
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Unlocking Out-of-Distribution
Generalization in Transformers via
Latent Space Reasoning

Anonymous authors
Paper under double-blind review

Abstract
Systematic, compositional generalization beyond the training distribution
remains a core challenge in machine learning—and a critical bottleneck for
the emergent reasoning abilities of modern language models. This work
investigates out-of-distribution (OOD) generalization in Transformer net-
works using a GSM8K-style modular arithmetic on computational graphs
task as a testbed. We introduce and explore a set of four architectural
mechanisms aimed at enhancing OOD algorithmic generalization: (i) input-
adaptive recurrence; (ii) algorithmic supervision; (iii) anchored latent rep-
resentations via a discrete bottleneck; and (iv) an explicit error-correction
mechanism. Collectively, these mechanisms yield an architectural approach
for native and scalable latent space reasoning in Transformer networks with
robust algorithmic generalization capabilities. We complement these empir-
ical results with a detailed mechanistic interpretability analysis that reveals
how these mechanisms give rise to robust OOD generalization abilities.

1 Introduction
Systematic algorithmic generalization stands as a critical milestone and a grand challenge in
machine learning research [1–4]. This ability is fundamental to human cognition, stemming
from our capacity for systematic compositionality—algebraically producing novel combina-
tions from known components and making strong generalizations from limited data [5–7].
Achieving such generalization necessitates learning universal, scalable problem-solving algo-
rithms. Even in humans, acquiring such algorithmic understanding often requires explicit
step-by-step supervision. Once an algorithm is learned, however, humans can generalize its
application far beyond the domain of previously encountered stimuli or problems [8, 9].
The reasoning capabilities of artificial intelligence systems have advanced rapidly in recent
years, built upon the foundation of large language models. In particular, chain-of-thought
(CoT) techniques have been central to enhancing these capabilities [10–13], especially in
domains like mathematics [14–17]. CoT enables a model to receive supervision on learning
a reference problem-solving procedure during training and allows the model to emulate this
procedure at test-time. This progress presents a unique opportunity to make significant
strides on foundational challenges related to reasoning in artificial intelligence.
However, despite these advancements, out-of-distribution (OOD) generalization—
particularly the type of length generalization involved in algorithmic reasoning (i.e., gen-
eralizing from simpler or smaller problem instances to larger or more complex ones)—has
remained a central challenge and limitation for Transformer-based [18] language models [19–
22]. While chain-of-thought techniques alleviate this to some degree by enabling the learning
of more complex algorithmic procedures, the ability to generalize far outside the training
distribution remains a significant obstacle [23, 24].
In this work, we investigate the architectural and methodological mechanisms that underpin
algorithmic OOD generalization in Transformer networks. To facilitate a systematic investi-
gation, we focus our study on a simple yet scalable mathematical reasoning task: performing
modular arithmetic on computational graphs. This task allows us to study OOD and algo-
rithmic generalization in a controlled manner—with complexity directly parameterized by
graph size and depth—while also capturing the core essence of established mathematical
reasoning benchmarks like GSM8K [14], which are central to evaluating the reasoning capa-
bilities of large language models. Furthermore, this task possesses a compositional nature; it

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

can be solved by learning a core set of skills and scaling up their application to solve larger
and more complex problem instances. We use this task to explore the following guiding
question: What are the architectural mechanisms and inductive biases needed for robust and
systematic OOD algorithmic generalization in Transformers?

We find that while standard CoT training techniques enable good in-distribution perfor-
mance and a limited degree of OOD generalization, the learned solutions are not robust
or universal, and their performance rapidly degrades as test inputs grow in complexity
beyond the training regime. We propose and explore a set of four simple architectural
and methodological mechanisms, built upon the Transformer architecture, to facilitate the
learning of robust and generalizable algorithmic solutions: (i) input-adaptive recurrence;
(ii) algorithmic supervision; (iii) anchored latent representations via a discrete bottleneck;
and (iv) an explicit error-correction mechanism. When combined, these mechanisms yield
an architectural approach for native and scalable latent space reasoning in Transformer net-
works, demonstrating robust algorithmic generalization capabilities. In particular, on our
mathematical reasoning task, our method achieves perfect generalization on inputs that are
several times larger than those seen during training. We complement our architectural pro-
posal and empirical results with a mechanistic interpretability analysis to reveal how these
architectural proposals enable sharp OOD generalization, what circuits they learn, and why
those circuits facilitate robust OOD generalization.

Related Work. This work is related to the literature on out-of-distribution generaliza-
tion, chain-of-thought, and Transformer architectures. We will mention related work as we
develop our methods, and provide a dedicated detailed discussion in Section A.

2 Problem Setup
2.1 Task Description: Modular Arithmetic on Computational Graphs
We formally introduce the task of modular arithmetic on computational graphs as follows.

Task Description. A computation graph is a directed acyclic graph (DAG) representing
a network of mathematical computations, where nodes correspond to variables and edges
describe the dependencies between them. As illustrated in Figure 1 with an example, the leaf
nodes in this DAG are directly assigned numerical values (e.g., 𝑥7 ← 20). All other non-leaf
nodes are defined as functions of their parent nodes in the computation graph. In particular,
the value of each non-leaf node is computed by applying one or more specified operations to
the values of its parent nodes. In our experiments, we consider modular arithmetic operations
(addition, multiplication, or subtraction), with the prime number 𝑝 = 23 as the modular
base. For example, in Figure 1 we have 𝑥23 ← 𝑥7+𝑥42(mod 𝑝) and 𝑥101 ← 𝑥23×𝑥91(mod 𝑝).
In the following, we let 𝑁 and 𝐿 denote the total number of nodes and the number of leaf
nodes, respectively. We consider graphs with up to 128 nodes, and let 𝒱 = {𝑥1, … , 𝑥128}
denote the set of variable names.

Data Generation Process. A problem instance in this task is specified by the values
of the leaf nodes and a computation graph depicting the computations that determine the
values of all non-leaf nodes. In particular, given parameters 𝑁 and 𝐿, an input instance is
generated as follows:

(i) Randomly generate a DAG with 𝑁 nodes, 𝐿 of which are leaf nodes.
(ii) Randomly assign a variable name from 𝒱 to each node.
(iii) Randomly assign numerical values to the leaf nodes from 𝒩 = {0, 1, … , 22}.
(iv) For each non-leaf node, randomly assign operations from 𝒪 = {+, −, ×} to define its

computation based on its parent nodes

The instance generated by (i)–(iv) is stored as a token sequence, where each variable name,
numerical value, and operation is assigned a unique token. A special separation token [sep]
is used to separate different formulas. For example, the instance depicted in Figure 1 is
represented as the following token sequence:

⟨20⟩⟨→⟩⟨𝑥7⟩ [sep] ⟨2⟩⟨→⟩⟨𝑥42⟩ [sep] ⟨6⟩⟨→⟩⟨𝑥88⟩ [sep] ⟨14⟩⟨→⟩⟨𝑥115⟩
⟨𝑥7⟩⟨+⟩⟨𝑥42⟩⟨→⟩⟨𝑥23⟩ [sep] ⟨𝑥42⟩⟨+⟩⟨𝑥88⟩⟨→⟩⟨𝑥91⟩ [sep] ⟨𝑥88⟩⟨×⟩⟨𝑥115⟩⟨→⟩⟨𝑥55⟩
⟨𝑥23⟩⟨×⟩⟨𝑥91⟩⟨→⟩⟨𝑥101⟩ [sep] ⟨𝑥91⟩⟨−⟩⟨𝑥88⟩⟨+⟩⟨𝑥55⟩⟨→⟩⟨𝑥30⟩

(1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Target Output & Evaluation Metric. Given a generated problem instance, the task
is to compute the value of every node in the computation graph; these values are uniquely
determined by steps (i)–(iv) above. We consider the model output to be correct only if all
node values are computed correctly (i.e., the input graph is fully solved).

𝑥720

𝑥422

𝑥886

𝑥11514

+

+

×

𝑥23

𝑥91

𝑥55

×

− +

𝑥101

𝑥30

Figure 1. An illustration of a problem
instance. The goal is to compute the
values of all nodes in the graph. For
example, here, 𝑥23 = 20 + 2 = 22 and
𝑥55 = 6 × 14 = 15.

Out-of-Distribution Generalization. Our
primary focus in this work is to investigate the
ability of Transformer networks to learn general
problem-solving procedures or algorithms that
enable out-of-distribution (OOD) generalization.
The complexity of each problem instance can be
explicitly parameterized by graph size, enabling
precise measurement of a model’s ability to gen-
eralize to inputs more complex than those en-
countered during training. In particular, in this
mathematical reasoning task, OOD generaliza-
tion is evaluated by training Transformer mod-
els on problem instances with 𝑁 ≤ 32 nodes and
testing them on instances of varying sizes, up
to 𝑁 = 128 (a fourfold increase). Such general-
ization requires the ability to process larger in-
puts and adaptively scale computation time dur-
ing testing, beyond what was encountered in the
training regime.

This synthetic task captures the core essence of mathematical reasoning benchmarks like
GSM8K [14], which are pivotal for evaluating the reasoning capabilities of large language
models. Similar to GSM8K, our task involves a combinatorial structure combined with
arithmetic computations. However, a key simplification is that variable names are directly
tokenized, bypassing natural language representation. This focused design, while retaining
the critical combinatorial structure and rule-based nature inherent in mathematical reason-
ing, facilitates a more straightforward and modular interpretation of the learned Transformer
model’s internal mechanisms, as will be shown in Section 4.

2.2 Limitations of Standard Transformers with CoT Training
To establish a baseline and motivate the need for alternative approaches, we evaluate stan-
dard Transformer architectures on our synthetic task using two primary training paradigms.

End-to-End Training. The first baseline is End-to-End training, where the Transformer
models are trained to directly output the final values of all nodes given the problem input,
without explicit intermediate steps. The input token sequences are in the form of (1), and
we employ various Transformer models with diverse architectures. See Section B for details.

Chain-of-Thought (CoT) Training. The second baseline is based on autoregressive
Chain-of-Thought (CoT) training [10, 14, 15, 25, 26], a prevalent technique for enabling
multi-step reasoning in LLMs. Instead of directly outputting the final answer, CoT trains
a model to generate a sequence of intermediate reasoning steps (the “thought process”)
that culminates in the solution. For our task, CoT intermediate steps consist of explicit
demonstrations of the step-by-step computation of nodes within a given computation graph.
In particular, in CoT training, the Transformer model receives an input prompt consisting
of the token representation of the computation graph (as in (1)), followed by a special
⟨CoT⟩ token. This special token signals the beginning of the CoT reasoning, which outlines
the computation of each node in topological order. Each step in the trajectory involves:
(1) recalling the equation defining the node’s value, (2) recalling the values of its dependent
nodes, and (3) performing the arithmetic computation. For example, computing node ⟨𝑥101⟩
from Figure 1 would appear in the CoT as:

[...Input Prompt...]⟨CoT⟩[...]⟨𝑥101⟩ = ⟨𝑥23⟩ ⟨×⟩ ⟨𝑥91⟩ = ⟨22⟩ ⟨×⟩ ⟨8⟩ = ⟨15⟩
Here, the [...Input Prompt...] gives the description of the problem instance, and [...] denotes
the preceding portion of the chain-of-thought trajectory up to node ⟨𝑥91⟩, which in particular
includes the computation of the values of ⟨𝑥23⟩ and ⟨𝑥91⟩. An example of a full CoT example
from the training data is provided in Section B.2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Implementation. We train causal Transformer models from scratch using both End-to-
End and CoT supervision on randomly generated problem instances with graph sizes 𝑁 ≤ 32.
At inference time, models are prompted with the input and generation is performed using
greedy decoding. End-to-End models directly output all node values given the input, while
CoT models autoregressively generate the solution, including the full CoT trajectory. We
evaluate performance based on the proportion of instances where the model computes all
node values correctly, with a particular focus on OOD generalization to new, randomly gen-
erated graphs of varying sizes up to 𝑁 = 128. For all methods, an extensive hyperparameter
search was conducted (covering layers, model dimension, and positional encoding), and the
best-performing configuration of each method was selected for comparison. A detailed ex-
perimental setup for these baseline experiments is provided in Section B.

Observed OOD Generalization Deficiencies. We find that Chain-of-Thought training
enables models to solve larger graphs compared to those trained End-to-End without chain-
of-thought supervision (Figure 3). While the best-performing CoT models exhibit a limited
degree of OOD generalization to moderately larger graphs (𝑁 ≤ 32 ; 𝑁 ≈ 40), this
capability rapidly deteriorates as graph sizes exceed the training regime. In the next section,
we propose a series of architectural mechanisms that address these generalization challenges.

3 Reasoning in Latent Space with Algorithmic Supervision
3.1 Mechanisms for Effective OOD Generalization.
Effective OOD generalization on complex reasoning tasks hinges on a model’s ability to
learn and emulate an underlying scalable algorithm. This requires the model to, implicitly
or explicitly, execute an iterative procedure that adapts to input complexity. Designing in-
ductive biases to support the discovery of such scalable, compositional solutions is a central
challenge in machine learning [3, 27–29]. Chain-of-thought (CoT) techniques attempt this
by having the model sequentially generate a token representation of a computational pro-
cess. However, this restriction to a token-based, autoregressive format often yields brittle
“algorithms” that fail to generalize robustly, especially as longer CoT sequences are needed
for more complex inputs. These well-documented length generalization issues [19–24] under-
score CoT’s limitations in effectively emulating truly scalable algorithmic procedures. This
work, therefore, proposes alternative mechanisms to facilitate the learning of such iterative
algorithms directly within a model’s latent processing.

Our proposal features recurrent Transformer blocks, algorithmic supervision, discretization
in latent space, and a self-correction scheme (depicted in Figure 2). Collectively, these
mechanisms constitute an architecture enabling native latent-space reasoning, leading to
effective OOD generalization. In the following, we present the four proposed mechanisms and
the essence of their implementation, deferring certain implementation details to Section C.

Algorithm to Emulate. To solve this task, a natural algorithmic solution that is well-
aligned with the Transformer architecture is to compute the values in the computation
graph one layer at a time. This can be realized through a recursive process that itera-
tively applies the same computational modules. Specifically, each iteration of the algorithm
computes values one layer deeper in the computation graph by fetching the necessary de-
pendent values for nodes at the current layer and then performing the required modular
arithmetic. In particular, for the example in Figure 1, in the first iteration, we evaluate
variables {𝑥7, 𝑥42, 𝑥88, 𝑥115}. In the second iteration, we evaluate {𝑥23, 𝑥91, 𝑥55}. In the
last iteration, we evaluate {𝑥101, 𝑥30}. Note that each iteration involves the same type of
computation, providing a succinct and scalable recursive problem-solving algorithm.

Mechanism 1: Recurrence & Input-Adaptive Computation. The iterative and
recursive structure of the target layer-by-layer algorithm naturally motivates a recurrent
architecture. We employ a recurrent Transformer block [30] with the goal that each ap-
plication emulates one algorithmic iteration—that is, computing values for one additional
layer of the computation graph. An input instance is represented as a sequence of 𝑛 tokens
𝑋 = (𝑥1, … , 𝑥𝑛), as described in (1). This is embedded to form a sequence of embedding
vectors 𝐸(0)

1 , … , 𝐸(0)
𝑛 , and recurrently processed with the recurrent transformer block

(𝐸(𝑡+1)
1 , … , 𝐸(𝑡+1)

𝑛) ← RecurrentTransformerBlock(𝐸(𝑡)
1 , … , 𝐸(𝑡)

𝑛), 𝑡 = 1, 2, … , 𝑇 . (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

𝑥

ො𝑦

ℎ(𝑡)

ℎ(𝑡+1)

Recurrent
Block

(a) Mechanism 1:
Recurrence &
Adaptive Computation

R
ef

er
en

ce
 A

lg
o

ri
th

m

M
o

d
el

Supervision

(b) Mechanism 2:
Algorithmic
Supervision

ℎ(𝑡+1)

ℎ(𝑡)

෨ℎ(𝑡+1)

𝑧(𝑡+1)

Discretize

Re-Embed

(c) Mechanism 3:
Anchored Discrete
Latent Space

⋮

Random
Noise

ℎ(𝑡−1)

ℎ(𝑡)

𝑧(𝑡)

𝑧(𝑡) ⊕ 𝜉

(d) Mechanism 4:
Error Correction

Figure 2. A Depiction of the proposed mechanisms for out-of-distribution generalization.

