to that of Top K%. Specifically,
the scaling factor λ regulates the extent of information that the mask extracts from the merged task vector. If
λ is set too high, the decoupled modality parameters will contain insufficient effective information, leading to
performance collapse (e.g., 60% or 75%). Conversely, if λ is too low (e.g., 15%), irrelevant parameters remain,
resulting in poor performance. In summary, Top K% and the scaling factor λ work in tandem to regulate the
amount of effective information contained in the decoupled parameters. For instance, the performance with K
set to 60% and λ to 30% closely mirrors the results when K is set to 80% and λ to 45%.
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Figure 5: Performance retention and Storage cost vs. Number of original MLLMs in multi-modality retention
experiments. Our MMER approach can nearly retain the initial performance across various combinations of
MLLMs while significantly compressing the fine-tuned checkpoints.

Performance & Storage vs. MLLM Quantity. Finally, Figure 5 presents the performance retention and
storage costs of merging varying numbers of MLLMs in multi-modality retention experiments. Our observations
suggest that as the number of merging MLLMs increases, performance declines across all methods. This
indicates that as more MLLMs are merged, conflicts between the merging parameters intensify. Nevertheless, our
MMER consistently outperforms model merging methods, experiencing only minor performance degradation.
In contrast, model merging methods exhibit a noticeable performance drop when dealing with multiple MLLMs.
This highlights that parameter decoupling is robust in effectively mitigating parameter conflicts.

Although model composition or merging methods maintain low storage costs that remain constant regardless of
the number of merging MLLMs, their lower performance may constrain their practical applicability. In contrast,
maintaining individual MLLMs preserves strong performance for their respective modalities but fails to achieve
multimodal expansion and results in linear growth in storage costs. Our MMER approach strikes an effective
balance between these approaches. It enables multimodal expansion while retaining nearly 100% of the original
MLLMs’ modality capabilities and provides additional resilience against catastrophic forgetting. Moreover, it
significantly reduces storage costs, as shown in Figure 5. Storage comparison details are in Appendix C.

Table 5: Ablation study on all steps of parameter decoupling. In retention experi-
ments, we excluded three point and audio classification tasks.

3 Expansion Tasks 11 Retention TasksMethod Avg ACC. Avg Score (%) / Avg ACC. (%)
MMER 56.82 24.17 (99.8) / 50.84 (99.4)

− Directional Congruence 7.20 10.05 (41.6) / 8.34 (16.7)

− Dominant Significance 33.87 14.71 (60.5) / 28.93 (57.1)

− Scaling Factor λ 54.02 23.14 (95.6) / 47.78 (93.9)

Ablation Study. We con-
ducted ablation experi-
ments on the parameter
decoupling steps to evalu-
ate their effectiveness. In
Table 5, we begin with
the original parameter de-
coupling strategy and sys-
tematically remove com-
ponents such as Direc-
tional Congruence, Dominant Significance, and the scaling factor λ. We then report the performance of
MMER in both multi-modality expansion and retention scenarios. Removing Directional Congruence means
that parameters are selected solely based on Dominant Significance, i.e., mi = 1{ |τi| ≥ 50% · λi|τ∗|}.
Removing Dominant Significance entails retaining parameters solely based on the consistency of their signs,
i.e., mi = 1{sign(τi) = sign(τ∗)}. Table 5 shows that the steps in parameter decoupling are crucial for
optimizing performance. Specifically, Directional Congruence proves to be the most critical. Without it, the
decoupled parameters are almost meaningless and lose all the original modality information. Next in importance
is Dominant Significance. Without filtering out crucial parameters, irrelevant ones persist and significantly
interfere with the original parameters. Finally, the scaling factor λ also plays a role, causing performance
degradations of 4.93% in multi-modality expansion experiments and 4.92% in retention experiments.

