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ABSTRACT

Multi-head attention mechanisms have been widely applied in speech pre-training.
However, their roles and effectiveness in various downstream tasks have not been
fully studied. Different attention heads may exhibit varying degrees of importance
in different downstream tasks. We noticed that the attention allocation in the atten-
tion mechanism is similar to the information bottleneck, aiming to highlight the
parts important to the task. Therefore, we introduced the information bottleneck
into multi-head attention to estimate the degree of mutual information contained
in each attention head’s output about the input and forced it to focus on useful
information. Additionally, we proposed a method to measure the contribution of
attention heads in tasks. We also pruned the model heads according to their con-
tributions, providing an interpretable direction for model pruning. Notably, our
method can maintain an accuracy of 83.36% on the Keyword Spotting (KS) task
while pruning 40% of the heads.

1 INTRODUCTION

Self-supervised learning (SSL) pre-trained models, such as wav2vec 2.0 (Baevski et al., 2020), Hu-
BERT (Hsu et al., 2021), and WavLM (Chen et al., 2022), have become leading technologies in
speech-related applications, outperforming traditional systems like HMM-GMM (Rabiner, 1989).
However, the complexity of end-to-end ASR models makes them less transparent and hard to in-
terpret, sometimes leading to unreliable outputs (Weidinger et al., 2021). Additionally, the large
number of parameters in these models presents difficulties in pruning and compression, as not all
parameters are equally beneficial for various tasks (Chen et al., 2020; Hou et al., 2020). Therefore,
it’s essential to enhance the explainability of these models to understand their functioning better.

Explainability is the ability to make model actions understandable to humans (Doshi-Velez & Kim,
2017; Du et al., 2019). Many studies offer layer-level insights (Pasad et al., 2021; Yang et al., 2021),
like SUPERB, which assigns weights to layers for tasks to show each layer’s role. However, such
exploration is not detailed enough, and with the introduction of attribution methods (Selvaraju et al.,
2017; Zeiler & Fergus, 2014; Smilkov et al., 2017), researchers have begun to interpret the attention
mechanism within layers. These attribution methods explain model behavior by assigning relevance
scores to each input variable (Yang et al., 2020; Shim et al., 2021; Zhmoginov et al., 2021).

We propose a novel attribution method for assessing the contribution of attention heads in Trans-
formers. We introduce the concept of the information bottleneck in the attention mechanism, utiliz-
ing a newly initialized weight matrix and estimating the upper bound of mutual information from
input to output based on variational approximation. The resulting head information bottleneck at-
tention matrix is compared with the model’s original attention matrix for similarity calculation to
obtain the final head contribution parameters. For reproducibility, we share our source code and pro-
vide an easy-to-use implementation. We name our method Head Information Bottleneck Attribution
(HIB). To explore the effectiveness and explainability of HIB, we conducted tests and validations in
multiple speech downstream tasks. In summary, the main contributions of this paper are as follows:

1. We introduce the concept of the information bottleneck in the attention mechanism to es-
timate the degree of mutual information between output and input in each attention head.
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The information bottleneck theory provides an effective guarantee to compel the model to
focus on useful information from the input.

2. We propose a method to calculate the contribution of Transformer attention heads based on
the head information bottleneck attention matrix, characterizing the importance of attention
heads in the model.

3. We provide an interpretable direction for model pruning, enabling targeted deletion of at-
tention heads in the model.

2 BACKGROUND

2.1 SELF-ATTENTION AND MULTI-HEAD ATTENTION

In recent years, speech research has revealed that utilizing SSL pre-trained speech models as en-
coders for fine-tuning can significantly improve performance in various downstream speech tasks
(Baevski et al., 2022; Ling & Liu, 2020). These models employ innovative methods to construct
powerful encoders that provide high-quality audio contextual representations for decoding. The net-
work architectures adopted by these models are primarily based on Transformer (Vaswani et al.,
2017) or Conformer (Gulati et al., 2020) structures featuring attention mechanisms. Within self-
attention, each element of the input sequence X is linearly projected into three distinct spaces,
forming key, value, and query representations:

