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Abstract

In acute care, a gap often exists between admission and confirmatory imaging. We1

address this gap by forecasting chest X-ray (CXR) findings hours in advance using2

admission-time biosignals alone. We present PULSE–LAB, a hybrid model that3

combines a Mamba state-space encoder for long-sequence ECG with an MLP over4

50 routine laboratory tests. Using the public Symile–MIMIC dataset, we predict 145

thoracic findings on the first post-admission CXR and establish, to our knowledge,6

the first benchmark for this task. The model achieves a macro-AUROC of 0.627

and macro-recall of 0.63, with strongest discrimination for acute conditions (e.g.,8

Fracture, AUROC 0.81) and high recall for developing pulmonary processes (e.g.,9

Pneumonia, Consolidation). Interpretability analyses reveal clinically coherent10

patterns: coagulation and injury markers drive fracture risk, while renal and oncotic11

markers relate to edema. Both the ordered lab panel and informative ECG leads12

contribute. These results indicate that admission-time signals capture early physio-13

logical trajectories that later manifest on imaging, suggesting utility for earlier risk14

stratification, imaging prioritization, and proactive care.15

1 Introduction16

Accurate, timely diagnosis of thoracic pathologies in emergency care is complex, and clinical17

decisions are often made before confirmatory chest X-rays (CXRs) are obtained [1; 2; 3; 4]. Delays18

arise from logistics, resource constraints, and patient instability [5; 6; 7; 8].19

We investigate whether admission-time biosignals can forecast future radiographic findings, reframing20

diagnosis from retrospective interpretation to prospective prediction. Specifically, we forecast the21

presence of specific CXR findings several hours ahead using only a 10-second 12-lead ECG and22

routine laboratory tests available at admission.23

Our main contributions are: (1) We define a new forecasting task: predicting 14 CXR findings on24

the first post-admission image from admission-time ECG and labs. (2) We propose PULSE–LAB,25

a hybrid architecture with a Mamba ECG encoder and an MLP for tabular labs. (3) We establish26

the first benchmark on Symile–MIMIC, achieving macro-AUROC 0.62 with strong performance for27

acute conditions (e.g., Fracture 0.81), highlighting potential for triage and imaging prioritization.28

2 Related Work29

Early work on chest X-ray (CXR) interpretation applied convolutional neural networks (CNNs) to30

retrospective image classification, establishing the feasibility of automated CXR analysis [9]. These31

approaches remain retrospective, requiring a CXR image prior to analysis and thus cannot predict32

future developments.33
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Figure 1: The PULSE–LAB: a Mamba encoder processes the ECG; an MLP encodes lab values and
missingness. Embeddings are concatenated and fed to a classifier to forecast 14 CXR findings.

Another research direction has focused on forecasting outcomes using non-imaging biosignals, such34

as data from electronic health records (EHRs) [10; 11]. These findings suggest that biosignals contain35

predictive information about thoracic conditions. However, existing models either focus on general36

outcomes rather than specific image-based pathologies or remain retrospective in nature. Our work37

is directly inspired by the Symile-MIMIC dataset [12], which demonstrated that a shared signal38

exists across modalities. Our study refocuses on the more complex task of diagnostic forecasting, a39

key clinical application at the intersection of time series analysis and health. Rather than matching40

patients’ laboratories and X-rays, we predict 14 specific radiographic findings based on admission-41

time biosignals.42

3 Methodology43

3.1 Dataset and Task Formulation44

This study uses the public Symile–MIMIC dataset [12], a multimodal collection of 11,622 unique45

hospital admissions from 9,573 patients, with pre-defined data splits (10,000 train, 750 validation,46

464 test) to prevent data leakage. The dataset integrates components from the PhysioNet ecosystem:47

MIMIC-IV (demographics and laboratory results), MIMIC-IV-ECG (electrocardiograms), and MIMIC-48

CXR-JPG (radiographs with CheXpert labels).49

Each admission provides two modalities recorded within the first 24 hours:50

• ECG (xECG): A 10-second, 12-lead signal sampled at 500 Hz, represented as a 12× 5000 matrix51

normalized to the range [−1, 1].52

• Labs (xlabs): A panel of 50 blood tests, forming a sparse and irregularly-sampled dataset, a key53

data-specific challenge. Values are standardized as percentiles of the training set’s empirical CDF,54

and each is paired with a binary missingness indicator, forming a 100-dimensional vector.55

The predictive target is a 14-dimensional binary vector y derived from the CheXpert labeler anno-56

tations of the first post-admission CXR. Following the dataset’s protocol, uncertain labels (−1) are57

mapped to negative (0). The forecasting task is to learn a function f : (xECG,xlabs) 7→ z ∈ R14,58

where z is a logit vector. The final probabilities are obtained via ŷ = σ(z).59

3.2 Model Architecture: PULSE–LAB60

We propose PULSE–LAB, a dual-encoder architecture designed to process the distinct data types of61

