
Solving and Learning Partial Differential Equations
with Variational Q-Exponential Processes

Guangting Yu Shiwei Lan ∗

School of Mathematical & Statistical Sciences
Arizona State University, Tempe, AZ 85287

Abstract

Solving and learning partial differential equations (PDEs) lies at the core of physics-
informed machine learning. Traditional numerical methods, such as finite differ-
ence and finite element approaches, are rooted in domain-specific techniques and
often lack scalability. Recent advances have introduced neural networks and Gaus-
sian processes (GPs) as flexible tools for automating PDE solving and incorporating
physical knowledge into learning frameworks. While GPs offer tractable predictive
distributions and a principled probabilistic foundation, they may be suboptimal
in capturing complex behaviors such as sharp transitions or non-smooth dynam-
ics. To address this limitation, we propose the use of the q-exponential process
(Q-EP), a recently developed generalization of GPs designed to better handle data
with abrupt changes and to more accurately model derivative information. We
advocate for Q-EP as a superior alternative to GPs in solving PDEs and associated
inverse problems. Leveraging sparse variational inference, our method enables
principled uncertainty quantification – a capability not naturally afforded by neural
network-based approaches. Through a series of experiments, including the Eikonal
equation, Burgers’ equation, and an inverse Darcy flow problem, we demonstrate
that the variational Q-EP method consistently yields more accurate solutions while
providing meaningful uncertainty estimates.

Keywords: Probabilistic PDE Solvers, Bayesian Inverse Problems, Data Inhomogeneity, Modeling
Derivatives, Uncertainty Quantification

1 Introduction

It is of fundamental importance in science and technology to solve mathematical models represented
as a system of differential equations and to learn such a complex system by identifying crucial physical
quantities with estimated uncertainty (a.k.a. inverse problems). Over centuries, theoretic foundations
and computational methods have been developed for solving and learning partial differential equations
(PDEs), which is facilitated by the development of modern computers. Traditional numerical
algorithms such as the finite element method remain demanding for both domain knowledge and
computing resources. Recently, there has been increasing interest and effort to efficiently automate
this process using machine learning techniques.

The surge of physics-informed machine learning is driven by two main thrusts: neural network-based
algorithms and Gaussian process (GP)-based probabilistic solvers. The former works are represented
by physics-informed neural networks [PINN 37, 49], the deep Ritz method [9], the deep Galerkin
method [44], and operator learning [20] methods including the Fourier neural operator [FNO 25],
deep operator networks [DeepONet 26] and the neural inverse operator [NIO 28]. See [19] for a
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review of recent advances. The basic idea is to parametrize the solution with a neural network and to
minimize certain loss with respect to network parameters to obtain the solution. Despite empirical
successes, these neural network-type approaches typically require large samples but lack convergence
guarantee or uncertainty quantification (UQ). On the other hand, GP has been introduced to solve
and learn ordinary differential equations (ODEs) [45, 39, 4, 43, 15] and PDEs [32, 33, 35, 38] with
theoretic guarantee [34] and UQ [16]. More recent development on GP for solving and learning
PDEs includes [6, 27, 14, 13, 29, 3]. Different from neural network approaches, these probabilistic
solvers model the solution as a GP conditioned on PDE constraints and identify the solution as the
maximum a posteriori (MAP).

Due to the tractability of conditional and predictive densities, GP has been widely adopted in machine
learning and scientific computing [40]. However, as an L2 regularization, GP tends to be over-smooth
for modeling certain objects with abrupt changes or sharp contrast. For example, it is known in
imaging analysis that GP may not detect or preserve edges very well in an image [23, 7]. On the
other hand, researchers [42, 48] notice that total variation regularization penalizes the L1 norm of
derivatives and yields edge-preserving reconstructions. However, the total variation prior degenerates
to GP prior with increasingly finer discretization mesh [23] and hence loses its edge-preserving
feature. Therefore, [22] propose the Besov prior as an Lq regularization and prove its discretization-
invariant property. [24] further develop the q-exponential process (Q-EP) as a probabilistic definition
of the Besov process with tractable posterior prediction and demonstrate it as a superior generalization
of GP (with q = 2) in modeling inhomogeneous data with sharp transitions.

In this paper, we discover that Q-EP (with q = 1) is better in modeling derivative information than
GP, and hence presents as a preferable candidate for solving PDEs. Heuristically, this is attributed
to Q-EP’s enhanced ability to model inhomogeneous objects with sharp variations, resulting in
better regularization of large derivatives. Theoretically, this can be explained by a faster posterior
convergence rate in Bayesian modeling with Q-EP priors. Unlike optimization-based approaches
[6, 27], we adopt sparse variational inference [46, 47] for Q-EP [30, 5] to solve and learn PDEs,
allowing natural UQ. An emerging challenge is that in addition to mapping the Q-EP mean function
by the nonlinear PDE dynamics, one also needs to propagate the whole variational distribution
through, which no longer renders a Q-EP. We solve this difficulty by linearizing the complicated PDE
mapping. We also extend the resulting variational Q-EP solver for inverse problems.

Connection to the literature Our work is motivated by [6] which optimizes the log-posterior for
MAP as the PDE solution. Our proposed method replaces GP with a more general Q-EP and adopts
variational Bayes for UQ. We investigate Q-EPs in solving various forward and inverse PDEs for a
spectrum of q’s with q = 2 corresponding to GP. As a probabilistic solver, Q-EP may not be best
compared with neural network-based approaches. However, we still include PINN [37] and Bayesian
PINN [B-PINN 49] as baselines in our comparison. We emphasize that our algorithms rely only on
limited data, e.g. boundary values or interior observations, while providing meaningful UQ. Our
work is also related to the recently proposed physics-informed state-space GP [13], which however
focuses on time-dependent PDEs. It adopts a variational spatiotemporal state-space GP and can be
regarded as a related special case of ours for q = 2. Our work on solving and learning PDEs makes
multiple contributions to the field of physics-informed machine learning:

1. It is a novel probabilistic PDE solver based on Q-EP with superior capability of modeling
data inhomogeneity and derivative information.

2. It theoretically justifies the preference of Q-EP over GP in solving and learning PDEs.
3. It provides efficient UQ for solving forward and inverse PDE problems.

The remainder of the paper is organized as follows. Section 2 reviews Q-EP as a flexible prior
in Bayesian models for inhomogeneous data and introduces an extension to incorporate derivative
information. Section 3 explains the details of applying Q-EP to solve the forward and inverse
problems of PDEs. We follow [6] to model the solution as MAP of Q-EP but highlight the challenges
of variational inference including distribution propagation and variational lower bound. In Section
4, we justify the preference of Q-EP for q = 1 over GP (q = 2) in solving PDEs. In Section 5,
we demonstrate the numerical advantages, particularly faster convergence, of Q-EP compared with
alternatives using forward problems involving Eikonal equation and Burgers’ equation and inverse
problems of identifying permeability in the Darcy flow. Section 6 concludes with a discussion of
limitations and future improvements.
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2 Bayesian Modeling with Q-Exponential Process

2.1 Q-Exponential Process

The univariate q-exponential distribution [7] has density πq(u) ∝ exp (− 1
2 |u|

q), whose logarithm
yields an Lq regularization term. [24] generalize the univariate q-exponential random variable to a
multivariate random vector, based on which a stochastic process can be defined. Suppose a function
u(x) is observed at N locations, x1, · · · ,xN ∈ Ω ⊂ Rd. [24] define the multivariate q-exponential
distribution for u := (u(x1), · · · , u(xN )), as a member of the family of elliptic distributions [18].
Definition 1. A multivariate random vector u ∈ RN follows the q-exponential distribution, denoted
as u ∼ q-EDN (µ,C), if it has the following density:

p(u|µ,C, q) = q

2
(2π)−

N
2 |C|− 1

2 r(u)(
q
2−1)N

2 exp

{
−r

q
2

2

}
, r = (u− µ)

T
C−1(u− µ). (1)

Remark 1. The negative log density of q-ED in (1) yields a quantity dominated by some weighted
Lq norm of u− µ, i.e. 1

2r
q
2 = 1

2∥u− µ∥qC. From the optimization perspective, q-ED, when used as
a prior, imposes Lq regularization in obtaining the maximum a posteriori (MAP).

Li et al. [24] prove that the above multivariate q-exponential distribution satisfies the conditions of
Kolmogorov’s extension theorem [31] and thus can be generalized to a stochastic process. For this
purpose, we scale u ∼ q-EDN (0,C) by a factor N

1
2−

1
q so that the scaled q-exponential random

variable u∗ := N
1
2−

1
q u ∼ q-ED∗

N (0,C) has covariance asymptotically finite [Proposition 3.1 of
24]. With a covariance (symmetric and positive-definite) kernel C : Ω × Ω → R, we define the
following q-exponential process (Q-EP) based on the scaled q-exponential distribution.
Definition 2. A (centered) q-exponential process u(x) with a kernel C, q-EP(0, C), is a collection
of random variables such that any finite set, u = (u(x1), · · ·u(xN )), follows a scaled multivariate
q-exponential distribution q-ED∗(0,C), where C = [C(xi,xj)]N×N .
Remark 2. When q = 2, q-EDN (µ,C) reduces to NN (µ,C) and q-EP(0, C) becomes GP(0, C).
When q ∈ (0, 2), q-EP(0, C) lends flexibility to modeling functional data with more regularization
than GP. In practice, q = 1 is often adopted for faster posterior convergence [1, 21] and the capability
of preserving inhomogeneous features (rough functional data, edges in image, etc).