Q = XWQ K = XWK V = XWV (1)
Where WQ, WK , and WV are learnable weight matrices. The attention mechanism computes scores
between the query and all keys for each sequence element, typically normalized by a constant for
gradient stability:

A = softmax(
Q ·KT

√
dk

) O = A · V (2)

Where dk denotes the dimension of the key.During the computation of attention scores, multi-head
attention is commonly employed, enabling the model to capture diverse information across multiple
representational subspaces. By capturing these diverse dependencies, the representational capacity
of the model is enhanced. The mathematical representation of multi-head attention is as follows:

Qi = XWQi Ki = XWKi Vi = XWV i (3)

Where WQi, WKi, and WV i are the weight matrices for the ith head. The corresponding attention
scores are computed with the respective value to yield the output for each attention head. These
outputs are concatenated to form the final output:

Ai = softmax(
Qi ·KT

i√
dk

) Oi = Ai · Vi O = Concat(O1, · · · , Oi, · · · , On) (4)

Where n represents the number of attention heads.

2.2 INFORMATION BOTTLENECK

The Information Bottleneck(IB) theory (Tishby et al., 2000) furnishes a theoretical framework that
delineates the limitations of accessible information. Conventionally, the prediction of a label Y is
contingent upon harnessing the information available from input X . The innovation of the IB theory
lies in introducing an intermediary random variable Z, thus reconfiguring the predictive sequence
into X → Z → Y . The core objective of the IB theory is to maximize the mutual information
between the random variable Z and the label Y while simultaneously minimizing the mutual infor-
mation between Z and the input X . The formula succinctly captures this dual objective:

max I[Z;Y ]− βI[Z;X] (5)

Where I[Z;Y ] and I[Z;X] represent the mutual information, and β is used to control the balance
between making accurate label predictions and using minimal information from X . Increasing β
will utilize less information from X . This formulation creates a funnel-like passage of information,
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with Z acting as the bottleneck in the middle. Yet, the computation of mutual information usually
demands detailed knowledge of the random variables’ distribution, an often impractical condition in
numerous contexts. To address this, variational techniques have been devised to approximate mutual
information(Alemi et al., 2016). Within these variational frameworks, the distribution of Z is often
posited as a standard normal distribution, thereby streamlining the complexity of calculations.

2.3 PREVIOUS WORK

Attribution research is continually evolving. Gradient Maps (Baehrens et al., 2010), or local gradi-
ent explanation vectors, show how classifiers decide by calculating gradients of outputs over inputs.
Integrated Gradient (Sundararajan et al., 2017) introduces Sensitivity and Implementation Invari-
ance. SmoothGrad (Smilkov et al., 2017) adds noise to images to assess pixel sensitivity. Both
methods analyze gradients at inputs and the path to anchor points. Deep Taylor Decomposition
(DTD) (Montavon et al., 2017) redistributes output contributions back to inputs, while PatternAt-
tribution (Kindermans et al., 2018) separates signal and interference, using DTD to discern feature
contributions without backpropagating interference. Occlusion (Zeiler & Fergus, 2014) and blurred
blocks (Greydanus et al., 2018) gauge importance by zeroing or blurring parts of an image and not-
ing accuracy drops. Information bottleneck approaches (Achille & Soatto, 2018; Alemi et al., 2016;
Zhmoginov et al., 2021; Taghanaki et al., 2019) limit information flow in networks to predict the
importance of image regions, with variational approximation (Schulz et al., 2020) bounding mutual
information for attribution.

Transformer architecture advancements have spurred deeper inquiry into the attribution of attention
mechanisms. Adjusting attention weights manually can reveal their influence on the model (Jaunet
et al., 2021). Deeper dives involve visualizing attention flows across heads and layers for a more
nuanced model understanding (Park et al., 2019; Hoover et al., 2019; Yeh et al., 2023), tracking how
information morphs through the model and comparing different models’ training phases (DeRose
et al., 2020). However, raw attention visualization alone may not fully explain model predictions,
prompting the creation of advanced methods like Grad-SAM (Barkan et al., 2021), which uses gra-
dients to produce self-attention heatmaps, and AttAttr (Hao et al., 2021), which computes gradient
sums from a zero attention matrix for self-attention attribution scores.

