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Abstract

Fusion energy remains one of the greatest scientific challenges of our time, with
transformative potential for sustainable, carbon-free power. In Inertial Confinement
Fusion (ICF), achieving successful implosions critically depends on the design of
Laser Pulse (LP) shapes that can efficiently drive fusion targets within stringent
physical constraints. Traditional LP design relies heavily on expensive simulations
and manual iterative tuning, which limits scalability. We propose an Inverse Mod-
eling Approach to Laser Pulse Shape Generation (IM-LPG) that maps target pellet
parameters and desired fusion implosion outcomes directly to tailored LP shapes.
IM-LPG supports both diffusion-based and autoregressive architectures, offering
flexibility for diverse modeling scenarios. To balance accuracy and feasibility, we
introduce a multi-objective training setup that produces LPs satisfying physical
constraints while achieving <2% error on implosion outcomes. Furthermore, we
incorporate constraint conditioning through inpainting and gradient-based editing,
enabling fine-grained control of pulse characteristics during generation. Our frame-
work provides a data-driven, flexible, and controllable solution to LP design in ICF,

representing a step toward accelerating the path to practical fusion energy.

1 Introduction

Inertial Confinement Fusion (ICF) offers exceptional
promise for clean energy but requires precise Laser
Pulse Shape (LP) design, the temporal profile of laser
energy that drives fuel pellet compression. Crafting
effective LPs is challenging due to the intricate rela-
tionship between laser energy delivery and implosion
dynamics.

LP design relies on computationally expensive simu-
lations and manual trial-and-error exploration, often
requiring weeks to identify a single high-performing
LP. This forward design loop represents a significant
bottleneck, necessitating an inverse design model that
maps desired outcomes to promising LPs.
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diverse pulse shapes (b) constraint-based edit-
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driven optimization.
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In this work, we introduce the Inverse Modeling Approach to Laser Pulse Shape Generation (IM-
LPG) a novel machine learning-based inverse modeling framework to address this critical challenge.
IM-LPG enables scalable, data-driven LP design aligned with fusion objectives and experimental
constraints. The main contributions of our work are:

* We investigate two inverse modeling generative paradigms for LP design: diffusion models
and auto-regressive models.

* We introduce an auxiliary objective aligning generation with target implosion outcomes,
yielding multiple valid LP candidates.

* We incorporate a physics-informed loss to ensure generated LPs are physically plausible
and experimentally feasible.

* We develop conditioning mechanisms for direct control over specific LP attributes and
regions, enabling editing, constrained generation, and inpainting.

* We demonstrate that IM-LPG can optimize LPs to improve implosion outcomes.

2 Background

2.1 ICF -
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ICF achieves nuclear fusion by using high-energy o1s]  roger
lasers to compress and heat fuel pellets (typically icket
deuterium-tritium) to extreme temperatures and pres- "
sures, overcoming electrostatic repulsion between 005

nuclei [1]]. Achieving ignition requires precise, sym-
metric implosion controlled by the LP, the temporal s e 5o £g % %0
profile governing compression over 3 nanoseconds.

Figure 2: The LP is typically characterized by

The LP is carefully structured with distinct phases: 12 parameters, some of which are annotated

a low-intensity foot launches timed shocks, a rising
ramp controls pressure buildup, a high-intensity main
pulse drives rapid implosion, and an optional tail sustains pressure (Figure [2). This multi-phase
structure ensures symmetric compression and optimal fusion conditions.

Due to high experimental costs and limited access to ICF facilities, researchers rely on physics-
based simulations to evaluate LP designs. LILAC is a prominent one-dimensional Lagrangian
hydrodynamics ICF code [2H7], that maps LPs and target parameters to implosion outcomes (energy
yield, velocity, areal density). This controlled environment enables systematic exploration of how
variations in the LP influence fusion performance for a given target.

2.2 Denoising Diffusion Models

Denoising Diffusion Probabilistic Models (DDPMs) [8]] are generative models that use a forward dif-
fusion process to gradually add Gaussian noise to a data sample x over N steps. This forward process
is a Markov chain, where each step n is defined by ¢(x, |x,—1) = N (xn; V1 — Bn Xn—1, Bn I).

Denoising Diffusion Implicit Models (DDIMs) [9]] accelerate sampling by replacing DDPM’s
stochastic reverse process with a deterministic update. The deterministic reverse update is given
by X1 = /@n_1X + /1 — @_1 — 02 €9(Xp,n) + 0p€y, Where €, ~ N(0,1I) and o, € [0, 1]
controls the stochasticity. The original input x’ is stimated as:

X,zXn*wﬂ*@nGe(Xn,n)' )

Van

DDIM trains the noise prediction network €y (x,,, n) following the noise prediction objective:

,C(@) = II':‘:nr\a[l,N],xr\/q(x),er\//\/(O,I) ||6 - Gg(l'n,n)HQ . (2)



2.3 Auto-regressive Models

Auto-regressive models are a class of sequence generation models that predict each element in a
sequence conditioned on all preceding elements. Given a sequence x = (x1, X2, ..., Zn ), an auto-
regressive model defines the probability of the sequence as a product of conditional probabilities:

N
p(x) = H P($n|$1:n—1)7

where 1., 1 represents the subsequence from x; to x,,_;. Models like Long Short-Term Memory
networks (LSTMs) [10] and Transformers [[L1] are commonly used to implement this approach.
LSTM:s are effective in learning dependencies over shorter sequences, while Transformers dominate
modern NLP [12] and multi-modal tasks due to their scalability and capacity for long-range modeling.