7 CONCLUSION

In this paper, we propose a novel training-free approach MMER that reuses and composes existing MLLMs to
resolve the dilemma faced by MLLMs during multimodal expansion: costly retraining or suboptimal performance.
MMER retains multimodal encoders and merges LLM parameters, constructing binary masks to decouple
modality-specific parameters. This innovative mechanism enables independent handling of modality-specific
inputs by their respective parameters, thereby significantly reducing parameter conflicts to enhance multimodal
performance. Additionally, MMER can reconstruct the original MLLMs by integrating decoupled parameters
with the base LLM, effectively retaining the original performance. Finally, by incorporating fine-tuned MLLMs
for new tasks into MMER approach, it isolates the parameters for new tasks from the original ones, thus
mitigating catastrophic forgetting. Extensive experiments have validated the effectiveness and robustness of
MMER. We hope this work inspires further exploration of training-free multimodal expansion for LLMs.
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A NOVELTY AND CONTRIBUTIONS

Our research aims to achieve training-free multi-modality expansion and retention for LLMs through parameter
merging and decoupling. We conduct a comparative analysis with existing relevant methods to demonstrate the
innovation of our MMER approach.

Comparison with NaiveMC and DAMC frameworks. Our MMER approach is based on the NaiveMC
framework (Chen et al., 2024) and employs a parameter dynamic decoupling strategy similar to that of the
DAMC framework (Chen et al., 2024) to mitigate parameter conflicts in the merged MLLM. However, there are
several key differences:

1. Compared to the NaiveMC framework, our MMER approach effectively enhances the multimodal
performance of the merged MLLM.

2. Compared to the DAMC framework, our MMER approach employs a training-free parameter decou-
pling strategy instead of separating parameters during the initialization training of the MLLMs and
achieves similar results. Additionally, MMER is additional compatible with full-parameter fine-tuned
MLLMs, whereas DAMC is restricted to parameter-efficient fine-tuned MLLMs.

3. Compared to the NaiveMC and DAMC frameworks, our MMER approach retains the performance of
the original MLLMs while also providing additional capabilities to mitigate catastrophic forgetting.

Our MMER approach integrates the strengths of the NaiveMC and DAMC frameworks, while additionally
providing original performance retention capabilities.

Comparison with training-free model merging methods. Training-free model merging methods, such as
TA (Ilharco et al., 2023), TIES (Yadav et al., 2023), and DARE (Yu et al., 2024), are primarily designed
for merging models with identical architectures. Consequently, they must be combined with the NaiveMC
framework to achieve multi-modality expansion for LLMs. These methods alleviate parameter conflicts in
merged MLLMs to some extent, leading to performance enhancement. However, their overall effectiveness, both
in terms of multimodal performance and retention of original performance, falls significantly short compared to
our MMER approach.

Comparison with alignment and fine-tuning methods. Compared to methods (Chen et al., 2023a; Lyu et al.,
2023; Han et al., 2024) that achieve multimodal expansion for LLMs by adding multiple new modality encoders
or employing a unified multimodal encoder followed by alignment and fine-tuning, the advantages of our MMER
approach are clear. MMER can effectively reuse a large number of MLLMs from the open-source community
and merge them enabling multimodal expansion without the need for extensive resources and time spent on
training models and constructing high-quality modality instruction data.

Comparison with TALL-masks. TALL-masks (Wang et al., 2024) is an information localization algorithm
that, similar to our approach, compresses original parameters and subsequently approximates their restoration.
However, there are several key differences:
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1. From an algorithmic perspective, TALL-masks overlooks the Consistency of original and merged
parameter signs. In contrast, we have addressed this aspect and demonstrated its effectiveness in our
ablation experiments (See Table 5).

2. In terms of application scenarios, our MMER applies parameter merging and decoupling to the
multimodal expansion for LLMs, enhancing their multimodal capabilities. Additionally, we utilize
MMER to mitigate catastrophic forgetting. These aspects are not considered by TALL-masks.

3. Regarding the models utilized, the models used in our MMER approach are the 7B MLLMs across
various modalities, while TALL-masks is applied to relatively smaller models within the same modality,
such as T5 (Raffel et al., 2020) and ViT (Dosovitskiy et al., 2021).

B IMPLEMENTATION AND EXPERIMENTAL DETAILS

All our experiments are conducted on an NVIDIA 8×A800-SXM4-80GB machine.

B.1 PERFORMANCE RETENTION

Considering the varying modalities of each original MLLM and the different evaluation metrics for distinct tasks,
we provide performance retention in our results to validate the method’s capacity to retain original performance.
The definition is as follows:

Performance Retention =
1

T

T∑
t=1

metric
x∼µt

[fmethod(x)]

metric
x∼µt

[foriginal(x)]
(8)

The “metric” refers to various evaluation metrics, such as accuracy and captioning scores(e.g., BLEU, ROUGE).

