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Abstract

Recently, Large Foundation Models (LFMs), e.g., CLIP and GPT, have significantly
advanced the Human-Object Interaction (HOI) detection, due to their superior gen-
eralization and transferability. Prior HOI detectors typically employ single- or
multi-modal prompts to generate discriminative representations for HOIs from
pretrained LFMs. However, such prompt-based approaches focus on transferring
HOI-specific knowledge, but unexplore the potential reasoning capabilities of
LFMs, which can provide informative context for ambiguous and open-world
interaction recognition. In this paper, we propose InstructHOI, a novel method that
leverages context-aware instructions to guide multi-modal reasoning for HOI detec-
tion. Specifically, to bridge knowledge gap and enhance reasoning abilities, we first
perform HOI-domain fine-tuning on a pretrained multi-modal LFM, using a gener-
ated dataset with 140K interaction-reasoning image-text pairs. Then, we develop a
Context-aware Instruction Generator (CIG) to guide interaction reasoning. Unlike
traditional language-only instructions, CIG first mines visual interactive context at
the human-object level, which is then fused with linguistic instructions, forming
multi-modal reasoning guidance. Furthermore, an Interest Token Selector (ITS)
is adopted to adaptively filter image tokens based on context-aware instructions,
thereby aligning reasoning process with interaction regions. Extensive experiments
on two public benchmarks demonstrate that our proposed method outperforms the
state-of-the-art ones, under both supervised and zero-shot settings.

1 Introduction

Human-Object Interaction (HOI) detection plays a crucial role in high-level human-centric under-
standing, with applications across various domains [} 2 [3]]. The purpose of HOI detection is to
detect a series of interactive triplets (i.e., (human, action, object)) in open-world scenarios. This
task can be specifically divided into two sub-tasks: localizing interactive human-object pairs and
recognizing their interaction relationships.

Traditional HOI detectors can be primarily classified into one-stage and two-stage approaches. One-
stage methods [4, (5} 16| [7] treat HOI detection as a unified multi-task learning problem, utilizing
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Figure 1: (a) Traditional LFM-based methods typically employ predefined or learnable prompts to transfer
HOI-specific knowledge from pretrained LFM for interaction classification. (b) Our InstructHOI integrates
visual interactive context with linguistic instructions to guide HOI-domain LFM in performing multi-modal
interaction reasoning, generating pair-level interaction texts.

a multi-branch network to simultaneously perform human-object pair detection and interaction
prediction. In contrast, two-stage ones [I8, 9] first detect human-object instances using an off-the-shelf
object detector, subsequently predicting interaction categories based on the visual features extracted
from instance areas. Despite significant efforts in feature extraction strategies [10} [11} [12]] and
architecture improvements [[13} (14|15 [16]], accurately identifying complex HOIs within open-world
context remains challenging when relying solely on visual representation learning.

To further explore discriminative interaction representations, recent researches transfer HOI-specific
knowledge from pretrained LFMs, including Vision-Language Models (VLMs) and Large Language
Models (LLMs), using predefined or learnable prompts, as illustrated in Fig. [T(a). For the VLM-
style methods, some earlier works [[17, (18} [19] leverage static template prompts (e.g., “a photo
of a person [action] a/an [object]”) to derive linguistic prior knowledge from CLIP [20] at the
category level. Subsequently, CMMP [21]] introduces learnable multi-modal prompts, facilitating the
adaptive transfer of semantic knowledge from CLIP at the instance level. Furthermore, the LLM-style
methods [22, 23} 24] adopt language foundation models (e.g., ChatGPT ) to generate finer-grained
descriptive texts as interactive clue prompts, thereby transferring the generalizable knowledge of
LLMs for HOI detection. However, these prompt-based methods primarily focus on knowledge
transfer, but fail to exploit LFMs’ reasoning capabilities which can provide informative context for
ambiguous and open-world interaction recognition.

According to the aforementioned challenges, we propose InstructHOI, which leverages context-aware
instructions to direct LFM in performing multi-modal reasoning for HOI detection, as depicted in
Fig.[T|b). Specifically, for a pretrained LFM, we first perform HOI-domain fine-tuning to bridge the
inherent knowledge gap between general and HOI domains [[25] and enhance its interaction reasoning
capability, using a light-weight strategy, i.e., LORA [26]. Due to the limited availability of HOI
reasoning data [25]], we created a large-scale dataset containing 140K image-text pairs by aggregating
five existing image-only HOI datasets and transforming the one-hot labels into interaction-reasoning
conversations. Then, we develop a Context-aware Instruction Generator (CIG) to guide interaction
reasoning. Unlike traditional language-only instructions [27} 28], CIG first mines visual interactive
context (i.e., appearance and spatial context) at the human-object level. Next, the visual context
is projected into linguistic space using a two-layer instruction projector, and then is fused with
linguistic instructions, providing pair-level context guidance for multi-modal interaction reasoning.
Furthermore, an Interest Token Selector (ITS) is adopted to adaptively filter informative image
tokens based on the context-aware instructions and reorganize the reasoning token sequences, thereby
aligning the reasoning process with interaction regions.

In this paper, our motivation is to explore the potential reasoning capability of LFMs to improve
HOI detection. Unlike previous LFM-based approaches, our work directly leverages tailored instruc-
tions to guide LFM in facilitating multi-modal reasoning, thereby achieving open-world interaction
recognition. Besides, we enhance traditional linguistic instructions by incorporating visual interactive
context at the human-object level, thus providing pair-level multi-modal reasoning guidance. To
summarize, our contributions are as follows:

* For a pretrained LFM, to bridge the gap between general and HOI-domain knowledge, we
build a high-quality interaction-reasoning dataset and perform supervised fine-tuning using
a lightweight strategy.



* We develop a Context-aware Instruction Generator (CIG) to enhance linguistic instructions
by incorporating informative visual context at the human-object level, providing multi-modal
reasoning guidance.

* To align the reasoning process with interaction regions, an Interest Token Selector (ITS) is
adopted to adaptively filter and reorganize reasoning token sequences based on context-aware
instructions.

* We evaluate our InstructHOI on two benchmarks: HICO-DET and V-COCO, and it outper-
forms the state-of-the-art methods, achieving superior performance in both supervised and
zero-shot settings.