3 Inverse Modeling Approach to Laser Pulse Shape Generation
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3.1 Inverse Modelmg [ Inverse Model G, ]
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sion outcomes produced by the LILAC ICF simulator Fmmmmennee
for a given LP (1) and target pellet parameters (p). ; gure 3: Training setup for the ICF IM-LPG.
These outcomes include quantities such as energy Ty 1oss is comprised of the reconstruction

}Fgld’ aﬁeal density, burn W(;d;ih’ an 1on tf:l:r)nperaturlel. error, the implosion outcomes error, and the
e pellet parameters are defined by attributes suc physics-informed error. The pulse-params er-

as outer radius, ice thickness, ablator thickness, ice- ror is only active when training the model

tritium fraction, etc. for LP constrained design as described in
To construct an inverse design model, we first gen- the Pulse Shape Constrained Design section.
erate a dataset Dy = {(1;, ps, mi)}le of 1 Million The Surrogate aqd Pulse-to-Param model are
examples via systematic simulation sweeps, captur- 1rozen during training.

ing the relationship between pulse shapes, target pa-

rameters, and resulting implosion outcomes. The LP 1; is characterized as a real-valued sequence of
length 256. p;, m,; are real-valued vectors of size 5 and 12, respectively.

Our goal is to learn a data-driven inverse mapping Gy that designs a feasible LP 1’ given desired
implosion outcomes m and pellet parameters p:

I' = Gy(m, p). 3

In practice, conditioning parameters such as p and m are embedded using a linear transformation
when passed to the inverse model Gy, resulting in the input form Gy(m’,p’). For notational
convenience, we use Gg(m, p) and Gyp(m’, p’) interchangeably throughout the paper, with the
understanding that m and p implicitly refer to their embedded form unless otherwise specified.

This inverse design problem has multiple plausible solutions, since multiple pulse shapes can lead to
similar outcomes. To address this, we consider two modeling approaches:

* Generative (Stochastic): Diffusion and auto-regressive generative models are trained to
generate from a distribution of valid LPs, thereby providing diversity and robustness.

* Predictive (Deterministic): We also train predictive auto-regressive models to predict a
single high-fidelity LP.



Diffusion Model Diffusion models sample from a learned distribution by denoising a latent rep-
resentation over steps. This has fueled interest for their potential in different physics applications
[13H16].

We leverage DDIM [9]] to build G, conditioning it on both the desired implosion outcomes m and
the target parameters p. During the forward diffusion process, noise is gradually added to the original
LP 1 over N timesteps, resulting in a noisy latent variable 15y ~ A/(0, I). The inverse model learns a
conditional noise prediction network €4 (1,,, n, m, p) that estimates the noise added during a forward
process, conditioned on the noisy LP 1,,, the timestep n, the target implosion outcomes m, and the
target parameters p. The training objective of the network ¢y is:

‘C(a) = Enm[l,N],(l,m,p)NDp [”6 - 60(1717 n,m, p)HQ} “)

L, =vVa,l1+vV1—-a,e 5)

During the generation phase, we start from a random noise vector 1y ~ N(0,I) and iteratively
denoise it using the conditional noise prediction network via the DDIM update rule:

ln—l =V Op—1 1/ + 1-— Qp—1 — 0'72169(ln7 n,m, p) + On€n, (6)

where 1’ can be estimated as shown in Equation |1} Leveraging this formulation, IM-LPG generates
diverse LPs consistent with target constraints, enabling exploration of physically meaningful designs.

3.1.1 Auto-regressive Model

Alternatively, LP design can be formulated auto-regressively, generating the pulse vector 1 =
{l1,1a,...,lr} sequentially. Ateach timestep ¢, the model predicts /; conditioned on the target param-
eters p, the desired implosion outcomes m, and the previously generated pulse values {l1,...,l;—1}.
This allows the model to capture temporal dependencies and auto-regressive correlations inherent
in the pulse sequence. For the first timestep, since no past /; values are available, the model instead
conditions on an initialization vector constructed by applying linear transformations to both the
target parameters p and the desired outcomes m (see Figure [3). This embedding serves as the initial
conditioning input for the auto-regressive model.

We explore two paradigms of modeling for the auto-regressive models - predictive and generative.
The predictive models try to reconstruct the ground-truth LP with high fidelity. The generative models
trade-off between reconstruction fidelity and the ability to provide diverse LP candidates. The training
objective for the predictive auto-regressive models is the minimization of the mean squared error
between the predicted and true pulse values across all time-steps:

1 T
£(6)= 7>l = Goll<r. m.p)|*, @)

t=1

where Gy (I, m, p) denotes the model’s prediction for timestep ¢ given the prior pulse values and
conditioning inputs.