B.2 IMPLEMENTATION DETAILS OF ORIGINAL FINE-TUNED MLLMS

We utilize the same training data and components of each MLLM across the four modalities following
NaiveMC (Chen et al., 2024). More details are presented in Table 6.

Table 6: Training data and components of MLLMs for different modalities.

Modality Modality Encoder Connector Alignment Data Fine-tuneing Data Referenced Work
Image CLIP-ViT-L-336px

(Dosovitskiy et al.,
2021)

MLP LCS 558K (Xu et al.,
2024)

LLaVA-mixed 665K (Xu et al.,
2024)

LLaVA-1.5 (Liu
et al., 2024)

Audio BEATs-Iter3+ (Chen
et al., 2023b)

Q-Former WaveCaps 400K (Mei
et al., 2024)

OpenAQA filtered 350K (Gong
et al., 2024)

X-InstructBLIP
(Panagopoulou et al.,
2023)

Video LanguageBind (Zhu
et al., 2024a)

MLP LCS 558K,
Valley 702K (Luo et al.,
2023)

Video-ChatGPT 100K (Maaz
et al., 2024), LLaVA-mixed
sampled 140K

Video-LLaVA (Lin
et al., 2023)

Point
Cloud

Point Encoder (Xu
et al., 2024)

MLP PointLLM brief
description 660K (Xu
et al., 2024)

Point complex instruction 70K
(Xu et al., 2024)

PointLLM (Xu et al.,
2024)

We adopt similar hyperparameters following previous works (Chen et al., 2024; Liu et al., 2024; Panagopoulou
et al., 2023; Lin et al., 2023; Xu et al., 2024). During the alignment stage, only the parameters in the connectors
are trainable. In the fine-tuning stage, we tune all connector parameters and base LLM parameters. For training
efficiency, we utilize DeepSpeed Zero Optimization Stage 3. Detailed data are presented in the Table 7.

B.3 BASELINE DETAILS

In this section, we provide a detailed overview of the six baselines included in our experiments:

• Original MLLMs means that each MLLM is evaluated on its corresponding modality benchmarks to
demonstrate its original performance, but they cannot perform cross-modal tasks simultaneously.

• NaiveMC framework (Chen et al., 2024) combines modality-specific encoders from multiple MLLMs
into the merged LLM, which is obtained by averaging the parameters of multiple LLMs from these
MLLMs. The averaging merging strategy can be replaced by other model merging methods.

• TA (Ilharco et al., 2023) initially defines the concept of task vector and employs arithmetic operations
for model merging, model forgetting, and support multi-task learning, etc. The final model is
formed by scaling and adding task vectors to the initial model, represented mathematically as θm =
θinit + λ ·

∑n
t=1 τt.
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Table 7: Hyperparameters of different MLLMs.

Stage Hyperparameter Image Audio Video Point Cloud

Alignment-State

Batch size 256 256 256 128
LR 1e-3 1e-3 1e-3 2e-3
LR Schedule cosine decay
Warmup Ratio 0.03
Epoch 1 1 1 3

Fine-tuning-Stage

Batch size 128 64 128 64
LR 2e-5 1e-5 2e-5 2e-5
LR Schedule cosine decay
Warmup Ratio 0.03
Epoch 1 3 1 3

• TIES (Yadav et al., 2023) improves upon TA (Ilharco et al., 2023) by further mitigating parameter
interference. It first prunes redundant parameters to retain the most important ones. When encountering
conflicts in parameter signs during merging, it selects and merges parameters with the majority sign
while ignoring those with minority signs.

• DARE (Yu et al., 2024) proposes a preprocessing step to address parameters conflict. This method
randomly discards the majority of the delta parameters while scaling the remaining ones by θ′ =
θ · (1/(1− p)) where p is the proportion of dropped delta parameters.

• Model Tailor (Zhu et al., 2024c) identifies the key parameters fine-tuned on the new tasks within the
MLLM and integrates them into the original MLLM, thereby retaining the performance on previous
tasks while adapting to new tasks.