2 Related Work

Traditional HOI Detectors: Traditional HOI detectors can be primarily classified into one-stage
and two-stage approaches. One-stage methods regard HOI detection as a multi-task learning, aiming
to simultaneously perform object detection and interaction prediction. Earlier methods [29 |5 4]
typically adopt a multi-branch CNN architecture for paralle] human-object instance localization and
interaction recognition. Then, some auxiliary priors (e.g., interaction points [4] and union boxes [30]])
are introduced to align instances with their corresponding interactions. Recently, Transformer-based
methods [7,16,131]] take a prominent position, due to their exceptional context capture ability. However,
such a disentangled architecture may suffer from insufficient context exchange between the branches,
leading to inferior prediction performance.

Two-stage methods treat HOI detection as two sequential sub-tasks. They initially localize human-
object instances with an off-the-shelf detector and then identify interactions leveraging the visual fea-
tures extracted from the instance regions. The early CNN-based methods [32} 33} 34} 35,136} 9] strive
to extract rich visual interaction representations, e.g., spatial relationship [37]], gaze attention [11] and
pose feature [33] to assist HOI detection. Recent Transformer-based methods [38, 139, 140, 41} 142]]
attempt to improve the vanilla Transformer for enhancing feature extraction of HOI detection. De-
spite significant efforts in feature extraction strategies and architecture enhancements, accurately
distinguishing complex HOIs in open world remains challenging when relying solely on visual
representation learning.

LFM-based HOI Detectors: LFM-based HOI detectors can be primarily classified into VLM-style
and LLM-style. To further explore discriminative HOI representations, recent approaches [43} 144} 45]]
seek to extract prior knowledge from VLMs [46, 47| by leveraging their distinctive ability to unify
visual and linguistic features. Among VLM-style methods, the pioneering works [44), [19] typically
transform one-hot labels into annotation texts via a static prompt template, e.g., “a photo of a person
[action] a/an [object]”. These annotations are then encoded as linguistic priors using CLIP, enabling
category-level knowledge transfer. In addition, MP-HOI [43]] utilizes extra visual prompts to provide
fine-grained visual priors, and aims to eliminate the ambiguity in linguistic descriptions. Furthermore,
CMMP [21] introduces learnable multi-modal prompts, facilitating the adaptive transfer of semantic
knowledge from CLIP at the instance level.

LLM-style methods [22, |23} 24} 48] usually employ language foundation models to generate finer-
grained descriptive texts as interactive prompts, which can transfer the generalizable knowledge
from LLMs to improve HOI detection. E.g., UniHOI [22]] designs a knowledge retrieval process
for ChatGPT to acquire comprehensive explanations for each HOI category, which provides rich
contextual information for interaction prediction. CMD-SE [24] introduces a two-step GPT-querying
mechanism to produce descriptions of human body, and thus generate general body-part prompts,
which is helpful for recognizing ambiguous actions. However, the existing LFM-based methods
primarily focus on transferring HOI-specific knowledge, but fail to explore the reasoning capabilities
of LFMs, leading to incomplete exploration of their full potential, particularly for open-world
interaction recognition.



Multi-Modal
Context-Aware Instruction Generator Interest Token Selector

Reasoning
“ ==\
o
> 1 ) 2
Object  B,&B), Map __, Instruction 1 i Match (-) @
- Projector ! !
Detector 6T, ) IQI *
[ . T, & LFM
 Vhgo spatial & l in selfAtt
~T7  appearance o €| n (-) Tf Language
Input Image / @ 1 1 * — Model
& LM AIHP(H) Aaa
| | linguistic instruction: T T : L= ve ¢ [
—
\ Zetascn tl;e interac[iz;ns Tokenizer & 1= ,I MLP T, I LoRA
ogj:’;g” CAESE Embedding @ =N
e > : M,
Vi &V, L L
oo (Vo S ¢ P
* : 1 ks “ prediction l
— Tiocal LFM Vi e i Q ) - Pair-2:
Split Image ! D : Visual Sy S2 | Textual Pair-1:
Encoder bty Interaction | : Similarit Human is skiing
—>’g"bul Vg k&v Decoder = < v on a skiboard
O = W
f(51,52)

Figure 2: InstructHOI involves two interaction prediction branches: the multi-modal reasoning branch and the
visual interaction decoder. The former includes Context-aware Instruction Generator (CIG), Interest Token
Selector (ITS), and Multi-Modal Reasoning (MMR). CIG combines visual context with linguistic instructions to
generate context-aware instructions Tin, (Sec.[3.3). ITS then adaptively filters image tokens and reorganizes the
reasoning token sequences T’y to align the reasoning process with interaction regions (Sec.[3.4). Finally, the
LFM’s language model in MMR, fine-tuned with LoRA, uses Ty to conduct multi-modal reasoning, generating
pair-level interaction texts (Sec.[3.3). Meanwhile, the visual interaction decoder utilizes pair and global image
features to perform interaction decoding (Sec. @

3 Method

3.1 Overall Architecture

The overall architecture of InstructHOI is illustrated in Fig.[2} Given an image I, an off-the-shelf
object detector (i.e., DETR [49]) is first employed to localize human and object instances (B}, B,),
and then obtain the Human-Object (H-O) pair features V},¢,, by concatenating the instance features
from DETR for each H-O pair. Meanwhile, following the dynamic image encoding strategy in [S0],
we dynamically split the image I and obtain the global and local images (Igiobai> Liocal), Which are
then separately encoded into the global and local image features (V, V), using the pretrained image
encoder of LFM (i.e., Intern VL2 [50]).

InstructHOI involves two interaction prediction branches: the multi-modal reasoning branch and the
visual interaction decoder. The former branch mainly includes three components: Context-aware
Instruction Generator (CIG), Interest Token Selector (ITS), and Multi-Modal Reasoning (MMR).
To direct LFM in facilitating multi-modal reasoning and achieving pair-level interaction prediction,
CIG first extracts the appearance and spatial context embedding 7T, of each H-O pair, which is then
inserted into linguistic instructions, forming pair-specific context-aware instructions 7}, (Sec.[3.3).
Furthermore, to align reasoning process with interaction regions, ITS filters informative tokens from
local image tokens 7; based on the instructions T, and then reorganizes them into reasoning token
sequences Ty (Sec.[3.4). The LFM’s language model in MMR, fine-tuned with LoRA, utilizes
the filtered token sequences 7T’y to achieve pair-level interaction reasoning and acquire interaction-
reasoning probability distribution Sy (Sec.[3.5). Meanwhile, in the visual interaction decoder, the
pair features V¢, act as Query, while the global image features V; act as Key and Value, performing
interaction decoding and yielding interaction-decoding probability distribution Sy (Sec.[3.3). Finally,
both distributions 57 and S5 are combined to yield the final interaction score.