The output is linearly read out from the final embedding states 𝐸(𝑇)
1 , … , 𝐸(𝑇)

𝑛 . Crucially,
the number of recurrent iterations, 𝑇 , is not fixed but adapts to input complexity, scaling
linearly with the depth of the computation graph. This input-adaptive recurrence allows
the model to dynamically scale its computation time proportionate to the problem’s require-
ments, a key capability for OOD generalization to larger graphs. Unlike CoT methods that
scale computation by generating progressively longer linear sequences of tokens, recurrence
introduces inductive biases favoring recursive solution structures, which are inherently more
scalable. The use of recurrence to adaptively scale computation time is a well-established
concept for tackling tasks with variable complexity [30–36].
Mechanism 2: Latent State Algorithmic Supervision. While recurrence provides
the capacity for iterative computation, it does not inherently guarantee that the model
will learn the desired layer-by-layer algorithmic procedure. To instill this structure, we
introduce latent state algorithmic supervision. Unlike CoT, which supervises intermediate
computation in token space, our mechanism provides supervision directly within the model’s
latent representation space at each recurrent step, steering the internal states to align with
the step-by-step execution of our target algorithm. Specifically, at each recurrent iteration
𝑡, a shared linear readout layer is used to predict node values from their current latent
embeddings 𝐸(𝑡)

𝑖 . The training loss applied to these predictions at each recurrent iteration
aligns the model with the target layer-by-layer algorithm, taking the form:

AlgorithmAlignmentLoss =
𝑇

∑
𝑡=1

∑
𝑖∈[𝑛]

1{Depth(𝑥𝑖) ≤ 𝑡} ⋅ ℓ (𝑊value 𝐸(𝑡)
𝑖 , Value(𝑥𝑖)) , (3)

where Depth(𝑥𝑖) is the node’s depth in the computation graph, Value(𝑥𝑖) is its ground-
truth value, and ℓ is the cross-entropy loss. Thus, the algorithm alignment loss supervises
the model such that at iteration 𝑡, it computes the values of all nodes in the input at
computational depth less than or equal to 𝑡. For example, in Figure 1, supervision at 𝑡 = 1
applies to leaf nodes (e.g., 𝑥7), while at 𝑡 = 2 it extends to include second-layer nodes (e.g.,
𝑥23), and so on. This iterative supervision encourages the model to progressively build up
the solution, computing the graph one effective layer deeper with each recurrent step.
Mechanism 3: Anchoring Latent Representation via Discretization. Recurrent
models can suffer from representational drift across recurrent iterations during extended
out-of-distribution computation, arising from error accumulation when computation scales
beyond the training regime. To mitigate this and ensure stable processing across many
iterations, we introduce a discretization mechanism that anchors the model’s latent repre-
sentation as computation scales through recurrence. Specifically, after each iteration, the
model’s continuous hidden states are projected into a structured discrete symbolic space
and then immediately re-embedded to form the input for the next recurrent step. This
makes it so that the input at each iteration lies in the same structured space, despite scaling
computation beyond the training regime.
We implement this anchoring using a structured tokenization and embedding scheme, en-
abling each token’s internal state to evolve recurrently while remaining grounded in a shared
discrete space. In our task, the discrete latent space is structured as a product of four factors:
token syntax, variable identity, numerical value, and operation type. Please refer to Sec-
tion C.1 for a concrete example. This yields a latent representation that is discrete, shared

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

across steps, and scalable to extended computation. To map the discrete states to distributed
embeddings, we train separate embeddings for each factor and combine the factor embed-
dings by summation. At each iteration, we first apply the RecurrentTransformerBlock, as
in Equation (2), forming the core computation of the recurrent step. The processed dis-
tributed representations are then discretized via argmax decoding across each symbolic fac-
tor, projecting the latent representation to a common structured space. We then re-embed
the discrete state to form the vectorized input for the next iteration.

(̃𝐸(𝑡+1)
1 , … , ̃𝐸(𝑡+1)

𝑛) ← RecurrentTransformerBlock(𝐸(𝑡)
1 , … , 𝐸(𝑡)

𝑛)
𝑧(𝑡+1)

𝑖,factor ← arg max{𝑊factor
̃𝐸(𝑡+1)
𝑖 } for each factor ∈ ℱ

𝐸(𝑡+1)
𝑖,factor ← FactorEmbed(𝑧(𝑡+1)

𝑖,factor) for each factor ∈ ℱ
𝐸(𝑡+1)

𝑖 ← 𝐸(𝑡+1)
𝑖,syntax + 𝐸(𝑡+1)

𝑖,variable + 𝐸(𝑡+1)
𝑖,operation + 𝐸(𝑡+1)

𝑖,value.

(4)

Mechanism 4: Learning to Self-Correct. Finally, we introduce a self-correction scheme
to enhance the robustness of the learned algorithm, especially as the number of computa-
tional steps increases, making the process more susceptible to error propagation. This
mechanism aims to equip the model with the ability to recover from such intermediate mis-
takes. To facilitate this robustness, we train the model by intentionally introducing errors
into its reasoning process. Specifically, at each recurrent iteration, with a small probabil-
ity, we randomly corrupt a selection of the value components within the model’s discrete
latent states. This training regimen forces the model to learn to detect when a previously
computed value is incorrect (due to our induced corruption or its own misstep) and then to
correct this error in a subsequent computational step before proceeding with the task.

3.2 Experimental Results & Discussion
Combining these mechanisms yields an architecture capable of effectively generalizing far
beyond the training distribution to much larger and more complex inputs. To evaluate
the effects of the different mechanisms we propose, we study a collection of methods, each
implementing a different subset of these mechanisms. These methods are listed in Table 1.

Table 1. Guide to Implementation of Proposed Mechanisms in Baselines. The leftmost
column lists the method names, matching the figure legends. indicates that a
mechanism is implemented, # means it is not, and G# signifies partial implementation.

Method / Mechanism Mechanism 1 Mechanism 2 Mechanism 3 Mechanism 4
Feedforward End-to-End # # # #
Recurrent End-to-End G# # # #

Chain-of-Thought G# G# # #
Continuous Latent Space Supervision # #

Discrete Latent Space Supervision #
Discrete Latent Space Supervision ⟲

16 32 48 64 80 96 112 128

Number of Nodes

0.00

0.25

0.50

0.75

1.00

%
 F

u
ll
y
 S

ol
v
ed

Method
Discrete Latent Space Supervision

Discrete Latent Space Supervision

(Continuous) Latent Space Supervision

End-to-End Feedforward

End-to-End Recurrent

Chain-of-Thought Supervision

Figure 3. Out-of-Distribution generalization
performance of different methods on the
mathematical reasoning task.

0 2 4 6 8 10 12 14 16 18 20

Recurrent Iterations

0.0

0.2

0.4

0.6

0.8

1.0

%
 F

u
ll
y
 S

ol
v
ed

Nodes
16

32 ¦
48

64

80

96

112

128

Figure 4. Effective out-of-distribution
generalization via input-adaptive scaling
of computation time. This depicts
Discrete Latent Space Supervision ⟲

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Enabling Robust Algorithmic OOD Generalization. Figure 3 depicts the OOD gen-
eralization performance of our methods, ablating across the ingredients described above,
as well as the aforementioned Chain-of-Thought and End-to-End baselines. As previously
mentioned, we find that the End-to-End models (both recurrent and feedforward) fail to
effectively learn the task (with respect to our stringent “fully solved” metric) beyond small
graph sizes, even in-distribution. The recurrent models slightly outperform the feedforward
models. Chain-of-Thought supervision enables a significant improvement, yielding near-
perfect performance in-distribution (𝑁 ≤ 32), and a limited degree of out-of-distribution
generalization. To assess our proposed mechanisms for robust OOD generalization in Trans-
formers, we evaluate three classes of models incorporating different subsets of those ingre-
dients. We find that this enables a dramatic improvement in OOD generalization, with
performance improving further as more ingredients are incorporated. When all proposed
ingredients are incorporated, i.e., Discrete Latent Space Supervision ⟲1, the model robustly
achieves near-perfect performance across all OOD splits we examined.
The Importance of Anchored Discrete Representations. In Figure 3, Continuous La-
tent Space Supervision denotes a recurrent model where the continuous latent states receive
step-by-step algorithmic supervision, but the latent states are not discretized in between
recurrent block iterations as they are in Discrete Latent Space Supervision. We see that,
while this outperforms the Chain-of-Thought baseline, which is limited to linear reasoning
paths, its out-of-distribution performance slowly degrades as we test on progressively larger
inputs, which require increasing recurrent depth and computation time. We attribute this
to accumulating noise in the continuous vector representations—a phenomenon exacerbated
when scaling test-time compute for larger problem instances—which eventually causes rep-
resentations to drift from the semantically meaningful manifold learned during training. In
Discrete Latent Space Supervision, the model receives step-by-step algorithmic supervision
as with its continuous counterpart, but now we additionally discretize the latent represen-
tation, then re-embed using a common embedder that is shared across recurrent iterations.
This has the effect of “anchoring” the latent states to a common, semantically-consistent
representation space, allowing the model to scale up computational depth without accumu-
lating noise. We observe that this yields significantly improved OOD generalization.
Error-Correction Leads to Greater Robustness in Scaling. In Discrete Latent Space
Supervision ⟲, we introduce explicit supervision for error correction by randomly corrupting
the model’s latent space with some small probability during training. While the model may
make occasional errors, it is able to correct them in the next recurrent iteration, thereby
yielding near-perfect OOD generalization. Interestingly, we find that error correction re-
quires more layers in the recurrent block in order to succeed. An intuitive explanation is
that error correction requires greater computational depth per step: the model must first
identify and correct errors from prior steps before executing the current step’s computation.
Robust Test-time Scaling. On many tasks, the computation time required to solve a
problem instance is proportional to its size or complexity. Consequently, solving problems
larger than those encountered during training necessitates scaling computation time beyond
the training regime. In our setting, where the model’s reasoning process is latent, we achieve
this by increasing the number of recurrent iterations. Figure 4 depicts the proportion of
input instances solved as a function of the number of recurrent iterations. Increasing the
number of iterations enables solving incrementally larger and harder problem instances. Our
architectural mechanisms enable this robust scaling beyond the training regime.
Details, Extensions & Further Ablations. In the appendices, we provide further
discussion and present additional experimental results. Here, we briefly highlight a few
aspects of these extensions. Across all methods, we find that hyperparameter choice can
be critical. In particular, we find that the choice of positional encoding and model depth
is especially important. In the above results, we always report the best model within each
method after a hyperparameter search, the details of which are provided in the appendix.
Additionally, for the chain-of-thought baselines, we explore multiple schemes for the design
of the reasoning chains and present the best results here.
Now that we have demonstrated the effectiveness of the proposed architectural mechanisms
for robust OOD generalization, we next conduct a mechanistic interpretability analysis to
probe the precise computational circuits learned by each component of our model.

1Here, ⟲ denotes self-correction.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4 Mechanistic Interpretability
In this section, we aim to answer the following questions via a detailed study of the model’s
inner workings: (i) What algorithm does the trained model implement? (ii) Why is the
trained model able to generalize to OOD data? To answer these questions, we first pro-
pose hypotheses on the functionality of each model block: first-layer attention, second-layer
attention, and the final MLP. For each of these hypotheses, we conduct controlled exper-
iments where we apply causal interventions to specific parts of the input and isolate the
effect on model activations to identify the function of each component. Our methodology
builds on prior work on causal interpretability in neural networks [37–39], but is tailored
specifically to interpreting recurrent transformer models. We provide complete details of
our experimental methodology in the appendix.

Induction Head & Modular Addition Mechanism
To understand the algorithm implemented by the trained model, we analyze in detail the
recurrent Transformer model trained with our proposed Discrete Latent Space Supervision
method on the mathematical reasoning task. The recurrent Transformer model is configured
with two layers, 16 attention heads, and a hidden state dimension of 256. For more details on
the model configuration, please refer to Section D. We summarize our mechanism analysis
results in Figure 5, where we reveal an induction head mechanism operating within the
two-layer attention block and a modular addition mechanism in the final feedforward layer.
To better understand the model’s behavior, let us take an example equation

[sep] ⟨var0⟩ ⟨+⟩ ⟨var1⟩ ⟨+⟩ ⟨var2⟩ ⟨=⟩ ⟨rhs⟩ .
We can break down the model’s computation into three main components at the Right-
Hand Side (RHS) position: The first layer attention heads copy the “variable” factored
embeddings of variables ⟨var0⟩ , ⟨var1⟩ , and ⟨var2⟩ to the RHS position, which let the
model know the variable names at the RHS position. The second layer attention heads
use the copied variable names to retrieve the computed values of variables ⟨var0⟩ , ⟨var1⟩ ,
and ⟨var2⟩ from the previous equations through an induction-head mechanism. The last
feedforward layer computes the sum of the values of the variables on the LHS and outputs
the result to the RHS position.

Figure 5. Illustration of the two-layer model performing the modular addition task. The
colored squares represent attention heads, grouped by the variable positions they attend
to. Black rectangles indicate the embedding components chosen by the value projection
matrix. ⟨⋅⟩ denotes tokens, and ‘ ⋅ ’ denotes embedding components.
First Layer Attention Performs Variable Copying. The attention heads in the first
layer are grouped by the variable position they attend to, reflecting an attention pattern that
is dependent on relative position, as illustrated in Figure 6 (left). For the token embeddings
of ⟨var0⟩ , ⟨var1⟩ , and ⟨var2⟩ , which comprise four separate factored embedding types
(syntax, variable, operation, and value), the value and output projection matrices of
each head group select a subspace of these token embeddings containing only the variable
embeddings. This is evident in Figure 6 (right), which plots the norm amplification for
different factored embedding types. More details on the norm amplification calculation can
be found in Section D. This shows that the first layer attention copies the variable names
of its parents, which will later be used to obtain their values in the second layer.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Second Layer Attention Implements Variable-Dependent Induction Head Mech-
anism. The second layer’s attention heads then retrieve the corresponding values of vari-
ables ⟨var0⟩ , ⟨var1⟩ , and ⟨var2⟩ from the previous equations through an induction-head
mechanism [40]. Specifically, all the attention heads are also grouped by which variable
value they are retrieving. For example, let us suppose that the first head group is respon-
sible for retrieving the value of ⟨var0⟩ . Then, the attention heads within this group will
find the first occurrence of ⟨var0⟩ , which will be the RHS of some previous equation. This
particular position is the first time the value of ⟨var0⟩ is computed. And these attention
heads will then copy the “value” factored embedding of ⟨var0⟩ also to the current RHS
position. In summary, the variable names copied in the first layer are used as queries to
retrieve these variables’ values, searching over the RHS of previous equations.
Feedforward Layer Performs Modular Addition. The last feedforward layer imple-
ments a modular addition mechanism, where the model computes the sum of the values of
the variables on the LHS and outputs the result to the RHS position. There are many works
that have studied how the feedforward layer implements a modular addition mechanism in
the context of Transformer networks [41–43] using a Fourier-based approach. We provide
additional evidence for this mechanism in Section D. However, as this is not the main focus
of our work, we refer interested readers to above mentioned works for more details.

syntax
variable

operation

value

0

5

10

15

20

25

30

N
or

m
 A

m
p
li
fi
ca

ti
on

Head Group〈
var0

〉〈
var1

〉〈
var2

〉〈
others

〉

Figure 6. Left. An illustration of the functionality of attention heads in the first layer.
Head 4 and 8 attend to the first variable position, Head 5 and 12 attend to the second
variable position, Head 3, 7, 11, 14 attend to the third variable position, and the remaining
heads attend to the RHS position or do not show a clear attention pattern. Right. Norm
amplification of each factor’s embeddings passed through the combined attention OV
matrix by head groups. ⟨others⟩ exhibits significantly higher norm amplification,
primarily because head 15 performs a self-copy operation at the RHS position.