C STORAGE COST CALCULATION

This section details the calculation of storage costs for MMER approach and the relevant methods mentioned
above. Let N , P , P ′, and P ∗ represent the number of original MLLMs, the total parameters of the LLMs,
the number of the modality-specific component parameters, and the number of additional trainable parameters
of parameter-efficient fine-tuning methods, respectively. Assuming each float parameter occupies 32 bits, the
storage cost for these methods across N original MLLMs is calculated as follows:

• Original fine-tuned models: 32N(P+P ′). 32(P+P ′) represents the number of parameters contained
in a single MLLM.

• NaiveMC framework: 32P + 32NP ′. Stores a merged LLM and N modality-specific components.

• DAMC framework: 32P + 32NP ′ + 2N(32P ∗). Stores a merged LLM and N modality-specific
components. 2N(32P ∗) represents the need to store an additional 2N trainable parameters of
parameter-efficient fine-tuning methods for parameter separation.

• NaiveMC wit TA / TIES / DARE: 32P + 32NP ′. Same as the NaiveMC framework.

• MMER: 64P + 32NP ′ + NP . 64P is for storing the parameters of a base LLM and a merged
task vector, while 32NP ′ indicates N modality-specific components. Additionally, NP denotes the
storage for N binary masks.

D MORE DETAILS ABOUT EXPERIMENTS

D.1 MORE RESULTS

We supplement the results of mainstream MLLMs, such as ImageBind-LLM and OneLLM, on multimodal
benchmarks in Table 8 and observe that MMER achieves superior performance compared to them.

D.2 DETAILED RESULTS

In this section, we present detailed results from the multi-modality retention and mitigating catastrophic forgetting
experiments. The results of various baselines for seven image tasks are shown in Table 9, two point cloud tasks
in Table 10, three audio tasks and two video tasks in Table 11, three multimodal tasks in Table 12, and the last
two new tasks in Table 13.
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Table 8: The results of mainstream MLLMs on multimodal benchmarks

Task (→) ModelNet40 MUSCI-AVQA MCUB
Method (↓) PI-T IA-T VI-T VA-T AVI-T AVP-T AIP-T VIP-T AVIP-T

Avg

OneLLM-7B (Han et al., 2024) - 44.64 45.48 47.60 - - - - - -
ImageBind-LLM(Han et al., 2023) 39.86 36.54 38.76 39.72 35.20 31.40 33.40 31.80 32.93 35.51
X-InstructBLIP(Panagopoulou et al., 2023) 57.93 40.71 41.23 48.34 41.40 25.20 21.20 29.40 27.94 37.04
MMER (ours) 62.15 47.25 51.27 51.77 56.48 59.31 65.59 56.00 61.63 56.82

Table 9: Results for each method on seven image tasks. All tasks are Question-Answering tasks.
7 Image Tasks

Task (→)
VQAv2 GQA TextVQA VizWiz ScienceQA POPE OK-VQA

Method (↓) Acc. Acc. Acc. Acc. Acc. Acc. Acc.
Original MLLMs 78.11 61.52 55.89 51.51 71.12 86.17 31.33
MMER (ours) 77.95 61.85 55.74 52.26 71.16 86.58 31.27
–Multi-Modality Retention
NaiveMC [ACL2024] (Chen et al., 2024) 59.73 45.83 42.29 47.87 68.52 79.41 24.28
TA [ICLR23] (Ilharco et al., 2023) 62.71 48.86 45.20 49.47 70.04 82.38 25.56
TIES [NeurIPS23] (Yadav et al., 2023) 61.78 48.23 44.60 48.67 69.05 81.21 25.13
NaiveMC (w/ DARE[ICML2024] (Yu et al., 2024)) 60.91 46.62 42.88 49.04 70.09 81.08 24.62
TA (w/ DARE) 63.65 49.25 45.74 49.82 70.87 83.12 25.82
TIES (w/ DARE) 62.54 48.73 45.38 49.15 69.78 82.17 25.39
–Mitigating Catastrophic Forgetting
Fine-tune on Flickr30k 72.27 54.19 46.10 52.88 70.22 76.78 28.31
MMER-Clotho-AQA 77.87 61.59 55.51 51.88 71.16 86.24 31.14
MMER-Flickr30k 77.75 61.43 55.41 52.72 71.75 85.72 31.07
MMER-Clotho-AQA+Flickr30k 77.32 61.33 55.23 52.33 71.02 85.43 30.94

E QUALITATIVE RESULTS

We provide qualitative results in Figure 6 and 7. These results demonstrate the capability of the merged MLLM
constructed by our MMER approach to understand and reason with multimodal inputs.