3.2 HOI-domain Fine-tuning

Different from task-specific models, Large Foundation Models (LFMs) are typically pretrained on
vast and diverse datasets, acquiring general-domain knowledge across both visual and linguistic
modalities. However, such general models often struggle to achieve accurate zero-shot interaction
prediction, due to the gap between general knowledge and that specific to HOI domain [25]. To
bridge the knowledge gap and enhance the interaction reasoning capability for HOI detection, we
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Figure 3: The illustration of Interest Token Selector. It contains three steps: token selection, matrix construction
and sequence reorganization.

introduce a multi-modal LFM (i.e., InternVL2) and conduct HOI-domain fine-tuning on a generated
high-quality dataset.

Specifically, we employ a light-weight adaptation strategy (i.e., LoRA) to facilitate efficient and
low-consumption fine-tuning. As shown in Fig. 2] we freeze the entire pretrained LFM model,
including the image encoder, the Vision-Language MLP (V-L MLP), and the language model,
while only training a few injectable parameters (about 0.8% of the pretrained model’s parameters)
for the language model of InternVL2, acquiring fine-tuned model 7}’"®. Additionally, due to
the limited availability of HOI reasoning data [25]], we aggregate ﬁve existing image-only HOI
datasets [S1, 52} 53] 154} [55] and build a high-quality dataset containing 140K image-text pairs
across 1K object categories, 600 action categories, and 15K HOI categories. To acquire interaction
reasoning texts, we transform original one-hot labels into Question&Answer conversations. E.g., for
a human-bike pair with ‘sit” and ‘ride’ interactions, the conversation is formulated as: {Question:
Reason the interaction relationships between humans and objects in the image; Answer: Human
is sitting on and riding a bike}. Moreover, to avoid potential data leakage during evaluation, all
testing data used in the experiments are excluded from the fine-tuning dataset. The visualization of
the dataset is presented in the Supplementary Material.

3.3 Context-aware Instruction Generator (CIG)

Recent studies [56}157] explore the potential reasoning capabilities of LFMs for tackling complex
visual tasks using different strategies, e.g., chain-of-thought language instruction [27]. However,
reasoning about the ambiguous interactions in complex scenarios needs accurate guidance to assist
LFM in understanding the spatial relationship and instance appearance of each H-O pair, while
language-only instructions can hardly provide these visual context clues. To remedy this, we develop
a Context-aware Instruction Generator (CIG), which incorporates the informative visual context of
each H-O pair in linguistic instructions, providing multi-modal guidance for pair-level interaction
reasoning.

As shown in Fig. 2] we first derive the pair features Vg, by combining the instance features
for each H-O pair, which are extracted from the hierarchical backbone of the object detector and
contain discriminative characteristics of each instance. Then, the multi-level V},¢,, are flattened and
concatenated, serving as the visual appearance representations of each H-O pair. To further encourage
LFM to be aware of spatial relationships, we encode H-O spatial context based on the localization
boxes By &B,. Following the previous works [58| 21], we extract spatial features from B, & B,, by
calculating the intersection-over-union, scaled distance, spatial direction, etc. Subsequently, both
appearance and spatial features are mapped to a dimensionality of d, forming the visual context
embedding T’,. The process can be formulated as:

T, = Map (SPEnc (Bx, B,) , Vago) , M

where SPEnc(+) represents spatial feature encoding, and Map(-) indicates feature mapping operation.
Meanwhile, the linguistic instructions are also encoded into linguistic context embedding 7’ using
the tokenizer of InternVL2.

Inspired by the “ViT — V-L MLP — LLM” architecture in the existing studies (e.g., LLaVA [59]), we
leverage a two-layer instruction projector to map the visual context embedding 7, into the linguistic
embedding space, eliminating the knowledge gap between visual and linguistic modalities. Finally,
the pair-level visual context embedding 7, is fused with the linguistic context embedding 7’5, forming



pair-level context-aware instructions 75,,. Overall, the process can be formulated as:
T;n = Concat (Proj; (Ty) , Ts), 2)

where Proj,(-) indicates the instruction projector, which consists of a two-layer MLP followed by a
GeLU layer and Concat(-) denotes the concatenation operation.

3.4 Interest Token Selector (ITS)

According to the dynamic image encoding strategy [50], input image [ is typically dynamically split,
acquiring global and local images (I giopai> J10ca1), Where the global image 140541 provides a holistic
image context, and the local images I;,.,; offer region-level context information. Considering that,
within an image, the interactive regions of H-O pairs also dynamically vary based on their locations
and interaction categories. E.g., for (human, hold, apple), the interactive region mainly focuses on
the hand regions, while for (human, kick, football), the interactive region shifts to the leg regions. To
align pair-level reasoning with the corresponding interaction regions, we develop an Interest Token
Selector (ITS), which evaluates the interaction relevance of local images I;,.q; for each H-O pair,
based on the context-aware instructions T7;,,. Thus, ITS can adaptively select the informative image
tokens and then reorganizes the reasoning token sequence for each H-O pair.

Following the multi-modal reasoning mechanism in InternVL2, the image features (V;, V;) are
projected into linguistic space using the V-L MLP of InternVL2, acquiring image tokens (17, T}).
Additionally, as depicted in Fig.[3] the Interest Token Selector contains three steps: token selection,
matrix construction and sequence reorganization. Firstly, to extract the representative tokens from
the instructions T7;,,, we calculate the cosine similarity between T3, and global image tokens T, and

select the fop-n most similar ones as representative instruction tokens T';,,, as follows:
Tin = Match (Ty,, T,) € RN»Xnxd 3)

where Match(-) represents the cosine similarity operation and selection, IV, and d indicate the number
of H-O pairs and token dimension, respectively. Afterwards, a self-attention layer is employed to
facilitate feature fusion and context propagation between T';,, and the local image tokens 7;. An MLP
is then applied to predict the interaction relevance of local images for each H-O pair, constructing
interaction-relevance matrix M;,., as follows:

M;, = MLP(SelfAttn(Q, K,V : concat(Ts,, T}))) € RNe*Ne, 4)
where SelfAttn(-) represents a self-attention layer and N; indicates the number of local images.

Finally, we use softmax operation to calculate the relevance probability distribution based on the
matrix M;,., subsequently selecting the informative tokens from 7; and reorganizing the reasoning
token sequence T’y for each H-O pair in the format of [(selected local images tokens), (global image
tokens), {instruction tokens)), as follows:

Ty = Concat(T;, Ty, Tin), where Tj = Filter (Ty, My,) 5)

Tl represents the selected local images tokens and Filter(-) indicates the image token filtering
operation based on the interaction-relevance matrix. The visualization of ITS are provided in the
Supplementary Material.