OOD Generalization of the Trained Model. The model’s robust OOD generalization
stems from its architectural mechanisms, which guide it towards learning a universal and
scalable algorithm. In particular, the algorithm implements a variable-dependent induction
head mechanism that is invariant to length, leveraging both relative-positional and variable-
dependent attention patterns, which enables the model to operate over contexts of arbitrary
lengths. Thus, despite being trained on graphs with limited size, the input-adaptive recur-
rence, intermediate supervision, and discretization mechanisms enable the model to learn a
scalable algorithm capable of solving problems of increased complexity.

5 Conclusion
This work investigated algorithmic generalization in Transformers for scalable mathematical
reasoning, a domain where standard chain-of-thought approaches fail on out-of-distribution
inputs. We introduced a novel architecture integrating input-adaptive recurrence, latent al-
gorithmic supervision, state discretization, and self-correction mechanisms. Collectively,
these mechanisms enabled our models to achieve near-perfect OOD performance by fa-
cilitating robust, scalable reasoning directly within their internal latent representations,
overcoming the brittleness of sequential token-based methods. Mechanistic interpretabil-
ity further illuminated how these components achieve systematic generalization. While our
synthetic mathematical reasoning task offers analytical clarity for investigating fundamental
principles—such as adaptive recurrence and discrete latent bottlenecks—future work should
explore extending these principles to more diverse, less-structured, and multi-task settings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

References
[1] Jordan B Pollack. “Recursive distributed representations”. In: Artificial Intelligence

(1990) (cited on pages 1, 14).
[2] Richard Socher, Brody Huval, Christopher D Manning, and Andrew Y Ng. “Semantic

compositionality through recursive matrix-vector spaces”. In: Proceedings of the 2012
joint conference on empirical methods in natural language processing and computa-
tional natural language learning. 2012 (cited on pages 1, 14).

[3] Brenden Lake and Marco Baroni. “Generalization without systematicity: On the com-
positional skills of sequence-to-sequence recurrent networks”. In: International confer-
ence on machine learning. PMLR. 2018 (cited on pages 1, 4).

[4] Petar Veličković and Charles Blundell. “Neural algorithmic reasoning”. In: Patterns
(2021) (cited on page 1).

[5] Noam Chomsky. “Syntactic structures”. Mouton de Gruyter, 1957 (cited on page 1).
[6] Jerry A Fodor and Zenon W Pylyshyn. “Connectionism and cognitive architecture: A

critical analysis”. In: Cognition (1988) (cited on pages 1, 14).
[7] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman.

“Building machines that learn and think like people”. In: Behavioral and brain sciences
(2017) (cited on pages 1, 14).

[8] John R Anderson. “Acquisition of cognitive skill.” In: Psychological review (1982) (cited
on page 1).

[9] Mark K Singley and John Robert Anderson. “The transfer of cognitive skill”. Harvard
University Press, 1989 (cited on page 1).

[10] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc
V Le, Denny Zhou, et al. “Chain-of-thought prompting elicits reasoning in large lan-
guage models”. In: Advances in neural information processing systems (2022) (cited
on pages 1, 3, 15).

[11] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwa-
sawa. “Large language models are zero-shot reasoners”. In: Advances in neural infor-
mation processing systems (2022) (cited on pages 1, 15).

[12] Hyung Won Chung et al. “Scaling Instruction-Finetuned Language Models”. 2022.
arXiv: 2210.11416 [cs.LG] (cited on page 1).

[13] Hanmeng Liu, Zhiyang Teng, Leyang Cui, Chaoli Zhang, Qiji Zhou, and Yue Zhang.
“LogiCoT: Logical Chain-of-Thought Instruction Tuning”. In: Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2023. Ed. by Houda Bouamor, Juan
Pino, and Kalika Bali. Singapore: Association for Computational Linguistics, Dec.
2023 (cited on pages 1, 15).

[14] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Łukasz
Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christo-
pher Hesse, and John Schulman. “Training Verifiers to Solve Math Word Problems”.
arXiv:2110.14168 [cs]. Nov. 2021 (cited on pages 1, 3).

[15] Aitor Lewkowycz, Anders Johan Andreassen, David Dohan, Ethan Dyer, Henryk
Michalewski, Vinay Venkatesh Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag,
Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra.
“Solving Quantitative Reasoning Problems with Language Models”. In: Advances in
Neural Information Processing Systems. Ed. by Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho. 2022 (cited on pages 1, 3, 15).

[16] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy
Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. “Let’s Verify Step
by Step”. 2023. arXiv: 2305.20050 [cs.LG] (cited on page 1).

[17] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei
Zhang, Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. “DeepSeekMath: Pushing
the Limits of Mathematical Reasoning in Open Language Models”. 2024. arXiv: 2402.
03300 [cs.CL] (cited on page 1).

[18] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is all you need”. In: Advances
in neural information processing systems (2017) (cited on pages 1, 14, 16).

[19] Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay
Ramasesh, Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. “Ex-
ploring Length Generalization in Large Language Models”. In: Advances in Neural
Information Processing Systems (Dec. 6, 2022) (cited on pages 1, 4, 14).

10

https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

[20] Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das,
and Siva Reddy. “The Impact of Positional Encoding on Length Generalization in
Transformers”. In: Advances in Neural Information Processing Systems (Dec. 15, 2023)
(cited on pages 1, 4, 14, 16).

[21] Samy Jelassi, Stéphane d’Ascoli, Carles Domingo-Enrich, Yuhuai Wu, Yuanzhi Li, and
François Charton. “Length Generalization in Arithmetic Transformers”. 2023. arXiv:
2306.15400 [cs.LG] (cited on pages 1, 4, 14).

[22] Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Joshua M.
Susskind, Samy Bengio, and Preetum Nakkiran. “What Algorithms can Transformers
Learn? A Study in Length Generalization”. In: The Twelfth International Conference
on Learning Representations. 2024 (cited on pages 1, 4, 14).

[23] Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. “Chain of thought-
lessness? an analysis of cot in planning”. In: The Thirty-eighth Annual Conference on
Neural Information Processing Systems. 2024 (cited on pages 1, 4, 14).

[24] Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny
Zhou. “Transformers Can Achieve Length Generalization But Not Robustly”. Feb. 14,
2024. arXiv: 2402.09371 [cs]. Pre-published (cited on pages 1, 4, 14).

[25] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus,
Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. “Scaling
instruction-finetuned language models”. In: Journal of Machine Learning Research
(2024) (cited on pages 3, 15).

[26] Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. “Physics of Language Models:
Part 2.1, Grade-School Math and the Hidden Reasoning Process”. July 29, 2024. arXiv:
2407.20311 [cs]. Pre-published (cited on page 3).

[27] Jonathan Baxter. “A model of inductive bias learning”. In: Journal of artificial intel-
ligence research (2000) (cited on pages 4, 14).

[28] David Barrett, Felix Hill, Adam Santoro, Ari Morcos, and Timothy Lillicrap. “Measur-
ing abstract reasoning in neural networks”. In: International conference on machine
learning. PMLR. 2018 (cited on pages 4, 14).

[29] Anirudh Goyal and Yoshua Bengio. “Inductive biases for deep learning of higher-level
cognition”. In: Proceedings of the Royal Society A (2022) (cited on pages 4, 14).

[30] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz
Kaiser. “Universal Transformers”. Mar. 5, 2019. arXiv: 1807.03819 [cs, stat]. Pre-
published (cited on pages 4, 5, 14).

[31] Alex Graves. “Adaptive Computation Time for Recurrent Neural Networks”. Feb. 21,
2017. arXiv: 1603.08983 [cs]. Pre-published (cited on pages 5, 14).

[32] Andrea Banino, Jan Balaguer, and Charles Blundell. “PonderNet: Learning to Ponder”.
Sept. 2, 2021. arXiv: 2107.05407. Pre-published (cited on pages 5, 14).

[33] Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah
Goldblum, and Tom Goldstein. “Can You Learn an Algorithm? Generalizing from
Easy to Hard Problems with Recurrent Networks”. Nov. 2, 2021. arXiv: 2106.04537
[cs]. Pre-published (cited on pages 5, 14).

[34] Arpit Bansal, Avi Schwarzschild, Eitan Borgnia, Zeyad Emam, Furong Huang, Micah
Goldblum, and Tom Goldstein. “End-to-End Algorithm Synthesis with Recurrent
Networks: Logical Extrapolation Without Overthinking”. Oct. 14, 2022. arXiv: 2202.
05826 [cs]. Pre-published (cited on pages 5, 14).

[35] Ying Fan, Yilun Du, Kannan Ramchandran, and Kangwook Lee. “Looped Transform-
ers for Length Generalization”. Sept. 25, 2024. arXiv: 2409 . 15647. Pre-published
(cited on pages 5, 14).

[36] Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian
R. Bartoldson, Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. “Scaling up
Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach”. Feb. 17,
2025. arXiv: 2502.05171 [cs]. Pre-published (cited on pages 5, 14).

[37] Atticus Geiger, Hanson Lu, Thomas F Icard, and Christopher Potts. “Causal Abstrac-
tions of Neural Networks”. In: Advances in Neural Information Processing Systems.
Ed. by A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan. 2021 (cited
on pages 8, 15).

[38] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. “Locating and editing
factual associations in gpt”. In: Advances in neural information processing systems
(2022) (cited on pages 8, 15).

[39] Atticus Geiger, Zhengxuan Wu, Christopher Potts, Thomas Icard, and Noah Good-
man. “Finding alignments between interpretable causal variables and distributed neu-

11

https://arxiv.org/abs/2306.15400
https://arxiv.org/abs/2402.09371
https://arxiv.org/abs/2407.20311
https://arxiv.org/abs/1807.03819
https://arxiv.org/abs/1603.08983
https://arxiv.org/abs/2107.05407
https://arxiv.org/abs/2106.04537
https://arxiv.org/abs/2106.04537
https://arxiv.org/abs/2202.05826
https://arxiv.org/abs/2202.05826
https://arxiv.org/abs/2409.15647
https://arxiv.org/abs/2502.05171

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

ral representations”. In: Causal Learning and Reasoning. PMLR. 2024 (cited on pages 8,
15).

[40] Catherine Olsson et al. “In-context Learning and Induction Heads”. In: Transformer
Circuits Thread (2022) (cited on pages 9, 15).

[41] Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt.
“Progress measures for grokking via mechanistic interpretability”. In: The Eleventh
International Conference on Learning Representations. 2023 (cited on pages 9, 15).

[42] Yuandong Tian. “Composing Global Optimizers to Reasoning Tasks via Algebraic
Objects in Neural Nets”. 2024. arXiv: 2410.01779 [cs.LG] (cited on pages 9, 15).

[43] Darshil Doshi, Aritra Das, Tianyu He, and Andrey Gromov. “To grok or not to grok:
Disentangling generalization and memorization on corrupted algorithmic datasets”. In:
Bulletin of the American Physical Society (2024) (cited on page 9).

[44] Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. “Compositionality
decomposed: How do neural networks generalise?” In: Journal of Artificial Intelligence
Research (2020) (cited on page 14).

[45] Jeffrey L Elman. “Finding structure in time”. In: Cognitive science (1990) (cited on
page 14).

[46] Michael I Jordan. “Serial order: A parallel distributed processing approach”. In: Ad-
vances in psychology. Elsevier, 1997 (cited on page 14).

[47] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural
computation (1997) (cited on page 14).

[48] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. “Learning Phrase Representations us-
ing RNN Encoder–Decoder for Statistical Machine Translation”. In: Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Ed.
by Alessandro Moschitti, Bo Pang, and Walter Daelemans. Doha, Qatar: Association
for Computational Linguistics, Oct. 2014 (cited on page 14).

[49] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence learning with
neural networks”. In: Advances in neural information processing systems (2014) (cited
on page 14).

[50] Liu Yang, Kangwook Lee, Robert Nowak, and Dimitris Papailiopoulos. “Looped Trans-
formers Are Better at Learning Learning Algorithms”. Mar. 16, 2024. arXiv: 2311.
12424 [cs]. Pre-published (cited on page 14).

[51] Allen Newel and Herbert A Simon. “Computer science as empirical inquiry: Symbols
and search”. In: Communications of the ACM (1976) (cited on page 14).

[52] Artur SD’Avila Garcez, Luis C Lamb, and Dov M Gabbay. “Neural-symbolic cognitive
reasoning”. Springer Science & Business Media, 2008 (cited on page 14).

[53] Ruslan Salakhutdinov and Geoffrey Hinton. “Deep boltzmann machines”. In: Artificial
intelligence and statistics. PMLR. 2009 (cited on page 14).

[54] Aaron Courville, James Bergstra, and Yoshua Bengio. “A spike and slab restricted
Boltzmann machine”. In: Proceedings of the fourteenth international conference on
artificial intelligence and statistics. JMLR Workshop and Conference Proceedings.
2011 (cited on page 14).

[55] Eirikur Agustsson, Fabian Mentzer, Michael Tschannen, Lukas Cavigelli, Radu Tim-
ofte, Luca Benini, and Luc V Gool. “Soft-to-hard vector quantization for end-to-end
learning compressible representations”. In: Advances in neural information processing
systems (2017) (cited on page 14).

[56] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. “Neural Discrete Repre-
sentation Learning”. May 30, 2018. arXiv: 1711.00937 [cs]. Pre-published (cited on
page 14).

[57] Gail Weiss, Yoav Goldberg, and Eran Yahav. “Thinking Like Transformers”. July 19,
2021. arXiv: 2106.06981 [cs]. Pre-published (cited on page 14).

[58] Paul Smolensky, Roland Fernandez, Zhenghao Herbert Zhou, Mattia Opper, and Jian-
feng Gao. “Mechanisms of Symbol Processing for In-Context Learning in Transformer
Networks”. 2024. arXiv: 2410.17498 [cs.AI] (cited on page 14).

[59] Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob
Austin, David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan,
Charles Sutton, and Augustus Odena. “Show Your Work: Scratchpads for Intermediate
Computation with Language Models”. 2021. arXiv: 2112.00114 [cs.LG] (cited on
page 15).

[60] Nelson Elhage et al. “A Mathematical Framework for Transformer Circuits”. In: Trans-
former Circuits Thread (2021) (cited on page 15).

12

https://arxiv.org/abs/2410.01779
https://arxiv.org/abs/2311.12424
https://arxiv.org/abs/2311.12424
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/2106.06981
https://arxiv.org/abs/2410.17498
https://arxiv.org/abs/2112.00114

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

[61] Nelson Elhage et al. “Toy Models of Superposition”. In: Transformer Circuits Thread
(2022) (cited on page 15).

[62] Trenton Bricken et al. “Towards Monosemanticity: Decomposing Language Models
With Dictionary Learning”. In: Transformer Circuits Thread (2023) (cited on page 15).

[63] Emmanuel Ameisen et al. “Circuit Tracing: Revealing Computational Graphs in Lan-
guage Models”. In: Transformer Circuits Thread (2025) (cited on page 15).

[64] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu.
“RoFormer: Enhanced Transformer with Rotary Position Embedding”. 2023. arXiv:
2104.09864 [cs.CL] (cited on page 16).

[65] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. “DeBERTa: Decoding-
enhanced BERT with Disentangled Attention”. 2021. arXiv: 2006.03654 [cs.CL]
(cited on page 16).

