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Abstract

Cross-modality registration between 2D images from cameras and 3D point clouds
from LiDARs is a crucial task in computer vision and robotic. Previous methods
estimate 2D-3D correspondences by matching point and pixel patterns learned by
neural networks, and use Perspective-n-Points (PnP) to estimate rigid transforma-
tion during post-processing. However, these methods struggle to map points and
pixels to a shared latent space robustly since points and pixels have very differ-
ent characteristics with patterns learned in different manners (MLP and CNN),
and they also fail to construct supervision directly on the transformation since
the PnP is non-differentiable, which leads to unstable registration results. To
address these problems, we propose to learn a structured cross-modality latent
space to represent pixel features and 3D features via a differentiable probabilistic
PnP solver. Specifically, we design a triplet network to learn VoxelPoint-to-Pixel
matching, where we represent 3D elements using both voxels and points to learn
the cross-modality latent space with pixels. We design both the voxel and pixel
branch based on CNNs to operate convolutions on voxels/pixels represented in
grids, and integrate an additional point branch to regain the information lost dur-
ing voxelization. We train our framework end-to-end by imposing supervisions
directly on the predicted pose distribution with a probabilistic PnP solver. To
explore distinctive patterns of cross-modality features, we design a novel loss
with adaptive-weighted optimization for cross-modality feature description. The
experimental results on KITTI and nuScenes datasets show significant improve-
ments over the state-of-the-art methods. The code and models are available at
https://github.com/junshengzhou/VP2P-Match.

1 Introduction

Image-to-Point Cloud registration finds the rigid transformation (e.g. translation and rotation) that
aligns the projection of a LiDAR frame represented as a point cloud to the reference image captured
by cameras. The key here is to determine the extrinsic parameters of the camera with respect to the
reference frame of LiDAR. It plays an important role in autonomous driving, 3D computer vision,
augmented/virtual reality, etc. Despite a plethora of approaches have explored the same-modality
registration tasks (e.g. Image-to-Image [50, 13] and Point Cloud-to-Point Cloud registration [25, 1])
and achieve promising results, few researches have shown convincing performances on cross-modality
registration between images and point clouds due to its inherent difficulty.
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Previous methods use MLPs [34, 35] on point clouds and CNNs [19, 23] on images separately
with contrastive losses to learn distinctive features, and try to establish 2D-3D correspondences by
matching the learned features. However, they fail to learn a structured latent space shared by 2D and
3D data due the calculation differences in MLPs or CNNs, which leads to different feature domains.

To solve these issues, we propose a novel framework to learn a structured cross-modality latent
space for robust 2D-3D feature matching, where 2D elements are represented as pixels and the
3D elements are represented as the combination of voxels and points. Specifically, we design a
triplet network to learn VoxelPoint-to-Pixel matching for cross-modality registration, where both
the voxel and pixel branch are designed based on CNNs to operate spatially-local convolutions on
voxels/pixels represented in grids, and the point branch is integrated to regain the information lost
during voxelization.

To learn a distinctive latent space where the correct 2D-3D correspondences can be guaranteed with
cross-modality feature matching, we propose a novel loss with adaptive-weighted optimization which
allows to learn distinctive 2D-3D correspondences by optimizing positive and negative matches
in a robust self-paced manner. Since the LiDAR point cloud is captured around the car with a
360o perception, and the image is captured eyes forward, there is a large range of outliers on both
modalities (e.g. points/voxels behind the car and sky pixels), between which there is no explicit
correspondences. To handle the outliers, we design a detection strategy to predict the probability of
lying in the intersection region for each 2D/3D elements, and remove the outlier regions on both
modalities before inferring 2D-3D correspondences.