The covariance kernel C is associated with a Hilbert-Schmidt (HS) integral operator TC : L2(Ω) →
L2(Ω), u(·) 7→

∫
Ω
C(·,x′)u(x′)µ(dx′) which has eigen-pairs {λℓ, ϕℓ(·)}∞ℓ=1 such that for ∀ℓ ∈ N,

TCϕℓ(x) = ϕℓ(x)λℓ and ∥ϕℓ∥2 = 1. Assume TC is trace-class, i.e. tr(TC) :=
∑∞

ℓ=1 λℓ < ∞.
Theorem 3.4 of [24] presents a series representation of Q-EP similar to GP and the Besov process [8].

Theorem 2.1 (Karhunen-Loéve). If u(·) ∼ q-EP(0, C) with a trace-class HS operator TC having
eigen-pairs {λℓ, ϕℓ(·)}∞ℓ=1, then we have the following series representation for u(x):

u(x) =

∞∑
ℓ=1

uℓϕℓ(x), uℓ :=

∫
Ω

u(x)ϕℓ(x)
ind∼ q-ED∗(0, λℓ), (2)

where E[uℓ] = 0 and Cov(uℓ, uℓ′) = λℓδℓℓ′ with Dirac function δℓℓ′ = 1 if ℓ = ℓ′ and 0 otherwise.
Moreover, we have E[∥u(·)∥22] =

∑∞
ℓ=1 E[u

2
ℓ ] = tr(TC) <∞.

2.2 Bayesian Regression with Q-EP Priors

Given XN×d = {xn}Nn=1 and yN×1 = {yn}Nn=1, we consider the Bayesian regression model:
y = u(X) + ε, ε ∼ q-EDN (0,Γ),

u ∼ q-EP(0, C). (3)

Li et al. [24, Theorem 3.5] show that the posterior (predictive) distribution is analytically tractable
when both the prior and the likelihood are q-exponential.
Theorem 2.2. For the regression model (3), the posterior distribution of u(x∗) at x∗ is

u(x∗)|y,X,x∗ ∼ q-ED(µ∗,C∗),

µ∗ = CT
∗ (C+ Γ)−1y, C∗ = C∗∗ −CT

∗ (C+ Γ)−1C∗,

where C = C(X,X), C∗ = C(X,x∗), and C∗∗ = C(x∗,x∗).

3



Figure 1: Contrasting Q-EP (q = 1.0, middle row) with GP (q = 2.0, bottom row) against the truth
(top row) for modeling function values and derivatives of Rosenbrock (left) and Rastrigin (right).

2.3 Modeling with Derivative Information

Let u ∼ q-EP(0, C). Denote the function and its derivatives by ũ = (u, ∂
∂xu, · · · ,

∂k

∂xk u) up
to order k. Because linear operation preserves elliptic distributions [18, 10], ũ ∼ q-EP(0, C̃)
is also a Q-EP if C in Definition 2 is differentiable up to order k, where the augmented kernel,
C̃, has a structure illustrated in Table A.1. For example, the (1, 2) block of C̃ is interpreted as
Cov(u(x), ∂

∂x′u(x
′)) = ∂

∂x′ C(x,x′). For solving the second-order PDEs in Section 5, we could
adopt Matérn kernel (matern52 for ν = 5/2), C(x,x′) = σ2(1 +

√
5r + 5

3r
2) exp(−

√
5r), r =√∑d

i=1(xi − x′i)
2/ρ2i , for which the process is twice differentiable in the mean-square sense.

To prepare for solving PDEs, we define ∥ · ∥s,q for u based on (2) with a smoothness parameter s > 0

and an integrability parameter q ≥ 1 [22, 7]: ∥u(·)∥s,q =
(∑∞

ℓ=1 ℓ
τq(s)q|uℓ|q

) 1
q , τq(s) =

s
d +

1
2 −

1
q .

Consider the Banach space Bs,q(Ω) := {u : Ω → R | ∥u(·)∥s,q <∞}. If q = 2 and {ϕℓ}∞ℓ=1 form
the Fourier basis, then Bs,2(Ω) reduces to the Sobolev space Hs(Ω). For u to be regular enough, we
make the assumption on C̃ so that ũ ∈ Lq(Ω) almost surely by the following proposition [21].

Assumption 1. Suppose λ = {λℓ}∞ℓ=1 are eigenvalues of HS operator TC̃ for the kernel C̃. We

assume λ ∈ ℓ
q
2 , i.e. ∥λ∥

q
2
q
2
=

∑∞
ℓ=1 λ

q
2

ℓ <∞.

Proposition 2.1. If ũ(·) ∼ q-EP(0, C̃) with a trace-class HS operator TC̃ satisfying Assumption 1,

then ũ(·) ∈ Lq
P(R∞, Lq(Ω)) := {ũ : Ω× R∞ → R|E(∥ũ∥qq) <∞} and E[∥ũ(·)∥qq] = ∥λ∥

q
2
q
2
<∞.

Proof. See Appendix B.

Let Ũ := ũ(X)N×(1+kd) = [u(X), ∂
∂xu(X), · · · , ∂k

∂xk u(X)]. For brevity, we denote D = 1 + kd.
Then YN×D and EN×D are the corresponding observations and errors respectively in the model (3).
We apply this model to Rosenbrock (f(x) =

∑d
i=1[100(xi+1 − x2i )

2 + (1 − xi)
2]) and Rastrigin

(f(x) = 10d+
∑d

i=1[x
2
i − 10 cos(2πxi)]) test functions with function values and their derivatives

observed on a 20× 20 grid, i.e. N = 400, d = 2, k = 1. Figure 1 contrasts Q-EP (q = 1.0) and GP
(q = 2.0) in predicting function and derivative values on the 50× 50 grid. Q-EP outperforms GP in
yielding a more accurate recovery, especially in the more challenging example of Rastrigin function.

Heuristically, the superiority of Q-EP in modeling derivatives over GP comes from its improved
ability to handle inhomogeneous data with sharp variation. From the perspective of the Lq norm of
the gradient, the L1 norm imposes stronger regularization than the L2 norm on large values in ∇xf ,
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resulting in a better model for prediction. In Section 4 we will give a more rigorous justification. In
the following, we take advantage of Q-EP’s capability of modeling derivative information and apply
it to solve PDEs.

3 Solving Partial Differential Equations with Q-EP

3.1 Bayesian Solver

Consider the following general PDE defined on a bounded domain Ω ⊂ Rd:

D(u)(x) = f(x), x ∈ Ω,

B(u)(x) = g(x), x ∈ ∂Ω.
(4)

where D : Bs,q(Ω) → Lq(Ω) is a differential operator and B : Bs,q(∂Ω) → Lq(∂Ω) is a boundary
operator with data f ∈ Lq(Ω) and g ∈ Lq(∂Ω). Here we assume a sufficiently large smoothness
index s > 0 such that the PDE (4) is well-defined pointwise and has a unique strong solution [6].
Let Ω = Ω ∪ ∂Ω. For convenience of exposition, we denote the joint operator as P = (D,B) :
Bs,q(Ω) → Lq(Ω), and the right-hand side function as h = (f, g) ∈ Lq(Ω).

A set of collocation points X = {xn}Nn=1 consists of Nd interior points Xd = {x1, · · · ,xNd
∈ Ω}

and Nb boundary points Xb = {xNd+1, · · · ,xN ∈ ∂Ω}, i.e. X = Xd ∪Xb, and N = Nd + Nb.
Regarding the evaluation of P(u) on X, we make the following assumption so that we can properly
define the likelihood model.
Assumption 2. There exists a differentiable function P : RD → R such that P(u)(x) = P (ũ(x)).
And further there is a constant C > 0 such that ∥∇P∥ ≤ C.

Then P(u)(X) becomes a nonlinear function of ũ(X), denoted as P (ũ(X)) = P(u)(X). Let
h = h(X). The probabilistic solver seeks to obtain Ũ = ũ(X) based on observations (P (ũ(X)),h).

Even if we model ũ(X) ∼ q-ED(ũ,S) with ũ,S to be specified in (8) in Section 3.2, the nonlinear
mapping P would not render P (ũ(X)) another q-ED random variable. Therefore, to properly define
the likelihood model, we propose the following distribution propagation by linearizing P :

P (ũ(X)) ≈ P (ũ0) +∇P (ũ0)(ũ(X)− ũ0) ∼ q-ED(m,Γ),

m = P (ũ0) +∇P (ũ0)(ũ− ũ0), Γ = ∇P (ũ0)S∇P (ũ0)
T
+ δIN .

(5)

where the Taylor expansion of P is about ũ0, which can be chosen as ũn−1 from the previous training
epoch or simply ũ, and δ > 0 is a small nugget to ensure positive definiteness of Γ.

Let YN×1 := P (ũ(X)). The Q-EP solver aims to minimize the discrepancy E = Y − h. The
potential (negative log-likelihood) function, Φ : Lq(Ω)× RN → R, can then be defined:

Φ(ũ;Y) = −φ(r;Γ, N), r = (m− h)
T
Γ−1(m− h). (6)

where φ(r;Γ, N) := − 1
2 log |Γ| +

N
2

(
q
2 − 1

)
log r − 1

2r
q
2 . Under Assumption 2, Φ is Lipschitz

continuous in ũ, which is used in the convergence theorem in Section 4.
Proposition 3.1. Suppose that the PDE mapping P satisfies Assumption 2. Let q ∈ (0, 2]. Then for
every r > 0, there exists L = L(r) > 0 such that for every Y ∈ RN and for all ũ1, ũ2 ∈ Lq(Ω) with
max{∥ũ1∥q, ∥ũ2∥q} < r, |Φ(ũ1;Y)− Φ(ũ2;Y)| ≤ L∥ũ1 − ũ2∥q .