13

https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2006.03654

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A Related Work
Our work is related to several strands of fundamental machine learning research, includ-
ing issues of out-of-distribution generalization, architectural mechanisms such as recurrence
and discretization, chain-of-thought and intermediate supervision methods, and work on
mechanistic interpretability techniques.
Out-of-Distribution Generalization. Out-of-distribution (OOD) generalization, along
with related capabilities such as compositionality and systematicity, poses a fundamental
challenge in machine learning research [1, 2, 27, 28, 44]. These capabilities are crucial for
developing AI systems that can reliably apply learned knowledge to novel scenarios, a hall-
mark of robust intelligence [6, 7, 29]. A particularly important type of OOD generalization,
especially for algorithmic reasoning tasks, is length generalization—the ability to generalize
from simpler or shorter training instances to significantly longer and more structurally com-
plex instances. This has proven to be a key limitation of Transformer-based [18] language
models [19–22]. While chain-of-thought techniques alleviate this to some degree by enabling
the learning of more complex algorithmic procedures, the ability to generalize far outside
the training distribution remains a significant obstacle [23, 24].
Recurrence. Recurrence forms a foundational architectural principle in neural networks,
particularly for tasks that involve sequential data or inherently iterative processes [45–47].
These architectures are designed to emulate step-by-step computations by maintaining and
updating an internal state, making them well-aligned with problems that have a recursive
or layered solution structure. Sequence-to-sequence recurrent architectures for sequence
transduction and neural machine translation advanced the state of the art [48, 49], and
were instrumental to the development of attention mechanisms and the Transformer ar-
chitecture [18]. While standard Transformers do not possess a recurrent structure, recur-
rent variants of the Transformer architecture were explored soon after its introduction [30].
Whereas standard recurrent neural networks apply their recurrence across time or sequence
length, recurrent Transformer architectures are parallel in time due to the parallel attention
mechanism, but recurrent across computational depth—that is, the same Transformer layer
is applied iteratively to the sequence as a whole. The recurrent inductive biases have been
demonstrated to confer certain advantages in generalization [35, 50]. In our work, recurrence
is a key architectural mechanism encoding important inductive biases that aid the discovery
of scalable recursive algorithms for solving the underlying mathematical problem.
Adaptive Computation. A critical challenge is handling inputs with varying complexity,
where a fixed amount of computation may be inefficient or insufficient. This motivates the
concept of adaptive computation, wherein a model can dynamically adjust its computation
time, for example by varying the number of recurrent iterations, based on the demands of
the input. An important work in this domain is the Adaptive Computation Time (ACT)
mechanism proposed by Graves [31] for recurrent neural networks, which explicitly models
and learns how many computational steps are needed as a function of the input. A version
of the ACT mechanism is incorporated in the recurrent Transformer architecture proposed
by Dehghani et al. [30]. However, a drawback of such mechanisms is their complexity
and difficulty of training. Although efforts have been made to explore simpler adaptive
computation methods [32], an even simpler approach is explored by Schwarzschild et al. [33]
and Bansal et al. [34], where the halting time is not explicitly modeled by the network, and
instead the number of recurrent iterations is scaled at inference time based on the size of
the input. This simpler approach can be easier to train, and has been shown to improve
out-of-distribution generalization. More recently, Geiping et al. [36] explored the viability of
this approach as a way to perform test-time scaling in large language models. In our work,
we similarly scale computation time by proportionately scaling the number of recurrent
iterations in order to solve more complex problem instances, generalizing far beyond the
training distribution.
Discreteness in Neural Networks. Symbolic AI systems derive their power from manip-
ulating discrete symbols according to well-defined rules, which enables robust, precise, and
interpretable reasoning [6, 51]. Given this rich tradition of using discrete symbolic states in
artificial intelligence, many works have subsequently explored incorporating such discrete
latent representations into neural networks [52–56]. Additionally, discreteness is often a
central characteristic of constructions of Transformer networks for specific tasks. For ex-
ample, Weiss, Goldberg, and Yahav [57] develops a programming language that represents
Transformer-based computation with discrete internal mechanisms. Additionally, Smolen-

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

sky et al. [58] constructs a Transformer network for a compositional in-context learning task,
which features discreteness in both its latent states and attention mechanism. In our work,
we explore the use of discrete latent states as a means of anchoring the latent representation
to a common, depth-invariant space to enable scaling computation far beyond the training
distribution while avoiding representational shift across computational depth.
Chain-of-Thought & Algorithmic Supervision. Chain-of-thought techniques have
been central to enhancing the reasoning capabilities of large language models. Early us-
age of the term “chain-of-thought” referred to prompting techniques that condition a model
to generate a sequence of intermediate steps before arriving at the final answer [10, 11,
59]. For example, Wei et al. [10] demonstrated that prompting the LLM with a few CoT
exemplars caused the model to generate an analogous step-by-step solution, which signifi-
cantly improved performance on a range of arithmetic, commonsense, and symbolic reason-
ing tasks. Kojima et al. [11] showed that LLMs can be “zero-shot” reasoners in the sense
that simply asking the model to reason step-by-step, without providing in-context learning
CoT exemplars, can be sufficient to elicit chain-of-thought-style reasoning and improve per-
formance. Modern usage of the term “chain-of-thought” has extended beyond prompting
methods, as it now forms a key component of the training pipeline of LLMs, wherein a
model is explicitly trained on demonstrations of step-by-step solutions to problems of in-
terest, such as mathematical reasoning [13, 15, 25]. In some situations, chain-of-thought
training can be interpreted as providing explicit supervision to align the model to a particu-
lar algorithm or procedure for solving a problem, as opposed to simply providing supervision
via input-output examples. In our work, we explore traditional chain-of-thought training
techniques as baselines, as well as incorporate algorithmic supervision to the internal states
of our proposed method.
Mechanistic Interpretability. In our work, we carry out a mechanistic interpretability
analysis to probe how the model has learned to solve the task and why it can do so robustly,
generalizing far outside the training distribution. In recent years, there has been a resurgence
in work on interpretability, with new techniques being introduced that aim to understand
modern large language models [38, 40, 60–63]. Elhage et al. [60] is an influential work
in this area of research, introducing a conceptual framework and new terminology that
continues to be used in subsequent work. A key early achievement in this line of work is
the discovery of “induction head” circuits in large language models [40], which perform a
two-step copying operation that is crucial for in-context learning. In our work, we identify a
similar mechanism in our recurrent models that is used to copy previously computed variable
values. This involves first retrieving the parent variables’ names in the first layer, then
using these variable names to retrieve their values in the second layer, which are computed
elsewhere in the sequence of latent states. Such work is often described as circuit analysis,
where the goal is to identify sub-networks that are responsible for particular functions. A key
method for validating hypotheses about the functions of different model components is causal
interventions like activation patching or ablations [37–39], which involves systematically
modifying parts of the model or input to observe effects on behavior or internal states. We
use related causal intervention techniques in our own mechanistic interpretability analysis
in this work. Finally, the work by Nanda et al. [41] and Tian [42] is relevant as it specifically
investigated how Transformers perform arithmetic, reverse-engineering a modular addition
algorithm learned by the feedforward network in a Transformer layer—a phenomenon we
also observe in our models.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B Experimental Details on Chain-of-Thought &
End-to-End Baselines

This section provides further experimental details on the chain-of-thought and end-to-end
baselines.

B.1 End-to-End Baselines
The end-to-end models in our experiments are causal encoder-only Transformer models
with a fixed depth and/or number of iterations that are trained with end-to-end supervision
only. That is, they receive supervision on the final solution, but do not receive fine-grained
supervision on the intermediate steps to explicitly align the models to a universal algorithmic
problem-solving procedure.
Within the end-to-end baselines, we consider feedforward models and recurrent models.
Feedforward models have a fixed number of layers and independently-learned parameters at
each layer. Recurrent models, on the other hand, have a recurrent block consisting of some
number of Transformer layers, which is applied recurrently for a fixed number of iterations.
Recognizing the importance of positional encoding for length generalization [20], we explore
several positional encoding methods for each class of methods that we evaluate. In particular,
we evaluate learned absolute positional embeddings [18] (AbPE), Rotary Positional Encod-
ing [64] (RoPE), No Positional Encoding [20] (NoPE), and the relative positional-encoding
method proposed by [65] (DeBERTa).
We perform a hyperparameter search across each of these factors, varying the number of
recurrent iterations 𝑇 , the number of layers per recurrent block 𝐿, the hidden state dimen-
sion 𝐷, and the positional encoding method. As described in the main text, we train on a
dataset of examples with up to 32 nodes, and evaluate on examples varying in size from 8
nodes to 128 nodes. Figure 7 depicts the average OOD performance as measured by the
“% Fully Solved” metric for each baseline model configuration. The results in the main text
correspond to the best-performing end-to-end models according to this metric. In particu-
lar, the best-performing recurrent model is RoPE-T4L2H16D256, and the best-performing
feedforward model is DeBERTa-T1L8H16D256. Note that the naming scheme describes the
positional encoding method, the number of recurrent steps 𝑇 , the number of layers 𝐿 in the
Transformer block, the number of attention heads 𝐻, and the model dimension 𝐷. 𝑇 = 1
corresponds to a “feedforward” model with no recurrence.
Figure 8 depicts additional experimental results for the end-to-end baseline experiments.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0.000 0.025 0.050 0.075 0.100 0.125 0.150

% Fully Solved

SinAbPE-T1L2H16D256
SinAbPE-T1L2H16D512
SinAbPE-T1L8H16D256
SinAbPE-T2L2H16D256
SinAbPE-T2L2H16D512
SinAbPE-T2L4H16D256
SinAbPE-T4L2H16D256

AbPE-T1L2H16D256
AbPE-T1L2H16D512
AbPE-T2L2H16D256
AbPE-T2L2H16D512
AbPE-T4L2H16D256
AbPE-T4L2H16D512
RoPE-T1L2H16D256
RoPE-T1L2H16D512
RoPE-T1L8H16D256
RoPE-T2L2H16D256
RoPE-T2L2H16D512
RoPE-T4L2H16D256
RoPE-T4L2H16D512
NoPE-T1L2H16D256
NoPE-T1L2H16D512
NoPE-T1L8H16D256
NoPE-T2L2H16D256
NoPE-T2L2H16D512
NoPE-T2L4H16D256
NoPE-T4L2H16D256
NoPE-T4L2H16D512

DeBERTa-T1L2H16D256
DeBERTa-T1L2H16D512
DeBERTa-T1L8H16D256
DeBERTa-T2L2H16D256
DeBERTa-T2L2H16D512
DeBERTa-T2L4H16D256
DeBERTa-T4L2H16D256
DeBERTa-T4L2H16D512

M
od

el

Figure 7. A comparison of average OOD generalization performance of different
feedforward and recurrent baselines, varying architectural hyperparameters. This is
computed as the average of the “% Fully Solved” metric computed on inputs of varying
size from 𝑁 = 8 to 𝑁 = 128.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

20 40 60 80 100 120

Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

%
 F

u
ll
y
 S

o
lv

ed

(a) Each line corresponds to an
experimental run. Lines are color-coded by
positional encoding, but other architectural
hyperparameters vary and are not
represented.

SinAbPE AbPE RoPE NoPE DeBERTa

Positional Encoding Method

0.00

0.05

0.10

0.15

%
 F

u
ll
y
 S

ol
v
ed

(b) Average “% Fully Solved” across test
splits for the best model of each positional
encoding method. The relative positional
encoding methods, RoPE and DeBERTa
perform best.

20 40 60 80 100 120

Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

%
 F

u
ll
y
 S

ol
v
ed

PosEnc

SinAbPE

AbPE

RoPE

NoPE

DeBERTa

(c) % Fully solved by graph size for best
model of each positional encoding method
in the feedforward baselines.

20 40 60 80 100 120

Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

%
 F

u
ll
y
 S

ol
v
ed

PosEnc

SinAbPE

AbPE

RoPE

NoPE

DeBERTa

(d) % Fully solved by graph size for best
model of each positional encoding method
in the recurrent baselines.

20 40 60 80 100 120

Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

%
 F

u
ll
y
 S

ol
v
ed

Architecture

T1L2H16D256

T1L2H16D512

T1L8H16D256

T2L2H16D256

T2L2H16D512

T2L4H16D256

T4L2H16D256

T4L2H16D512

(e) % Fully solved by graph size for the
best model of each architectural
configuration. Recurrent models slightly
outperform feedforward models.
Computational depth (i.e., 𝑇 ⋅ 𝐿) is crucial,
with shallow models performing poorly even
on the smallest in-distribution inputs.

20 40 60 80 100 120

Nodes

0

2

4

A
tt

en
ti
o
n
 S

co
re

 E
n
tr

o
p
y

(f) Average attention score entropy by
input size. Attention scores disperse as the
input size increases.

Figure 8. Further experimental results for end-to-end baselines. All end-to-end models
struggle to generalize beyond the training distribution, regardless of architectural
hyperparameters.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.2 Chain-of-Thought Baselines

The chain-of-thought baselines in our experiments are causal Transformer language models
that are trained with a next-token prediction objective on sequence data that includes a
step-by-step solution of the problem instance. The models are evaluated by prompting
them with the problem instance and autoregressively generating the entire chain-of-thought
via a greedy decoding procedure.

We begin by providing more details on the construction of the chain-of-thought trajectories
for these baselines, then provide further details on the experimental setup and present
additional results.

B.2.1 Chain-of-Thought Trajectories

We experiment with a few different types of chain-of-thought trajectories, providing different
levels and styles of supervision on the intermediate computation.

As described in the main text, the first part of the sequence is always the description of the
input problem, which matches the format of the other methods we consider: a sequence of
equations that define a computational graph to be solved. This is then followed by a special
⟨CoT⟩ token which indicates the end of the input and the beginning of the chain-of-thought.
The chain-of-thought involves solving each variable in the input in linear order, one-by-one.

We experiment with two types of CoT trajectories that vary the level of detail. The first
provides supervision on the values only. The CoT simply recalls that variables one-by-one
and computes their values, without recalling the equation that defined them.

[...Input Prompt...]⟨CoT⟩[...]⟨𝑥101⟩⟨=⟩⟨4⟩

The second type of CoT trajectory involves first recalling the equation that defined the
variable, then recalling the values of the variables in the equation, and then computing the
value of the desired variable. This requires a longer chain-of-thought but provides richer
supervision.

[...Input Prompt...]⟨CoT⟩[...]⟨𝑥101⟩⟨=⟩⟨𝑥23⟩⟨+⟩⟨𝑥91⟩⟨=⟩⟨22⟩⟨+⟩⟨5⟩⟨=⟩⟨4⟩

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Below, we provide an example of a full CoT trajectory on an input with 𝑁 = 32 nodes.