Furthermore, previous methods [14, 36, 26] adopt Perspective-n-Point (PnP) [24, 16] solver as a
post-processing to estimate poses from matching results. They merely use the pseudo supervision
conducted from 2D-3D correspondences as the optimizing target during training. The insufficient
supervision leads to large errors since the network has no ability to handle incorrect matching pairs
which have a highly negative effect on the results. Inspired by EPro-PnP [8], we propose to train our
framework in an end-to-end manner. With a differentiable probabilistic PnP solver, we can impose
supervision directly on the predicted pose by minimizing the Kullback-Leibler (KL) divergence
between the predicted and target pose distribution. Our main contributions can be summarized as:

• We propose a novel framework to learn Image-to-Point Cloud registration by learning a
structured cross-modality latent space with adaptive-weighted optimization, through an
end-to-end training schema with a differentiable PnP solver.

• We propose to represent the 3D elements as the combination of voxels and points to
overcome the pattern gap between points and pixels, where a triplet network is designed to
learn VoxelPoint-to-Pixel matching.

• We demonstrate our superior performance over the state-of-the-arts by conducting extensive
experiments on KITTI and nuScenes datasets.

2 Related Work

2.1 Same-Modality Registration

Image Registration. Image-to-Image Registration is the key of structure-from-motion (SfM) [41]
and SLAM [32]. Classic methods [39, 40] extract feature descriptors from image pairs with SIFT [28]
or ORB [38], and establish correspondences based on the descriptor matching, where the Perspective-
n-Point (PnP) [24] or Bundle Adjustment algorithm [45] can be further applied to estimate rotations
and translations from the correspondences. Recently, learning-based approaches [50, 33, 13] have
shown promising results on image registration. LIFT [50] replaces the key steps of SIFT to neural
network layers.

Point Cloud registration. Traditional methods [2, 9] on point cloud registration requires a proper
initialization to estimate the rigid transformation. With the rapid development of deep learning, the
neural networks have shown great potential in 3D applications [34, 55, 54, 56, 48, 27, 31, 22, 53].
Recently, learning-based approaches like 3DMatch [51], PerfectMatch [18], PPFNet [12], USIP [25]
have advanced a lot on point cloud registration. 3DFeat-Net [49] attempts to joint description and
detection on 3D keypoints. However, both the image and point cloud registration methods depend
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Figure 1: Overview of our method. Given a pair of mis-registered image I and point cloud P as
input, (a) we first operate sparse voxelization to generate the sparse voxel V , and the triplet network
is then applied to extract patterns from the three modalities. We represent the 2D patterns as the
pixel features and the 3D patterns as the combination of voxel and point features, respectively. The
adaptive-weighted loss is then used to learn distinctive 2D-3D cross-modality patterns. (b) We detect
the intersection regions on 2D/3D space with cross-modality feature fusion. (c) We remove the outlier
regions based on the results of intersection detection and build 2D-3D correspondences with 2D-3D
feature matching, where the probabilistic PnP is then applied to predict the distribution of the extra
poses to impose end-to-end supervisions with ground truth poses.

on the matching of feature descriptors designed for a specific modal, which fail dramatically on
cross-modality registration.

2.2 Cross-Modality Registration

Visual Localization. A well-searched task on cross-modality registration is visual localization, which
aims to estimate the 6DOF camera pose of a query image in a 3D scene model presented in point
clouds. Traditional methods [44, 47] build 3D maps using SfM [41] to store 3D visual descriptors.
To determine the pose of a query image, those methods match visual descriptors obtained from
the query image with the ones stored in the point cloud, and apply PnP solver [24] to estimate the
camera pose from 2D-3D matches. Recently, Go-Match [57] proposes a learning-based schema to
solve localization with only geometry information. Some other methods [3, 7, 5] further explore the
differentiability of PnP solver. But those visual localization methods only focus on locating query
images on a pre-built environment, and fail to generalize to dynamic scenes captured in real-time.