3.5 Inference and Training

Inference. The inference process is illustrated in Fig. 2| InstructHOI involves two interaction
prediction branches: the visual interaction decoder and the multi-modal reasoning branch. In the
visual interaction decoder, the interaction decoding is performed based on the visual representations,
taking pair features Vj,¢, as Query and global image features V; as Key and Value, and yields
interaction-decoding probability distribution Sy :

Sy = Proj,(CrossAttn(Q : Vigo; K,V : V) € RNVexNe, (6)

where CrossAttn(-) indicates the cross-attention operation, and Proj,(-) represents the distribution
projector, which consists of a MLP followed by a sigmoid operation, and NN, represents the number
of interaction categories.



For the multi-modal reasoning branch, the fine-tuned InternVL2, wlom utilizes the refined reasoning
token sequence T’y to conduct multi-modal reasoning and generate palr-level interaction text descrip-
tions. Next, we calculate textual cosine similarity between L,, and textual HOI labels L, and then
compute interaction-reasoning probability distribution S, following [43]:

Sy = Softmax (Feos (Lp, Lt)), where L, = 7wy (T}) ™

where F.os(+) indicates the cosine similarity operation, and Se € RNpxNe Finally, the total
interaction prediction score is obtained by combining distributions S; and Ss:

Shoi = (Sp)* - (S5)™ - S - Sa, (8

where .Sj, and S, indicate the detection scores of human and object instances from the object detector,
respectively.

Training. To supervise the visual interaction decoder, we employ the following Focal Loss:

L, = ZZFOC&ILOSb he §hey, 9)
Zz IZ(' YT =

where y»¢ € {0,1} iny indicates whether the groundtruth of the i-th human-object pair contains

the c-th interaction class and S} in S; is the corresponding predicted probability. In addition, to
supervise the multi-modal reasoning branch, we adopt similarity constraint loss, as follows:

Z 1yZc Z(i,c) . i 1
Lim = e= ,  where Z(i,j) = exp(Feos (L, L7)).  (10)
Nz S (1.4) = exp(Foon( L 1)

Overall, the total loss function is formulated as: £ = £, + aLg;m.

4 Experiments

4.1 Experimental Setting

Datasets. Following previous works, we conduct experiments on two commonly used HOI datasets:
HICO-DET [51] and V-COCO [52]. The HICO-DET dataset comprises 47776 images, with 38118
for training and 9658 for testing, covering 117 actions, 80 objects, and 600 HOIs. Additionally, the
600 HOIs are divided into 138 Rare and 462 Non-Rare categories based on the sample distribution.
The V-COCO dataset, contains 10346 images, including 5400 in the trainval set, and 4946 in the test
set, across 29 actions, 80 objects, and 259 HOIs.

Evaluation Metric. Following the standard metric, the mean Average Precision (mAP) is adopted
to evaluate the performance of InstructHOI. During the evaluation, a true positive HOI triplet needs
to meet two criteria: 1) the predicted human and object bounding boxes should have Intersection over
Union (IoU) values greater than 0.5 with the ground truth, and 2) the HOI classification is correct.

Implementation Details. We take the DETR for object detection and adopt the pretrained
InternVL2}, as the foundation model. During training, we freeze the external models (DETR
and InternVL?2) and update the parameters of the remaining components in InstructHOI. The entire
InstructHOI model is trained on four Tesla A800 GPUs with a batch size of 16 for 20 epochs, using
the AdamW [[60] optimizer.

4.2 Comparisons with the State-of-the-Arts
4.2.1 Supervised Setting

In Table[I] we present the quantitative results for the supervised setting on the HICO-DET and
V-COCO datasets, respectively. Notably, our method outperforms all the existing state-of-the-art
methods on both datasets. For the HICO-DET dataset, InstructHOI achieves remarkable mAPs of
47.68 and 49.89 in the default and known object full settings. Compared to recent state-of-the-art
HOI detectors RLIPv2 [61] and Pose-Aware [62], our model obtains significant performance gains
of 2.59 mAP (relatively 5.74%) over RLIPv2 and 1.67 mAP (relatively 3.63%) over Pose-Aware,



Table 1: Performance comparison on HICO-DET and V-COCO datasets. For results on HICO-DET, we follow
commonly used experimental setting to fine-tune the object detector on its training set.

HICO-DET V-COCO
Default Known Object

Method Backbone Full Rare Non-Rare Full Rare Non-Rare APf;lle APfje
One-stage methods
FGAHOI [63] Swin-L 37.18  30.71 39.11 38.93 31.93 41.02 - -
RLIPv2 [61] Swin-L 45.09 43.23 45.64 - - - 72.1 74.1
Two-stage methods
PViC [64] Swin-L 4432 44.61 44.24 47.81 4838 47.64 64.1 70.2
Pose-Aware [62] Swin-L 46.01 46.74 45.80 49.50 50.59 49.18 63.0 68.7
LFM-based methods
EZ-HOI [48] R50+ViT-L ~ 38.61 37.70 38.89 - - - 60.5 66.2
UniHOI-1 [22] RI01+VIiT-L  40.95 40.27 41.32 43.26 43.12 43.25 68.1 70.8
DiffusionHOI [65]  ViT-L 42.54 4295 42.35 4491 45.18 44.83 67.1 71.1
MP-HOI [43] Swin-L+ViT 44.53 44.48 44.55 - - - 66.2 67.6
SICHOI [23] RIOI+VIT-L  45.04 45.61 44.88 48.16 48.37 48.09 71.1 75.6
InstructHOI (Ours) RS0+VIT-L 4595 46.51 45.78 48.57 49.23 48.37 70.8 74.2
InstructHOI (Ours) RI101+ViT-L  47.68 47.97 47.59 49.89 50.92 49.58 724 76.1

respectively. By introducing HOI-domain LFM, InstructHOI can extract rich contextual clues and
discriminative interaction representations, to tackle ambiguous interaction detection in complex
scenarios. Additionally, compared to the state-of-the-art LFM-based methods SICHOI [23]] and
MP-HOI [43], InstructHOI also achieves significant performance improvements, outperforming
SICHOI by 2.64 mAP (relatively 5.86%) and MP-HOI by 3.15 mAP (relatively 7.07%), respectively,
in the commonly used default full setting. Specifically, VLM-style methods (e.g., ADA-CM and
MP-HOI) adopt single- or multi-modal prompts to transfer HOI-specific knowledge from LFM,
while LLM-style approaches (e.g., UniHOI and SICHOI) generate comprehensive descriptions as
interactive prompt based on language foundation models. However, all these LFM-based methods
primarily focus on transferring HOI-specific knowledge, without exploring the potential reasoning
capabilities of LFMs. Unlike existing knowledge transfer methods, our InstructHOI directly leverages
context-aware instructions to guide LFM in facilitating pair-level multi-modal reasoning, acquiring
discriminative interaction representations for ambiguous and open-world interaction recognition.