Inspired by the information bottleneck attribution method, we have constructed a novel information
bottleneck acquisition method for the attention mechanism of Transformers. It is entirely different
from previous work. We do not make any noise or mask changes to the already trained attention
heads. Instead, we completely reconstruct an attention score to compress the information of values
to obtain an information bottleneck. We judge each attention head’s contribution to different down-
stream tasks using the information bottleneck results. To our knowledge, this is the first time the
information bottleneck theory has been used to analyze the roles of different attention heads in a
model.

3 HEAD INFORMATION BOTTLENECK

Our innovation is devising an attribution method for attention heads within a trained network. This
method is integrated into the forward propagation process of such networks. We have innovatively
replaced the traditional attention components of the attention mechanism with an information bottle-
neck. The overall structure is illustrated in Fig.1. In executing this method, we impose an informa-
tion bottleneck on the V (value) portion of the attention mechanism while concurrently maximizing
the model’s original goals. Throughout this process, we ensure that the remaining original parame-
ters of the model remain intact.

3.1 METHOD

We recognize some commonalities between the information bottleneck and attention mechanisms.
In the attention mechanism, the role of attention is to recombine vectors within the V to assign
greater weights to the valuable information in the V . The IB theory aims to predict outcomes
by utilizing as little information from the original inputs as possible. When we regard V as the
original input, the two strategies become consistent, seeking to utilize valuable information within
V . Therefore, we apply the IB theory to the multi-head attention mechanism to leverage minimal
information from the V to capture the genuinely beneficial elements of the task.
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Figure 1: Head Information Bottleneck structure diagram

Specifically, we randomly initialize a weight matrix Ar ∈ RL×L, which is designated to take the
place of the attention matrix within the attention mechanism. This matrix is employed to apply
weights to the matrix V ∈ RL×d in the attention scheme. Additionally, we incorporate noise ϵ ∈
RL×d, thereby constructing the intermediate stochastic vector Z ∈ RL×d, where L represents the
length of the sequence and d corresponds to the dimension of each vector in the attention heads. The
stochastic variable Z is in alignment with the random variable Z as referred to in Eq.5.

Eq.6 specifically illustrates how to generate the intermediate random variable zi ∈ R1×d for the i-th
row from the matrix V .

zi = ari · V + λϵi ϵi ∼ N (0, Id) (6)

Where ari ∈ R1×L denotes the i-th row of the weight matrix, and ϵi ∈ R1×d represents a random
variable from the standard multivariate normal distribution.

Noise is incorporated for a twofold purpose: firstly, it injects randomness into the variable Z, thereby
permitting the computation of its mutual information with V ; secondly, the noise serves to modulate
the flow of pertinent information.

Since the information bottleneck is introduced within the attention mechanism, the original input
X in Eq.5 is replaced by the matrix V from the attention mechanism. Consequently, Eq.5 is trans-
formed as follows:

max I[Z;Y ]− βI[Z;V ] (7)

We aim to constrain the utilization of information from the V through the information bottleneck.
Hence we need to minimize I(Z;V ) whose general formula is given by:

I[Z;V ] = EV [DKL[P (Z|V )||P (Z)]] (8)

To apply the information bottleneck for limiting the use of information from the V , it’s necessary to
know the actual distribution of Z, but the true expression for P (Z) is beyond our reach. Therefore,
we turn to variational approximation for estimation. After undergoing linear mapping, We assume
that the features of the matrix V are Gaussian distributed and independent of one another. This
is a reasonable assumption since features often exhibit Gaussian distribution following linear or
convolutional layers (Klambauer et al., 2017; Schulz et al., 2020).

Given our previous definition of zi as zi = ari · V + λϵi, which represents the linear combination
of the row vectors in V followed by the addition of noise ϵi, it follows that zi also adheres to a
Gaussian distribution. Consequently, we can infer that Q(Z) maintains a Gaussian distribution. For
the sake of computational simplicity, we assume that the features zi within Q(Z) are distributed
according to a standard Gaussian distribution. This assumption aligns with the common practices in
variational methods (Alemi et al., 2016). However, the independence assumption usually does not
hold in practice, which only results in overestimating mutual information. Substituting Q(Z) into
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Eq.8, we get:
I(Z;V ) = EV [DKL[P (Z|V )||Q(Z)]]−DKL[P (Z)||Q(Z)] (9)

Since the divergence in the second term is non-negative, the lower bound of mutual information
I(Z;V ) is EV [DKL[P (Z|V )||Q(Z)]]. For detailed derivation, refer to Appendix A.