Proof. See Appendix B.

Therefore, the Bayesian model for the solution u to (4) can be summarized as

Y|ũ(X),h ∼ q-EDN (h,Γ),

ũ ∼ q-EP(0, C̃).
(7)

Our goal is to infer the posterior p(Ũ|Y) ∝ p(Y|Ũ)p(Ũ). Note that because the extended function
ũ(X) enters the likelihood model in a nonlinear way, Theorem 2.2 does not apply. In the following,
we solve the inference problem using variational Bayes.
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3.2 Variational Inference

We approximate the posterior p(Ũ|Y) with some variational distribution q(Ũ) using the varia-
tional Bayes method, which aims to minimize the Kullback–Leibler divergence KL(q(Ũ)∥p(Ũ|Y)).
Because log p(Y) = KL(q(Ũ)∥p(Ũ|Y)) + L(q(Ũ)), it reduces to maximizing the lower bound
L(q(Ũ)). The sparse variational approximation [46, 47] is adopted by introducing inducing points
X̃ ∈ RM×d with their function values Ṽ = ũ(X̃) ∈ RM×D.

With the variational distribution for inducing values q(Ṽ) ∼ q-EDMD(µ,Σ), the marginal varia-
tional distribution q(Ũ) can be obtained as [17, 30]

q(Ũ) =

∫
q(Ũ, Ṽ)dṼ =

∫
p(Ũ|Ṽ)q(Ṽ)dṼ ∼ q-ED(ũ,S),

ũ = C̃NM C̃−1
MMvec(µ), S = C̃NN + C̃NM C̃−1

MM (Σ − C̃MM )C̃−1
MM C̃MN .

(8)

The final evidence lower bound (ELBO) L∗(q(Ũ)) is (Refer to Section A.1 for more details.)

L∗(q(Ũ)) =φ(ũTΓ−1ũ+ tr(Γ−1S);Γ, N)

+
1

2
log |Σ|+ φ(⟨vec(µ)TC̃−1

MMvec(µ)⟩+ tr(ΣC̃−1
MM ); C̃MM ,MD).

(9)

The variational solution q(Ũ) can be obtained by maximizing the ELBO (9) with respect to the
variational parameters (µ,Σ, X̃) and hyper-parameters in the kernel C. By introducing the M
inducing points, the overall computational complexity is reduced from O(N3) to O(NM2) [47].

3.3 Bayesian Inverse Problems

The above Bayesian framework can be readily extended to solve inverse problems. The following
adaptation enables us to obtain both forward and inverse PDE solutions simultaneously.

Suppose that the PDE (4) contains a quantity of interest, a(x), which could appear in the differential
equation D or as part of the boundary condition B. The task of Bayesian inverse problems is to
find a true solution, a†, with proper UQ based on observations. Suppose a is differentiable enough
and we denote ã = (a, ∂

∂xa, · · · ,
∂k′

∂xk′ a) to the order k′ ≤ k. Now the joint operator P applies to
both u and a, which produces a nonlinear function of ũ(X), ã(X) when evaluated on X, denoted as
P (ũ(X), ã(X)) = P(u, a)(X).

In addition, there is an observation operator O such that observations, O(u)(X) = u(Xo), are
obtained on some set of No observation points, Xo ⊂ Ω with |Xo| = No. This can be achieved by
solving (4) with true a† in simulations or simply modeling measurement data as noisy realization
of (4) in real-world applications. Let Ñ = N + No. We supplement the joint equation operator
P with the observation operator O to form an augmented operator P̃ = (P,O). Therefore, we

have ỸÑ×1 = P̃(u, a)(X) = P̃ (ũ(X), ã(X)) = [P (ũ(X), ã(X))
T
, O(ũ(X))

T
]
T

. Similarly, we

augment the right-hand side data h with observed u(Xo) to make h̃Ñ×1 = [hT, u(Xo)
T
]
T

.

If we model ã(X) using q(ã(X)) ∼ q-ED(ã,Sa) with variational mean and covariance ã,Sa

respectively, then q(ũ(X))q(ã(X)) propagates through the PDE dynamics similarly as in (5). Finally,
we summarize the Bayesian inverse model for a(x) as follows:

Ỹ|ũ(X), ã(X), h̃ ∼ q-EDÑ (h̃, Γ̃), Γ̃ = ∇P̃ (ũ0, ã0)

[
Su 0
0 Sa

]
∇P̃ (ũ0, ã0)

T
+ δIÑ ,

ũ ∼ q-EP(0, C̃u), ã ∼ q-EP(0, C̃a).
(10)

where ã0 can be similarly chosen as ãn−1 from the previous training epoch or simply ã. The
variational Bayes procedure in Section 3.2 can be modified accordingly to obtain the variational
solution of ã(X)|Ỹ. Meanwhile, we obtain the variational solution of ũ(X)|Ỹ as a byproduct.
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4 Convergence Theorem

In this section, we study the posterior contraction of the Bayesian model (7) in the infinite data limit.
Similar theory can be developed for the model (10). We focus on q ∈ [1, 2] and leave the technically
more challenging case q ∈ (0, 1) to future study. For brevity, we denote u = ũ, C = C̃, and n = N .

Consider the separable Banach space X = (Lq(Ω), ∥ · ∥q) ⊃ (Bs,q(Ω), ∥ · ∥s,q) for s > d
(

2
q − 1

2

)
,

and Y = Rn. Define the concentration function of Q-EP measure Π at u = u† as

φu†(ε) = inf
h∈Bs,q(Ω):∥h−u†∥q≤ε

1

2
∥h∥qs,q − log Π(∥u∥q ≤ ε). (11)

Let P(n)
u be the measure of the observations Y(n) on (Y,B, µ0) having density pu and corresponding

potential function Φ(u; ·) with respect to the Lebesgue measure µ0, i.e. dP(n)
u

dµ0
(Y) = pu(Y) ∝

exp(−Φ(u;Y)). Define the Hellinger distance as d2n,H(u, u′) =
∫
(
√
pu −√

pu′)2dµ0. We have the
following posterior contraction theorem.
Theorem 4.1 (Posterior Contraction). Let u ∼ q-EP(0, C) with C satisfying Assumption 1 in
Θ := Lq(Ω) and P(n)

u is the measure of Y(n) parameterized by u with PDE (4) satisfying Assumption
2. If the true value u† ∈ Θ is in the support of u, and εn satisfies the rate equation φu†(εn) ≤ nε2n
with εn ≥ n−

1
2 , then there exists Θn ⊂ Θ such that Πn(u ∈ Θn : dn,H(u, u†) ≥Mnεn|Y(n)) → 0

in P (n)

u† -probability for every Mn → ∞.

Proof. See Appendix B.

Denote a ∧ b = min{a, b}, a ∨ b = max{a, b}, and x+ = x ∨ 0. By solving the inequality
φu†(εn) ≤ nε2n for the minimal εn, we obtain the posterior contraction rate as follows.
Theorem 4.2 (Contraction Rate). Let u ∼ q-EP(0, C) with C satisfying Assumption 1 in Θ := Lq(Ω).
The rest of the settings are the same as in Theorem 4.1. If the true value u† ∈ Bs†,q†(Ω) with s† >

s′ +
(

d
q†

− d
q

)
+

, s′ = d
q −

d
2 , and q†, q ∈ [1, 2], then we have the rate of the posterior contraction as

εn = n
− σ(s,q,s†,q†)−s′

2(σ(s,q,s†,q†)−s′)+q(s−σ(s,q,s†,q†)) , where σ(s, q, s†, q†) =
(
s− d

q

)∧(
s† −

(
d
q†

− d
q

)
+

)
.

Proof. See Appendix B.

Remark 3. If we set the smoothness parameter s = s†+ d
q −

(
d
q†

− d
q

)
+

, and allow the integrability

parameter q ≤ q†, then the contraction rate εn is maximized as ε†n = n
− 1

2+ d
s†−s′ > n− 1

2 . Note
that this optimal rate is achieved regardless of the value of modeling regularization parameter q as
long as q ≤ q†. This implies that when modeling inhomogeneous data and derivative information,
under-smoothing (with smaller regularization parameter q) is preferred to over-smoothing. When the
true integrability q† is at least L1, setting q = 1 guarantees the fastest convergence of the posterior.
In the following section, we will demonstrate such optimal choice with various numerical examples.

5 Numerical Experiments

In this section, we test variational Q-EP for solving and learning PDEs. Using the Eikonal equation,
Burgers’ equation, a nonlinear elliptic equation (Section C.3), and an inverse problem involving
the Darcy flow, we investigate the proposed method for a variety of different qs. We include PINN
[37] and B-PINN [49] as baselines and the variational GP as a special case with q = 2 and mainly
compare them using the relative error of the estimated solution û with reference to the true solution
u†: RLE-p = ∥u†−û∥p

∥u†∥p
for p = 1, 2,∞. Q-EP with q = 1 outperforms PINN and variational GP in all

cases and attains the best results in most comparisons. The numerical evidence also supports that
Q-EP converges the fastest with the optimal choice of q = 1.
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Figure 2: Solving Eikonal equation (12) using high-resolution finite difference method (upper left), PINN
(lower left), Q-EPs (middle two in upper row: q = 0.8; right two in upper row: q = 1.0; middle two in lower
row: q = 1.5), and GP (right two in lower row: q = 2.0) respectively. Blue crosses are learned inducing points.