At each time step, the generative models output a probability distribution over the LP value at time
t called py(l;). The training objective for the generative auto-regressive models is to minimize the
negative log-likelihood of the true pulse under the predicted distribution pg(I;):

T
1
£(0) = T;log po(le[lr...c;m, p) ®

We explore 3 different modeling techniques for pg. The simplest technique is to model this as a
Gaussian distribution where the model Gy learns to predict the mean and variance. To offer more
expressiveness, we also model py as a weighted mixture of K Gaussians. Here, the model learns to
predict K-length vectors for mean, variance and the mixing weights. We also try a discrete approach
where the pulse [ is quantized to 128 discrete values and py is modeled as a Categorical distribution
and trained with a cross-entropy loss.



3.2 Auxiliary Objectives

While the reconstruction objective enables LP reproduction, our broader goal is scientific exploration
through plausible, diverse LP generation consistent with implosion outcomes. This provides a wider
array of selectable, high-performing candidates and facilitates scientific discovery by potentially
identifying novel LP configurations. To achieve this, we introduce an auxiliary objective that guides
the inverse model to prioritize implosion fidelity and robustness over exact replication.

We train a surrogate modeﬂ S4 to approximate the LILAC simulator. This model learns the mapping
from a LP 1 and target parameters p to the corresponding implosion outcomes m. This can be
represented as 1 = Sy (1, p), where ¢ represents the learnable parameters of the surrogate model.
The surrogate is trained on the simulation dataset Dz by minimizing the prediction error:

LILACyumogae(6) = Eqtm pypy |0 = S5(L )] ©)

After training, S, is kept frozen and is used during training of the inverse model to evaluate the
physical fidelity of generated LPs. Given a generated pulse I’ = Gy(m, p), the surrogate model
predicts the corresponding outcomes m = S (1’, p), which are then compared to the target outcomes
m. Our new objective can be defined as:

G(0) = XL(O) + S(0) (10)
S(6) = Erngiy tmpynr |10 = S5(1, D)’ (an

Here, A1, controls the trade-off between faithfully reconstructing the original LP and generating
physically consistent alternatives. A properly tuned Ay, allows the model to generalize beyond pure
reconstruction, producing diverse yet plausible LPs tailored to the specified design goals. In practice,
we first train only on the reconstruction loss £(#) since at the beginning of training Gy can produce
LPs that are incoherent and out-of-distribution for S.

For our diffusion model, this loss formulation S(6) appears to require knowledge of the original LP
I, at each reverse step. However, DDIM’s non-Markovian formulation allows us to estimate 1" at any
intermediate timestep n (Equation I)).

3.3 Physics-Informed Loss

While our goal is to generate a diverse set of LPs for a given target configuration, the practical utility
of these designs depends critically on their adherence to the fundamental physics of ICF and their
feasibility under real-world experimental constraints. One essential constraint is energy conservation.
Specifically, generated LPs should not exceed the total energy budget of corresponding reference
pulses. For any 1; € Dp, we impose the following constraint on a generated LP 1;:

/Tl;(t)dtg/Tli(t)dt, te 0,7,

0 0

where T is the total pulse duration. To enforce this, we introduce a physics-based penalty term:

T T +
P(0) = Eyrcy 1o (/ 1'(t) dt —/ 1(t) dt) (12)
0 0

This term penalizes excess energy, encouraging designs within experimental and physical limits.
Incorporating this constraint into our overall loss function, we define the complete training objective
as:

G(0) = AcL(B) + AsS(8) + ApP(0) (13)

where Ap and As are hyperparameters that control the relative importance of each loss term in
the overall objective. This joint objective enables the generation of LPs that are diverse, outcome-
consistent, physically plausible, and experimentally viable.

3The surrogate achieves an error of 1.4% across the implosion outcomes m. This can be considered as a
lower bound on the implosion error that can be achieved by IM-LPG.



4 Experiments

4.1 Performance Evaluation

To evaluate our approach, we compare IM-LPG variants: Diffusion (IM-LPGp;), a predictive auto-
regressive Transformer [11] (IM-LPGryansformer), and an LSTM-based [10] model (IM-LPGysm).
The generative auto-regressive models are based on the LSTM architecture and are named
IM-LPGgaussianar > IM-LPGuMixtureofGaussianaR and IM-LPGpjscretear. We also include state-of-the-art
generative models: Tabsyn [17] for tabular data and Variational Latent Diffusion (VLD) [16] for
high-energy physics. Additionally, we evaluate ablated versions excluding the auxiliary loss S(6)
(w/o 8) and the physics-informed loss (w/o P)

We assess performance on four key metrics: implosion outcomes m error, reconstruction error,
generation diversity, and energy conservation error. All models are evaluated over R = 10 random

seeds on a test set Dg,, = {(L., e, me)}le, where Dr_ N Dp = (). The implosion outcomes
m error is computed via the surrogate loss (Equation and reported as mean average percentage
error. Reconstruction error is: + Zf_l + Zf_l |lle — Ve ||- Energy conservation is calculated in
([ e () di—f§ 1 () i)
5 1) di
average pairwise L2 distance across generated samples: — Zle (% Yi<jar<n Wie = Vielly
B <j<k<

.1 NE 1R
terms of percentage as: 5o > e=1 R 27:1

% 100. Diversity is measured by

The estimated upper bound for diversity is 1.9, which is the diversity value obtained when comparing
randomly selected LPs from Dy, .