The general formula for KL divergence is:

DKL[P ||Q] =

∫
p(x) log

p(x)

q(x)
dx (10)

For the scenario where both P (Z|V ) and Q(Z) are multivariate normal distributions, the formula
for the KL divergence can be expressed as:

DKL[P ||Q] =
1

2

[
tr(Σ−1

Q ΣP ) + (µP − µQ)
TΣ−1

Q (µP − µQ)− d+ log
detΣQ

detΣP

]
(11)

Here, µQ and µP are the means of the two distributions, ΣQ and ΣP are the covariance matrices,
d is the dimension, tr[·] is the trace of a matrix, and det[·] is the determinant of a matrix. In line
with the preceding hypothesis, V is constituted by L vectors, each conforming to a d-dimensional
multivariate normal distribution. We use statistical data to scale it to a standard multivariate normal
distribution for ease of computation. The expectation and covariance matrix for the distribution
P (zi|V ) can then be extrapolated from zi = ari ·V +λϵi, with the calculations presented as follows:

E[zi] = aiE[V ] + E[n] = ai · 0 + 0 = 0 (12)

Cov[zi] = aiCov[V ]aTi + Cov[n] = aiIda
T
i + Id = aia

T
i + Id (13)

Moreover, since the zi are independent of each other, the KL divergence DKL[P (Z|V )||Q(Z)] can
be decomposed as the sum of the individual divergences:

DKL[P (Z|V )||Q(Z)] =

L∑
i=1

DKL[P (zi|V )||Q(zi)] (14)

This allows us to calculate the KL divergence for each zi separately. By substituting the obtained
means and variances into Eq.11, we can derive:

DKL[P (zi|V )||Q(zi)] =
1

2

[
tr(Id(aiaTi + λ2Id))− d+ log

det Id
det(aiaTi + λ2Id)

]

=
1

2

 L∑
j=1

a2ij + λ2d− d− log(||ai||2 + λ2)− 2(d− 1) log λ

 (15)

The final information bottleneck loss is:

LIB =
1

2

L∑
i=1

 L∑
j=1

a2ij + λ2d− d− log(||ai||2 + λ2)− 2(d− 1) log λ

 (16)

To maintain a high accuracy of the model, the original loss of the model also needs to be introduced,
so the total loss is:

L = Lmodel + βLIB (17)

Here, the parameter β controls the relative importance of the two objectives. When β is smaller,
more information flows; conversely, less information flows when β is larger. We apply the softmax
function to the trained random attention matrix to obtain the head information rating attention matrix
AHIB . For more details on the choice of the softmax function, please refer to Appendix B.
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3.2 HEAD CONTRIBUTION

Given that we maintained the constancy of other parameters during the attribution process, the
trained attention head matrix AHIB represents the minimal usage of information from V . Hence, a
high similarity between AHIB and the original attention matrix AO would suggest that the attention
head was already utilizing information optimally. In contrast, a lower similarity implies that the
attention head AO contains a substantial amount of redundant information. Consequently, we pro-
pose that gauging the similarity between AHIB and AO can reflect the significance of the attention
head to a certain extent. We define the similarity between the two as the head contribution charac-
teristic parameter Ch, where the similarity algorithm for Ch is derived by calculating the Pearson
correlation coefficient between the two attention matrices.