In most experiments, we choose the interior collocation points on a 24 × 24 mesh grid and the
corresponding 100 boundary collocation points unless otherwise stated. For the sparse variational
inference,M = 256 inducing points are randomly initialized and learned by optimizing the ELBO (9).
The kernel C of Q-EP/GP is chosen to be matern52 with the hyperparameters, e.g. the correlation
strength, automatically tuned in the python package GPyTorch [11] implemented based on PyTorch.
PINN is configured to have neural network parameters (weights and biases) of similar size to the
variational Q-EP model. The computer codes are publicly available at https://github.com/
lanzithinking/Diff_QEP.

5.1 Eikonal Equation

First, we consider the following regularized Eikonal equation on Ω = [0, 1]2 also considered in [6]:

|∇u(x)|2 − ε∆u(x) = f(x)2, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.
(12)

where f ≡ 1 and ε = 0.1. Based on the set-up in Section 3.1, we define the nonlinear function
D(u, d1u, d2u, d

2
1u, d

2
2u) = (d1u)

2 + (d2u)
2 − ε(d21u + d22u). Then the observations are Y =

P (ũ(X)) =

[
D(u(Xd),

∂
∂x1

u(Xd),
∂

∂x2
u(Xd),

∂2

∂x2
1
u(Xd),

∂2

∂x2
2
u(Xd))

u(Xb)

]
, and h =

[
f(Xd)

2

0Nb

]
. We

obtain Nd = 242 interior and Nb = 100 boundary collocation points. Then we apply the variational
Bayes in Section 3.2 to solve (12) with M = 256 inducing points. Though not required for
convergence, we train each algorithm for 5000 iterations for fair comparison (PINN and B-PINN
need much more training epochs than Q-EP solvers to converge).

Figure 2 compares solutions and uncertainty estimates generated by a variety of Q-EP solvers for
q = 0.8, 1.0, 1.5 and 2.0 (GP) respectively. We solve the equation using a highly-resolved finite
difference method with the Cole-Hopf transformation [6] and use it as the true solution for comparison
(upper left). We notice that the solution by PINN (lower left) is much worse and UQ is not available.
All Q-EP solvers (q < 2) produce better solutions than GP (q = 2) which does not precisely
characterize the pyramid feature of the true solution. Only two solvers with q = 0.8 and 1.0 yield
solutions that correctly match the range of true solution. GP also manifests higher uncertainty in
its generated solution. Table C.1 further verifies the superior accuracy of Q-EP solvers compared
to GP and PINN (B-PINN) in terms of multiple error metrics including MAE, MSE and RLE by
repeating the experiments for 10 times with different random seeds. In this example, Q-EP solver
with q = 1.0 attains the result comparable to the most accurate solution. Note that with similar size
of collocation points, our best results (4.43e-2 in L2 error and 1.03e-2 in L∞ error) are comparable
to those reported (1.64e-2 in L2 error and 7.76e-2 in L∞ error) in [6] from which UQ is absent.

5.2 Burgers’ Equation

Next, we test our Q-EP solvers on the Burgers’ equation [6] with ν = 0.1:
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Figure 3: Comparing convergence of Q-EP (left three in top row: q = 1.0), GP (left three in middle
row: q = 2.0) and PINN (left three in bottom row) in solving Burgers’ equation (13), with the right
column illustrating the error reducing in L1 norm (top), L2 norm (middle), and L∞ norm (bottom)
respectively. Blue crosses are learned inducing points. Shaded regions are standard errors based on
10 repeated experiments.

∂

∂t
u+ u

∂

∂x
u− ν

∂2

∂x2
u = 0, (x, t) ∈ (−1, 1)× (0, 1],

u(x, 0) = − sin(πx), x ∈ (−1, 1),

u(−1, t) = u(1, t) = 0, t ∈ (0, 1].

(13)

We use the same experiment setup as above. Figure C.1 compares the solutions by a highly-resolved
finite difference method (upper left, treated as true solution for comparison purpose), PINN (lower
left), Q-EP (right three in upper row: q = 1.0), and GP (right three in lower row: q = 2.0). Q-EP
is about one order of magnitude more accurate than PINN and GP, which can be verified from the
pointwise error plots and Table 1. The plots of posterior standard deviation on the right column
also indicate meaningful uncertainty in the middle area around x = 0 where the shock is difficult to
resolve. Q-EP still achieves one order of magnitude lower uncertainty compared with GP.

Table 1: Comparing accuracy of various solvers for Burgers’ equation (13) in terms of mean absolute error
(MAE), mean squared error (MSE), and relative errors in L1 norm (RLE-1), L2 norm (RLE-2), and L∞ norm
(RLE-∞) respectively. Result in each cell are averaged over 10 experiments with different random seeds; values
after ± are standard deviations of these repeated experiments.

Model (q) MAE MSE RLE-1 RLE-2 RL-∞
PINN 5.81e-2 ± 1.03e-4 7.12e-3 ± 3.96e-4 0.1508 ± 0.0017 0.1896 ± 0.0052 0.2842 ± 0.0071
B-PINN 2.94e-2 ± 1.57e-2 1.67e-3 ± 1.58e-3 0.0785 ± 0.0420 0.0833 ± 0.0409 0.1327 ± 0.0446
0.5 7.77e-2 ± 7.09e-2 3.50e-2 ± 7.15e-2 0.2018 ± 0.3751 0.2056 ± 0.3764 0.2177 ± 0.3838
0.8 1.56e-2 ± 4.96e-3 1.59e-3 ± 5.25e-3 0.0405 ± 0.0780 0.0434 ± 0.0804 0.0529 ± 0.0924
1.0 9.33e-3 ± 1.76e-4 1.77e-4 ± 2.16e-4 0.0242 ± 0.0128 0.0266 ± 0.0140 0.0324 ± 0.0145
1.2 1.87e-2 ± 3.23e-4 5.92e-4 ± 4.06e-4 0.0485 ± 0.0151 0.0522 ± 0.0168 0.0560 ± 0.0181
1.5 2.64e-2 ± 8.58e-4 1.31e-3 ± 1.23e-3 0.0684 ± 0.0262 0.0754 ± 0.0316 0.0854 ± 0.0430
2.0(Gaussian) 7.13e-2 ± 8.68e-3 1.08e-2 ± 1.28e-2 0.1848 ± 0.0908 0.2068 ± 0.1118 0.2376 ± 0.1456
2.5 2.26e-1 ± 3.20e-1 2.49e-1 ± 6.04e-1 0.5879 ± 0.8296 0.6669 ± 0.9576 0.7558 ± 1.0521

Table 1 compares the accuracy of solutions in terms of MAE, MSE and RLE, for which Q-EP with
q = 1.0 attains the most accurate one, verifying its best performance. The error for Q-EP models
does not decrease monotonically with q > 0, but reaches the lowest at q = 1.0. To further investigate
the convergence, we plot solutions by Q-EP (top row: q = 1.0), GP (middle row: q = 2.0), and
PINN (bottom row) in Figure 3 at 10 (first column), 100 (second column), and 1000 (third column)
iterations respectively. We can tell that Q-EP with q = 1.0 converges the fastest to the best estimate,
which is confirmed by the error-reducing plots on the right column. Note that in this example, our
algorithm does not need random perturbation of mesh grid as required by [6].
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Figure 4: Solving inverse Darcy flow (14) using PINN (second column), Q-EP (right three in upper
row: q = 1.0), and GP (right three in lower row: q = 2.0) respectively. Upper left: true inverse
solution a†; lower left: fine-resolution finite element solution u† to (14) with a†. Blue crosses are
learned inducing points, and red dots indicate locations of observations.

5.3 Inverse Darcy Flow

Now we consider an inverse problem that involves the following Darcy flow:

−div(exp(a)∇u)(x) = f(x), x ∈ Ω := [0, 1]2,

u(x) = 0, x ∈ ∂Ω.
(14)

where the true coefficient such that exp(a†(x)) = exp(sin(2πx1)+sin(2πx2))+exp(− sin(2πx1)−
sin(2πx2)) [6] is plotted in the upper left panel of Figure 4. We generate data by solving (14) with
a† on a mesh 80× 80 to obtain u† using the finite element method, illustrated in the lower left panel
in Figure 4. On a (coarser) mesh Nd = 20× 20 used for inference, we randomly select No = 100
points Xo in Ω and obtain observations as u†(Xo) + ε with noise ε ∼ N(0, γ2INo) for γ = 10−3.

We solve the inverse problem of finding a in (14) given these observations. With Nd = 400 interior
and Nb = 84 boundary collocation points and M = 256 inducing points, we train Q-EP solvers for
2000 iterations. Figure 4 illustrates the forward PDE solution u (third column), the inverse solution
a (forth column), and the uncertainty of a (rightmost column). Compared with the true a†, Q-EP
(q = 1.0) recovers a more faithfully than GP (q = 2.0) and PINN (upper in the second column).
Meanwhile, Q-EP also generates the solution u much closer to that by the finite element method, as
shown in the lower left panel. Higher uncertainty is observed by Q-EP (q = 1.0) around the corners
with less data (Figure C.3), reflecting the configuration of observations. If run for longer (e.g. 5000)
iterations, PINN may improve its forward solution, but still gets a poor inverse solution (Figure C.4).