Another series of methods [6, 20, 30] explore the task of LiDAR and camera self-calibration. LccNet
[29] projects mis-calibrated LiDAR point clouds onto depth images, together with the images captured
by cameras to regress the relative rigid transformation. However, those methods can only handle a
very small mis-calibration range since a relatively large range will lead to failures on depth projection.
Moreover, the self-calibration task assumes that the relative transformation between camera and
LiDAR is constant and is only predicted once for each sequence, while our method focuses on the
registration for each frame of the sequence which is much more difficult.

Image-to-Point Cloud Registration. 2D3D-MatchNet [14] detects keypoints from images and
point clouds using SIFT and ISS, and feed the local patches around those 2D/3D keypoints to CNNs
and PointNet. The networks are trained with triplet loss to learn cross-modality correspondences.
However, the hand-crafted keypoint detectors for different modalities don’t guarantee the correct
matching of keypoints, which leads to a poor registration accuracy. DeepI2P [26] converts the
registration problem into a classification and inverse camera projection optimization problem, but the
performance is limited since the frustum classification only indicates coarse 2D-3D correspondence.
Recently, CorrI2P [36] proposes to learn dense 2D-3D correspondences by matching point-wise
and pixel-wise features for fine registration. However, it fails to learn a distinctive latent space for
2D and 3D data, which leads to a large ratio of incorrect correspondences. Furthermore, all the
above methods can not predict the rigid transformation directly, which require a post processing (e.g.
Perspective-n-Point) to estimate rigid transformation from the 2D-3D correspondences.
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3 Method

Problem statement. Given a pair of 2D image I ∈ RH×W×3 and 3D point cloud P ∈ RN×3, the
cross-modality Image-to-Point Cloud registration is to predict the rigid transformation T = [R|t] in
3D space that can be used to align the projection of point cloud P to image I , where t ∈ R3 is the
translation vector and R ∈ SO(3) is the rotation matrix.

In this section, we first introduce the detailed framework of our proposed VoxelPoint-to-Pixel
Matching for learning a structured cross-modality latent space. Next, a novel loss with adaptive-
weighted optimization is proposed for learning distinctive cross-modality patterns. Finally, we present
the differentiable probabilistic PnP solver which drives our end-to-end learning schema. The overview
of our framework is shown in Figure 1.

3.1 VoxelPoint-to-Pixel Matching

The first step of our framework is to obtain element-wise 2D and 3D features. We represent 2D
elements as pixels and 3D elements as the combination of voxels and points. To achieve this, we
design a triplet network consisting of Voxel/Point/Pixel branches as shown in Figure 1.(a).

Triplet Network. To design a voxel branch to obtain voxel-wise features fvoxel, a naive implementa-
tion is to generate dense voxels from P and operate volumetric convolutions [58]. However, suffering
from the cubic complexity of voxels, the resolution for voxel data is usually limited (e.g. 1283),
which will lead to a large information loss, especially for large scale LiDAR data. To address this
issue, we leverage sparse convolution [10, 43] on high-resolution sparse voxels where the empty
voxels are skipped.

Although the voxel branch can represent powerful 3D spatial patterns with convolutions, it still
suffers from the information loss during voxelization. Therefore, we integrate the point branch to
regain the lost 3D detailed patterns by learning point features. The point branch is designed based on
PointNet++ [35]. It operates hierarchical set abstraction with self-attention modules [52] to get global
feature g3D ∈ RC3D×1, and the feature propagation module [35] is further applied to learn point-wise
feature fpoint ∈ RN×C . The pixel branch is a convolutional U-Net [37], where the ResNet [19] is
used as the basic layers to get global 2D image feature g2D ∈ RC2D×1, and the upsampling module
with skip-connection is further applied to get pixel-wise feature fpixel ∈ RH×W×C .

2D-3D Feature Matching. We represent 3D elements as the combination of voxels and points. To
achieve this, we first transform the voxel feature to the point-wise voxel representation f

′

voxel ∈
RN×C by interpolating each point-location with its 8 neighbor voxel grids using trilinear interpolation.
Thus, the 3D features f3D can be donated as:

f3D = fpoint + f
′

voxel,∈ RN×C , (1)

and the 2D features f2D ∈ T × C can be achieved by reshaping pixel-wise features fpixel where
T = H × W . After being processed with the embedding heads, the 2D and 3D features can
be mapped into the same latent space, where we establish correspondences according to cosine
similarities between f2D and f3D.