F PROMPT FOR EVALUATION

We present the evaluation prompts for each benchmark in Table 14. To denote the inputs for various modalities,
we use "<image>", "<audio>", "<video>", and "<point>" to represent image, audio, video, and point cloud
modalities, respectively.
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Table 10: Results for each method on two point cloud tasks. Among them, ModelNet40 is a classification task,
while Objavers is a captioning task.

2 Point Tasks
Task (→)

ModelNet40 Objavers
Method (↓) Acc. BLEU-1 ROUGE-L METEOR Sentence-BERT SimCSE
Original MLLMs 21.27 4.73 8.51 12.02 44.18 46.31
MMER (ours) 22.49 5.06 8.53 11.90 43.72 46.51
–Multi-Modality Retention
NaiveMC [ACL2024] (Chen et al., 2024) 20.49 4.43 8.24 11.37 43.22 45.97
TA [ICLR23] (Ilharco et al., 2023) 21.02 4.69 8.46 11.73 43.55 46.38
TIES [NeurIPS23] (Yadav et al., 2023) 20.83 4.55 8.39 11.60 43.29 46.27
NaiveMC (w/ DARE[ICML2024] (Yu et al., 2024)) 20.77 4.41 8.38 11.59 43.47 46.28
TA (w/ DARE) 21.25 4.81 8.49 11.82 43.67 46.42
TIES (w/ DARE) 20.98 4.62 8.31 11.47 43.14 46.28
–Mitigating Catastrophic Forgetting
MMER-Clotho-AQA 21.87 4.92 8.46 11.52 43.55 46.28
MMER-Flickr30k 22.03 5.08 8.55 11.63 43.61 46.36
MMER-Clotho-AQA+Flickr30k 21.56 4.98 8.39 11.38 43.34 46.02

Table 11: Results for each method on three audio tasks and two video tasks. Among them, TUT, VocalSound,
MSVD, and MSRVTT are the classification tasks, while Clotho is a captioning task.

3 Audio Tasks 2 Video TasksTask (→)
TUT VocalSound Clotho MSVD MSRVTT

Method (↓) Acc. Acc. CIDEr SPICE SPIDEr Acc. Acc.
Original MLLMs 22.23 27.19 38.63 11.98 25.29 48.40 31.18
MMER (ours) 34.14 42.88 38.49 11.93 25.18 48.12 30.43
–Multi-Modality Retention
NaiveMC [ACL2024] (Chen et al., 2024) 29.50 31.80 37.56 11.61 24.61 44.53 29.31
TA [ICLR23] (Ilharco et al., 2023) 30.64 33.12 37.69 11.67 24.69 45.61 29.54
TIES [NeurIPS23] (Yadav et al., 2023) 30.87 33.42 37.89 11.72 24.78 45.88 29.74
NaiveMC (w/ DARE[ICML2024] (Yu et al., 2024)) 30.50 32.75 37.75 11.66 24.74 45.69 29.58
TA (w/ DARE) 30.98 33.90 37.87 11.69 24.89 45.51 29.54
TIES (w/ DARE) 31.59 34.45 37.96 11.87 24.92 46.07 29.93
–Mitigating Catastrophic Forgetting
Fine-tune on Clotho-AQA 6.98 17.65 30.02 9.40 20.04 - -
MMER-Clotho-AQA 34.01 42.45 38.37 11.89 25.11 48.04 30.29
MMER-Flickr30k 33.41 41.94 38.10 11.81 24.98 47.74 30.05
MMER-Clotho-AQA+Flickr30k 33.54 41.83 37.97 11.76 24.92 47.38 29.67

Table 12: Results of the mitigating catastrophic forgetting experiments for three MMER variants on multimodal
tasks with different combinations of video (V), image (I), audio (A), point cloud (P), and text (T) inputs.