4 EVALUATION

Figure 2: Impact on the overall error rate by indi-
vidually masking each attention head

Inspired by the Occlusion method (Zeiler &
Fergus, 2014), we assessed the effect of selec-
tively disabling different attention heads on the
total accuracy. We used the Librispeech-clean-
test dataset for this experiment and conducted
tests with a pre-trained wav2vec2.0 model. We
investigated the role of individual attention
heads by nullifying each one’s matrix, effec-
tively setting it to zero, and observed the result-
ing changes in model accuracy. The accuracy
here is calculated using one minus the Word Er-
ror Rate (WER), quantifying the model’s per-
formance. The result is illustrated in Fig 2,
where the color representation at each head’s
location signifies the shift in accuracy: shades
of red indicate a reduction in accuracy, whereas
shades of green denote an unexpected improvement in overall accuracy upon deactivating the respec-
tive head. We aim to obtain similar head contribution information through the proposed information
bottleneck method, and this section will evaluate the effectiveness of the head contribution parameter
Ch that we have introduced.

4.1 EXPERIMENTAL SETUP

We have selected the wav2vec 2.0 model, widely used in audio processing, as our primary subject
of analysis. This model is fundamentally structured around a Transformer encoder and utilizes pre-
trained weights provided by Huggingface. We employ the base structure of wav2vec 2.0, which
comprises 12 encoder layers, each containing 12 attention heads. The dimension of the hidden
layer is 768. This section exemplifies the Automatic Speech Recognition (ASR) task to analyze the
proposed HIB method.

We adopt CTC-Loss on the Librispeech dataset (Panayotov et al., 2015) and fine-tune it according
to the methods in Speech processing Universal PERformance Benchmark (SUPERB) (Yang et al.,
2021). However, unlike the original approach, we do not fix the pre-trained parts of the wav2vec 2.0
model. Given that our computations are performed on single samples using already fine-tuned mod-
els, our optimization parameters solely consist of the random attention matrix Ar. The specific HIB
hyperparameters are detailed in Appendix C. The trained attention matrix Ar, after being processed
by the Softmax function, yields the final information bottleneck attention head matrix AHIB . This
matrix illustrates the distribution of attention required to complete the current task while utilizing
the minimum value information.

Our optimization objective for HIB is Lmodel + βLIB . Generally, the information bottleneck loss
LIB is significantly larger than the original model loss Lmodel as it aggregates the losses of all
frames L and attention heads H . To balance their relationship, we average the information bottle-
neck loss LIB over frames and attention heads.

In Fig.3, we exhibit the same information bottleneck attention head matrix AHIB under different β
values to demonstrate the impact of β. The display here presents the situation corresponding to the
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Figure 3: The impact of β on the AHIB .

first attention head in the final layer. As β gradually increases, it implies a minimized utilization
of information. When β = 100, the higher scoring regions in AHIB are already concentrated in a
few locations, while when β = 0, indicating no restriction on mutual information, the model tends
to utilize more original information. When β = 1000, due to its excessive value, it has already
interfered with the normal training of the model, and at this point, the model can no longer produce
the transcribed text correctly. This demonstrates that the proposed information bottleneck loss LIB

indeed serves to limit mutual information. We have chosen a balanced setting of β = 10, allowing
AHIB to retain useful information without overly compressing it.

4.2 QUALITATIVE ASSESSMENT

We have replicated the AttAttr method for comparison and have adopted the settings presented in
its original paper. The results are illustrated in Fig.4, where we have selected the second and third
heads of the final layer in the ASR task as examples. Based on the experimental data from Fig.2,
the overall impact on the error rate after these two heads were masked was 0.01% and 0.51%,
respectively, representing two heads with relatively minor and major effects on the ASR task.

Figure 4: Different attention head attribution methods

From Fig.4, it can be observed that both HIB and AttAttr can accurately identify the active regions
in the third head (second row in the figure). In our method, some discrete points are outside the
diagonal due to our approach of regenerating the attention matrix without utilizing the existing
attention. This leads to the possibility of some interference items. In contrast, the gradient-based
AttAttr calculates based on the original attention matrix, thereby maintaining better consistency with
the normal attention mechanism. This observation is also reflected in the second head (depicted in
the first row of the figure), where despite its expected negligible impact on the ASR task, AttAttr
still suggests the presence of relevance along the vertical lines. Conversely, our approach effectively
shows that this head has little influence on the task.
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4.3 ATTENTION HEAD PRUNING

Simultaneously, we compare the accuracy of the two algorithms in identifying key heads in each
layer. AttAttr follows the method in the original paper, measuring the importance of the head through
Eq.18.