The evaluation results in Table[T| highlight the effectiveness of IM-LPG. Ablation studies confirm
the critical role of both the auxiliary loss S(6) and the physics-informed loss P(6) in enhancing
performance. Among the IM-LPG variants, the auto-regressive model IM-LPG; g1\, achieves the
highest reconstruction fidelity, accurately replicating original LPs. However, their deterministic
nature yields zero diversity across outputs.

In contrast, generative variants (IM-LPGp;g and IM-LPGs+aR) balance performance and flexibility,
maintaining low implosion outcome error while generating diverse, high-quality pulse shapes. Among
the generative auto-regressive variants, IM-LPGyixwre0fGaussians Offers the most diversity across sam-
ples due to better expressiveness of the multi-Gaussian distribution. This diversity provides a wider
array of selectable, valid candidates and enables broader scientific discovery. The trade-off between
precision and diversity allows scientists to select the model best suited to their design goals: predictive
auto-regressive models for exact replication, and generative models for diverse, constraint-driven
generation. Example LP generations for each model are included in Figures 5-10 of the Appendix.

Approach Diversity 1 m Error | Reconstruction Error | Energy Conservation |
IM-LPGp; 0.67 1.95% =+ 0.009 0.007 £+ 0.0001 1.67% % 0.005
IM-LPGystm - 1.65% 0.0001 0.66%
IM-LPGrransformer - 1.94% 0.0008 0.95%
IM-LPGgaussianar 0.42 1.89% =+ 0.01 0.0005 4 2¢~5 0.58% =+ 0.004
IM-LPGMixtureOfGaussianAR 0.56 1.95% + 0.09 0.0006 4 8¢~ 1.58% =+ 0.006
IM-LPGcyiegorical AR 0.39 2.01% £ 0.04 0.0009 + 5¢7° 1.18% + 0.08
Tabsyn 0.69 15.4% + 0.2 0.021 £ 0.0003 5.67% £ 0.014
VLD 0.39 17.12% £ 0.3 0.016 £9.7¢~° 1.88% =+ 0.027
IM-LPGpit, wio s 0.62 4.5% +0.014 0.0057 & 8.8¢7° 1.71% + 0.005
IM-LPGyst™, wio S - 3.9% 0.0004 0.0085
IM-LPGrransformer, wio S — 4.4% 0.001 0.0095
IM-LPGpitt, wio P 0.69 1.99% + 0.01 0.0084 £ 0.0001 3.21 £ 0.007
IM-LPGyst™, wio P - 1.85% 0.0001 0.0078
IM-LPGryansformer, wio P - 2.1% 0.0009 0.0094

Table 1: ICF model performance. + denotes standard deviation over seeds. Arrows denote desired
improvement direction. For the predictive auto-regressive models (IM-LPGy stv, IM-LPGrransformer)s
diversity is not defined since they are deterministic. The ablation experiments for the loss terms were
only performed for a subset of the models due to computational constraints.



4.2 Pulse Shape Constrained Design

In many ICF experimental design scenarios, scientists require control over specific regions or attributes
of the LP. A mapping function M (details in Appendix) is used to project an LP 1 onto M = 12
parameters C' = M(1) = {c!, ..., c'?}. Each ¢™ corresponds to a physically interpretable property
of the LP (Figure[2). When constructing new designs, scientists fix one or two of these values within
C, while allowing the remaining parameters, and thus the shape of the pulse, to vary.

However, our current inverse model G lacks a mechanism to enforce such partial constraints during
inference. A straightforward solution would be to take the constraint parameter c”* as an additional
input during training, producing an LP conditioned on the desired implosion outcomes m, target
parameters p, and the specified constraint as ' = Gy(m, p, c™). A constraining loss can then be
introduced to enforce consistency between the specified constraint values and their corresponding
values in the generated LP:

T(0) = Ev.om [llef? = "] (14)
where ¢} € Cy, Cpy = M(Y'). The constrained Gy objective can be defined as:
G(0) = AcL(O) +S(0) +  pP(0) + A7 T (0) (15)

Diffusion-Based Adaptation The above approach enables Gy to respect defined constraints. How-
ever, exhaustively training separate diffusion models for all combinations of one or two parameters in
C'is computationally infeasible due to combinatorial complexity.

To address this, inspired by few-shot learning in diffusion and inverse modeling [18H21]], we propose
a rapid adaptation strategy. Instead of retraining, we adapt a pre-trained model Gy(m, p) via a few
gradient updates to satisfy constraint c.

Our adaptation approach employs an embedding network ;s that encodes constraint parameters ¢ € C'
to condition LP generation. This results in a conditioned noise model: €4(1,,,n’, m’, p’, Bs(c)). To
simplify conditioning, we enforce equal embedding dimensionality for n’ and ¢’ = Bs(c), enabling
their combination into a single conditioning variable v’ = n’ + ¢/. This allows us to condition
the model as €y (1;, w', m’, p’), requiring no architectural changes to the original model. During
adaptation, only the parameters of 35 are fine-tuned, according to Equation while the remaining
weights are frozen. This strategy facilitates efficient, stable adaptation, preserving model integrity and
accuracy while effectively enforcing constraints. Examples of this adaptation technique for picket
power as a constraint are shown in Figure 4] (Appendix). Importantly, for a specific constraint ¢, the
model is fine-tuned once, and this fine-tuned model can then be used to generate an arbitrary number
of pulses with different specifications m and p.