For V-COCO dataset, as reported in the right part of Table [1} InstructHOI also performs the best

among all the state-of-the-art methods, achieving APf;lle of 72.4 in scenario #1 and APZZQE of 76.1 in
scenario #2. Specifically, comparing to the recent HOI detectors RLIPv2 and SICHOI, InstructHOI

demonstrates superior performance, e.g., APfillE of 72.4 vs 72.1 and 71.1, and APfj@ of 76.1 vs
74.1 and 75.6. Even using “Resnet50" backbone, our method still performs better than most of the
state-of-the-art approaches. The superiority of our proposed InstructHOI comes from the fact that
we fully exploit the reasoning ability of large foundation models rather than simply transferring

knowledge.

4.2.2 Zero-shot Setting

Consistent with previous zero-shot experiments [17, 66l 22]], we evaluate our method on HICO-DET
under four zero-shot settings: 1) Rare First Unseen Combination (RF-UC) constructs training set
with all the object and verb categories but excludes a certain number of rare HOI categories. 2)
Non-rare First Unseen Combination (NF-UC) prioritizes non-rare interactions when selecting the
held-out HOI categories. 3) Unseen Object (UO) is designed to assess interaction recognition with
novel object categories. 4) Unseen Verb (UV) focuses on discovering novel action categories. For a
fair comparison, we present recent LFM-based zero-shot HOI detectors with the same “ResNet50"
backbone in Table[2] where our InstructHOI surpasses all other methods across four zero-shot settings.

For RF-UC and NF-UC settings, InstructHOI achieves 36.82 mAP and 36.42 mAP for unseen HOI
categories, respectively. Compared to the latest method SICHOI, our approach achieves gains of
3.14 mAP and 2.58 mAP in the RF-UC full and unseen settings, respectively, as well as gains of
2.59 mAP and 1.90 mAP in the NF-UC full and unseen settings, respectively. The reason is that our
proposed InstructHOI has interactive reasoning capabilities, rather than simply borrowing general
knowledge from the LFMs. As for UO and UV settings, InstructHOI attains mAPs of 39.92 and
31.64 for unseen HOI categories, respectively. Compared to the latest method CMMP, our approach
achieves improvements of 0.79 mAP and 0.25 mAP in the UO full and unseen settings, respectively,



Table 2: Zero-shot generalization on HICO-DET [51]]. Table 3: Performance contribution of each component.

Methods Type Full  Seen Unseen HICO-DET (Default) V-COCO
DiffusionHOI [65] | RF-UC | 35.89 36.77 32.06 Method Full Rare Non-Rare AP*lL Ap#>
EZ-HOI [438] RF-UC | 3673 37.35 34.24 Base 36.21 3284 37.2 648 70.1
CMMP [21] RF-UC | 37.13 3742 35.98 +MMR 43.06 4340 42.96 689 724
SICHOI [23] RF-UC | 40.11 41.58 3424 +MMR+CIG 4498 44.69  45.07 70.2 73.9

InstructHOI REUC | 4325 44.86 36.82 +MMR+CIG+ITS 45.95 46.51  45.78 70.8 74.2

BCOM [67] NF-UC | 32.03 31.76 33.12
HOIGen [68] NF-UC | 33.08 32.86 3398
CMMP [21] NF-UC | 35.13 3553 33.52

Table 4: Effect of Context-aware Instruction Generator.
HICO-DET (Default) V-COCO

SICHOI[23] | NF-UC | 3575 3606 34.52 Method " "pill Rare NonRare AP*L AP#2
InstructHOL | NE-UC | 38.34 3882 36.42 Base+MMR 43.06 43.40 4296 68.9 724
UniHOI [22] U0 | 3156 3476  19.72 +SC 43844387 4383 693 729
HOIGen [68] Uo 13348 3290 3635 +AC 44434410 4453 698 736
EZ-HOI [48] U0 | 3638 3602 3817 +AC+SC 4498 44.69 4507 702 739
CMMP [21] UO | 3674 36.15 39.67

InstructHOI UO | 37.53 37.05 39.92 Table 5: Effect of Interest Token Selector.
HOIGen [68] UV | 3234 3431 2027 HICO-DET (Default) V-COCO
UniHOI [22] UV | 3468 3678 2605 tmage Token = | Rare NonRare  APF. AP
CMMP [21] UV 13638 37.28 3084 T, 4362 4220 4402 ©3 727
EZ-HOI [48] UV | 36.84 38.15 28.82 Ty+Ty  44.98 44.69 4507 702 739
InstructHOI uv 38.12 39.17 31.64 T,+T, 4595 4651 45.78 70.8 742

and 1.74 mAP and 0.80 mAP in the UV full and unseen settings, respectively. All the four zero-shot
experimental results consistently demonstrate the effectiveness of our InstructHOI in detecting
unseen and novel HOIs. By leveraging the interaction reasoning capabilities of HOI-domain LFMs,
InstructHOI exhibits superior open-world interaction detection performance and generalization.

4.3 Ablation Study

In this subsection, we evaluate the effects of Multi-Modal Reasoning (MMR), Context-aware In-
struction Generator (CIG), and Interest Token Selector (ITS) components in InstructHOI on both the
HICO-DET and V-COCO datasets. For a fair comparison, we create a baseline mode (denoted as
“Base”) by simply combining the DETR (using Resnet50 as backbone) and visual interaction decoder
branch (using ViT-L as backbone), which represents a degraded version of InstructHOI without MMR,
CIG, and ITS. Here, the standalone ‘MMR’ refers to multi-modal reasoning with language-only
instructions, while ‘MMR+CIG’ denotes multi-modal reasoning with context-aware instructions (see
subsection . Additional ablation studies on advanced object detector, HOI-domain fine-tuning,
and the number of representative tokens are provided in the Supplementary Material.