⟨2⟩⟨=⟩⟨𝑥3⟩ [sep] ⟨2⟩⟨=⟩⟨𝑥30⟩ [sep] ⟨18⟩⟨=⟩⟨𝑥12⟩ [sep] ⟨14⟩⟨=⟩⟨𝑥11⟩ [sep]
⟨15⟩⟨=⟩⟨𝑥20⟩ [sep] ⟨8⟩⟨=⟩⟨𝑥23⟩ [sep] ⟨𝑥30⟩⟨=⟩⟨𝑥9⟩ [sep] ⟨𝑥23⟩⟨+⟩⟨𝑥3⟩⟨=⟩⟨𝑥22⟩ [sep]
⟨𝑥20⟩⟨×⟩⟨𝑥23⟩⟨=⟩⟨𝑥27⟩ [sep] ⟨𝑥3⟩⟨+⟩⟨𝑥22⟩⟨=⟩⟨𝑥0⟩ [sep] ⟨𝑥3⟩⟨+⟩⟨𝑥22⟩⟨×⟩⟨𝑥11⟩⟨=⟩⟨𝑥26⟩ [sep]
⟨𝑥20⟩⟨−⟩⟨𝑥22⟩⟨+⟩⟨𝑥23⟩⟨=⟩⟨𝑥13⟩ [sep] ⟨𝑥22⟩⟨=⟩⟨𝑥24⟩ [sep] ⟨𝑥12⟩⟨×⟩⟨𝑥23⟩⟨−⟩⟨𝑥0⟩⟨=⟩⟨𝑥17⟩ [sep]
⟨𝑥11⟩⟨×⟩⟨𝑥26⟩⟨=⟩⟨𝑥28⟩ [sep] ⟨𝑥13⟩⟨−⟩⟨𝑥11⟩⟨+⟩⟨𝑥23⟩⟨=⟩⟨𝑥21⟩ [sep] ⟨𝑥17⟩⟨−⟩⟨𝑥3⟩⟨=⟩⟨𝑥25⟩ [sep]
⟨𝑥30⟩⟨×⟩⟨𝑥17⟩⟨−⟩⟨𝑥23⟩⟨=⟩⟨𝑥6⟩ [sep] ⟨𝑥17⟩⟨=⟩⟨𝑥16⟩ [sep] ⟨𝑥11⟩⟨+⟩⟨𝑥21⟩⟨=⟩⟨𝑥7⟩ [sep]
⟨𝑥28⟩⟨+⟩⟨𝑥17⟩⟨−⟩⟨𝑥21⟩⟨=⟩⟨𝑥14⟩ [sep] ⟨𝑥7⟩⟨=⟩⟨𝑥15⟩ [sep] ⟨𝑥7⟩⟨=⟩⟨𝑥31⟩ [sep]
⟨𝑥12⟩⟨+⟩⟨𝑥3⟩⟨+⟩⟨𝑥14⟩⟨=⟩⟨𝑥5⟩ [sep] ⟨𝑥14⟩⟨=⟩⟨𝑥19⟩ [sep] ⟨𝑥23⟩⟨−⟩⟨𝑥5⟩⟨×⟩⟨𝑥7⟩⟨=⟩⟨𝑥29⟩ [sep]
⟨𝑥5⟩⟨=⟩⟨𝑥18⟩ [sep] ⟨𝑥25⟩⟨+⟩⟨𝑥23⟩⟨−⟩⟨𝑥19⟩⟨=⟩⟨𝑥4⟩ [sep] ⟨𝑥14⟩⟨×⟩⟨𝑥29⟩⟨−⟩⟨𝑥5⟩⟨=⟩⟨𝑥2⟩ [sep]
⟨𝑥29⟩⟨×⟩⟨𝑥28⟩⟨−⟩⟨𝑥7⟩⟨=⟩⟨𝑥1⟩ [sep] ⟨𝑥3⟩⟨×⟩⟨𝑥23⟩⟨×⟩⟨𝑥18⟩⟨=⟩⟨𝑥8⟩ [sep]
⟨𝑥8⟩⟨−⟩⟨𝑥28⟩⟨−⟩⟨𝑥0⟩⟨=⟩⟨𝑥10⟩ ⟨CoT⟩ ⟨𝑥3⟩⟨=⟩⟨2⟩ [sep] ⟨𝑥30⟩⟨=⟩⟨2⟩ [sep]
⟨𝑥12⟩⟨=⟩⟨18⟩ [sep] ⟨𝑥11⟩⟨=⟩⟨14⟩ [sep] ⟨𝑥20⟩⟨=⟩⟨15⟩ [sep] ⟨𝑥23⟩⟨=⟩⟨8⟩ [sep]
⟨𝑥9⟩⟨=⟩⟨𝑥30⟩⟨=⟩⟨2⟩ [sep] ⟨𝑥22⟩⟨=⟩⟨𝑥23⟩⟨+⟩⟨𝑥3⟩⟨=⟩⟨10⟩ [sep] ⟨𝑥27⟩⟨=⟩⟨𝑥20⟩⟨×⟩⟨𝑥23⟩⟨=⟩⟨5⟩ [sep]
⟨𝑥0⟩⟨=⟩⟨𝑥3⟩⟨+⟩⟨𝑥22⟩⟨=⟩⟨12⟩ [sep] ⟨𝑥26⟩⟨=⟩⟨𝑥3⟩⟨+⟩⟨𝑥22⟩⟨×⟩⟨𝑥11⟩⟨=⟩⟨7⟩ [sep]
⟨𝑥13⟩⟨=⟩⟨𝑥20⟩⟨−⟩⟨𝑥22⟩⟨+⟩⟨𝑥23⟩⟨=⟩⟨13⟩ [sep] ⟨𝑥24⟩⟨=⟩⟨𝑥22⟩⟨=⟩⟨10⟩ [sep]
⟨𝑥17⟩⟨=⟩⟨𝑥12⟩⟨×⟩⟨𝑥23⟩⟨−⟩⟨𝑥0⟩⟨=⟩⟨17⟩ [sep] ⟨𝑥28⟩⟨=⟩⟨𝑥11⟩⟨×⟩⟨𝑥26⟩⟨=⟩⟨6⟩ [sep]
⟨𝑥21⟩⟨=⟩⟨𝑥13⟩⟨−⟩⟨𝑥11⟩⟨+⟩⟨𝑥23⟩⟨=⟩⟨7⟩ [sep] ⟨𝑥25⟩⟨=⟩⟨𝑥17⟩⟨−⟩⟨𝑥3⟩⟨=⟩⟨15⟩ [sep]
⟨𝑥6⟩⟨=⟩⟨𝑥30⟩⟨×⟩⟨𝑥17⟩⟨−⟩⟨𝑥23⟩⟨=⟩⟨3⟩ [sep] ⟨𝑥16⟩⟨=⟩⟨𝑥17⟩⟨=⟩⟨17⟩ [sep]
⟨𝑥7⟩⟨=⟩⟨𝑥11⟩⟨+⟩⟨𝑥21⟩⟨=⟩⟨21⟩ [sep] ⟨𝑥14⟩⟨=⟩⟨𝑥28⟩⟨+⟩⟨𝑥17⟩⟨−⟩⟨𝑥21⟩⟨=⟩⟨16⟩ [sep]
⟨𝑥15⟩⟨=⟩⟨𝑥7⟩⟨=⟩⟨21⟩ [sep] ⟨𝑥31⟩⟨=⟩⟨𝑥7⟩⟨=⟩⟨21⟩ [sep] ⟨𝑥5⟩⟨=⟩⟨𝑥12⟩⟨+⟩⟨𝑥3⟩⟨+⟩⟨𝑥14⟩⟨=⟩⟨13⟩ [sep]
⟨𝑥19⟩⟨=⟩⟨𝑥14⟩⟨=⟩⟨16⟩ [sep] ⟨𝑥29⟩⟨=⟩⟨𝑥23⟩⟨−⟩⟨𝑥5⟩⟨×⟩⟨𝑥7⟩⟨=⟩⟨10⟩ [sep]
⟨𝑥18⟩⟨=⟩⟨𝑥5⟩⟨=⟩⟨13⟩ [sep] ⟨𝑥4⟩⟨=⟩⟨𝑥25⟩⟨+⟩⟨𝑥23⟩⟨−⟩⟨𝑥19⟩⟨=⟩⟨7⟩ [sep]
⟨𝑥2⟩⟨=⟩⟨𝑥14⟩⟨×⟩⟨𝑥29⟩⟨−⟩⟨𝑥5⟩⟨=⟩⟨9⟩ [sep] ⟨𝑥1⟩⟨=⟩⟨𝑥29⟩⟨×⟩⟨𝑥28⟩⟨−⟩⟨𝑥7⟩⟨=⟩⟨16⟩ [sep]
⟨𝑥8⟩⟨=⟩⟨𝑥3⟩⟨×⟩⟨𝑥23⟩⟨×⟩⟨𝑥18⟩⟨=⟩⟨1⟩ [sep] ⟨𝑥10⟩⟨=⟩⟨𝑥8⟩⟨−⟩⟨𝑥28⟩⟨−⟩⟨𝑥0⟩⟨=⟩⟨6⟩

B.2.2 Experimental Details & Additional Results
We perform a hyperparameter search varying: the number of recurrent iterations 𝑇 , the
number of layers per recurrent block 𝐿, the hidden state dimension 𝐷, and the positional
encoding method. As described in the main text, we train on a dataset of examples with up
to 32 nodes, and evaluate on examples varying in size from 8 nodes to 128 nodes. Figure 9
depicts the average OOD performance as measured by the “% Fully Solved” metric for each
baseline model configuration. The results in the main text correspond to the best-performing
CoT-supervised model according to this metric, which is the RoPE-T4L2H16D256 model.
Figure 11 depicts additional experimental results for the end-to-end baseline experiments.
We highlight a few observations here:

• Figure 10 shows that some models are able to recall the equation structure
correctly in their CoT, but are unable to robustly compute the values correctly.
This suggests that a common source of error in the CoT baselines is the arith-
metic computation, rather than copying equations from the input.

• As with the end-to-end baselines, the positional encoding method was critical
for performance and length generalization. Among the methods we evaluated,
we found NoPE to perform best, generalizing well to 40 nodes when trained
on 𝑁 ≤ 32 nodes. The other positional encoding methods fail to generalize
beyond the training regime. No method generalized robustly beyond 40 nodes.

• As with the end-to-end baselines, the computational depth of the model had a
significant effect on performance. In particular, 4 layer models failed to learn
the task well, but 8-layer models achieved good in-distribution performance
and a limited degree of out-of-distribution generalization.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0.0 0.1 0.2 0.3

% Fully Solved

Eq-Val (Var Len) - RoPE-T1L4H16D256
Eq-Val (Var Len) - RoPE-T1L8H16D256
Eq-Val (Var Len) - RoPE-T1L8H16D512

Eq-Val - RoPE-T1L4H16D256
Eq-Val - RoPE-T1L8H16D256
Eq-Val - RoPE-T2L4H16D256
Eq-Val - RoPE-T4L2H16D256

Val (Var Len) - RoPE-T1L4H16D256
Val (Var Len) - RoPE-T1L8H16D256

Val - RoPE-T1L4H16D256
Val - RoPE-T4L2H16D256

Eq-Val (Var Len) - NoPE-T1L8H16D256
Eq-Val (Var Len) - NoPE-T1L8H16D512

Val - NoPE-T1L2H16D256
Val - NoPE-T1L2H16D512
Val - NoPE-T2L2H16D256
Val - NoPE-T2L2H16D512
Val - NoPE-T4L2H16D256
Val - NoPE-T4L2H16D512

Eq-Val (Var Len) - DeBERTa-T1L4H16D256
Eq-Val (Var Len) - DeBERTa-T1L8H16D256
Eq-Val (Var Len) - DeBERTa-T1L8H16D512

Eq-Val - DeBERTa-T1L4H16D256
Eq-Val - DeBERTa-T1L8H16D256
Eq-Val - DeBERTa-T2L4H16D256
Eq-Val - DeBERTa-T4L2H16D256

Val (Var Len) - DeBERTa-T1L4H16D256
Val (Var Len) - DeBERTa-T1L8H16D256

Val - DeBERTa-T1L2H16D256
Val - DeBERTa-T1L2H16D512
Val - DeBERTa-T1L4H16D256
Val - DeBERTa-T1L8H16D256
Val - DeBERTa-T1L8H16D512
Val - DeBERTa-T2L2H16D256
Val - DeBERTa-T2L2H16D512
Val - DeBERTa-T2L4H16D256
Val - DeBERTa-T2L4H16D512
Val - DeBERTa-T4L2H16D256
Val - DeBERTa-T4L2H16D512

M
od

el

Figure 9. A comparison of average OOD generalization performance of different
CoT-supervised baselines, varying architectural hyperparameters. The metric is full
sequence accuracy, which measures the proportion of inputs where every node’s value is
computed correctly. The naming scheme matches the previous section, but adds a prefix
describing the format of the CoT trajectories. “Val” means that the CoT trajectory
directly computes the values of each variable, whereas “Eq-Val” first recalls the equations
and then computes the values. Here, “(Var Len)” indicates runs where the input problem
size is variable and randomly sampled in 𝑁 ≤ 32, rather than being only 𝑁 = 32.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0

% Equation Structure Correct

Eq-Val (Var Len) - RoPE-T1L4H16D256
Eq-Val (Var Len) - RoPE-T1L8H16D256
Eq-Val (Var Len) - RoPE-T1L8H16D512

Eq-Val - RoPE-T1L4H16D256
Eq-Val - RoPE-T1L8H16D256
Eq-Val - RoPE-T2L4H16D256
Eq-Val - RoPE-T4L2H16D256

Val (Var Len) - RoPE-T1L4H16D256
Val (Var Len) - RoPE-T1L8H16D256

Val - RoPE-T1L4H16D256
Val - RoPE-T4L2H16D256

Eq-Val (Var Len) - NoPE-T1L8H16D256
Eq-Val (Var Len) - NoPE-T1L8H16D512

Val - NoPE-T1L2H16D256
Val - NoPE-T1L2H16D512
Val - NoPE-T2L2H16D256
Val - NoPE-T2L2H16D512
Val - NoPE-T4L2H16D256
Val - NoPE-T4L2H16D512

Eq-Val (Var Len) - DeBERTa-T1L4H16D256
Eq-Val (Var Len) - DeBERTa-T1L8H16D256
Eq-Val (Var Len) - DeBERTa-T1L8H16D512

Eq-Val - DeBERTa-T1L4H16D256
Eq-Val - DeBERTa-T1L8H16D256
Eq-Val - DeBERTa-T2L4H16D256
Eq-Val - DeBERTa-T4L2H16D256

Val (Var Len) - DeBERTa-T1L4H16D256
Val (Var Len) - DeBERTa-T1L8H16D256

Val - DeBERTa-T1L2H16D256
Val - DeBERTa-T1L2H16D512
Val - DeBERTa-T1L4H16D256
Val - DeBERTa-T1L8H16D256
Val - DeBERTa-T1L8H16D512
Val - DeBERTa-T2L2H16D256
Val - DeBERTa-T2L2H16D512
Val - DeBERTa-T2L4H16D256
Val - DeBERTa-T2L4H16D512
Val - DeBERTa-T4L2H16D256
Val - DeBERTa-T4L2H16D512

M
od

el

Figure 10. A comparison of average OOD generalization performance of different
CoT-supervised baselines, varying architectural hyperparameters. The metric is “%
Equation Structure Correct”, which measures the proportion of inputs where the
autoregressively generated CoT has the correct equation structure (without checking
whether the values computed are correct).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

20 40 60 80 100 120

Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

%
 F

u
ll
y
 S

o
lv

ed

(a) Each line corresponds to an
experimental run. Lines are color-coded by
positional encoding, but other architectural
hyperparameters vary and are not
represented.

SinAbPE AbPE RoPE NoPE DeBERTa

Positional Encoding Method

0.0

0.1

0.2

0.3

%
 F

u
ll
y
 S

o
lv

ed
(b) Average OOD performance across test
splits for the best model of each positional
encoding method.

20 40 60 80 100 120

Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

%
 F

u
ll
y
 S

ol
v
ed

PosEnc

SinAbPE

AbPE

RoPE

NoPE

DeBERTa

(c) % Fully solved by graph size for the
best model of each positional encoding
method. We find NoPE to achieve the best
out-of-distribution generalization
performance, generalizing well to 40 nodes
when trained on 𝑁 ≤ 32 nodes. The other
positional encoding methods fail to
generalize beyond the training regime.

20 40 60 80 100 120

Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

%
 F

u
ll
y
 S

ol
v
ed

Architecture

T1L4H16D256

T1L8H16D256

T1L8H16D512

(d) % Fully solved by graph size for the
best model of each architectural
configuration. Computational depth (i.e.,
𝑇 ⋅ 𝐿) is crucial for good performance, with
shallow models performing poorly even
in-distribution on larger inputs.

Figure 11. Further experimental results for CoT baselines. While chain-of-thought
supervision yields improved performance over end-to-end models, out-of-distribution
generalization capabilities are limited.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C Details on Latent State Supervision
C.1 Latent State Embedding Structure
The input to the model is presented as a sequence of equations defining the value of each
node in the computation graph. The vocabulary of the input includes variable names (e.g.,
𝑥42), numerical values (e.g., 17), operations (e.g., +), and special symbols like equality ⟨=⟩
or equation separation [sep] .