Gradient-Based Adaptation Alternatively, the LP can also be adapted at post-design using a model-
agnostic technique without additional finetuning. To honor constraints in C while maintaining desired
implosion outcomes, a loss combining the pulse constraining loss 7 (6) (Equation and the LILAC
surrogate loss S(6) (Equation|11) is formulated. Since both the losses are differentiable w.r.t the pulse
1" (now referred to as J (1), S(I')), we can perform gradient descent with respect to the following
loss and update the pulse 1’:
T =8)+ A7 T(T) (16)
U':=1-aVyT() (17)
where « is the learning rate. A disadvantage of this technique is that gradient descent can lead the
LP into undesirable territory, such as negative values or peaks that violate the maximum power.
However, in practice, we find that these issues can be effectively mitigated by clipping the pulse.
Moreover, gradient-based adaptation must be performed for each unique constrained LP, whereas our
Diffusion-Based Adaptation allows a fine-tuned model to be reused indefinitely.

Gradient-Based Adaptation We evaluate the ability of IM-LPG to rapidly adapt to specific design
constraints ¢, using both Diffusion-Based and Gradient-Based adaptation strategies. For the Diffusion-
Based approach, the model is fine-tuned for only 10 epochs on a new constraint parameter c™,
requiring minimal computational overhead. In parallel, we apply the Gradient-Based adaptation to
the deterministic models IM-LPGy sty and IM-LPGrryansformers allowing for direct post-generation
refinement.

We focus our evaluation on two physically meaningful parameters: picket power and foot power
(see Figure 2). To quantify adaptation accuracy, we compute the mean absolute percentage error



(MAPE) between the specified constraint value ¢ and the corresponding value extracted from the
generated pulse (as defined in Equation[T4). The Gradient-Based approach achieves a MAPE of
2.5% =+ 0.12, while the Diffusion-Based method yields a MAPE of 3.4% = 0.14. Importantly, both
adaptation methods preserve IM-LPG’s performance on the target implosion outcomes (m-Error
remains unaffected).

These constraint adaptation strategies empower scientists to generate diverse, high-quality pulse
shapes that meet desired implosion outcomes and can be interactively tuned to satisfy evolving
experimental or engineering constraints.

Inpainting/Prompting For additional controllability, we support inpainting-based generation, en-
abling scientists to specify desired LP design directly in the LP space. Rather than conditioning
on the C constraining parameters, users can provide a partial LP such as prefixes or fixed regions.
For the auto-regressive models, providing a LP prefix is akin to prompting it to complete the rest
of the pulse. For diffusion, the model conditions its denoising process on specified LP segments,
producing coherent, physically valid completions (details in Appendix). To evaluate auto-regressive
models, a prefix comprising 10% of the pulse (this corresponds to the first peak) is provided as the
prompt. For diffusion, random segments of the LP are specified, and the rest of the LP is masked. The
autoregressive method achieves a reconstruction error of 0.0003 with an m-Error of 1.55%, while
the diffusion method yields a reconstruction error of 0.002 and an m-Error of 2.0%. Examples of
the LPs generated with this technique can be found in Figure[TT]and Figure [I2] (Appendix).

4.3 LP Optimization

A possible application of IM-LPG is energy-efficient optimization of initial laser pulse (LP) designs.
Given initial parameters p. and implosion outcomes m., we define a new target output by increasing
the energy yield by 10%, denoted as ¥ = 1.10 x m¥"’, where m¥"* refers to the energy yield
component. Using this new target, we generate an optimized pulse i’e = Gy(pe, Me).

The objective is to produce a new LP i; that (i) achieves a predicted energy yield at least as high as

m!? and (i) does not exceed the original total enfTJy budget: J

Se(I) ! > ™ and [ T(5)dj < / L (5) dj.

0 0

Here, the surrogate model Sy is used to estimate energy yield. Because m,. may lie outside the
training distribution, we include a frequency-domain similarity constraint to ensure the generated
pulse remains close to the original design:

J
S IFQ - 1F @ | <
j=1

where F denotes the discrete Fourier transform, J is the number of time-domain samples, 7 is a
similarity tolerance, and ', = Gy(p., m.) is the generated LP for the original conditions. This
constraint ensures that 1/ remains within a familiar region of the training distribution, improving
reliability and physical plausibility.

For each initial design, we generate 20 candidate pulses (each from a different random seed) and
select the one that maximizes energy gain while satisfying all constraints. We validate this approach
using the LILAC simulator on 60 unique initial designs.

To compare design strategies, we evaluate the diffusion-based model IM-LPGp;s against the auto-
regressive model IM-LPG; sy, which showed strong performance in the performance evaluation.
IM-LPGp;¢ achieves a mean energy gain of 17.74 %, without increasing total energy input. In contrast,
IM-LPG stym yields a modest improvement of only 2.79%. Strikingly, IM-LPGp; surpasses the
10% target, underscoring its efficiency in exploring and identifying superior LP designs for ICF
optimization.