Ih = Ex[max(Attrh(A))] (18)

The term Attrh(A) is the attention attribution score proposed by the authors based on integrated
gradients. It sums the gradients at points along the straight-line path from a zero attention matrix to
the original attention weights A, with sufficiently small intervals. The expression max(Attrh(A))
represents the maximum attribution value of the h-th attention head. The notation Ex signifies taking
the average over the test dataset (Hao et al., 2021).

Figure 5: Evaluating the effectiveness of HIB
through head pruning

We configured a head pruning experiment to
assess the precision of head contribution mea-
sures. We ranked the heads in each layer
from lowest to highest based on their con-
tribution scores Ch (from our method) and
Ih (from Attr’s metric), sequentially masking
those with lower contribution scores. Subse-
quently, we calculated the final accuracy. To
explore whether the impact of masking individ-
ual heads could act as a measure of their con-
tribution, we implemented a baseline method.
This involved obscuring each attention head
and calculating the impact on accuracy, similar
to what we demonstrated in Fig2. The numer-
ical changes in accuracy are used as the scores
for head attention. We randomly extracted 200
samples from the Librispeech train-100 dataset
for training. After the training was completed,
we conducted tests on the test-clean dataset.

The findings, shown in Figure 5, illustrate that our method retains 88% accuracy even after pruning
half of the heads per layer, outperforming the baseline when the same number of heads are masked.
This indicates that our method better reflects the contribution of attention heads and suggests that
measuring the contribution of a head to the whole by masking it alone is not accurate. Our results
are on par with those from AttAttr, with HIB pinpointing less critical heads more effectively at lower
pruning levels, thus keeping model performance higher post-pruning. Only when more than eight
heads are pruned does HIB begin to lag slightly behind AttAttr, confirming the efficacy of using the
information bottleneck to infer attention head contributions.

4.4 SPEECH TASK PRUNING

We conducted head pruning tests in three speech tasks: Speaker Identification (SID), Keyword Spot-
ting (KS), and Intent Classification (IC). We fine-tuned the pre-trained wav2vec 2.0 base model sep-
arately for these three tasks. The SID task was fine-tuned on Voxceleb1 (Nagrani et al., 2017), where
the speakers are located in the same predefined set during training and testing. The KS task was fine-
tuned on SpeechCommands (Warden, 2018), which includes ten common keywords and two special
labels representing silence and unknown categories. The IC task was conducted on Fluent Speech
Commands (Lugosch et al., 2019), where each utterance includes three intent labels: action, object,
and location. The evaluation metric for these three tasks is accuracy.

All three tasks belong to sequence classification tasks. We added two linear layers to the pre-trained
wav2vec 2.0 model for sequence classification. The learning rate for the wav2vec 2.0 model part of
each task was set to 1e-5, and the learning rate for the linear layers used for sequence classification
was set to 1e-3. We used the Adam optimizer and trained each task for 15 epochs. The final fine-
tuned models achieved accuracies of 97.91%, 96.39%, and 98.71% on the three tasks, respectively.

We devised two pruning approaches for neural network optimization. The first method involves
trimming the least contributive attention heads from each layer, while the second method entails a
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Figure 6: Perform head pruning for different speech tasks. (a) Prune each layer, starting from those
with low contributions. (b) Prune all heads, starting from those with low contributions.

global ranking of attention head contributions, with pruning executed in ascending order of signifi-
cance. We compared these approaches against three attribution methods—AttAttr, attention heads,
and HIB. The outcomes of our comparative analysis are depicted in the accompanying Fig.6.

Our method performed well on the Keyword Spotting task, like AttAttr, retaining 82.76% accuracy
even after cutting half of the heads in each layer. It also kept 83.36% accuracy after globally pruning
40% of the heads. While it did better than AttAttr on two other speech tasks, the results were not
as good as expected. Global pruning was more effective than pruning by layers, suggesting that
certain layers have more impact, consistent with prior WavLM research. A close look at individual
head scores from AttAttr and HIB in the IC and SID tasks showed little difference, implying that
the distinction between heads in these tasks is slight, potentially affecting the accuracy of our head
contribution measurements.