Component Ablation. As shown in Table[3] each component of InstructHOI significantly enhances
the baseline model. Specifically, MMR improves the baseline by 6.85 mAP in full setting on HICO-
DET, while CIG provides an additional improvement of 1.92 mAP. Ultimately, the combination of all
the three components results in a total improvement of 9.74 mAP. The above results demonstrate that
the reasoning capabilities of LFM can significantly improve HOI detection, as well as highlight the
effectiveness of CIG and ITS in further improving LFM’s reasoning abilities.

Context-aware Instruction Generator. Within the Context-aware Instruction Generator (CIG), we
integrate visual context into linguistic instructions to enhance the spatial and appearance understand-
ing of LFM. In Table[d] we evaluate the Spatial Context (SC) and the Appearance Context (AC) in
CIG separately, based on the “Base + MMR” model (i.e., reasoning with language-only instructions).
The results demonstrate that both AC and SC can enhance the language-only instructions, providing
context guidance for interaction reasoning.

Interest Token Selector. As shown in Table[5} we evaluate the effectiveness of the Interest Token
Selector (ITS) by using different combinations of image tokens: Ty (global image tokens), T (local

image tokens), and T; (selected local image tokens). Specifically, the combination of (T + fl)
outperforms (Ty + T3) by 0.97 mAP in the full setting of HICO-DET. This indicates that the I'TS
effectively filters informative image tokens from 773, aligning the reasoning with interaction areas.



5 Conclusion

In this paper, we propose a novel LFM-based HOI detector, InstructHOI. Different from the existing
LFM-based approaches, InstructHOI directly learns tailored instructions to guide LFM in facilitating
multi-modal reasoning, and thus can improve the open-world interaction recognition. Specifically,
we develop a Context-aware Instruction Generator (CIG) to enhance linguistic instructions by
incorporating visual interactive context, forming pair-level reasoning guidance. Furthermore, an
Interest Token Selector (ITS) is adopted to align reasoning process with interaction regions. Extensive
experiments on two public benchmarks demonstrate that our proposed method outperforms the
state-of-the-art ones, under both supervised and zero-shot settings. Ablation studies also prove the
effectiveness of each component in our proposed InstructHOL.

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China under Grants
62206075, 62573163, 62503139, and 62261160652, in part by the GuangDong Basic and Applied
Basic Research Foundation under Grant 2024A 1515012028, in part by the Shenzhen Science and
Technology Program under Grant GXWD20231129125006001, in part by the Science and Technology
Development Fund (FDCT), Macau SAR, under Grant 0095/2022/AF]J.

References

[1] B. Pang, K. Zha, Y. Zhang, and C. Lu, “Further understanding videos through adverbs: A new video task,”
in AAAI Conference on Artificial Intelligence, pp. 11823-11830, 2020.

[2] Y. Liu, W. Chen, Y. Bai, J. Luo, X. Song, K. Jiang, Z. Li, G. Zhao, J. Lin, G. Li, et al., “Aligning cyber
space with physical world: A comprehensive survey on embodied ai,” arXiv preprint arXiv:2407.06886,
2024.

[3] L. Chen, P. Wu, K. Chitta, B. Jaeger, A. Geiger, and H. Li, “End-to-end autonomous driving: Challenges
and frontiers,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 46, no. 12, pp. 10164—
10183, 2024.

[4] Y. Liao, S. Liu, F. Wang, Y. Chen, C. Qian, and J. Feng, “Ppdm: Parallel point detection and matching
for real-time human-object interaction detection,” in I[EEE Conference on Computer Vision and Pattern
Recognition, pp. 482-490, 2020.

[5] T. Wang, T. Yang, M. Danelljan, F. S. Khan, X. Zhang, and J. Sun, “Learning human-object interaction
detection using interaction points,” in IEEE Conference on Computer Vision and Pattern Recognition,
pp. 4116-4125, 2020.

[6] M. Tamura, H. Ohashi, and T. Yoshinaga, “Qpic: Query-based pairwise human-object interaction detection
with image-wide contextual information,” in IEEE Conference on Computer Vision and Pattern Recognition,
pp. 10410-10419, 2021.

[7] C.Zou, B. Wang, Y. Hu, J. Liu, Q. Wu, Y. Zhao, B. Li, C. Zhang, C. Zhang, Y. Weli, et al., “End-to-end
human object interaction detection with hoi transformer,” in IEEE Conference on Computer Vision and
Fattern Recognition, pp. 11825-11834, 2021.

[8] T. Gupta, A. Schwing, and D. Hoiem, “No-frills human-object interaction detection: Factorization, layout
encodings, and training techniques,” in /EEE International Conference on Computer Vision, pp. 9677-9685,
2019.

[9] C. Gao,J. Xu, Y. Zou, and J.-B. Huang, “Drg: Dual relation graph for human-object interaction detection,”
in European Conference on Computer Vision, pp. 696712, Springer, 2020.

[10] J. Park, J.-W. Park, and J.-S. Lee, “Viplo: Vision transformer based pose-conditioned self-loop graph for
human-object interaction detection,” in IEEE Conference on Computer Vision and Pattern Recognition,
pp- 17152-17162, 2023.

[11] B. Xu, J. Li, Y. Wong, Q. Zhao, and M. S. Kankanhalli, “Interact as you intend: Intention-driven human-
object interaction detection,” IEEE Transactions on Multimedia, vol. 22, no. 6, pp. 1423-1432, 2019.

10



[12]

(13]

[14]

(15]

[16]

(171

(18]

[19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

L. Zhang, W. Suo, P. Wang, and Y. Zhang, “A plug-and-play method for rare human-object interactions
detection by bridging domain gap,” in ACM International Conference on Multimedia, pp. 8613-8622,
2024.

Y. Zhang, Y. Pan, T. Yao, R. Huang, T. Mei, and C.-W. Chen, “Exploring structure-aware transformer over
interaction proposals for human-object interaction detection,” in IEEE Conference on Computer Vision and
Pattern Recognition, pp. 19548—-19557, 2022.

J. Lim, V. M. Baskaran, J. M.-Y. Lim, K. Wong, J. See, and M. Tistarelli, “Ernet: An efficient and
reliable human-object interaction detection network,” IEEE Transactions on Image Processing, vol. 32,
pp- 964-979, 2023.

H. Yuan, J. Jiang, S. Albanie, T. Feng, Z. Huang, D. Ni, and M. Tang, “Rlip: Relational language-image
pre-training for human-object interaction detection,” Advances in Neural Information Processing Systems,
vol. 35, pp. 37416-37431, 2022.