To provide the model with supervision on each part of the input, we employ a special
tokenization and embedding scheme. We use a factored structure to tokenize each symbol
in the input into 4-component tokens: syntax, variable, operation, and value. For example,
the input ⟨17⟩⟨=⟩⟨𝑥42⟩ [sep] ..., is tokenized as follows before the first iteration:

syntax variable operation value

⟨17⟩ → [value N/A N/A 17]
⟨=⟩ → [⟨=⟩ N/A N/A N/A]

⟨𝑥42⟩ → [variable 𝑥42 N/A empty]
[sep] → [[sep] N/A N/A N/A]

The syntax factor can be value, variable, operation, or the special symbols ⟨=⟩ or [sep] .
The variable factor is the variable names {𝑥0, … , 𝑥127}. The operation factor is the set of
arithmetic operations (e.g, +, −, ×). The value factor is the set of numerical values (i.e.,
{0, … , 22}). We also include an N/A symbol for the variable, operation, and value factors.
For example, symbols with value syntax do not have a variable factor, etc. We also include
a special empty symbol for the value factor of variable tokens. In the input to the model, the
variable tokens have empty value factors because their values have not been computed yet.
As the model processes the input, it iteratively computes the values of different variables
and fills in their value factor.

We train a separate embedder for each factor, and map the input to vector embeddings by
embedding each factor and adding the embeddings.

C.2 Latent State Supervision
The Continuous Latent Space Supervision, Discrete Latent Space Supervision, and Discrete
Latent Space Supervision ⟲ methods share the same latent state supervision scheme. We
train these recurrent models to learn to solve the input problem be computing node values
one layer deeper in the computation graph with each recurrent iteration. We do this by
defining a loss function at each iteration that penalizes predictions only for variables with
depth less than or equal to the current iteration.

For each factor ∈ {syntax, variable, operation, value}, we learn a linear read-out layer
𝑊factor ∈ ℝ𝑑model×|𝒱factor| that maps the vector state at the end of the recurrent iteration to
a prediction of each factor. Here, 𝒱factor denotes the vocabulary for the given factor (e.g.,
for the value factor, this is {0, … , 22, N/A, empty}).

We provide the model with supervision on its latent states by defining a loss for each factor
and at each recurrent iteration. In particular, the loss function for the value factor is defined
such that the model is trained to predict the values of all variables that occur at depth ≤ 𝑡
in the computation graph. In particular, for an input sequence 𝑋 = (𝑥1, … , 𝑥𝑛), the value
factor loss at iteration 𝑡 is defined as

Loss(factor = value, iteration = 𝑡) = ∑
𝑖∈[𝑛]

Depth(𝑥𝑖)≤𝑡

ℓ (𝑊value 𝐸(𝑡)
𝑖 , Value(𝑥𝑖)) . (5)

where Depth(𝑥𝑖) is the depth of the variable 𝑥𝑖 in the input computation graph, Value(𝑥𝑖)
is its computed value, and 𝐸(𝑡)

𝑖 ∈ ℝ𝑑model is the vector embedding of 𝑥𝑖 at recurrent iteration
𝑡. Here, ℓ is the cross-entropy loss.

The overall loss used to train the models is the sum of the individual factor losses at each
iteration.

Loss = ∑
factor

∑
𝑡

Loss(factor = value, iteration = 𝑡). (6)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

C.3 Discretization of Intermediate States

The training procedure described above applies to the Continuous Latent Space Supervision,
Discrete Latent Space Supervision, and Discrete Latent Space Supervision ⟲ methods in
the same way. In the methods with a discrete latent bottleneck, we introduce an additional
architectural mechanism where the read-out layers are used not only for computing the loss
on the intermediate iterations, but also for mapping the latent representation to a discrete
space.

In particular, letting 𝐸(𝑡)
𝑖 be the embedding of the 𝑖-th token after 𝑡 recurrent iterations, we

use argmax decoding of the linear read-outs to map the embedding to a discrete prediction
for each factor. This discrete state is then re-embedded using the same learned embedding
module to form the vectorized input 𝐸(𝑡+1)

𝑖 at the next iteration. In particular, at iteration
𝑡, the model’s forward pass is defined as follows

(̃𝐸(𝑡+1)
1 , … , ̃𝐸(𝑡+1)

𝑛) ← RecurrentTransformerBlock(𝐸(𝑡)
1 , … , 𝐸(𝑡)

𝑛)
𝑧(𝑡+1)

𝑖,factor ← arg max{𝑊factor
̃𝐸(𝑡+1)
𝑖 } factor ∈ {syntax, variable, operation, value}

𝐸(𝑡+1)
𝑖,factor ← FactorEmbed(𝑧(𝑡+1)

𝑖,factor) factor ∈ {syntax, variable, operation, value}
𝐸(𝑡+1)

𝑖 ← 𝐸(𝑡+1)
𝑖,syntax + 𝐸(𝑡+1)

𝑖,variable + 𝐸(𝑡+1)
𝑖,operation + 𝐸(𝑡+1)

𝑖,value.
(7)

This discretization enables us to train the model with a type of teacher-forcing across re-
current iterations. That is, we can teacher-force the inputs 𝑧(𝑡)

𝑖 at each iteration 𝑡. This
enables more efficient training.

C.4 Self-Correction Mechanism

In a reasoning task, each reasoning step depends crucially on the prior steps in the reasoning
path. If a mistake is made at any stage, all subsequent computation is affected, and the
error is often fatal. As the size of the problem and the number of computational steps scale,
the likelihood of an error occurring at some point in the reasoning process becomes large,
limiting the ability to generalize indefinitely to more complex problems. To address this
challenge, a reasoning model must be able to detect and correct errors as they occur in
order to recover when a mistake is made in its previous computation.

We train the model to detect and correct errors by randomly corrupting the model’s latent
state. That is, at each iteration, with some small probability, we corrupt a random selection
of the value components of the models’ discrete states. To achieve good loss, the model
must learn to detect when a previously-computed value is incorrect and correct it before
proceeding.

C.5 Experiment Details & Additional Results

As with the baselines, we explore the effect of different architectural hyperparameters, such
as positional encoding and the depth of the recurrent block, on model performance. Figure 12
depicts the average OOD perfromance as measured by the “% Fully Solved” metric for each
model configuration in the Discrete Latent Space Supervision, and Discrete Latent Space
Supervision ⟲ methods. The results in the main text correspond to the best-performing
models according to this metric. In particular, the best-performing Discrete Latent Space
Supervision model is DeBERTa-L2H16D256, and the best-performing Discrete Latent Space
Supervision ⟲ model is DeBERTa-L4H16D384.

Figure 13 depicts additional experimental results for the Discrete Latent Space Supervision,
and Discrete Latent Space Supervision ⟲ methods. We highlight a few observations here:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

• The positional encoding method is critical for length generalization. The De-
BERTa positional encoding method (a relative positional encoding method)
performed the best by far.

• 2 layers for the recurrent block were sufficient for the Discrete Latent Space
Supervision method. However, the recorrection mechanism of Discrete Latent
Space Supervision ⟲ required a deeper recurrent block. We saw no significant
improvement for the re-correction mechanism with 2 layers, but with 4 layers,
the re-correction mechanism kicked in and enabled near-perfect OOD general-
ization.

0.0 0.2 0.4 0.6 0.8 1.0

% Fully Solved

AbPE - L2H16D256

AbPE - L4H16D256

RoPE - L2H16D256

RoPE - L4H16D256

NoPE - L2H16D256

NoPE - L2H16D256

NoPE - L2H16D384

NoPE - L4H16D256

NoPE - L4H16D256

NoPE - L4H16D384

DeBERTa - L2H16D256

DeBERTa - L2H16D256

DeBERTa - L2H16D384

DeBERTa - L2H16D512

DeBERTa - L2H16D512

DeBERTa - L4H16D256

DeBERTa - L4H16D256

DeBERTa - L4H16D384

DeBERTa - L4H16D384

DeBERTa - L4H16D512

M
od

el

Figure 12. Average “% Fully Solved”, across # nodes between 8 and 128, with training
on ≤ 32 nodes,

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

20 40 60 80 100 120

Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

%
 F

u
ll
y
 S

o
lv

ed

(a) Each line corresponds to an
experimental run. Lines are color-coded by
positional encoding, but other architectural
hyperparameters vary and are not
represented.

SinAbPE AbPE RoPE NoPE DeBERTa

Positional Encoding Method

0.0

0.2

0.4

0.6

0.8

1.0

%
 F

u
ll
y
 S

o
lv

ed

(b) Average OOD performance across test
splits for the best model of each positional
encoding method.

20 40 60 80 100 120

Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

%
 F

u
ll
y
 S

ol
v
ed PosEnc

SinAbPE

AbPE

RoPE

NoPE

DeBERTa

(c) % Fully solved by graph size for best
model of each positional encoding method.

20 40 60 80 100 120

Number of Nodes

0.7

0.8

0.9

1.0

%
 F

u
ll
y
 S

ol
v
ed

Architecture

 L2H16D256

 L2H16D512

 L4H16D256

 L4H16D384

(d) % Fully solved by graph size for best
model of each architectural configuration.

Figure 13. Further experimental results for methods exploring our proposed architectural
mechanisms.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

D Details of Mechanistic Interpretability Analysis
In this section, we provide additional experimental evidence to support our claim on the
mechanism learned by the model together with the error analysis of the model’s predictions.

Notice: The following analysis is conducted only for showing the computation happening
at the Right-Hand Side (RHS) position in each equation, as it is the place where the model
is expected to compute the final result.

Model Configuration. We use DeBERTa-L2H16D256 trained with our proposed Dis-
crete Latent Space Supervision method (without the re-correction mechanism) on the math-
ematical reasoning task. Specifically, the recurrent Transformer model is configured with
two layers, 16 attention heads, a hidden dimension of 256. We use DeBERTa’s relative
positional encoding method. The training data is the same as the one used in the main text.
We choose this model setup because it is the best-performing configuration according to
the “% Fully Solved” metric displayed in Figure 12 for a two-layer model. In particular, we
cherry-pick the best-performing model trained with the same configuration with different
random seeds, which has a “% Fully Solved” score of 99.98% on the OOD test set. We
use this model to conduct the mechanism analysis for better interpretability. We train on
modular-23 addition task with maximum graph size 32. The total number of variables in
the training data is 128. The testing data used for mechanism analysis has the maximum
graph size 128.

Additional Definitions and Notations. In the following, we frequently use the follow-
ing definitions and notations:

• Head output: For a given attention head ℎ, we define the head output for a query
vector 𝑞ℎ ∈ ℝ𝑑ℎ for head dimension 𝑑ℎ as

Head Output(ℎ) = softmax(𝑞ℎ𝐾⊤
ℎ /√𝑑𝑘)𝑉ℎ𝑊 (ℎ)

𝑂 ,
where 𝐾ℎ and 𝑉ℎ are the key and value matrices of the head ℎ, respectively, and
𝑊 (ℎ)

𝑂 is the output projection matrix of the head ℎ. In standard attention mech-
anism, each head’squery, key and value vector is obtained by applying a linear
transformation to the attention input specified by 𝑊 (ℎ)

𝑄 , 𝑊 (ℎ)
𝐾 , and 𝑊 (ℎ)

𝑉 , respec-
tively. The above definition can be applied to define the head output for any query
position. However, since our mechanism analysis focuses exclusively on the RHS
position, we consistently define the head output as the output of the attention head
at the RHS position. Here, we don’t include the bias of the head output projection
in the definition of the head output, as the bias applied to the final attention output
is not specified to individual heads.

• OV combined matrix: For a group of attention heads ℋ ⊆ [16], we define the
OV combined matrix as

𝑊 (ℋ)
𝑂𝑉 = ∑

ℎ∈ℋ
𝑊 (ℎ)

𝑉 𝑊 (ℎ)
𝑂 ,

where 𝑊 (ℎ)
𝑂 ∈ ℝ𝑑ℎ×𝑑 and 𝑊 (ℎ)

𝑉 ∈ ℝ𝑑×𝑑ℎ are the output projection matrix and the
value projection matrix of the attention head ℎ ∈ ℋ, respectively.

D.1 First Layer Attention: Variable Copying
In the followiing, we will give a detailed analysis of the first layer attention mechanism.

D.1.1 Group Structure in the First Layer Attention
Group Structure in the First Layer Attention. The attention heads in the first
layer exhibit a clear grouping pattern based on which variable position they attend to.
To rigorously demonstrate this grouping structure, we conduct controlled experiments by
systematically varying the input data. On a testing example with number of nodes 128, we
append a new probe equation to the end of the sequence with the following format:

[sep] ⟨var0⟩ ⟨+⟩ ⟨var1⟩ ⟨+⟩ ⟨var2⟩ ⟨=⟩ ⟨rhs⟩ . (8)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Head Index

<SEP>

var_0

ADD_0

var_1

ADD_1

var_2

=

rhs

Qu
er

y
To

ke
n

0.0

0.2

0.4

0.6

0.8

Re
la

tiv
e

Va
ria

nc
e

(a) Relative Variance for ⟨var0⟩

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Head Index

<SEP>

var_0

ADD_0

var_1

ADD_1

var_2

=

rhs

Qu
er

y
To

ke
n

0.0

0.2

0.4

0.6

0.8

Re
la

tiv
e

Va
ria

nc
e

(b) Relative Variance for ⟨var1⟩

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Head Index

<SEP>

var_0

ADD_0

var_1

ADD_1

var_2

=

rhs

Qu
er

y
To

ke
n

0.0

0.2

0.4

0.6

0.8

Re
la

tiv
e

Va
ria

nc
e

(c) Relative Variance for ⟨var2⟩

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Head Index

<SEP>

var_0

ADD_0

var_1

ADD_1

var_2

=

rhs
Qu

er
y

To
ke

n
0.0

0.2

0.4

0.6

0.8

Re
la

tiv
e

Va
ria

nc
e

(d) Relative Variance for ⟨rhs⟩

Figure 14. Relative variance heatmaps when we vary the value of ⟨var0⟩ , ⟨var1⟩ ,
⟨var2⟩ , and ⟨rhs⟩ . Each row corresponds to a query position and each column
corresponds to an attention head.

To identify the group structure in the first layer attention and detect which heads belong to
which groups, we measure each head’s relative variance when we vary the value of each
of the four variables ⟨var0⟩ , ⟨var1⟩ , ⟨var2⟩ , and ⟨rhs⟩ . See below for more details.

Experiment Design for Group Structure Detection. To detect which heads attend
to ⟨var0⟩ , we fix ⟨var1⟩ , ⟨var2⟩ , and ⟨rhs⟩ while randomly sampling different variables
⟨𝑥𝑖⟩ with 𝑖 = 1, … , 128 for ⟨var0⟩ . Note that the variable ⟨𝑥𝑖⟩ must be computed in the
preceding equations. Otherwise, the model cannot compute the value of ⟨𝑥𝑖⟩ and the probe
equation is invalid. As our testing data has all variables computed in the preceding equations,
we collect 128 samples that only differ in the value of ⟨var0⟩ . We then compute the relative
variance of each attention head’s output at each position within the probe equation across
the 128 samples. Note that relative variance is a measure of how much the head’s output
varies in response to changes in ⟨var0⟩ , and we give the rigorous definition in the next
paragraph. The analysis can also be conducted for the other variable positions, and the
results are reported in Figure 14.

Relative Variance Calculation. Let us take 𝑛 different sequences, e.g., the 128 se-
quences in the above experiment design. We only consider one RHS position for the probe
equation in each sequence. For a given attention head ℎ, we define the relative variance over
the 𝑛 sequences as

Relative Variance(ℎ) = tr(Cov(Head Output(ℎ)))
𝔼[‖Head Output(ℎ)‖2

2] . (9)

Here, the covariance matrix for a sequence of vectors 𝑣1, … , 𝑣𝑛 is defined as

Cov(𝑣1, … , 𝑣𝑛) = 1
𝑛

𝑛
∑
𝑖=1

(𝑣𝑖 − ̄𝑣)(𝑣𝑖 − ̄𝑣)⊤,

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

where ̄𝑣 is the mean of the sequence over the 𝑛 sequences, and 𝔼[⋅] is the empirical expectation
over the 𝑛 sequences. Intuitively, the relative variance measures how much the head’s output
varies relative to its overall magnitude. A higher relative variance indicates that the attention
head’s output has a larger variance relative to its overall magnitude. Since we only change
⟨var0⟩ in the above example, a larger relative variance for a head means that the head’s
output is primarily influenced by ⟨var0⟩ .