Task (→) ModelNet40 MUSCI-AVQA MCUB
Method (↓) PI-T IA-T VI-T VA-T AVI-T AVP-T AIP-T VIP-T AVIP-T
MMER-Clotho-AQA 61.98 47.01 51.22 51.43 56.08 59.11 65.08 55.80 61.08
MMER-Flickr30k 61.84 46.92 51.05 51.56 56.28 58.90 65.08 55.40 60.93
MMER-Clotho-AQA+Flickr30k 61.33 46.48 50.61 51.17 55.68 57.93 64.17 55.20 60.42

Table 13: Results of the mitigating catastrophic forgetting experiments for each method on two new tasks.
Among them, Clotho-AQA is a Question-Answering task, while Flickr30k is a captioning task.

Task (→) Clotho-AQA Flickr30k
Method (↓) Acc. CIDEr METEOR BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE
Original MLLMs 49.40 80.27 25.62 73.29 55.81 41.11 29.66 53.11
Fine-tune on Clotho-AQA 57.80 - - - - - - -
Fine-tune on Flickr30k - 94.25 27.74 78.27 62.24 47.99 36.50 57.04
MMER (ours) 49.28 79.56 25.56 73.11 55.62 40.83 29.49 52.82
MMER-Clotho-AQA 57.71 79.72 25.51 73.04 55.48 40.72 29.33 52.77
MMER-Flickr30k 48.94 92.74 27.58 77.93 61.69 47.36 36.02 56.27
MMER-Clotho-AQA+Flickr30k 57.52 92.09 27.29 77.22 61.11 46.86 35.62 55.72
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The image features a cat wearing a hat that is made of a 

pattern of orange and black stripes. The cat is looking 

directly at the camera with its green eyes, and its fur is a mix 

of orange and black. The cat's ears are perked up and its 

whiskers are visible. The hat is pulled down slightly over the 

cat's eyes, giving it a playful and mischievous look. The 

background is blurry, suggesting that the cat is the main 

focus of the image.

Describe this image in detail.

The audio clip features a man speaking, followed by a car 

engine revving and tires screeching. The man's speech is 

difficult to understand due to the loud car noise. The car is 

accelerating and the engine is revving at a high RPM, 

creating a loud and intense sound. The tires screech as the 

car takes off, adding to the overall excitement of the scene.

Describe this audio in detail.

[Car Rev and Screech]

There are two people in this video. 

How many people are in this 

video?  

What are they doing?

The man is holding a baby in his arms and smiling while the 

baby is sleeping.

This species is a blue shark.

What is this species?

Tell me more about this shark.

The shark in the image is a blue shark, which is a species of 

open ocean pelagic shark. It is a large shark, with a length of 

up to 21 feet and a weight of up to 1,100 pounds. The blue 

shark is known for its distinctive blue coloration, which is 

caused by a layer of reflective cells that help it blend into the 

surrounding water. It is a fast swimmer and can reach speeds 

of up to 35 miles per hour. 

Figure 6: Qualitative results.

Yes, the object in the point cloud, which is a car, can produce 

the sound in the audio. The sound is likely a car horn or a 

police siren.

Can the object in the point cloud produce the sound in the audio?

[Car horn sound]

No, the animal in the image is a dog and the point cloud is a 

Squirrel.

Are the specie of the animal in the image the same as that in 

the point cloud?

[Baby Laughs 

and Man Singing ]

The theme of this image, video, and audio is the bond 

between the parent and their child. The woman in the image 

is seen holding and caring for her baby, while the video and 

audio feature a man singing to his child, showcasing the love 

and affection he has for the baby. The theme of family and 

parenthood is prevalent in all three pieces of media, 

emphasizing the importance of nurturing and caring for 

one's child.

Describe the theme this image has in common with this video 

and this audio in detail.

Yes, the object in the image is a motorcycle, and the sound in 

the audio is a motorcycle engine.

Can the object in the image produces the sound in the audio?

[Motorcycle engine]

The audio is a recording of a group of people on a boat, with 

some of them speaking and others making noise.  There are 

also sounds of water and wind.  The audio seems to be from 

a different source than the image, which shows a boat with 

people on it, but it is possible that the audio was recorded at 

the same time as the image.  The people on the boat are 

laughing and having a good time.  The audio is not clear 

enough to make out what is being said, but it seems to be a 

group of people having a good time on a boat.