Table C.5 compares the relative errors (RLEs) of forward and inverse solutions. Q-EP with q = 1.0
also achieves the best or comparable solutions. Here we emphasize that all the results are based
on only No = 100 observations from one solution, as opposed to the thousands of PDE solutions
typically used in operator learning algorithms. Figure C.5 compares the inverse solutions of Q-EP
with those of GP in increasingly finer meshes. If we view training in finer mesh as a process to see
more data, Q-EP (q = 1.0) has already converged fast to better estimates in coarser mesh, leaving
less room to improve compared to GP (q = 2.0).

6 Conclusion

In this paper, we propose variational Q-EP to solve and learn PDEs. We advocate Q-EP with q = 1.0
over GP (q = 2.0) for modeling derivative information and hence a better probabilistic solver for
PDEs. The fastest convergence at q = 1.0 is theoretically justified and empirically verified using two
nonlinear forward PDE problems and an inverse Darcy flow problem.

One of the limitations might be the variational inference adopted in this paper. The highly nonlinear
nature of some PDEs imposes challenges on the quality of variational approximation to the resulting
posterior, which in turn may undermine both the solution accuracy and the associated UQ. A possible
remedy could be more flexible inference methods, such as normalizing flow [41, 36].
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Technical Appendices for “Solving and Learning Partial Differential
Equations with Variational Q-Exponential Process"

A Calculations

Table A.1: The structure of kernel C̃ with derivatives.

Cov(·, ·) u(x′) ∂
∂x′u(x

′) ∂2

∂(x′)2u(x
′)

u(x) C(x,x′) ∂
∂x′ C(x,x′) ∂2

∂(x′)2 C(x,x
′)

∂
∂xu(x)

∂
∂xC(x,x

′) ∂2

∂x∂x′ C(x,x′) ∂3

∂x∂(x′)2 C(x,x
′)

∂2

∂x2u(x)
∂2

∂x2 C(x,x′) ∂3

∂x2∂x′ C(x,x′) ∂4

∂x2∂(x′)2 C(x,x
′)

A.1 Variational Lower Bound

Because log p(Y) = KL(q(Ũ)∥p(Ũ|Y)) + L(q(Ũ)), it reduces to maximizing the lower bound
L(q(Ũ)). The sparse variational approximation [46, 47] is adopted by introducing inducing points
X̃ ∈ RM×d with their function values Ṽ = ũ(X̃) ∈ RM×D. Hence the joint distribution of Y and
Ũ can be augmented by including Ṽ:

p(Y, Ũ) ∝ p(Y|Ũ)p(Ũ|Ṽ,X, X̃)p(Ṽ|X̃),

where we have vec(Ṽ)|X̃ ∼ q-EDMD(0, C̃MM ) and the conditional distribution

vec(Ũ)|Ṽ,X, X̃ ∼ q-EDND(C̃NM C̃−1
MMvec(Ṽ), C̃NN − C̃NM C̃−1

MM C̃MN ).

Now we approximate the joint posterior p(Ũ, Ṽ|Y) with the following variational distribution

q(Ũ, Ṽ) = p(Ũ|Ṽ)q(Ṽ), q(Ṽ) ∼ q-EDMD(µ,Σ),

where the covariance Σ is of size MD ×MD and can be chosen as a (block)-diagonal matrix for
convenience. A standard variational Bayes procedure yields the variational bound:

log p(Y) ≥
∫
q(Ũ, Ṽ) log

p(Y|Ũ)p(Ũ|Ṽ,X)p(Ṽ)

q(Ũ, Ṽ)
dŨdṼ

=

∫
p(Ũ|Ṽ)q(Ṽ)dṼ log p(Y|Ũ)dŨ+

∫
q(Ṽ) log

p(Ṽ)

q(Ṽ)
dṼ

= Eq(Ũ) log p(Y|Ũ)−KL(q(Ṽ)∥p(Ṽ)).

where the marginal variational distribution q(Ũ) can be obtained as [17, 30]

q(Ũ) =

∫
q(Ũ, Ṽ)dṼ =

∫
p(Ũ|Ṽ)q(Ṽ)dṼ ∼ q-ED(ũ,S)

ũ = C̃NM C̃−1
MMvec(µ), S = C̃NN + C̃NM C̃−1

MM (Σ − C̃MM )C̃−1
MM C̃MN .

Denote by φ(r;C, N) := − 1
2 log |C|+ N

2

(
q
2 − 1

)
log r − 1

2r
q
2 which is convex for q ∈ (0, 2]. Let

φ0(r) = φ(r;Γ, N) and r(Y) = (Y − h)
T
Γ−1(Y − h) be a quadratic form of random variable Y.

Then log p(Y|Ũ) = φ0(r(Y)). Therefore, by Jensen’s inequality, we can bound from below as

⟨log p(Y|Ũ)⟩q(Ũ) = ⟨φ0(r(Y))⟩q(Ũ) ≥ φ0(⟨r(Y)⟩q(Ũ)), ⟨r(Y)⟩q(Ũ) = ũTΓ−1ũ+ tr(Γ−1S).

Now we compute the K-L divergence KLṼ := KL(q(Ṽ)∥p(Ṽ)):

KLṼ =

∫
q(Ṽ) log q(Ṽ)dṼ −

∫
q(Ṽ) log p(Ṽ)dṼ = −Hq(Ṽ)− ⟨log p(Ṽ)⟩q(Ṽ).
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Denote by r(Ṽ) = vec(Ṽ − µ)
T
Σ−1vec(Ṽ − µ). Then log q(Ṽ) = φ(r(Ṽ);Σ,MD). From

[Proposition A.1. of 24] we know that r
q
2 ∼ χ2(MD). Therefore

Hq(Ṽ) =
1

2
log |Σ|+ MD

2

(q
2
− 1

) 2

q
H(χ2(MD)) +

MD

2

=
1

2
log |Σ|+ MD

2

(
1− 2

q

)[
MD

2
+ log

(
2Γ

(
MD

2

))
+

(
1− MD

2

)
ψ

(
MD

2

)]
+
MD

2
.

Let φ1(r) := φ(r; C̃MM ,MD). Then by Jensen’s inequality

⟨log p(Ṽ)⟩q(Ṽ) = ⟨φ1(vec(Ṽ)
T
C̃−1

MMvec(Ṽ))⟩q(Ṽ) ≥ φ1(⟨vec(Ṽ)
T
C̃−1

MMvec(Ṽ)⟩q(Ṽ)),

⟨vec(Ṽ)
T
C̃−1

MMvec(Ṽ)⟩q(Ṽ) = ⟨vec(µ)TC̃−1
MMvec(µ)⟩+ tr(ΣC̃−1

MM ).

Therefore, the final evidence lower bound (ELBO) L∗(q(Ũ)) is

log p(E) ≥ L∗(q(Ũ)) =φ(ũTΓ−1ũ+ tr(Γ−1S);Γ, N)

+
1

2
log |Σ|+ φ(⟨vec(µ)TC̃−1

MMvec(µ)⟩+ tr(ΣC̃−1
MM ); C̃MM ,MD).

B Proofs

Notations: ≲ means “less than or approximately equal to"; an ≲ bn implies an ≤ Cbn for some
constant C > 0. ≍ means “asymptotically equal to"; an ≍ bn implies limn→∞

an

bn
= c for some

constant c.

Proof of Proposition 2.1. Note r(ũℓ)
q
2 = λ

− q
2

ℓ |ũℓ|q ∼ χ2(1) for all ℓ ∈ N by Proposition A.1. of

[24]. Denote χ2
ℓ := λ

− q
2

ℓ |ũℓ|q
iid∼ χ2(1). Hence ∥ũ∥qq =

∑∞
ℓ=1 λ

q
2

ℓ χ
2
ℓ becomes an infinite mixture of

chi-squared random variables whose density is analytically intractable. Yet we have

E[∥ũ(·)∥qq] =
∞∑
ℓ=1

λ
q
2

ℓ E[χ
2
ℓ ] =

∞∑
ℓ=1

λ
q
2

ℓ <∞,

if Assumption 1 holds. Thus it completes the proof.

Proof of Proposition 3.1. Based on (5) and (6), the potential Φ(ũ;Y) = −φ(r;Γ, N) where
φ(r;Γ, N) := − 1

2 log |Γ| +
N
2

(
q
2 − 1

)
log r − 1

2r
q
2 is convex in r if q ∈ (0, 2], and r = r(ũ)

with

r(ũ) = (Aũ− b)
T
Γ−1(Aũ−b), A = ∇P (ũ0), b = −P (ũ0)+∇P (ũ0)ũ0+h, Γ = ASAT+δI.

Since convex function is Lipschitz continuous over compact domain, it suffices to prove that r(ũ) is
bounded (both bounds achievable) and Lipschitz.

Note that r(ũ) ≤ δ−1∥Aũ−b∥22 ≤ δ−1(∥A∥∥ũ∥+∥b∥)2 where ũ represents a PDE solution in the
compact domain Ω ⊂ Rd and is therefore bounded by some M > 0. By Assumption 2, ∥A∥ ≤ C.
Therefore, 0 ≤ r(ũ) ≤ δ−1(CM + ∥b∥)2.

On the other hand, we have the gradient of the quadratic form r(ũ) bounded as

∥∇r(ũ)∥ = 2∥ATΓ−1(Aũ− b)∥ ≤ 2δ−1∥A∥∥Aũ− b∥ ≤ 2δ−1C(CM + ∥b∥).
Hence r(ũ) is Lipschitz.