(a) P2P Matching (b) VP2P Matching

2D Feature

3D Feature

Figure 2: The t-SNE visualization of learned latent
space with Point-to-Pixel (P2P) and VoxelPoint-to-
Pixel (VP2P) Matching.

Comparison to Point-to-Pixel Matching. Due
to the different characteristics between 3D point
cloud and 2D images, it is extremely difficult
to operate the same feature extractors on both
modals. Existing approaches [14, 36] learn
point-to-pixel matching with MLP-based point
network and CNN-based image network, which
leads to different feature domains.

We find that although the huge domain gap be-
tween points and pixels, while the voxels and
pixels share great similarities. Therefore, we in-
troduce the voxel branch with spare convolution
to capture spatially-local patterns as 2D convo-
lution operated on pixel branch. Since both the 2D and 3D features are processed by convolutions,
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they share similar characteristics in feature space, leading to a structured shared latent space for both
2D and 3D features.

We visualize the learned latent space of Point-to-Pixel Matching and our proposed VoxelPoint-to-Pixel
Matching with t-SNE [46] to convert features to 2D space through cosine similarities in Figure 2.
The latent space learned by P2P Matching is extremely irregular with large gaps between several
clusters and some space only contains the features of a single modality. In contrast, VP2P Matching
leads to a structured cross-modality latent space where the features are evenly distributed throughout
the space. See appendix for more analysis.

Intersection Detection. Since the images and LiDAR point clouds are captured in quite different
ways, there is a large range of outliers on both modalities where no correspondences can be founded.
We define the intersection region as the overlap between the 2D projection of a LiDAR point cloud
using ground truth camera parameters and the reference image. To handle the outlier regions, we
design a detection strategy as shown in Figure 1(b) to predict the probability of lying in the intersection
region for each 2D/3D elements, and remove the outlier regions on both modalities before inferring
2D-3D correspondences.

For detecting the outlier region in 3D space, we first repeat the 2D global feature g2D and concatenate
it with the 3D element-wise feature f3D as [g2D : f3D], where “:" donates the feature concatenation.
Then several MLPs ϕ are used to learn the probability d i

3D of a point pi to lie in the 2D-3D intersection
region as: d i

3D = ϕ(f3D : g2D), i ∈ [1, N ] , vice versa for detecting 2D space outliers. We define a
threshold σ where 2D/3D elements with probabilities smaller than σ will be considered as outliers.

To learn the detection, we sample Zin pairs of pixels and points with probability d from the intersection
region and Zout pairs of pixels and points with probability d̂ from the outlier regions. The detection
loss is then formulated as:

Ldet =
1

Zout

Zout∑
i=0

(d̂ i
2D + d̂ i

3D)− 1

Zin

Zin∑
j=0

(d j
2D + d j

3D) (2)

3.2 Adaptive-Weighted Optimization

To explore distinctive patterns, various optimization strategies like contrastive loss and triplet loss are
widely used in 2D or 3D tasks. However, these formulations treat each pair of samples equally, which
leads to ambiguous convergence, especially in the difficult situation of 2D-3D feature matching.
Inspired by the Circle Loss [42], we design a flexible optimization strategy with adaptive weighting
for learning a distinctive cross-modality latent space where we can establish 2D-3D correspondences
more accurately.

3D-to-2D pairs 2D-to-3D pairs
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Figure 3: The illustration of Adaptive-weighted
optimization.

Given a set of 2D-3D pairs K = {αi, βi}, i ∈
[1, v], which are sampled from the intersection
region. We separate them into positive pairs kp
and negative pairs kn determined by whether the
distance between the location of αi and the pro-
jection of βi on the image is larger than a radius
r or not. We define the positive similarity for a
positive pair kip as:

sip = f i
2D · f i

3D =
∑
c

f ic
2Df ic

3D, (3)

where c is the channel number of features. And
vice versa for negative pairs sn.