5 Conclusion

We presented IM-LPG, a data-driven inverse modeling framework designed to generate diverse ICF
laser pulse shapes that meet both scientific objectives and physical constraints. The method enables



constrained pulse design as well as optimization of implosion outcomes. By providing a scalable
and adaptable generative tool, IM-LPG accelerates fusion research through machine learning. This
approach has the potential to substantially advance ICF studies, moving us closer to the realization of
virtually limitless clean energy, a milestone with far-reaching environmental and societal benefits.
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A Related Work

A.1 Inverse Modeling

Inverse modeling is foundational in scientific discovery and engineering design. Recent advances
in machine learning have significantly expanded its applicability across diverse scientific domains.
Among these, diffusion models have emerged as particularly effective due to their ability to model
complex, high-dimensional distributions and generate diverse, plausible solutions [22H31]].

Autoregressive approaches have also gained prominence for their ability to capture long-range
dependencies and generate outputs that satisfy intricate input constraints [32H36]. In parallel, Gen-
erative Adversarial Networks (GANs) have been widely applied to inverse problems, especially in
imaging [37H40].

Beyond these, a range of other deep learning paradigms—including convolutional networks, re-
current architectures, and physics-informed neural networks—have also been explored for inverse
modeling [41-48]].

A.2 Inverse Modeling in Physical Sciences

In the physical sciences, inverse modeling enables the inference of hidden or causal system parameters
from observable data and has been widely adopted across domains. In thermodynamics, it supports
the estimation of material properties and optimization of thermal processes [48H50]]. In materials
science, inverse methods facilitate the discovery of materials with tailored properties [49} 51553]. In
geophysics, inverse modeling has been employed for seismic imaging, subsurface property estimation,
and tomography [54H57]]. Other fields, including chemistry, biomechanics, and hydrology, also have
leveraged inverse methods to tackle complex modeling tasks [58H61].

In high-energy and plasma physics, inverse modeling has been used for reconstructing particle
dynamics, inferring jet structures, and enhancing simulations [16}162H66]]. However, existing methods
are often domain-specific and not applicable to ICF. No prior work addresses the unique physical
constraints and data characteristics of ICF pulse design. Our work fills this gap by introducing a
machine learning-based inverse modeling framework tailored for the high-dimensional, complex and
constrained nature of LP design in ICF.

B Experimental Details

Computation was performed on a server with four H-100 GPUs for 360 hours at around 80% capacity.
The ICF dataset consisted of 1 million ICF simulations. We used a 70%-30% train-test split for
training and evaluation of all the approaches. The hyper-parameters used in our loss function G(6)
are shown in Table[d] For the learning rate (LR) we use Pytorch’s CosineAnnealing LR scheduler.
We used Adam as optimizer. We use 7 = 0.1 for the implosion outcome optimization experiments in
Section LP Optimization. We used a linear noise scheduler to train the IM-LPGp;s. For the forward
process we set N = 100, while we set N = 25 during generation.

The hyperparameters of the denoising network €y are shown in Table [2{and for the auto-regressive
LSTM are shown in Figure[3] The hyperparameters where selected using the optuna library [67] using
the following ranges. Transformer layers [2 : 4], Attention heads: [4 : 8], Feed forward dimension:
[512 : 2048], Embedding layers: [2 : 4], Embedding dimension: [512 : 2048], Dropout: [0.1 : 0.5],
Learning rate: [le~%, 1e~2], Batch size: {64, 128,256, 512}.

Transformer layers 4
Attention heads 4
Feed forward dimension | 2048
Embedding layers 2
Embedding dimension 1024
Dropout 0.1
Learning rate 5¢°
Batch size 128

Table 2: Network Hyperparameters €y used in all diffusion models.
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Num of layers 4
Number of hidden units | 512
Learning rate le™®
Batch size 128
Table 3: Network Hyperparameters used in the LSTM auto-regressive model.

Az | 05
Ap | 0.25
Ae | 0.25

Table 4: Hyperparameters used for our inverse model loss function G(9).

The code used for the Tabsyn experiments can be found in https://github.com/
amazon-science/tabsyn and for VLD in |https://openreview.net/forum?id=
v7WWesSiOu&noteId=HimuianB99, we only employ their end-to-end architecture, but we
do not use their consistency loss, since it does not apply to the ICF problem.

Optimization Filtering: For the filtering method used in[4.3| we evaluated three different methods
to compare LPs ', and I: the discrete Fourier transform [68]], MSE and cross-correlation [69]. We
evaluate the approaches using the LILAC simulator in a set of 16 LPs, and the selected the approach
which had least amount of false positives.

B.1 Additional Evaluation

We conducted an additional evaluation of IM-LPG, comparing it against two state-of-the-art generative
baselines: VLD and TabSyn. All models were evaluated using 10 random seeds to ensure statistical
robustness. To determine whether the observed performance differences are statistically significant,
we use the Wilcoxon signed-rank test [70]. The test is applied to the mError obtained across the 10
seeds, using IM-LPG as the reference baseline.

Table 5] presents the mean prediction error and standard deviation (denoted by +) for each method,
along with the corresponding p-values from the Wilcoxon test. The resulting p-values (0.002) indicate
that the performance differences are statistically significant at conventional significance levels (e.g.,
a = 0.05), suggesting that the improvements achieved by IM-LPG are unlikely to be due to chance.