Lastly, there exists L1, L2 > 0 such that

|Φ(ũ1;Y)− Φ(ũ2;Y)| = |φ(r(ũ1);Γ, N)− φ(r(ũ2);Γ, N)|
≤ L1|r(ũ1)− r(ũ2)| ≤ L1L2∥ũ1 − ũ2∥q

≤ 2L1L2

(
N

|Ω|

) 1
q

∥ũ1 − ũ2∥q

assuming the collocation points are uniformly sampled. Therefore, it completes the proof.
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According to Theorem 3.1 and Lemma 5.14 of [1], the following general contraction conditions hold
for Q-EP and will be used in the proof of posterior contraction Theorem 4.1.
Theorem B.1. Let µ be a q-EP(0, C) measure satisfying Assumption 1 in the separable Banach
space (Lq(Ω), ∥ · ∥q), where q ∈ [1, 2]. Let u ∼ µ and the true parameter u† ∈ Lq(Ω). Assume
εn > 0 such that φu†(εn) ≤ nε2n, where nε2n ≳ 1. Then for any C > 1, there exists a measurable
set Bn ⊂ Lq(Ω) and a constant R > 0 depending on C and q, such that

logN(4εn, Bn, ∥ · ∥q) ≤ Rnε2n, (15)

µ(u /∈ Bn) ≤ exp(−Cnε2n), (16)

µ(∥u− u†∥s′,q < 2εn) ≥ exp(−nε2n), (17)

where N(4εn, Bn, ∥ · ∥q) is the minimal number of ∥ · ∥q-balls of radius 4εn to cover Bn.

We need the following lemma to bound the Hellinger distance, Kullback-Leibler (K-L) divergence,
and K-L variation to complete the proof of Theorem 4.1 [21].
Lemma B.1. Suppose the potential function Φ (6) satisfies Lipschitz continuity in u as in Proposition
3.1. Then we have

• dH(pu, pu′) ≲ ∥u− u′∥q .

• K(pu, pu′) ≲ ∥u− u′∥q .

• V (pu, pu′) ≲ ∥u− u′∥2q .

Proof. First, we consider K-L divergence:

K(pu, pu′) =

∫
log

pu
pu′

pudµ =

∫
(Φ(u′; y)− Φ(u; y))pudµ(y) ≤ L∥u− u′∥q

by Proposition 3.1. Similarly, we have for K-L variation:

V (pu, pu′) =

∫ (
log

pu
pu′

)2

pudµ =

∫
|Φ(u′; y)− Φ(u; y)|2pudµ(y) ≤ L2∥u− u′∥2q.

Lastly, we bound the Hellinger distance:

2d2H(pu, pu′) =

∫
(
√
pu −√

pu′)2dµ =

∫ [
1− exp

(
1

2
Φ(u; y)− 1

2
Φ(u′; y)

)]2
pudµ(y)

≤
∫
C

4
|Φ(u′; y)− Φ(u; y)|2pudµ(y) ≤

CL2

4
∥u− u′∥2q.

where the inequality holds for ∥u− u′∥2q small enough.

Proof of Theorem 4.1. Based on [Theorem 1 of 12], it suffices to verify the following two conditions
(the entropy condition (2.4), and the prior mass condition (2.5)) for some universal constants η,K > 0
and sufficiently large k ∈ N,

sup
ε>εn

logN(ηε/2, {u ∈ Θn : dn,H(u, u†) < ε}, dn,H) ≤ nε2n, (18)

Πn(u ∈ Θn : kεn < dn,H(u, u†) ≤ 2kεn)

Πn(Bn(u†, εn))
≤ eKnε2nk

2/2, (19)

where the left side of (18) is logarithm of the minimal number of dn,H -balls of radius ξε/2 needed
to cover a ball of radius ε around the true value u†; Bn(u

†, εn) = {u ∈ Θ : 1
nK(u†, u) ≤

ε2, 1
nV (u†, u) ≤ ε2} with K(u†, u) = K(pu† , pu) and V (u†, u) = V (pu† , pu).

Since u(·) ∈ Lq(Ω) satisfy conditions for Theorem B.1, there exists Bn ⊂ Lq(Ω) such that (15)-
(17) holds. Now we set Θn = Bn. For ∀u, u′ ∈ Θn such that ∥u(·) − u′(·)∥q ≤ εn, we have
dn,H(u, u′) ≲ ∥u − u′∥q ≤ εn by Lemma B.1. Therefore by (15) we have the following global
entropy bound holds

logN(εn,Θn, dn,H) ≤ Rnε2n,
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which is stronger than the local entropy condition (18).

Now by Lemma B.1 and (17), we have

Πn(Bn(u
†, εn)) ≥ Πn(∥u† − u∥q ≤ ε2n, ∥u† − u∥2q ≤ ε2n) = Πn(∥u† − u∥qq ≤ ε2qn ) ≥ e−nε2n .

Then the prior mass condition (19) is satisfied because the numerator is bounded by 1. The proof is
hence completed.

The following lemma studies the small ball probability in the concentration function (11) [21].

Lemma B.2 (Small ball probability). Let Π be a q-EP(0, C) prior on Bs′,q(Ω) with s′ < s − d
q .

Then as ε→ 0, we have

− log Π(∥u∥s′,q ≤ ε) ≍ ε
− 1

s−s′
d

− 1
q .

Proof. We can compute

Π(∥u∥s′,q ≤ ε) = P

[ ∞∑
ℓ=1

(ℓτq(s
′)−τq(s)|uℓ|)q ≤ εq

]
,

where P is the probability measure on the infinite product space (Lq(Ω))∞. From the proof of
Proposition 2.1 we know ∥u∥qq =

∑∞
ℓ=1 λ

q
2

ℓ χ
2
ℓ is an infinite mixture of χ2(1) random variables, so

the condition of [Theorem 4.2 of 2] is trivially met and we have

logP

[ ∞∑
ℓ=1

(ℓτq(s
′)−τq(s)|uℓ|)q ≤ εq

]
≍ ε

− 1

τq(s)−τq(s′)− 1
q .

The second lemma gives an upper bound of the first term of the concentration function (11) [21].

Lemma B.3 (Decentering function). Assume u† ∈ Bs†,q†(Ω) for some s† > s′ and q† ∈ [1, 2]. Then
as ε→ 0, we have the following bounds

(i) If q† ≥ q, we require s† > s′:

inf
h∈Bs,q(Ω):∥h−u†∥s′,q≤ε

∥h∥qs,q ≲


1, if s < s†

(− log ε)
1− q

q† , if s = s†

ε
− s−s†

s†−s′
(q∧q†)

, if s > s†

;

(ii) If q† < q, we require s† > s′ − d
q + d

q†
:

inf
h∈Bs,q(Ω):∥h−u†∥s′,q≤ε

∥h∥qs,q ≲


1, if s ≤ s† + d

q − d
q†

ε
−

s−s†
d

− 1
q
+ 1

q†
s†−s′

d
+1

q
− 1

q†

q

, if s > s† + d
q − d

q†

.

Proof. We identify u† ∈ Bs†,q† with {u†ℓ}∞ℓ=1 ∈ ℓq
†,τ

q† (s
†). Then we follow [1] to approximate

u† with h1:L = {u†ℓ}∞ℓ=1 where u†ℓ ≡ 0 for all ℓ > L. Note h1:L ∈ ℓq,τq(s) for any finite L ∈ N.
Identifying h1:L with h ∈ Bs,q(Ω), we could get

∥h− u†∥qs′,q =

∞∑
ℓ=L+1

ℓτq(s
′)q|u†ℓ|

q ≤


∥u†∥q

†

s†,q†
L

s′−s†
d q† , if q† = q

∥u†∥q
s†,q†

L
s′−s†

d q, if q† > q

∥u†∥q
s†,q†,q

L

(
s′−s†

d − 1
q+

1

q†

)
q
, if q† < q

.
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Therefore, to have ∥h− u†∥s′,q ≤ ε we let

L ≳

ε
− d

s†−s′ , if q† ≥ q

ε
− 1

s†−s′
d

+1
q
− 1

q† , if q† < q

. (20)

On the other hand, the infimum is less than ∥h∥qs,q with above h, which can be bounded as follows. If
q† = q,

∥h∥qs,q =

L∑
ℓ=1

ℓτq† (s)q
†
|u†ℓ|

q† ≤

∥u†∥q
†

s†,q†
, if s ≤ s†

∥u†∥q
†

s†,q†
L

s−s†
d q† , if s > s†

.

If q† > q, by similar argument using Hölder inequality,

∥h∥qs,q =

L∑
ℓ=1

ℓτq(s)q|u†ℓ|
q ≤


C∥u†∥q

s†,q†
, if s < s†

∥u†∥q
s†,q†

(logL)
1− q

q† , if s = s†

∥u†∥q
s†,q†

L
s−s†

d q, if s > s†

.

If q† < q, by similar argument,

∥h∥qs,q =

L∑
ℓ=1

ℓτq(s)q|u†ℓ|
q ≤

∥u†∥q
s†,q†,q

, if s ≤ s† + d
q − d

q†

∥u†∥q
s†,q†,q

L

(
s−s†

d − 1
q+

1

q†

)
q
, if s > s† + d

q − d
q†

.

Substituting L in (20) to the above equations yields the conclusion.