To avoid ambiguous convergence and allow flex-
ible optimization, we design adaptive weighting
factors for positive and negative pairs as ρp = Ψ(γ(1− sjp +m)) and ρn = Ψ(γ(skn −m)), in which
γ is a scale factor, m is a margin for better similarity separation and Ψ is the function to detach ρp and
ρn from gradients to serve as weights for optimization. The adaptive-weighted loss is then derived as:

LAW = log[1 +
∑
j

expρp(1−sjp+m)
∑
k

expρn(s
k
n−m)]. (4)
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We illustrate the adaptive-weighted optimization in Figure 3. The 3D space is achieved by projecting
points into image space. Given a 3D point β, we define two negative pairs {α1

n, β} and {α2
n, β}

where α1
n and α2

n lies outside the safe radius r. It is obviously that the negative pair {α2
n, β} is much

harder to learn since α2
n lies near the positive region and some samples around α2

n is from positive
pairs, while {α1

n, β} is easier since all the samples around α1
n is also negative. And vice versa for the

positive pairs. Optimizing all the samples with the same weight will lead to ambiguous convergence
at the regions containing both negative and positive samples, i.e., it will be difficult to distinct the
negative sample α2

n with positive samples. Driven by this analysis, we optimize the patterns with
adaptive weighting to force the network focus more on the harder samples (indicated by the color
shading above).

(𝒂) Contrastive Loss (𝒃) Adaptive-Weighted Loss

Figure 4: The cosine similarity visualization with different losses.
We select one point p at the rear of the car from the point cloud
and compute the cosine similarity between p and each pixel in the
reference image. The colors from blue to red indicate the increase
of similarities.

We visually compare the fea-
ture matching results of our pro-
posed adaptive-weighted opti-
mization with the contrastive
loss as used in CorrI2P [36] in
Figure 4, where our proposed
loss shows significantly supe-
rior performance in learning a
distinctive cross-modality latent
space.

3.3 Differentiable PnP Solver

Correspondences Establishing. To establish correspondences, we first remove the outlier regions
on both modalities with intersection detection and leverage the nearest neighbor principle on the
cross-modality latent space for 2D-3D feature matching. Due to the different density of points and
pixels, they do not have completely one-to-one correspondences. To avoid ambiguous matching, we
establish the 2D-3D correspondence Xi by searching for the point coordinate P z with the largest
similarity in cross-modality latent space for each 2D pixel coordinate Ii, i ∈ [1, Tin], Tin is the
number of pixels which lie in the intersection region. The operation achieved by argmax to find P z

is inherently non-differentiable, to train our framework end-to-end, we leverage Straight-Through
Gumbel Estimator [21] to estimate the gradient for backward optimization.

Probabilistic PnP. Given a set of correspondences X = {Ii, P i}, i ∈ [1, Tin], the PnP problem [24]
is to search for an optimal pose T = [R|t] that minimizes the reprojection error:

argmax
T

1

2
||π(RP i + t)− Ii︸ ︷︷ ︸

wi(T )

||2, (5)

where π is the projection function and wi(T ) is the reprojection error at Xi. Inspired by Epro-PnP [8],
we solve the non-differentiable PnP problem by interpreting the output as a probabilistic distribution:

p(T |X) =
exp− 1

2

∑Tin

i=1 ||wi(T )||2∫
exp− 1

2

∑Tin

i=1 ||wi(T )||2dT
. (6)

The KL divergence loss is then computed to minimize the distance between the predicted pose
distribution and ground truth pose distribution:

LKL =
1

2

Tin∑
i=1

||wi(Tgt)||2 + log

∫
exp− 1

2

Tin∑
i=1

||wi(T )||2dT , (7)

where the first term is the the reprojection error at ground truth pose, and the second term is the integral
of reprojection error at predicted pose distribution. In practice, we leverage Monto Carlo strategy
to collect samples to approximate the integration with Adaptive Multiple Importance Sampling
algorithm [11].