Z.Li, X. Li, C. Ding, and X. Xu, “Disentangled pre-training for human-object interaction detection,” in
1IEEE Conference on Computer Vision and Pattern Recognition, pp. 28191-28201, 2024.

Y. Liao, A. Zhang, M. Lu, Y. Wang, X. Li, and S. Liu, “Gen-vlkt: Simplify association and enhance inter-
action understanding for hoi detection,” in IEEE Conference on Computer Vision and Pattern Recognition,
pp- 20123-20132, 2022.

A. Iftekhar, H. Chen, K. Kundu, X. Li, J. Tighe, and D. Modolo, “What to look at and where: Semantic
and spatial refined transformer for detecting human-object interactions,” in IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5353-5363, 2022.

X. Qu, C. Ding, X. Li, X. Zhong, and D. Tao, “Distillation using oracle queries for transformer-based
human-object interaction detection,” in IEEE Conference on Computer Vision and Pattern Recognition,
pp- 19558-19567, 2022.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, et al., “Learning transferable visual models from natural language supervision,” in International
Conference on Machine Learning, pp. 8748-8763, PMLR, 2021.

T. Lei, S. Yin, Y. Peng, and Y. Liu, “Exploring conditional multi-modal prompts for zero-shot hoi detection,”
in European Conference on Computer Vision, pp. 1-19, Springer, 2025.

Y. Cao, Q. Tang, X. Su, S. Chen, S. You, X. Lu, and C. Xu, “Detecting any human-object interaction
relationship: Universal hoi detector with spatial prompt learning on foundation models,” Advances in
Neural Information Processing Systems, vol. 36, pp. 739-751, 2023.

J. Luo, W. Ren, W. Jiang, X. Chen, Q. Wang, Z. Han, and H. Liu, “Discovering syntactic interaction clues
for human-object interaction detection,” in IEEE Conference on Computer Vision and Pattern Recognition,
pp- 28212-28222, 2024.

T. Lei, S. Yin, and Y. Liu, “Exploring the potential of large foundation models for open-vocabulary hoi
detection,” in IEEE Conference on Computer Vision and Pattern Recognition, pp. 16657-16667, 2024.

J. Gao, C. Cai, R. Wang, W. Liu, K.-H. Yap, K. Garg, and B.-S. Han, “Cl-hoi: Cross-level human-object
interaction distillation from vision large language models,” arXiv preprint arXiv:2410.15657, 2024.

E. J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “LoRA: Low-rank
adaptation of large language models,” in International Conference on Learning Representations, 2022.

Y. Hu, O. Stretcu, C.-T. Lu, K. Viswanathan, K. Hata, E. Luo, R. Krishna, and A. Fuxman, “Visual program
distillation: Distilling tools and programmatic reasoning into vision-language models,” in IEEE Conference
on Computer Vision and Pattern Recognition, pp. 9590-9601, 2024.

S. Lee, W. J. Kim, J. Chang, and J. C. Ye, “LLM-CXR: Instruction-finetuned LLM for CXR image
understanding and generation,” in International Conference on Learning Representations, 2024.

X.Wu, Y.-L. Li, X. Liu, J. Zhang, Y. Wu, and C. Lu, “Mining cross-person cues for body-part interactiveness
learning in hoi detection,” in European Conference on Computer Vision, pp. 121-136, Springer, 2022.

B. Kim, T. Choi, J. Kang, and H. J. Kim, “Uniondet: Union-level detector towards real-time human-object
interaction detection,” in European Conference on Computer Vision, pp. 498-514, Springer, 2020.

11



(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(47]

(48]

[49]

(50]

D. Zhou, Z. Liu, J. Wang, L. Wang, T. Hu, E. Ding, and J. Wang, “Human-object interaction detection via
disentangled transformer,” in IEEE Conference on Computer Vision and Pattern Recognition, pp. 19568—
19577, 2022.

A. Bansal, S. S. Rambhatla, A. Shrivastava, and R. Chellappa, “Detecting human-object interactions via
functional generalization,” in AAAI Conference on Artificial Intelligence, vol. 34, pp. 10460-10469, 2020.

D.-J. Kim, X. Sun, J. Choi, S. Lin, and I. S. Kweon, “Detecting human-object interactions with action
co-occurrence priors,” in European Conference on Computer Vision, pp. 718-736, Springer, 2020.

X. Zhong, C. Ding, X. Qu, and D. Tao, “Polysemy deciphering network for robust human—object interaction
detection,” International Journal of Computer Vision, vol. 129, pp. 1910-1929, 2021.

O. Ulutan, A. S. M. Iftekhar, and B. S. Manjunath, “Vsgnet: Spatial attention network for detecting
human object interactions using graph convolutions,” in IEEE Conference on Computer Vision and Pattern
Recognition, June 2020.

H. Wang, W.-s. Zheng, and L. Yingbiao, “Contextual heterogeneous graph network for human-object
interaction detection,” in European Conference on Computer Vision, pp. 248-264, Springer, 2020.

Y. Liu, Q. Chen, and A. Zisserman, “Amplifying key cues for human-object-interaction detection,” in
European Conference on Computer Vision, pp. 248-265, Springer, 2020.

B. Kim, J. Mun, K.-W. On, M. Shin, J. Lee, and E.-S. Kim, “Mstr: Multi-scale transformer for end-to-end
human-object interaction detection,” in IEEE Conference on Computer Vision and Pattern Recognition,
pp. 19578-19587, 2022.

X. Liu, Y.-L. Li, X. Wu, Y.-W. Tai, C. Lu, and C.-K. Tang, “Interactiveness field in human-object
interactions,” in IEEE Conference on Computer Vision and Pattern Recognition, pp. 20113-20122, 2022.

C. Xie, F. Zeng, Y. Hu, S. Liang, and Y. Wei, “Category query learning for human-object interaction
classification,” in IEEE Conference on Computer Vision and Pattern Recognition, pp. 15275-15284, 2023.

F. Z. Zhang, D. Campbell, and S. Gould, “Efficient two-stage detection of human-object interactions with
a novel unary-pairwise transformer,” in IEEE Conference on Computer Vision and Pattern Recognition,
pp. 20104-20112, 2022.

L. Li, J. Wei, W. Wang, and Y. Yang, “Neural-logic human-object interaction detection,” Advances in
Neural Information Processing Systems, vol. 36, 2024.

J. Yang, B. Li, A. Zeng, L. Zhang, and R. Zhang, “Open-world human-object interaction detection via
multi-modal prompts,” in IEEE Conference on Computer Vision and Pattern Recognition, pp. 16954-16964,
2024.