Proof of Theorem 4.2. By Lemmas B.2 and B.3, we have the following bounds for the concentration
function (11) as ε→ 0, if q† ≥ q,

φu†(ε) ≲


1 + ε

− 1
s−s′

d
− 1

q , if s < s†

(− log ε)
1− q

q† + ε
− 1

s−s′
d

− 1
q , if s = s†

ε
− s−s†

s†−s′
(q∧q†)

+ ε
− 1

s−s′
d

− 1
q , if s > s†

.

For s ≤ s†, the bound is dominated by ε
− 1

s−s′
d

− 1
q . For the last case, we need to determine a balancing

point of s for the two terms by setting their powers equal. The calculation shows that if s ≤ s† + d
q ,

the bound is still dominated by ε
− 1

s−s′
d

− 1
q , but otherwise is dominated by ε−

s−s†

s†−s′
q. Therefore, we

have

φu†(ε) ≲

ε
− 1

s−s′
d

− 1
q , if s ≤ s† + d

q

ε
− s−s†

s†−s′
q
, if s > s† + d

q

.

We need to determine minimal εn such that φu†(εn) ≤ nε2n. Hence for q† ≥ q,

εn ≍

n
− q(s−s′)−d

2q(s−s′)+(q−2)d , if s ≤ s† + d
q

n
− s†−s′

2(s†−s′)+q(s−s†) , if s > s† + d
q

.

Now if q† < q, by similar argument we have the concentration function (11) as ε→ 0

φu†(ε) ≲


1 + ε

− 1
s−s′

d
− 1

q , if s ≤ s† + d
q − d

q†

ε
−

s−s†
d

− 1
q
+ 1

q†
s†−s′

d
+1

q
− 1

q†

q

+ ε
− 1

s−s′
d

− 1
q , if s > s† + d

q − d
q†

.
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Thus the contraction rate for q† < q becomes

εn ≍


n
− q(s−s′)−d

2q(s−s′)+(q−2)d , if s ≤ s† + 2d
q − d

q†

n
−

s†−s′+ d
q
− d

q†

2(s†−s′)+q(s−s†)−(q−2)( d
q
− d

q†
)
, if s > s† + 2d

q − d
q†

.

Rewriting the equations into one yields the conclusion.

C More Numerical Results

C.1 Eikonal Equation

Table C.1: Comparing accuracy of various solvers for Eikonal equation (12) in terms of mean absolute error
(MAE), mean squared error (MSE), and relative errors in L1 norm (RLE-1), L2 norm (RLE-2), and L∞ norm
(RLE-∞) respectively. Result in each cell are averaged over 10 experiments with different random seeds; values
after ± are standard deviations of these repeated experiments.

Model (q) MAE MSE RLE-1 RLE-2 RL-∞
PINN 1.77e-2 ± 9.03e-4 4.65e-4 ± 4.08e-5 0.1120 ± 0.0057 0.1167 ± 0.0051 0.1354 ± 0.0061
B-PINN 1.81e-2 ± 2.59e-2 1.24e-3 ± 3.52e-3 0.1253 ± 0.1792 0.1162 ± 0.1700 0.2143 ± 0.2193
0.5 1.96e-3 ± 5.09e-4 6.20e-6 ± 2.87e-6 0.0124 ± 0.0032 0.0132 ± 0.0029 0.0387 ± 0.0067
0.8 1.44e-3 ± 3.44e-4 3.50e-6 ± 1.28e-6 0.0091 ± 0.0022 0.0100 ± 0.0018 0.0339 ± 0.0074
1.0 1.68e-3 ± 5.41e-4 4.42e-6 ± 2.26e-6 0.0106 ± 0.0034 0.0110 ± 0.0030 0.0321 ± 0.0071
1.2 1.69e-3 ± 3.85e-4 4.11e-6 ± 1.52e-6 0.0107 ± 0.0024 0.0108 ± 0.0020 0.0284 ± 0.0057
1.5 1.68e-3 ± 3.31e-4 4.65e-6 ± 1.35e-6 0.0106 ± 0.0021 0.0116 ± 0.0018 0.0398 ± 0.0080
2.0 (Gaussian) 9.64e-3 ± 1.33e-3 1.30e-4 ± 3.61e-5 0.0610 ± 0.0084 0.0612 ± 0.0087 0.1009 ± 0.0124
2.5 7.71e-2 ± 3.18e-2 8.36e-3 ± 5.29e-3 0.4881 ± 0.2011 0.4668 ± 0.1743 0.4442 ± 0.1390

To verify the systematic superiority of Q-EP with q = 1.0 than GP (q = 2.0), we extend our
comparison to more kernels including the radius basis function (rbf), C(x,x′) = σ2 exp(−0.5r2),

and rational quadratic (rq), C(x,x′) = σ2(1 + 1
2αr

2)−α, α > 0, for r =
√∑d

i=1(xi − x′i)
2/ρ2i in

Table C.2. Within each type of kernel, Q-EP with q = 1.0 consistently outperforms GP (q = 2.0).
This indicates that the advantage of Q-EP over GP is independent of the choice of kernels (as long as
they are compared with the same kernel).

Table C.2: Comparing accuracy of Q-EP (q = 1) against GP (q = 2) solvers with various kernels for Eikonal
equation (12) in terms of mean absolute error (MAE), mean squared error (MSE), and relative errors in L1 norm
(RLE-1), L2 norm (RLE-2), and L∞ norm (RLE-∞) respectively. Result in each cell are averaged over 10
experiments with different random seeds; values after ± are standard deviations of these repeated experiments.

Model (q) kernel MAE MSE RLE-1 RLE-2 RL-∞
1.0 Matern 1.68e-3 ± 5.41e-4 4.42e-6 ± 2.26e-6 0.0106 ± 0.0034 0.0110 ± 0.0030 0.0321 ± 0.0071
2.0 (Gaussian) Matern 9.64e-3 ± 1.33e-3 1.30e-4 ± 3.61e-5 0.0610 ± 0.0084 0.0612 ± 0.0087 0.1009 ± 0.0124
1.0 rbf 4.39e-3 ± 1.05e-3 3.91e-5 ± 2.52e-5 0.0278 ± 0.0066 0.0327 ± 0.0107 0.0648 ± 0.0324
2.0 (Gaussian) rbf 1.55e-2 ± 4.97e-4 3.07e-4 ± 2.87e-5 0.0982 ± 0.0031 0.0949 ± 0.0044 0.1236 ± 0.0048
1.0 rq 1.86e-3 ± 5.40e-4 5.51e-6 ± 3.44e-6 0.0118 ± 0.0034 0.0122 ± 0.0038 0.0168 ± 0.0064
2.0 (Gaussian) rq 3.07-3 ± 1.70e-3 1.89e-5 ± 2.83e-5 0.0194 ± 0.0107 0.0200 ± 0.0134 0.0325 ± 0.0242

C.2 Burgers’ Equation

Define the nonlinear function D(u, d1u, d2u, d
2
1u) = d2u+ ud1u− νd21u. The observations Y can

then be expressed as P (ũ(X)) =

[
D(u(Xd),

∂
∂xu(Xd),

∂
∂tu(Xd),

∂2

∂x2u(Xd))
u(Xb)

]
, and h =

[
0Nd

g

]
,

where g is a vector of size Nb whose elements are − sin(πx) or 0 depending on the order of the
corresponding elements in Xb. We use the same experiment setup as above.

In Table C.3, we also observe a consistently better performance of Q-EP (q = 1.0) compared to GP
(q = 2.0) in solving Burgers’ equation (13) using various kernels.

One can possibly find a GP with fine-tuned kernel, e.g. rational quadratic (rq), to have better (Q-EP
with rbf in Table C.2) or matching (Q-EP with Matern52 in Table C.3) results. However, as a
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Figure C.1: Solving Burgers’ equation (13) using high-resolution finite difference method (upper
left), PINN (lower left), Q-EP (right three in upper row: q = 1.0), and GP (right three in lower row:
q = 2.0) respectively. Blue crosses are learned inducing points.

Table C.3: Comparing accuracy of Q-EP (q = 1) against GP (q = 2) solvers with various kernels for Burgers’
equation (13) in terms of mean absolute error (MAE), mean squared error (MSE), and relative errors in L1 norm
(RLE-1), L2 norm (RLE-2), and L∞ norm (RLE-∞) respectively. Result in each cell are averaged over 10
experiments with different random seeds; values after ± are standard deviations of these repeated experiments.

Model (q) kernel MAE MSE RLE-1 RLE-2 RL-∞
1.0 Matern 9.33e-3 ± 1.76e-4 1.77e-4 ± 2.16e-4 0.0242 ± 0.0128 0.0266 ± 0.0140 0.0324 ± 0.0145
2.0 (Gaussian) Matern 7.13e-2 ± 8.68e-3 1.08e-2 ± 1.28e-2 0.1848 ± 0.0908 0.2068 ± 0.1118 0.2376 ± 0.1456
1.0 rbf 2.51e-3 ± 1.30e-3 1.37e-5 ± 1.59e-5 0.0065 ± 0.0033 0.0074 ± 0.0040 0.0150 ± 0.0088
2.0 (Gaussian) rbf 2.49e-2 ± 3.72e-3 1.06e-3 ± 2.63e-4 0.0646 ± 0.0097 0.0726 ± 0.0094 0.1144 ± 0.0073
1.0 rq 2.57e-3 ± 5.52e-4 1.39e-5 ± 3.15e-6 0.0067 ± 0.0014 0.0083 ± 0.0010 0.0199 ± 0.0049
2.0 (Gaussian) rq 1.09e-2 ± 1.97e-3 1.94e-4 ± 7.02e-5 0.0283 ± 0.0051 0.0309 ± 0.0057 0.0551 ± 0.0096

principled regularization over function spaces, Q-EP facilitates effective modeling of derivatives and
differential equations, thereby alleviating the struggle of GP on meticulous kernel engineering.