B.2 LILAC surrogate
The LILAC surrogate (S,) is a MLP with the following hyper-params. It is trained with the Adam
optimizer [[71]], with a batch size of 128, learning rate of 1e~> for 100 epochs.

The surrogate has an average error of 1.4% across all the outputs.

B.3 Mapping Function

The mapping function (M) is a 1 layer bidirectional LSTM with 64 hidden units. We concatenate
the hidden state from both directions, before passing it through an output linear layer. It is trained
with the Adam optimizer, with a batch size of 64, learning rate of 1e = for 250 epochs. The model
achieves an average error of 1.1% across all 12 parameters in C'

C Diffusion Models

Denoising Diffusion Probabilistic Models (DDPMs) [8] are generative models based on a forward
diffusion process that gradually adds Gaussian noise to data x” over N steps. This forward process is
a Markov chain where each step n depends only on the previous step n — 1, defined by the conditional
distribution:

Q(Xn|xn—1) = N(Xn§ V 1— Bnxp_1, bt I) (18)
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Approach Prediction Error (%) | p-value vs Ours

IM-LPG 1.95% =+ 0.009 -
VLD 17.12% + 0.3 0.002
TabSyn 15.4% £ 0.2 0.002

Table 5: Comparison of pulse generation methods across 10 random seeds. Statistical significance
tested using Wilcoxon signed-rank test with IM-LPG as baseline method.

Num. of layers 4
Num. of hidden units | 256
Activation function ReLLU

Table 6: Hyperparameters used for the LILAC surrogate S

where 3, € (0,1) is a variance schedule controlling the amount of noise added at each step. The
schedule {3, }¥, is typically either linear, quadratic, or cosine, carefully designed to smoothly
increase the noise variance from a small value to near 1 across N timesteps.

We can express x,, given x’ using:

Xn = Va,x + V1 —aye, e~ N(0,I), (19)
where o, =1 — f3,, and &, = []}; ;.

The reverse process, parameterized by a neural network, iteratively denoises samples from xp ~
N(0,1) back to an estimate of the original data x’ over N steps by learning to approximate the
conditional distributions pg(X,—1|X,).

Denoising Diffusion Implicit Models (DDIM) [9] accelerates sampling, enabling faster generation
without significantly sacrificing sample quality. DDIM defines a deterministic reverse update rule
X, _1 conditioned on x,,:

Xn—1 =V Qn-1 x/ + v 1—ap-1— 072160(Xm n) + Onén, (20)

where x’ is estimated via:

X'~ Xn — V]-*?_[ne(f(xnfn)’ Q1)

Vo

Here, ¢,, is Gaussian noise, ¢y(x,,, n) is the noise predicted by a neural network trained to estimate
the noise added in the forward process, and o € [0, 1] controls the stochasticity of the reverse process.
Setting o = 0 results in a fully deterministic sampling path, while increasing ¢ interpolates toward the
stochasticity of DDPM. With DDIM’s update rule, the reverse process no longer explicitly depends
on the full sequence of forward diffusion steps. As a result, we can consider forward processes
with fewer steps than the original N. This means that during sampling, the reverse process can be
performed over a subset of the original time steps NS = {1,2,..., N}, selecting a reduced set of

steps NS C NS with [NS| < N.

This property allows DDIM to accelerate sampling by skipping intermediate steps in the diffusion
chain, effectively generating high-quality samples in significantly fewer iterations than DDPM
without retraining the model. The determinism of the fixed update rule ensures that even when
subsampling timesteps, the resulting trajectories remain coherent.

DDIM trains the noise prediction network ey (x,,, n) following the noise prediction objective:

E(G) = IEnr\z[l,N], x/~q(x’), e~N(0,I) HE — €9 (xnv H)H2:| . (22)

Conditional Generation The generative capabilities of diffusion models can be extended to synthe-
size data conditioned on external information y. The noise prediction network is then €y (x¢,t,y),
taking the noisy sample x;, timestep ¢, and conditioning y as input. The training objective becomes
the following.
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L(8) = Enwrcy [l = ol@n,n,3)|°] - (23)

During conditional generation, the learned €y (x,,, n,y) guides the reverse denoising process based
ony.

D Discrete Fourier Transform for Pulse Shape Comparison

The discrete Fourier transform (DFT) is a fundamental tool in signal processing that transforms a
sequence of time-domain samples into its frequency-domain representation. Given a discrete signal
x = [xg,21,...,2y—1] of length N, its DFT is defined as:

N—-1
Fla)r = Xi = Z Ty e RN = 0,1, N~ 1,
n=0

where ¢ is the imaginary unit, and X}, represents the complex amplitude of the k-th frequency
component in the signal.

The magnitude spectrum, | X[, captures the strength of the frequency components, while the phase
spectrum (i.e., arg(X})) encodes timing information. In our work, we use the magnitude spectrum to

compare two LPs 1’ and I in the frequency domain, ensuring that the generated pulses remain close
to the original designs in spectral content.

To enforce this spectral similarity, we define a frequency-domain distance:

N—-1
1 ~
Afreq = N E ‘ |‘F(l,)k| - |]:(1/)k| )
k=0

and accept the pulse generated 1 only if Aeq < 7, where 7 is a small threshold. This regularization
encourages coherence in the overall pulse structure, which is particularly important in physical
systems like ICF, where abrupt or unphysical changes in the frequency domain can lead to invalid or
unstable designs.