Except for conducting supervisions on the probabilistic distribution, we further estimate the exact
pose T ′ = [R′|t′] by solving Eq. (5) with an iterative PnP solver based on Gauss-Newton (GN)
algorithm, and compute the pose loss as:

Lpose = 2− 2(R′TRgt)
2 + ||t′ − tgt||22, (8)

which can also participate on the optimization since the iterative part in GN algorithm is differentiable.
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Table 1: Registration accuracy on the KITTI and nuScenes datasets. Lower is better for RTE and
RRE, higher is better for Acc.

KITTI nuScenes
Method RTE(m)↓ RRE(o)↓ Acc.↑ RTE(m)↓ RRE(o)↓ Acc.↑
Grid Cls. + PnP [26] 3.64 ± 3.46 19.19 ± 28.96 11.22 3.02 ± 2.40 12.66 ± 21.01 2.45
DeepI2P (3D) [26] 4.06 ± 3.54 24.73 ± 31.69 3.77 2.88 ± 2.12 20.65 ± 12.24 2.26
DeepI2P(2D) [26] 3.59 ± 3.21 11.66 ± 18.16 25.95 2.78 ± 1.99 4.80 ± 6.21 38.10
CorrI2P [36] 3.78 ± 65.16 5.89 ± 20.34 72.42 3.04 ± 60.76 3.73 ± 9.03 49.00

Ours 0.75 ± 1.13 3.29 ± 7.99 83.04 0.89 ± 1.44 2.15 ± 7.03 88.33

3.4 Implementation Details

We set the channel dimension C of 2D/3D feature to 64, and set C2D and C3D for the 2D/3D global
feature both to 512. We set the margin m to 0.25, the scale factor γ to 32 and the safe radius r to 1
pixel. To enhance the representation ability of the voxel branch, we keep the point transformation
pipe used in SPVNAS [43]. And the probability threshold σ in intersection detection is set to 0.95.
Although the GN-based PnP solver used in Sec. 3.3 can solve exact pose while remain differentiable,
its iterative solution is very time-consuming. For efficient registration, we leverage the EPnP [24]
with O(n) time complexity during inference since we do not focus on the differentiability at inference
time. The RANSAC [15] is applied with EPnP for more robust registrations.

4 Experiments

4.1 Dataset

We evaluate our performance on Image-to-Point Cloud registration task on two wildly used bench-
marks KITTI and nuScenes. On both dataset, the images and point clouds are captured simultaneously
with 2D cameras and 3D LiDARs.

KITTI Odometry [17]. We generate the image-point cloud pairs from the same data frame of 2D/3D
sensors. We follow previous works [26] to utilize the 0-8 sequences for training, and 9-10 for testing.
The mis-registration transformation is conducted with a 2D translation on the ground within ±10
and a rotation around the up-axis with no limited range. We downsample the image resolution to
160×512 and the point cloud size to 40960 for training and testing.

nuScenes [4]. The image-point cloud pairs are generated by official SDK where the point cloud
is accumulated from the nearby frames and the image is from the current frame. We follow the
official data spilt of nuScenes to utilize 850 scenes for training, and 150 scenes for testing. The
mis-registration transformation is conducted in a similar way as the one in KITTI dataset. We
downsample the image resolution to 160×320 and the point cloud size to 40960, respectively.

4.2 Baselines and Metrics

We compare our method with the state-of-the-art methods DeepI2P [26] and CorrI2P [36]:

1) Grid Cls. + PnP. The grid classification setting is a baseline approach proposed in DeepI2P to
divide the image into 32×32 grids and learn to classify each 3D point to a unique 2D grid with
a neural network. The EPnP with RANSAC is then applied to predict the rigid transformation.
2) Frus.Cls. + Inv.Proj. DeepI2P proposes to perform the frustum classification with the inverse
camera projection to obtain final rigid transformation. We report their results with 2D and 3D inverse
camera projection as DeepI2P(2D) and DeepI2P(3D).