5 CONCLUSION

We propose a new attribution method, HIB, for evaluating attention head contribution. It applies
an information bottleneck to the attention mechanism’s values, limiting their use and producing
an attention matrix that minimizes value usage. This matrix is then compared to the original to
evaluate each head’s contribution. HIB can be used with any attention-based model, leveraging
information bottleneck theory to ensure the model focuses on valuable input information. This is a
significant advantage over other attention head-based attribution methods that necessitate retraining
from scratch and cannot evaluate pre-trained models. Consequently, our approach substantially
reduces the cost required to assess models.

In the experiment of pruning according to the head contribution, our method is similar to the pre-
viously proposed AttAttr method based on gradient backpropagation and is better than the baseline
based on attention score, which verifies the effectiveness of our proposed method. At the same time,
we also tested three downstream tasks: SID, KS, and IC. HIB can achieve an accuracy of 83.36%
on the KS task while pruning 40% of the heads.

HIB has a certain basis in information theory, which guarantees the credibility of the method. To our
knowledge, this is the first time that information bottlenecks and attention mechanisms have been
linked. We have demonstrated the feasibility of this idea through experiments, and we hope that
this will help deepen the understanding of neural networks and further strengthen the trust of deep
learning models in sensitive application fields.
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A DERIVATION OF THE UPPER BOUND OF MUTUAL INFORMATION

For the mutual information I(Z;V), we have:

I(Z;V ) =
∑
v,z

p(v, z) log
p(v, z)

p(v)p(z)

=
∑
v,z

p(v, z) log
p(z|v)
p(z)

=
∑
v,z

p(v, z) log p(z|v)−
∑
v,z

p(v, z) log p(z)

(19)

By substituting p(z) with the prior distribution of z, denoted as q(z), we obtain:

∑
v,z

p(v, z) log p(z) ≥
∑
v,z

p(v, z) log q(z) (20)

Thus, we can derive the upper bound of mutual information:

I(Z;V ) ≤
∑
v,z

p(v, z) log p(z|v)−
∑
v,z

p(v, z) log q(z)

=
∑
v

p(v)DKL[p(z|v)||q(z)]

= Ep(v)DKL[p(z|v)||q(z)]

(21)

B SELECTION OF ACTIVATION FUNCTION

In our method, we applied the same softmax function to the original random matrix A as used in the
attention mechanism, but the sigmoid function can also be chosen here. The sigmoid and softmax
functions have the same range, but softmax constrains the sum of each row in the attention.

We have tested both functions, and the following figure shows the results of the second head in the
last layer in the ASR task, with hyperparameters set as beta = 10, lr = 0.1, and trained for 200
steps. The results obtained are as follows:

Figure 7: Effect of different activation functions on HIB.

The far left represents the original Attention result. The middle represents A′
HIB obtained using the

sigmoid function, and the right representsAHIB obtained using the softmax function.

In our ASR task, we chose CTC-loss. The decoding steps of the two figures can align well when
using the softmax function, which is the same as the one used in the attention mechanism. The
overall effective range of Fig.7(a) and Fig.7(c) is not significantly different, and they can accurately
reflect the silent segments at the beginning of the input speech sequence.
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In contrast, for A′
HIB obtained using the sigmoid function, due to the lack of horizontal constraints,

it tends to output at the beginning of the decoding sequence, directly overlooking the silent segments
of the speech. As can be seen from Fig.7(b), its overall decoding process seems to be vertically
elongated compared to normal Attention, and therefore, its decoding steps cannot align with normal
Attention. Hence, we ultimately chose the softmax function.

C HYPERPARAMETERS

Parameter ASR SID KS IC Search space
Optimizer Adam
Learning Rate 0.1 {0.001, 0.01, 0.1, 1, 10}
Balance Factor 10 0.1 1 1 {0.01, 0.1, 1, 10, 100, 1000}
Noise Intensity 0.9 {0.1, 0.5, 0.9, 0.99, 1, 2 }
Training Steps 100 200 200 100 {100, 200, 500, 1000}

Table 1: HIB hyperparameters in different speech tasks

We have provided the hyperparameters of HIB for different tasks in Table 1.
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