Describe this audio in detail.  Can 

this image produce this audio?
[Crowd Chatter]

The image depicts a small boat, likely a gondola, carrying a 

large group of people on a river. The boat is covered in a 

canopy, and the passengers are holding umbrellas of various 

colors to protect themselves from the rain. The passengers 

appear to be mostly tourists, as they are dressed in casual 

clothing and some are taking photographs. The boat is being 

rowed by a man wearing a hat and a striped shirt. The river 

is lined with buildings on either side, including a bridge with 

a red roof in the background. The scene is peaceful and 

serene.

Describe this image in detail.

The object in the video is a goldfish. It can be in the river of 

the image.

What is the object in the video? 

Could it be in the image?

The object in the point is a car. It is possible that the car is in 

the image, but it is not explicitly shown.

What is the object in the point? 

Could it be in the image?

Figure 7: Qualitative results.
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Table 14: Prompt Template for different evaluation benchmarks.

Benchmark Modality Prompt Template

AVI-T Based on four input entities:\nimage <image>\naudio
<audio>\nvideo <video>\n {Question} {Options} Answer
with the option’s letter from the given choices directly.

AVP-T Based on four input entities:\naudio <audio>\nvideo
<video>\npoint <point>\n {Question} {Options} Answer
with the option’s letter from the given choices directly.

MCUB VIP-T Based on four input entities:\nimage <image>\nvideo
<video>\npoint <point>\n {Question} {Options} Answer
with the option’s letter from the given choices directly.

AIP-T Based on three input entities:\nimage <image>\naudio
<audio>\npoint <point>\n {Question} {Options} Answer
with the option’s letter from the given choices directly.

AVIP-T Based on four input entities:\nimage <image>\naudio
<audio>\nvideo <video>\npoint <point>\n {Question}
{Options} Answer with the option’s letter from the given
choices directly.

VI-T Based on the video <video> and image
<image>\n{Question} \nAnswer the question using a
single word.

MUSIC-AVQA VA-T Based on the video <video> and audio
<audio>\n{Question} \nAnswer the question using a single
word.

IA-T Based on the image <image> and audio
<audio>\n{Question} \nAnswer the question using a single
word.

ModelNet40 PI-T Based on rendered image <image> and point cloud
<point>\nWhat is this? Select from these objects:
{Options} Answer the question using a single word.

I-T <point>\nWhat is this? Select from these objects:
{Options} Answer the question using a single word.

Objaverse I-T <point>\nOffer a clear and concise description of this
point cloud object.

VocalSound & TUT A-T <audio>\nWhich of the following categories does this
audio belong to? {Options} Answer the question using a
single word.

Clotho A-T <audio>\nDescribe this audio in detail.
Clotho-AQA A-T <audio>\n{Question}\nAnswer the question using a single

word or phrase.

MSRVTT & MSVD V-T <video>\n{Question}\nAnswer the question using a single
word or phrase.

VQAv2 & GQA &
POPE & OK-VQA

I-T <image>\n{Question}\nAnswer the question using a
single word or phrase.

Textvqa I-T <image>\n{Question}\nReference OCR token:
{Options}\nAnswer the question using a single word or
phrase.

VizWiz I-T <image>\n{Question}\nWhen the provided information is
insufficient, respond with ’Unanswerable’.\nAnswer the
question using a single word or phrase.

ScienceQA I-T <image>\n{Context}\n{Question}\nChoose the most
likely ratio. {Options}

Flickr30k I-T <image>\nDescribe this image using one or more simple
sentences.

21


	Introduction
	Related Work
	Multimodal Large Language Models
	Model Merging and Model Composition

	Methodology
	Multimodal Parameter Merging and Decoupling
	The MMER Approach
	Multi-Modality Expansion
	Multi-modality Retention
	Mitigating Catastrophic Forgetting


	Experiments Setup
	Implementation
	Baseline Methods
	Datasets and Benchmarks

	Main results
	Additional Results and Analysis
	Conclusion
	Novelty and Contributions
	Implementation and Experimental Details
	Performance retention
	Implementation Details of original Fine-tuned MLLMs
	Baseline Details

	Storage cost calculation
	More Details about Experiments
	More Results
	Detailed Results

	Qualitative Results
	Prompt for Evaluation