S. Ning, L. Qiu, Y. Liu, and X. He, “Hoiclip: Efficient knowledge transfer for hoi detection with vision-
language models,” in IEEE Conference on Computer Vision and Pattern Recognition, pp. 23507-23517,
2023.

S. Zheng, B. Xu, and Q. Jin, “Open-category human-object interaction pre-training via language modeling
framework,” in IEEE Conference on Computer Vision and Pattern Recognition, pp. 19392-19402, 2023.

J. Li, D. Li, C. Xiong, and S. Hoi, “Blip: Bootstrapping language-image pre-training for unified vision-
language understanding and generation,” in International Conference on Machine Learning, pp. 12888—
12900, PMLR, 2022.

J.Li, D. Li, S. Savarese, and S. Hoi, “Blip-2: Bootstrapping language-image pre-training with frozen image
encoders and large language models,” in International Conference on Machine Learning, pp. 19730-19742,
PMLR, 2023.

Q. Lei, B. Wang, and T. Robby T., “Ez-hoi: VIm adaptation via guided prompt learning for zero-shot hoi
detection,” Advances in Neural Information Processing Systems, 2024.

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end object detection
with transformers,” in European Conference on Computer Vision, pp. 213-229, Springer, 2020.

Z. Chen, W. Wang, H. Tian, S. Ye, Z. Gao, E. Cui, W. Tong, K. Hu, J. Luo, Z. Ma, et al., “How far are
we to gpt-4v? closing the gap to commercial multimodal models with open-source suites,” arXiv preprint
arXiv:2404.16821, 2024.

12



[51]

[52]
(53]

(54]

[55]

[56]

(571

(58]

[59]

(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Y.-W. Chao, Y. Liu, X. Liu, H. Zeng, and J. Deng, “Learning to detect human-object interactions,” in /EEE
Winter Conference on Applications of Computer Vision, pp. 381-389, 2018.

S. Gupta and J. Malik, “Visual semantic role labeling,” arXiv preprint arXiv:1505.04474, 2015.

S. Wang, K.-H. Yap, H. Ding, J. Wu, J. Yuan, and Y.-P. Tan, “Discovering human interactions with large-
vocabulary objects via query and multi-scale detection,” in IEEE International Conference on Computer
Vision, pp. 13475-13484, 2021.

A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali, S. Popov, M. Malloci,
A. Kolesnikov, et al., “The open images dataset v4: Unified image classification, object detection, and visual
relationship detection at scale,” International journal of computer vision, vol. 128, no. 7, pp. 1956-1981,
2020.

Y.-L. Li, L. Xu, X. Huang, X. Liu, Z. Ma, M. Chen, S. Wang, H.-S. Fang, and C. L. Hake, “Human activity
knowledge engine,” arXiv preprint arXiv:1904.06539, vol. 2, no. 6, 2019.

X. Wu, Y.-L. Li, J. Sun, and C. Lu, “Symbol-llm: leverage language models for symbolic system in visual
human activity reasoning,” Advances in Neural Information Processing Systems, vol. 36, 2024.

Z.Liu, H. Hu, S. Zhang, H. Guo, S. Ke, B. Liu, and Z. Wang, “Reason for future, act for now: A principled
architecture for autonomous llm agents,” in International Conference on Machine Learning, 2023.

W. Jiang, W. Ren, J. Tian, L. Qu, Z. Wang, and H. Liu, “Exploring self-and cross-triplet correlations for
human-object interaction detection,” in AAAI Conference on Artificial Intelligence, vol. 38, pp. 2543-2551,
2024.

H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual instruction tuning,” Advances in neural information processing
systems, vol. 36, pp. 34892-34916, 2023.

I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv preprint arXiv:1711.05101,
2017.

H. Yuan, S. Zhang, X. Wang, S. Albanie, Y. Pan, T. Feng, J. Jiang, D. Ni, Y. Zhang, and D. Zhao, “Rlipv2:
Fast scaling of relational language-image pre-training,” in /[EEE International Conference on Computer
Vision, pp. 21649-21661, 2023.

E. Z. Wu, Y. Li, Y. Wang, and S. Wang, “Exploring pose-aware human-object interaction via hybrid
learning,” in IEEE Conference on Computer Vision and Pattern Recognition, pp. 17815-17825, 2024.

S. Ma, Y. Wang, S. Wang, and Y. Wei, “Fgahoi: Fine-grained anchors for human-object interaction
detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 46, no. 4, pp. 2415-2429,
2024.

F.Z.Zhang, Y. Yuan, D. Campbell, Z. Zhong, and S. Gould, “Exploring predicate visual context in detecting
of human-object interactions,” in IEEE International Conference on Computer Vision, pp. 10411-10421,
2023.

L. Li, W. Wang, and Y. Yang, “Human-object interaction detection collaborated with large relation-driven
diffusion models,” Advances in Neural Information Processing Systems, 2024.

T. Lei, F. Caba, Q. Chen, H. Jin, Y. Peng, and Y. Liu, “Efficient adaptive human-object interaction detection
with concept-guided memory,” in IEEE International Conference on Computer Vision, pp. 6480—-6490,
2023.

G. Wang, Y. Guo, Z. Xu, and M. Kankanhalli, “Bilateral adaptation for human-object interaction detection
with occlusion-robustness,” in IEEE Conference on Computer Vision and Pattern Recognition, pp. 27970—
27980, 2024.

Y. Guo, Y. Liu, J. Li, W. Wang, and Q. Jia, “Unseen no more: Unlocking the potential of clip for generative
zero-shot hoi detection,” in ACM International Conference on Multimedia, pp. 1711-1720, 2024.

13



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: We emphasize the contributions and scope in the Introduction.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitation of the proposed algorithm has been discussed in the supplemen-
tary material.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: There is no theoretical result.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide comprehensive implementation details both in main paper and in
supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15



Answer:

Justification: As we promised, the data and code will be released upon the publication of
our paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: : The experimental setup, including data splits, training and testing detailed,
are provided in Method and Experiments sections.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We follow the default evaluations in the HOI detection field, which doesn’t
require error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide them in implementation details of main paper and supplementary
material.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This work conforms the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The border impacts is provided in supplementary material.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The proposed method uses pre-trained models. This proposed methods is safe
under the safeguards of adopted pre-trained models.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cited the original paper that produced the code package or dataset.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: There is no new assets released in this work.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: There is no research with human subjects in this work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLM does not impact the core methodology, scientific rigorousness, or origi-
nality of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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