Illustration of Figure 14. In Figure 14, we plot the relative variance heatmaps for
all 16 attention heads when we vary the variable names of ⟨var0⟩ , ⟨var1⟩ , ⟨var2⟩ , and
⟨rhs⟩ . Each column corresponds to a different attention head, and each row corresponds
to a different query position. As our goal is to understand the mechanism at the ⟨rhs⟩
position, we focus on the last row corresponding to the ⟨rhs⟩ query position in the figures.
Each subfigure plots the relative variance heatmap for altering one particular variable. A
higher relative variance in one subfigure indicates that the attention head’s output is more
sensitive to changes in the corresponding variable. Based on these results, we observe a
clear group structure in the first layer’s attention heads: Heads 4 and 8’s relative variance
is high only when we change the value of ⟨var0⟩ , while the relative variance of the other
heads is low. This facts suggests that heads 4 and 8 attend primarily to ⟨var0⟩ . Similary,
heads 5 and 12 attend primarily to ⟨var1⟩ , and heads 3, 7, 11, and 14 attend primarily to
⟨var2⟩ . The last subfigure plots the relative variance heatmap for the ⟨rhs⟩ position. We
observe that heads 2, 9, 13, and 15 attend to the RHS position, and the remaining heads
do not exhibit a distinct pattern according to the relative variance heatmap. Notice that
the above head groups are all disjoint. This further indicates that each head is specialized
for a specific variable position. This result is also backed up by the trace of the attention
logits of the first layer attention heads as shown in Figure 6.

Summary of the Group Structure. We observe that the attention heads in the first
layer exhibit a clear grouping pattern based on which variable position they attend to.
Therefore, we know that the first layer attention must be copying something from the LHS
variables to the RHS position. In the following, we will conduct further analysis to identify
what information is being copied.

D.1.2 First Layer Attention Copying the Variable Identity
Here, by saying “copying the variable identity”, we mean that the attention head
is copying the factored embedding of variable among the four factored embeddings
{syntax, variable, operation, value}. In the previous experiment, we have identified that
the first layer attention heads are grouped into four groups, each of which attends to a
specific variable position. Now, we aim to identify which of the four factored embeddings is
being copied by these groups.

Norm Amplification Analysis. To achieve our goal, we analyze the norm amplification
for each type of factored embeddings when passed through the combined OV matrix of
different head groups. We define the norm amplification for a matrix 𝑊𝑂𝑉 on input 𝑥 as:

Norm Amplification(𝑊𝑂𝑉 , 𝑥) = ‖𝑊𝑂𝑉 𝑥‖2
‖𝑥‖2

. (10)

Note that the above definition can be applied to any matrix 𝑊𝑂𝑉 and input 𝑥 with the
conformal dimensions. For our analysis, we will consider 𝑊𝑂𝑉 as the combined OV matrix
of the attention heads in a group. Specifically, let ℋ ⊆ [16] be a group of attention heads,
and let 𝑊 (ℎ)

𝑂 and 𝑊 (ℎ)
𝑉 be the output projection matrix and the value projection matrix of

the attention head ℎ ∈ ℋ, respectively. The combined attention OV matrix for a group
ℋ ⊆ [16] is then defined as

𝑊 (ℋ)
𝑂𝑉 = ∑

ℎ∈ℋ
𝑊 (ℎ)

𝑉 𝑊 (ℎ)
𝑂 .

If the OV matrix is responsible for copying the identity of the variable, we expect to see
a large amplification for the “variable” factored embedding, and a small amplification for
the other types of embeddings {syntax, operation, value}. With a slight abuse of notation,
for each factored embedding type ∈ {syntax, variable, operation, value}, we can define

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

the norm amplification as

Norm Amplification(𝑊 (ℋ)
𝑂𝑉 , factored embedding type) = 𝔼𝑥∈factored embedding type[‖𝑊 (ℋ)

𝑂𝑉 𝑥‖2
‖𝑥‖2

].

Here, 𝔼𝑥∈factored embedding type is the average over the set of all factored embeddings of the
same type. For example, if we consider the “variable” factored embedding type, we have

Norm Amplification(𝑊 (ℋ)
𝑂𝑉 , variable) = 𝔼𝑥∈variable[‖𝑊 (ℋ)

𝑂𝑉 𝑥‖2
‖𝑥‖2

],

where 𝑥 iterates over all the 128 factored embeddings of the type variable. The results in
Figure 6 (right) are computed by averaging the norm amplification over all the factored em-
beddings within each “factored embedding type”. In Figure 15, we further histogram each
factored embedding’s norm amplification for different “factored embedding type” while
different groups are highlighted in different colors, which provides a more detailed view of
the norm amplification across different groups.

Comparing the Norm Amplification Across Different Groups. It can be observed
from Figure 15 that the amplification factor for the “variable” factored embedding is
significantly larger than that of the other types of embeddings, confirming our hypothesis
that the OV matrix is responsible for copying the variable factored embeddings of the
variable to the RHS position. We also observe that the amplification factor for the “syntax”
factored embedding is also relatively large, which is consistent with the fact that the model
is copying the variable identity.
From Figure 15, we confirm that for the first layer, attention has larger norm amplification
for the “variable” factored embedding (≈ 15) than the other types of embeddings (≈ 5).
In particular, the larger norm from the “other” group as shown in Figure 6 is due to the
self-copying operation of the attention head 15 at the RHS position.

Additional Evidence on change of number of variables. We provide one interesting
observation on how the model handles different numbers of variables in the input equations
in Figure 16. Head 4 and head 8 are the two attention heads that attend to the first variable
position in the first layer attention when the number of variables is 3. When the number of
variables is changed to 2, we observe that head 4 now attends to the [sep] token, while head
8 attends to the equal sign token of the previous equation. This indicates that the equal
sign token and the [sep] token act as attention sink for head 4 and head 8, respectively.

D.1.3 First Layer MLP Residual Stream Does Not Change the
Residual Stream Significantly

We measure the changes brought by the first MLP layer to the residual stream by computing
the Relative L2 Error as:

L2 Relative Error = ‖Residual Before MLP − Residual After MLP‖2
‖Residual Before MLP‖2

.

This metric quantifies how much the MLP alters the original residual signal. Figure 17
illustrates the heatmap of the relative L2 error computed at the ⟨rhs⟩ position across a set
of 256 samples. We observe that the relative L2 error is relatively small, which indicates
that the MLP does not change the residual stream significantly.

D.2 Second Layer Attention: Value Copying
A Hypothesis on the Second Layer Attention Heads. As we have shown previously,
the first layer attention heads copy the variable factored embeddings of the variable to
the RHS position, which tells the model the identity of all the variables on the LHS of
an equation. To compute the final answer for the RHS position, the model still needs to
copy the values of the variables ⟨var0⟩ , ⟨var1⟩ , and ⟨var2⟩ to the RHS position. Thus,
we hypothesize that the second layer attention heads will copy the values of the variables
⟨var0⟩ , ⟨var1⟩ , and ⟨var2⟩ to the RHS position.

The Second Layer Attention Heads also Have a Group Structure To test this
hypothesis, we prepare data that contains probe equations of the same form in (8) and
conduct a controlled experiment designed to analyze how attention heads respond to changes

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
var0 var1 var2 rhs unimportant

Norm Amplification

C
o
u
n
t

(a) Norm Amplification for OPERATION

0 5 10 15 20 25
0

1

2

3

4

5
var0 var1 var2 rhs unimportant

Norm Amplification

C
o
u
n
t

(b) Norm Amplification for SYNTAX

0 5 10 15 20 25
0

5

10

15 var0 var1 var2 rhs unimportant

Norm Amplification

C
o
u
n
t

(c) Norm Amplification for VALUE

0 5 10 15 20 25
0

10

20

30

40
var0 var1 var2 rhs unimportant

Norm Amplification
C

o
u
n
t

(d) Norm Amplification for VARIABLE

Figure 15. Histogram of norm amplification (defined in (10)) for the embeddings in the
four factored embedding types {syntax, variable, operation, value} when passed
through the first attention layer’s combined OV matrix. Each subfigure contains five
histograms in different colors, while each histogram corresponds to a different group of
attention heads’ combined OV matrix. Here, the 16 attention heads are grouped by the
different variable they attend to, which are ⟨var0⟩, ⟨var1⟩, ⟨var2⟩, and ⟨rhs⟩, and an
additional group for the heads that do not demonstrate a clear pattern.

in individual variable values. Different from the previous experiment where we change the
variable identity, this time we fix the variable identity and only change the value of each
variable ⟨var0⟩ , ⟨var1⟩ , and ⟨var2⟩ one at a time while keeping the other two variable
values fixed. This is achieved by altering the previous equations that compute the value
of the variable to be changed. Specifically, for each of the three variables ⟨var0⟩ , ⟨var1⟩ ,
and ⟨var2⟩ , we conduct a separate experiment where we collect 𝑁 samples by varying only
that variable’s value while keeping the other two variables fixed. Then, for each variable
⟨var i⟩ , we collect the second layer attention head outputs across the 𝑁 samples at the
RHS position of the probe equation, and compute the following metrics:

• The variance of the outputs (numerator in (9))

• The average squared norm (denominator in (9))

• The relative variance (ratio of the above quantities)

These metrics help us identify which heads are sensitive to changes in each variable’s value.
The results are shown in Figure 18. We deduce from the results (especially the relative
variance) that the Heads (0, 8, 15) form the first group, which copy the value for ⟨var0⟩ ;
Heads (5, 10) form the second group, which copy the value for ⟨var1⟩ ; and Heads (2, 3, 4,
7, 9) form the third group, which copy the value for ⟨var2⟩ .

Second Layer Attention Heads Copy the Values of the Variables to the RHS
Position. Similar to the experiment in the first layer, we compute the norm amplification
coefficient for the second layer attention heads’ OV matrix, combined by groups, as shown
in Figure 19. We observe that the norm amplification coefficient for the value factored
embedding is significantly larger than that of the other types of embeddings, confirming our

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

(a) Head 4 for equation with 2 variables

(b) Head 8 for equation with 2 variables

Figure 16. Visualization of the attention maps for the head group that attends to the
first variable position in the first layer attention, which includes head 4 and head 8. Each
row corresponds to a different query position, and each column corresponds to a different
key position. We only show the rows within the last probe equation, and the columns
within the last 50 positions in the sequence. Here, we notice that at the RHS query
position (token ⟨𝑥127⟩ in the last row), head 4 attends to the [sep] token and attention
head 8 attends to the equal sign token

hypothesis that the OV matrix is responsible for copying the value factored embeddings of
the variable to the RHS position.

D.3 Second Layer MLP: Module Addition in the Frequency Domain
Extracting the Copied value Factored Embeddings. After confirming that the sec-
ond layer attention heads copy the values of ⟨var0⟩ , ⟨var1⟩ , and ⟨var2⟩ to the RHS
position, we now look closer at how the value factored embeddings of all three variables
coexists in the residual stream after the second layer attention. To do so, we need to deter-
mine what should be the “value” factored embedding after passing through the second layer
attention. Note that in the second layer attention, the copied value factored embedding
for each ⟨var i⟩ are passed through the OV combined weight matrix for the corresponding
group of attention heads, where the group structure is already determined in the previous
experiment. For this reason, we can define the new “value” factored embedding at the
output of the second layer attention as:

new value(𝑖) = 𝑊 (ℋ𝑖)
𝑂𝑉 ⋅ value(𝑖),

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

0.07 0.075 0.08 0.085 0.09 0.095 0.1 0.105
0

5

10

15

20

25

L2 Relative Error Distribution

L2 Relative Error

C
o
u
n
t

Figure 17. Histogram of the L2 relative error between the residual stream before and
after the first layer MLP.

0 5 10 15
0

100

200

300

400

500

0 5 10 15
0

200

400

600

800

1000

0 5 10 15
0

0.2

0.4

0.6

0.8

Variance per Head Average Norm Relative Variance

(a) ⟨var0⟩ statistics

0 5 10 15
0

100

200

300

400

500

600

700

0 5 10 15
0

200

400

600

800

1000

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Variance per Head Average Norm Relative Variance

(b) ⟨var1⟩ statistics

0 5 10 15
0

20

40

60

80

100

120

140

0 5 10 15
0

200

400

600

800

1000

0 5 10 15
0

0.2

0.4

0.6

0.8

Variance per Head Average Norm Relative Variance

(c) ⟨var2⟩ statistics

Figure 18. Attention head statistics for the second layer attention. Each subfigure shows
three histograms corresponding to the variance (numerator to (9)), average norm
(denominator to (9)), and relative variance for each attention head’s outputs.

where new value(𝑖) represents the new “value” factored embedding for ⟨var i⟩ , and ℋ𝑖
represents the group of attention heads that copy the value of ⟨var i⟩ for 𝑖 = 0, 1, 2. We
also consider the same definition for the embedding of “N/A” and “empty” in the value factor.
Therefore, we have in total 75 new “value” factored embeddings, where the first 25 are for

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

0 5 10 15 20
0

0.5

1

1.5

2

var0 var1 var2

Norm Amplification

C
o

u
n

t

(a) Norm Amplification for OPERATION

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

var0 var1 var2

Norm Amplification

C
o

u
n

t

(b) Norm Amplification for SYNTAX

0 5 10 15 20
0

2

4

6

8

10

12

14

16
var0 var1 var2

Norm Amplification

C
o

u
n

t

(c) Norm Amplification for VALUE

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

var0 var1 var2

Norm Amplification

C
o

u
n

t

(d) Norm Amplification for VARIABLE

Figure 19. Histograms of norm amplification for the four factored embedding types in
the second layer attention’s OV matrix. The 16 attention heads are grouped by the
variable they attend to, which are ⟨var0⟩, ⟨var1⟩, and ⟨var2⟩. In each subfigure, we make
three histograms each corresponding to the combined OV matrix for each group of
attention heads. The three histograms in each subfigure are shown in different colors, and
each histogram is for all the embeddings of the corresponding factored embedding type. It
can be observed that the amplification factor for the “value” factored embedding is
significantly larger than that of the other types of embeddings, confirming our hypothesis
that the OV matrix is responsible for copying the “value” factored embeddings of the
variable to the RHS position.

⟨var0⟩ , the next 25 are for ⟨var1⟩ , and the last 25 are for ⟨var2⟩ . We plot the cosine
similarity among the new “value” factored embeddings as shown in Figure 20.

0 20 40 60

70

60

50

40

30

20

10

0

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Value Embedding Index

V
a
lu

e
 E

m
b
e
d
d
in

g
 I
n
d
e
x

Figure 20. Cosine similarity of
the new value factored
embeddings for all three variables
in the residual stream after the
second layer attention.

From Figure 20, we can observe two interesting phenom-
ena:

• The value factored embeddings for the three vari-
ables are almost orthogonal for two different vari-
ables, but not for the embeddings within the
same variable.

• The value factored embeddings for the same vari-
able show a periodic pattern.