3) CorrI2P. CorrI2P is the latest work on Image-to-Point Cloud registration which learns dense
correspondences for image-point cloud pairs, and the EPnP with RANSAC is applied to predict the
rigid transformation.

Metrics. We follow DeepI2P to evaluate the registration performance with average Relative Transla-
tional Error (RTE) and average Relative Rotation Error (RRE). We do not follow CorrI2P to remove
the image-point cloud samples with large errors before averaging, which in our opinion, is an unsuit-
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Figure 5: Visual comparison of Image-to-Point Cloud registration results under KITTI dataset.

able way to report real performances. We further report the registration accuracy (Acc.) which is the
proportion of fine registrations with RTE < 2m and RRE < 5o.

4.3 Registration Accuracy

Quantitative Comparison. The results of cross-modality registration are shown in Table 1, in which
our proposed method achieves the superior performance over the compared methods on both KITTI
and nuScenes dataset. Especially, the latest work CorrI2P [36] adopted a similar way as ours to
establish 2D-3D correspondences with feature matching, which is the most relevant method to ours.
However, our method is about 4 times better than CorrI2P in terms of RTE. The main reason is
that the previous methods fails to conduct end-to-end supervisions and can not learn robust 2D-3D
correspondences due to the huge domain gap. In contrast, our proposed method can learn a structured
cross-modality latent space for robust 2D-3D feature matching, together with an end-to-end training
schema driven by a probabilistic PnP solver. As a result, our method is able to predict highly accuracy
2D-3D correspondences and achieve better performance than its counterparts.

Visual Comparison. The visual comparison is shown in Figure 5. For intuitive visualization,
the point cloud is projected into image space with the predicted extrinsic parameters of different
approaches and the known camera internal parameters. The color indicates the distance between a
point and the camera. For DeepI2P, we adopt the setting with highest accuracy, i.e. DeepI2P(2D)
for visual comparison. Compared with the other methods, our method achieves better registration
accuracy in different road situations. For example, on the difficult tuning situation (e.g. the 1st and
2nd row), both DeepI2P and CorrI2P fail to solve correct registration, where the projections of trees
and cars are largely dis-matched with the corresponding pixels in the image.

4.4 Feature Matching Accuracy
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Figure 6: Feature matching error visualization.

We further provide the feature matching visual-
ization in Figure 6. We visualize the double-side
error maps by computing the matching distance
on both modalities. Specifically, for 2D-to-3D
matching, we search for a point with the greatest
similarity in cross-modality latent space for each
2D pixel in the intersection region, and compute
the error by first projecting the matching point
into image space and compute the Euler distance
between the projected matching point and the 2D pixel. And vice versa for 3D-to-2D matching.
As shown in Figure 6, our method significantly outperforms CorrI2P [36] in both 2D-to-3D and
3D-to-2D matchings. Most of the pixels in 2D-to-3D matching or points in 3D-to-2D matching of
our method can reach slight errors within 2 pixels, which demonstrates that our learned shared latent
space can distinct cross-modality patterns apart and lead to an accurate feature matching for each
single 2D/3D element. We also observe that some elements on the 2D/3D edges will lead to relative
large errors, since it is often difficult for intersection detection to perform perfectly in the edges.
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4.5 Efficiency Comparison

Table 2: The efficiency comparisons with other methods.
DeepI2P (2D) DeepI2P (3D) CorrI2P Ours

Model size (MB) 100.12 100.12 141.07 30.73
Pose Inference (s) 23.47 35.61 8.96 0.19