We computed the DFT using the Fast Fourier Transform (FFT) algorithm, which has a computational
complexity of O(N log N), allowing efficient integration into the generation loop.

E Inpainting in Pulse Space.

To enhance controllability during generation, IM-LPG supports inpainting as a mechanism for partial
conditioning directly in the laser pulse space. This allows domain experts to specify only certain
segments of a laser pulse, while leaving the remaining parts to be completed by the model in a
physically consistent manner.

Formally, let 1 € RT denote a laser pulse of length 7', and let b € {0, 1} be a binary mask that
defines the constraint region. Each element by indicates whether the ¢-th component of the pulse is
observed (b; = 1) or masked (b; = 0). Let L, represent the observed (non-masked) entries of the
pulse.

To incorporate inpainting with Diffusion, we modify the reverse diffusion process so that known

regions remain fixed at each step. Let 1, be the predicted intermediate pulse at timestep n from the
standard DDIM update rule (Equation [6)). We define the inpainted latent state as:

1Pt — b @ lyps + (1 — b) O 1y, (24)

where ©® denotes elementwise multiplication. This formulation ensures that the observed parts of
the pulse are preserved throughout the denoising process, while the model only modifies the masked
(unknown) components.
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In practice, the mask b can be flexibly defined to support a wide range of expert interactions, for
example, preserving a fixed peak intensity, pre-specified rising edge, or constraints learned from past
experiments. Combined with the implosion outcomes and target parameters conditioning via m and
P, inpainting enables IM-LPG to support fine-grained, interpretable, and editable pulse design.

F Additional Results

F.1 LP Constraining

Table[/|shows the error before and after the quick adaptation approach for LP constraining. We can
see that our method is able to significantly reduce the error in all of the C' parameters.

(11 02 (,‘3 (,’4 05 (,’6 07 (,’8 C‘E) clO (,’11

Before DiffAdapt  0.002  0.009 0.0121 0.0176 0.0075 0.0166 0.0358 0.0851 0.0768 0.0025 0.0943
After DiffAdapt 0.0002 0.0005 0.0018 0.0037 0.0033 0.0027 0.0038 0.0016 0.0009 0.0012 0.0031

Table 7: Diffusion-Based adaptation for LP constraining results. MSE Before and After fine tuning
for different C' parameters which constraint different parts of the generated LP.

F.2 TImplosion outcome optimization

In addition to the energy yield. We also tested IM-LPGp;¢ capabilities to increase other implosion
outcomes following the approach described in @ We ran this evaluation using surrogate Sg. Table
[8] presents the average increase achieved on the different implosion outcomes. Here each index m for
m™ represents a different implosion outcome.

m? m? m? m° m® m’ m8

Percentage Improvement 24.1% 10.09% 11.78% 15.89% 6.32% 24.5% 7.57%

Table 8: IM-LPGp;s optimization percentage improvement on different implosion outcomes

G Example Pulse Shape Generation

We present some of the pulses generated by the different approaches. Figure 5] for IM-LPGp;s, Figure
[6a for IM-LPGy stm, Figure [6b] for IM-LPGrrransformer, Figure [7a] for IM-LPGgayssianar Figure [7D] for
IM-LPGwmixtureofGaussianAR

Figure [8b| for Tabsyn, and Figure [8a] for VLD. WE can observe that both Tabsyn and VLD fail to
design meaningful LPs.

Figure [9a) and [0b] show LPs generated by IM-LPGpig when asked to increase energy yield generation
and areal density by 10%. We can observe that IM-LPGp;g was able to generate novel LPs, while
maintaining energy expenditure equal or lower than the original design. All the pulses presented were
validated on the real LILAC simulator. We got an average of 21% energy yield gain compared to the
original design.

Figure [I3]shows LPs generated by IM-LPGp after being finetuned using the real experimental data.
G.1 Pulse Shape Constraining

Figure {] shows examples before and after LPs constraining using the approach presented in Section
Here, we aim to constrain on picket power. Figure[I0a]show examples of LPs that have been
constrained on picket power, and Figure [TOb|LPs that are constrained on foot power.
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Figure 5: Pulses Generated by IM-LPGp.
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(a) LPs generated by IM-LPGystm model (b) LPs generated by the IM-LPGrransformer model

Figure 6: LPs generated by predictive predictive auto-regressive models
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(a) LPs generated by IM-LPGgaussianar model (b) LPs generated by the IM-LPGwixtureofGaussianar model

Figure 7: LPs generated by generative auto-regressive model

(a) LPs Generated by VLD. (b) LPs Generated by Tabsyn.
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Figure 9: LPs generate by IM-LPGp;s implosion outcome optimization.
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(a) LPs constraining on Picket Power. (b) LPs constraining on Foot Power.

Figure 10: LPs generate by IM-LPGp;r when doing parameter constraining.
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Figure 11: LPs generated by the model when doing inpainting using IM-LPGp;s.
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Figure 12: LPs generated by the model when doing inpainting using IM-LPGy sty .
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Figure 13: LPs generated by the model when finetuned in the real experimental data.
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