The peoriodic pattern implies that the value factored em-
beddings for the same variable are likely formed by some
combination of sin and cos functions. Therefore, it will
be easier to understand the module addition operation in
the frequency domain.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Module Addition in the Frequency Domain. To
systematically analyze how the model performs the mod-
ule addition operation, we prepare a equation of the form
as in (8), and we change the previous equations to alter the value of each variable ⟨var0⟩ ,
⟨var1⟩ , and ⟨var2⟩ . Specifically, we let ⟨var0⟩ , ⟨var1⟩ , and ⟨var2⟩ to iterate over the
set {0, 1, 2, … , 22} since the model is trained on modular-23 addition. To study how the
MLP performs the module addition operation, we pick the following four positions in the
model: (i) pre-activation of the second layer’s MLP, (ii) post-activation of the second layer’s
MLP, (iii) the output of the second layer’s MLP, and (iv) the model’s decoder output. For
each of these positions, we take the vector obtained at the RHS position of the prepared
equation, where we denote such vector as 𝑣(𝑎, 𝑏, 𝑐) with dimension 𝑑 when the input vari-
ables are ⟨var0⟩ = 𝑎, ⟨var1⟩ = 𝑏, and ⟨var2⟩ = 𝑐. We then compute the 3-dimensional
23-point Discrete Fourier Transform (DFT) applied independently to each coordinate of 𝑣
over (𝑎, 𝑏, 𝑐), which is defined as:

DFT3(𝑣)𝑗,𝑘,𝑙 = 1√
233

22
∑
𝑎=0

22
∑
𝑏=0

22
∑
𝑐=0

𝑣(𝑎, 𝑏, 𝑐) 𝑒−2𝜋𝑖 𝑎𝑗+𝑏𝑘+𝑐𝑙
23 , 𝑗, 𝑘, 𝑙 = 0, 1, … , 22,

The obtained DFT tensor is a 4D tensor with dimension 233 × 𝑑. We then compute the
norm of the DFT tensor along the last dimension, which represents the magnitude of the
corresponding frequency component. Since the obtained DFT tensor is conjugate symmetric,
we have

DFT3(𝑣)𝑗,𝑘,𝑙 = DFT3(𝑣)22−𝑗,22−𝑘,22−𝑙,
Therefore, we only need to focus on the first half of the tensor, which has dimension 123.
Studying the DFT Tensor by Frequency Group. We further partition the tensor
into 7 groups by the algebraic patterns of the frequency component (𝑗, 𝑘, 𝑙):

• Group 1: (0, 0, 0)
• Group 2: (0, 0, 𝑎), (0, 𝑎, 0), (𝑎, 0, 0) for 𝑎 ≠ 0
• Group 3: (0, 𝑎, 𝑏), (𝑎, 0, 𝑏), (𝑎, 𝑏, 0) for nonzero 𝑎 ≠ 𝑏
• Group 4: (0, 𝑎, 𝑎), (𝑎, 0, 𝑎), (𝑎, 𝑎, 0) for 𝑎 ≠ 0
• Group 5: (𝑎, 𝑏, 𝑐) for nonzero 𝑎 ≠ 𝑏, 𝑏 ≠ 𝑐, 𝑐 ≠ 𝑎
• Group 6: (𝑎, 𝑎, 𝑏), (𝑎, 𝑏, 𝑎), (𝑏, 𝑎, 𝑎) for nonzero 𝑎 ≠ 𝑏
• Group 7: (𝑎, 𝑎, 𝑎) for 𝑎 ≠ 0

We then histogram the norm of the DFT tensor in the last dimension for each group, as
shown in Figure 21. At the pre-activation stage of the second layer MLP, the DFT tensor
shows its highest norm for the group (0, 0, 0), which suggests a dominant bias term that is
independent of the input variables. Progressing from the pre-activation (Figure 21a) to the
MLP output (Figure 21c), this bias term gradually diminishes, while the norm corresponding
to the group (𝑎, 𝑎, 𝑎) steadily increases. This trend indicates that the MLP output contains
a strong frequency component of the form

cos (2𝜋𝑎𝑥
23) ⋅ cos (2𝜋𝑎𝑦

23) ⋅ cos (2𝜋𝑎𝑧
23) , (11)

or a similar combination involving both sine and cosine functions with the same frequency
𝑎. In (11), 𝑥, 𝑦, and 𝑧 denote the value of the three variables in the equation, and 𝑎 is the
frequency. The term in (11) corresponds to a degree-3 term on frequency 𝑎, indicating that
the model is capable of computing terms in the form of cos(2𝜋𝑎(𝑥 + 𝑦 + 𝑧)/23 + 𝜑) for some
frequencies 𝑎 and phase 𝜑, and eventually decodes to the correct answer 𝑥 + 𝑦 + 𝑧 mod 23.

D.4 Error Analysis
To better understand the probed model’s performance, we analyze its prediction errors. As
we have three functional components in the model—the first layer attention, the second layer
attention, and the last feedforward layer—we consider three sources of errors: (i) the first
layer’s attention mapping copies from the wrong variable position, (ii) the second layer’s
attention fails to copy the correct variable value, and (iii) the feedforward layer miscalculates

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8

1

2

4

10

21

46

100 (0, 0, 0)

(0, 0, a)

(0, a, b) [a != b]

(0, a, a)

(a, b, c) [0 repeat]

(a, a, b) [1 repeat]

(a, a, a) [2 repeat]

Log10(DFT Value)

C
o

u
n

t

(a) DFT of L1 MLP pre-activation

0 1 2 3 4 5 6 7 8

1

2

4

10

21

46

100
(0, 0, 0)

(0, 0, a)

(0, a, b) [a != b]

(0, a, a)

(a, b, c) [0 repeat]

(a, a, b) [1 repeat]

(a, a, a) [2 repeat]

Log10(DFT Value)

C
o

u
n

t

(b) DFT of L1 MLP post-activation

0 1 2 3 4 5 6 7 8

1

2

4

10

21

46

100
(0, 0, 0)

(0, 0, a)

(0, a, b) [a != b]

(0, a, a)

(a, b, c) [0 repeat]

(a, a, b) [1 repeat]

(a, a, a) [2 repeat]

Log10(DFT Value)

C
o

u
n

t

(c) DFT of L1 MLP output

0 1 2 3 4 5 6 7 8

1

2

4

10

21

46

100
(0, 0, 0)

(0, 0, a)

(0, a, b) [a != b]

(0, a, a)

(a, b, c) [0 repeat]

(a, a, b) [1 repeat]

(a, a, a) [2 repeat]

Log10(DFT Value)

C
o

u
n

t

(d) DFT of decoder output

Figure 21. Combined DFT histograms for the second layer MLP pre-activation, MLP
post-activation, MLP output, and decoder output.

the sum of the LHS variables. An account of the errors by source is shown in Table 2, where
the major source of error is the feedforward layer calculation. Note that when considering
the three sources of errors, if the error (i) occurs, we don’t count towards error (ii) and (iii).
Similarly, when error (ii) occurs, we don’t count towards error (iii). In the following, we
details how we identify the three sources of errors.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

D.4.1 Identifying Different Sources of Errors
When our loop transformer model is computing the RHS value for all the equations in the
sequence, we have two key concepts:

• Depth of equation: The depth of an equation is the number of iterations required
to compute the correct RHS value. More formally, the depth of an equation is the
depth of the RHS variable in the computation graph. Take Figure 1 as an example,
the depth of the equation “20 = 𝑥7” is 1, as the model only needs a single loop to
compute the correct RHS value, and the depth of the equation “𝑥7 + 𝑥42 = 𝑥23” is
2, as the model needs two loops to compute the correct RHS value.

• Number of iterations: The number of iterations describes how many times the
loop transformer model has iterated over the input sequence.

By definition, the minimum number of iterations needed for computing the correct RHS
value of an equation of depth 𝑑 is at least 𝑑. In fact, we observe that most of the equations
can be computed with exactly the number of iterations equal to the depth. For this reason,
we only consider the equations and the number of iterations such that

depth of equation ≥ number of iterations, or for short, depth ≥ iter. (12)
Moreover, we do not add any probe equations in this error analysis. This means that we
apply the knowledge learned from the previous experiments with probe equations to identify
errors happening in the whole sequence.
In the following, we details how we identify the three sources of errors.

Table 2. Attribution of errors by source in
the testing dataset with 𝑁 = 128 and 23k
sentences.

Error Source Count
First Layer Attention Error 9
Second Layer Copy Error 1
Feedforward Calculation Error 30
Total 40

First Layer Attention Error. We iden-
tify first layer attention errors by analyzing
how well each attention head group focuses
on its assigned variable position. For each
equation’s RHS position, we examine the at-
tention map (an 𝐻 × 𝐿 × 𝐿 tensor, where 𝐻
is the number of attention heads and 𝐿 is the
sequence length) to extract the relevant atten-
tion probabilities.
Consider a concrete example: For the head
group ℋ0 that is responsible for attending to
⟨var0⟩ , we look at the attention probabilities where the query is at the ⟨rhs⟩ position and
the key is at the ⟨var0⟩ position, for all heads in ℋ0. We then average these probabilities
within the head group.
For each equation, we can use the above strategy to obtain a single group-wise attention
probability for each head group at the ⟨rhs⟩ position. If this group-wise attention proba-
bility is less than our threshold of 0.9, we classify it as a first layer attention error, indicating
that the head group failed to maintain sufficient focus on its designated variable position.
In fact, the error analysis is not very sensitive to the choice of the threshold. As we will see
later in Figure 22 (Top Row), the computed group-wise attention probability is either very
close to 1 or very close to 0 (for ⟨var0⟩ and ⟨var2⟩ , where ⟨var1⟩ has a slightly larger
deviation from 1 on the high end). It is very easy to identify when an error occurs in the
first layer attention.

Second Layer Copy Error. For the second layer attention, we analyze the attention
head’s output rather than the attention map. This approach is necessary because the
“value” factored embedding from the first layer may be distributed across multiple posi-
tions, including special tokens (like delimiters or operators), rather than being confined to
the original variable position. Fortunately, we already have the extracted “new value(𝑖)”
factored embeddings for each ⟨var i⟩ in the previous experiment. We thus treat these
“new value(𝑖)” factored embeddings as the ground truth value embeddings for ⟨var i⟩ in
the second layer attention output.
For each equation containing ⟨var i⟩ , we compute the cosine similarity between the ground
truth value embedding for ⟨var i⟩ and the designated head group’s output at the ⟨rhs⟩
position in the second layer attention. We call this cosine similarity the “group-wise cosine
similarity”. If the cosine similarity is less than our pre-determined threshold of 0.9, we

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

consider it a second layer copy error for that head group, indicating the model fails to copy
the correct variable value to the RHS position.
Similar to the first layer attention analysis, the choice of threshold is not critical. As
shown in Figure 22 (Middle Row), the cosine similarity between the second layer attention
outputs and the target value embeddings exhibits a clear pattern: either very close to 1
for correct copies, or significantly lower for incorrect copies. This stark separation makes it
straightforward to identify second layer copy errors.

Feedforward Calculation Error. The feedforward calculation error is defined in the
following way: If an equation passes the first two error checks, meaning that the first layer
attention successfully attends to the correct variable position, and the second layer attention
successfully copies the correct variable value to the RHS position, but the model still makes
a mistake when applying the factored decoder after the second layer MLP, we consider it a
feedforward calculation error.
An account of the errors by source is shown in Table 2, where the major source of error is
the feedforward layer calculation. Overall, the model demonstrates a remarkable accuracy,
where the total number of errors is only 40 out of 23k examples. A more detailed analysis
of the errors is shown in Figure 22.

D.4.2 Additional Error Analysis
Here, we provide additional evidence for the above discussion. In Figure 22, instead of
just counting the number of times a specific error occurs, we histogram all the statistics
used by the above error analysis procedure. Figure 22 (Top Row) is a histoplot of the the
group-wise attention probability in the first layer, organized by three head groups ℋ0, ℋ1,
and ℋ2, where each ℋ𝑖 is responsible for copying the value of ⟨var i⟩ . See the “First
Layer Attention Error” paragraph above for more details. We see that the attention scores
generally concentrate their probability mass around 1 on the correct variable; however, the
heads responsible for copying ⟨var2⟩ are somewhat less concentrated, resulting in more
errors. Moreover, for some examples where the final prediction is incorrect, we observe a
clear error pattern in the histogram: the attention head group completely fails to attend to
the correct variable position, with the group-wise attention probability dropping to nearly
0. This stark contrast between successful and failed attention patterns makes it easy to
identify first layer attention errors.
In addition, Figure 22 (Middle Row) histogram the cosine similarity between the second layer
attention outputs and the target value embedding, again for all three head groups. For most
examples, the cosine similarity is close to 1, showing that the second layer retrieves the value
embeddings. However, for some examples where the final prediction is incorrect, we also
observe a clear error pattern in the histogram: the cosine similarity drops to nearly 0. This
stark contrast between successful and failed second layer copy patterns makes it easy to
identify second layer copy errors as well.
Does the Model Perform Self-Correction? The first two rows in Figure 22 are reported
only for equations with depth ≥ iter. This is because the number of iterations required for
computing the correct RHS value of equations is at most its depth. However, if we let the
number of iterations go beyond the depth of the equations, as shown in Figure 22 (Bottom
Row), the first layer attention heads are not able to concentrate their probability mass on
the correct variable. This finding indicates that there is no further computation performed
by the model at an equation position after the number of iterations reaches the depth of
the equations, hence the model does not perform self-correction. One possible explanation
for this to happen is the use of weight-decay in the training process. As the value for the
⟨rhs⟩ variable is already computed after the number of iterations reaches the depth of the
equations, the model can directly pass on the computed value to the next iteration via the
residual stream without any further computation.
How to let the model perform self-correction? We observe that the model does not perform
self-correction because we only train the model on “perfect” data, where the model has no
need to perform any further computation beyond the depth of the equations. In fact, we
can let the model perform self-correction by training the model on “imperfect” data, where
the model has to perform some further computation beyond the depth of the equations.
This motivates our proposal of Discrete Latent Space Supervision ⟲ method, which trains
the model with corrupted data to teach the model to recover from errors. Consequently,

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Figure 22. Error analysis. Top Row. Histograms for the group-wise attention
probability in the first layer for all three head groups attending to ⟨var0⟩ , ⟨var1⟩ , and
⟨var2⟩ , respectively. Here, the target equations considered all satisfy depth ≥ iter as
defined in (12). We use different colors to separate the equations based on whether the
decoded RHS value is correct or not after the second layer MLP. Middle Row.
Histograms of the group-wise cosine similarity for the second layer attention head groups’
outputs with the target values’ embedding. Only equations with depth ≥ iter are
included. Bottom Row. Histograms of the group-wise attention probability in the first
layer for all three head groups. Here, the target equations considered all satisfy
depth < iter, meaning that the number of iterations is beyond the depth of the equations.

increasing the number of iterations beyond the depth of the input can be useful because it
allows the model to correct any errors in previous iterations.

40

	1 Introduction
	2 Problem Setup
	2.1 Task Description: Modular Arithmetic on Computational Graphs
	2.2 Limitations of Standard Transformers with CoT Training

	3 Reasoning in Latent Space with Algorithmic Supervision
	3.1 Mechanisms for Effective OOD Generalization.
	3.2 Experimental Results & Discussion

	4 Mechanistic Interpretability
	5 Conclusion
	A Related Work
	B Experimental Details on Chain-of-Thought & End-to-End Baselines
	B.1 End-to-End Baselines
	B.2 Chain-of-Thought Baselines
	B.2.1 Chain-of-Thought Trajectories
	B.2.2 Experimental Details & Additional Results

	C Details on Latent State Supervision
	C.1 Latent State Embedding Structure
	C.2 Latent State Supervision
	C.3 Discretization of Intermediate States
	C.4 Self-Correction Mechanism
	C.5 Experiment Details & Additional Results

	D Details of Mechanistic Interpretability Analysis
	D.1 First Layer Attention: Variable Copying
	D.1.1 Group Structure in the First Layer Attention
	D.1.2 First Layer Attention Copying the Variable Identity
	D.1.3 First Layer MLP Residual Stream Does Not Change the Residual Stream Significantly

	D.2 Second Layer Attention: Value Copying
	D.3 Second Layer MLP: Module Addition in the Frequency Domain
	D.4 Error Analysis
	D.4.1 Identifying Different Sources of Errors
	D.4.2 Additional Error Analysis