C.3 Nonlinear Elliptic Equation

Now we consider a nonlinear elliptic equation with Dirichlet boundary condition on Ω = [0, 1]2:

−∆u(x) + τ(u(x)) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω.
(21)

where we choose τ(u) = u3, g(x) ≡ 0, and f such that the following true solution u† satisfies
equation (21) [6]

u†(x) = sin(πx1) sin(πx2) + 4 sin(4πx1) sin(4πx2).

We follow the variational procedure in Section 3.1 and use the same experiment setup in Section 5.
Figure C.2 compares the solutions by a highly-resolved finite difference method (upper left, treated
as true solution), PINN (lower left), Q-EP (right three in upper row: q = 1.0), and GP (right three
in lower row: q = 2.0). Compared to the true solution, Q-EP with q = 1.0 yields an estimate more
accurate than PINN and GP. Based on Table C.4, the best solution is obtained by Q-EP with q = 0.5.
Since the true solution is highly fluctuating over the domain Ω, imposing more challenges on the
boundary, where the largest pointwise errors occur. Adding more boundary points might help with
Q-EP solvers.

C.4 Inverse Darcy Flow

Finally, we consider a more realistic Darcy flow data used by Fourier Neural Operator (FNO) and
Physics-Informed Neural Operator (PINO) available in NVIDIA PhysicsNeMo. This dataset contains
thousands of permeability-solution pairs that reflect realistic porous media. Since our method is
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Figure C.2: Solving nonlinear elliptic equation (21) using high-resolution finite difference method
(upper left), PINN (lower left), Q-EP (right three in upper row: q = 1.0), and GP (right three in lower
row: q = 2.0) respectively. Blue crosses are learned inducing points.

Table C.4: Comparing accuracy of various solvers for nonlinear elliptic equation (21) in terms of relative
error in L1 norm (RLE-1), L2 norm (RLE-2), L∞ norm (RLE-∞), and time per iteration. Result in each cell
are averaged over 10 experiments with different random seeds; values after ± are standard deviations of these
repeated experiments.

Model (q) RLE-1 RLE-2 RLE-∞ time/iteration

PINN 1.6428 ± 0.7133 1.5979 ± 0.6536 1.5595 ± 0.4462 0.0052 ± 0.0023
B-PINN 0.7026 ± 0.2879 0.7868 ± 0.2872 1.2395 ± 0.3480 0.0108 ± 0.0013
0.5 0.0341 ± 0.0203 0.0514 ± 0.0322 0.1617 ± 0.0880 0.2530 ± 0.0008
0.8 0.3020 ± 0.0915 0.3159 ± 0.0749 0.5549 ± 0.1092 0.2604 ± 0.0016
1.0 0.2835 ± 0.0532 0.2958 ± 0.0434 0.5122 ± 0.0870 0.2614 ± 0.0005
1.2 0.3379 ± 0.0845 0.3342 ± 0.0689 0.5229 ± 0.1094 0.2714 ± 0.0004
1.5 0.3953 ± 0.1058 0.4429 ± 0.1591 0.8938 ± 0.5714 0.2645 ± 0.0003
2.0(Gaussian) 0.9876 ± 0.2777 1.1028 ± 0.3254 2.0255 ± 1.1255 0.2562 ± 0.0004

not to train a surrogate model, we take only one pair and impose the data on 200 × 200 mesh to
obtain 2000 randomly sampled observations. We then train Q-EP solvers on 60 × 60 mesh (with
collocation points taken from the grid) and with 512 inducing points. This problem has much larger
scale (∼ 20 times larger) than all the previous examples. As illustrated in Table C.6, Q-EP with
q = 1 still achieves remarkable advantage compared with GP (q = 2) and PINN. Note, Q-EP with
q = 1 has comparable accuracy with q = 0.5 in forward solution. With only one training pair in the
NIVIDA FNO-Darcy data, it is understandably more challenging to obtain the inverse solution, yet
for which Q-EP with q = 1 attains the best accuracy. In both solutions, GP (q = 2) is much worse by
most metrics.

Table C.5: Comparing accuracy of various solvers for inverse Darcy flow (14) in terms of relative error in L1

norm (RLE-1), L2 norm (RLE-2), and L∞ norm (RLE-∞) respectively. Result in each cell are averaged over 10
experiments with different random seeds; values after ± are standard deviations of these repeated experiments.

Forward PDE Solution Inverse Solution

Model (q) RLE-1 RLE-2 RLE-∞ RLE-1 RLE-2 RLE-∞
PINN 0.3145 ± 0.0163 0.3331 ± 0.0137 0.4225 ± 0.0250 6.6922 ± 0.5800 6.2856 ± 0.5432 4.1070 ± 0.3189
0.5 0.2397 ± 0.0975 0.2689 ± 0.1137 0.3445 ± 0.1490 0.4827 ± 0.2011 0.5217 ± 0.1916 0.8711 ± 0.1414
0.8 0.1669 ± 0.0242 0.1784 ± 0.0248 0.2155 ± 0.0321 0.3577 ± 0.0758 0.4154 ± 0.0675 0.8110 ± 0.1239
1.0 0.1354 ± 0.0286 0.1432 ± 0.0253 0.1810 ± 0.0193 0.4340 ± 0.0376 0.4942 ± 0.0376 0.8494 ± 0.2132
1.2 0.1523 ± 0.0967 0.1549 ± 0.0898 0.2066 ± 0.1035 0.5468 ± 0.1078 0.5921 ± 0.0890 0.7801 ± 0.1301
1.5 0.3270 ± 0.3257 0.4723 ± 0.5048 1.2103 ± 1.0981315 1.6317 ± 0.8162 1.5914 ± 0.7810 1.7561 ± 0.8064
2.0(Gaussian) 0.6328 ± 0.5954 1.0658 ± 0.9186 3.1391 ± 2.2492 2.2096 ± 0.9100 2.1675 ± 0.8823 2.8022 ± 1.6839
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Figure C.3: Solving inverse Darcy flow (14) with sparse data using Q-EP (right three in upper row:
q = 1.0) and GP (right three in lower row: q = 2.0) respectively. Upper left: true inverse solution
a†; lower left: fine-resolution finite element solution u† to (14) with a†. Blue crosses are learned
inducing points, and red dots indicate locations of observations.

Figure C.4: Solving inverse Darcy flow (14) with PINN running for longer (5000) iterations.

Table C.6: Comparing accuracy of various solvers for the inverse problem with FNO-Darcy data in terms of
relative error in L1 norm (RLE-1), L2 norm (RLE-2), and L∞ norm (RLE-∞) respectively. Result in each cell
are averaged over 10 experiments with different random seeds; values after ± are standard deviations of these
repeated experiments.

Forward PDE Solution Inverse Solution

Model (q) RLE-1 RLE-2 RLE-∞ RLE-1 RLE-2 RLE-∞
PINN 0.9168 ± 0.9019 0.8170 ± 0.7272 0.8190 ± 0.3859 1.6550 ± 0.1876 1.5170 ± 0.1547 1.4303 ± 0.1190
0.5 0.3316 ± 0.0677 0.3191 ± 0.0402 0.5978 ± 0.0535 0.7847 ± 0.1394 0.8548 ± 0.1683 1.2072 ± 0.2975
1.0 0.3239 ± 0.1297 0.3195 ± 0.0985 0.6041 ± 0.0830 0.7724 ± 0.1798 0.8349 ± 0.1841 1.2895 ± 0.2849
1.5 0.2338 ± 0.0197 0.2490 ± 0.0105 0.6149 ± 0.1056 0.8466 ± 0.1617 0.8744 ± 0.1213 1.2070 ± 0.3958
2.0(Gaussian) 0.5341 ± 0.5296 0.4904 ± 0.4292 0.6881 ± 0.2356 0.9124 ± 0.1791 0.9251 ± 0.1502 1.1018 ± 0.1219

Figure C.5: Comparing solutions to inverse Darcy flow (14) at refined mesh sizes using Q-EP (left
four in upper row: q = 1.0) and GP (left four in lower row: q = 2.0) respectively, with relative errors
in L1 norm (upper right) and L2 norm (lower right). Blue crosses are learned inducing points. Error
bars indicate standard errors based on 10 repeated experiments with different random seeds.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Refer to the last section Conclusion where the limitations and future directions
are discussed.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Please refer to Assumptions and the theorem statements for the assumptions
and the Appendix for the full proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the details of the experiments are disclosed in the section Numerical
Experiments as well as the Technical Appendices. Sample codes are included in the
supplementary materials and all the codes will be released upon acceptance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Sample codes are included in the supplementary materials and all the codes
will be released upon acceptance. Data are simulated and details on how to generate them
are included in the section Numerical Experiments and the Technical Appendices.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines () for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines () for
more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the details of the experiments are disclosed in the section Numerical
Experiments and the Technical Appendices.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please refer to relevant figures for error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details of experiments are disclosed at the beginning of the section Numerical
Experiments. One can also refer to relevant tables for the information.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics ?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses the scientific contributions at the end of the section
Introduction.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The authors cite the original paper that produced the code package or dataset
and respect the license and terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, has curated licenses for some datasets. Their
licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy () for what should or should not be described.
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