We further compare the efficiency of
our method with other counterparts,
where all the methods are evaluated
with an NVIDIA RTX 3090 GPU and
Intel(R) Xeon(R) E5-2699 CPU. The
results are shown in Table 2, where our method requires much fewer parameters but gets significantly
better performances. Furthermore, our method only requires 0.19s for network inference and pose
estimation for one frame, which is about 50× (or more) faster than the previous works. The reason is
that DeepI2P solves the time-consuming inverse camera projection problem for pose estimation, even
with a 60-fold pose initialization for avoiding crashing, and CorrI2P spends a lot time to eliminate
the wrong correspondences through iteration. Therefore, all the previous works fail to be applied to
real automatic driving scenarios where the low latency is required, while our method can solve poses
much more efficiently. Note that our result is achieved by replacing the GN-based PnP solver with
the O(n) EPnP [24] at inference time, while the time will increase to 2.38s with the GN-based PnP
inference.

4.6 Ablation Study

We conduct ablation studies to justify the effectiveness of each design in our method and the effect of
some important parameters. We report the performance in terms of RTE/RRE/Acc. under the KITTI
dataset.

Table 3: The effect of each design in our framework.
RTE(m)↓ RRE(o)↓ Acc.↑

w/o voxel branch 1.25 ± 4.54 7.03 ± 10.19 73.53
w/o point branch 1.08 ± 3.09 6.91 ± 13.26 80.80
w/o A-W optimization 1.04 ± 2.88 4.81 ± 8.96 77.01
w/o Diff. PnP 0.83 ± 1.60 3.44 ± 10.02 82.18
Full 0.75 ± 1.13 3.29 ± 7.99 83.04

Framework designs. We first justify the
effectiveness of each design of our frame-
work. Specifically, we develop four dif-
ferent variations for comparison: (1) w/o
voxel branch is the variation removing the
voxel branch from the triplet network; (2)
w/o point branch is the variation removing
the point branch from the triplet network; (3) w/o A-W optimization is the variation replace our
adaptive-weighted optimization loss with the contrastive loss as used in CorrI2P [36]; (4) w/o Diff.
PnP is the variation removing the end-to-end supervisions driven by the differentiable PnP solver.

The results are shown in Table 3, from which we can find that our Full model achieves the best
performances over all variations. Such results prove the effectiveness of each design in our framework.
Moreover, by comparing w/o voxel branch and w/o point branch to the Full model, we can find that
the voxel branch plays a more important role in our framework, which demonstrates that the voxel
modality with similar characteristics (represented in grids) and pattern extractors (CNNs) as pixels is
more suitable for learning Image-to-Point Cloud registration.

Table 4: Ablations on image resolutions and point den-
sities.

Image Point RTE(m)↓ RRE(o)↓ Acc.↑
40 × 128 40960 0.92 ± 1.52 3.54 ± 12.08 82.50
80 × 256 40960 0.84 ± 1.07 3.65 ± 8.83 82.67

160 × 512 40960 0.75 ± 1.13 3.29 ± 7.99 83.04
160 × 512 20480 0.93 ± 1.33 3.59 ± 8.62 82.75
160 × 512 61440 0.72 ± 1.17 2.82 ± 5.37 83.70

The effect of input resolutions. We fur-
ther explore the effect of input image res-
olutions and point densities. Table 4 shows
the performance of different settings, from
which we can find that higher resolutions
on both modalities lead to better results
since the low resolution images will omit
some visual information while the low den-
sity point clouds will lose the detailed geometries. We select the proper setting with a balance between
the performance and efficiency.

5 Conclusions

In this work, we propose a novel framework to learn Image-to-Point Cloud registration with
VoxelPoint-to-Pixel Matching, where we learn a structured cross-modality latent space with a novel
adaptive-weighted loss. We represent the 3D elements as the combination of voxels and points to
overcome the domain gap between points and pixels. Moreover, we train our framework end-to-end
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by imposing supervision directly on the predicted pose distributions with a differentiable PnP solver.
The extensive experiments on KITTI and nuScenes datasets demonstrate our superior performances.
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