ECGs (long, dense time series) and labs (sparse, tabular features), as shown in Figure 1.62

ECG Encoder (Mamba SSM) To capture long-range dependencies in the 5000-timestep ECG63

sequences with linear complexity, we use a Mamba state-space model (SSM) [13], a novel architecture64

well-suited for such signals. The input is first projected from 12 leads to a hidden dimension65

dmodel = 128. A stack of four Mamba blocks processes this sequence, each configured with a state66

dimension dstate = 16, a convolutional kernel of size 4, and an expansion factor of 2. We use the67

final timestep representation of the sequence output, which is then projected to a shared embedding68

dimension of d = 8192 and normalized with LayerNorm to produce EECG. This embedding69

dimension was adopted from the original Symile–MIMIC study for comparability [12].70
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Table 1: Forecasting performance of PULSE-LAB. Results are macro-averaged across 14 findings.
Pathology AUROC Recall

Fracture 0.81 0.70
Lung Lesion 0.70 0.58
Support Devices 0.67 0.63
No Finding 0.65 0.42
Edema 0.64 0.65
Atelectasis 0.63 0.65
Consolidation 0.62 0.79
Pleural Effusion 0.61 0.68
Pleural Other 0.60 0.75
Lung Opacity 0.59 0.73
Pneumonia 0.59 0.74
Cardiomegaly 0.57 0.72
Pneumothorax 0.50 0.35
Enlarged Cardiomediastinum 0.48 0.43

Average (Macro) 0.62 0.63

Laboratory Encoder (MLP) A three-layer multilayer perceptron (MLP) encodes the 100-71

dimensional laboratory vector. The network follows a 100 → 256 → 1024 → 8192 transformation72

with GELU activations and a final layer normalization (LayerNorm) layer. This design allows the73

model to learn non-linear relationships between laboratory values while also learning from the clinical74

decisions about which tests were performed, as captured by the missingness indicators.75

Fusion and Classification The modality embeddings are concatenated to form a fused vector76

h = [EECG ∥ELAB] ∈ R2d. This vector is passed through a bottleneck classifier MLP (16384 →77

512 → 14) with a ReLU activation and Dropout (0.2) for regularization. Simple concatenation was78

chosen after experiments with cross-attention fusion proved less stable and yielded no performance79

gains.80

3.3 Training, Evaluation, and Interpretability81

The model is implemented in PyTorch Lightning and trained for 50 epochs on a single NVIDIA A10082

GPU with a batch size of 32. We use the AdamW optimizer with a learning rate of 1× 10−4, betas83

of (0.9, 0.999), and weight decay of 0.01. The loss function is a weighted binary cross-entropy with84

logits:85

L(z,y) = −
14∑
c=1

[
wc yc log σ(zc) + (1− yc) log(1− σ(zc))

]
,

where class-specific weights wc = N neg
c /N pos

c are computed from the training set label frequencies86

to compensate for class imbalance.87

Performance is evaluated using macro-averaged AUROC and macro-averaged Recall. Macro-88

averaging ensures that performance on rare but clinically critical findings is not outweighed by89

common ones. The model checkpoint with the highest validation macro-AUROC is used for final90

testing. As a component of developing trustworthy AI, we explain model predictions using SHAP91

(SHapley Additive exPlanations) to attribute feature importance for the laboratory panel and assess92

the contribution of each of the 12 ECG leads.93

4 Results94

Forecasting Performance PULSE-LAB achieved a macro-averaged AUROC of 0.62 and a95

macro-averaged recall of 0.63. This result confirms the feasibility of forecasting future radiographic96

findings from sparse, admission-time biosignals. Performance varies across pathologies, as shown97

in Table 1 and Figure 2. The model performs best on acute conditions with systemic physiological98

footprints, such as Fracture (AUROC 0.81), Lung Lesion (0.70), and Support Devices (0.67). For99

developing pulmonary pathologies, the model achieves moderate AUROCs but high recall, suggesting100

its utility for screening. Our model also identifies patients who will later show Consolidation (Recall101

0.79), Pneumonia (Recall 0.74), Pleural Effusion (Recall 0.68), and Edema (Recall 0.65) with high102

sensitivity. Conditions with weak precursor signals, such as the chronic state of Cardiomegaly103

(AUROC 0.57) or the abrupt onset of Pneumothorax (AUROC 0.50), remain difficult to forecast.104
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Figure 2: ROC curves for all 14 findings. Strong discrimination for acute processes (e.g., Fracture);
near-random for abrupt/weak-precursor cases (e.g., Pneumothorax).

Model Interpretability We used SHAP feature attributions to understand the model’s predictions105

(see Appendix A). The analysis reveals two key mechanisms. First, the MLP encoder learns clinically106

coherent, pathology-specific laboratory profiles. For example, fracture risk is driven by markers of107

injury and coagulation (e.g., elevated ‘Creatine Kinase‘, ‘INR‘, ‘PTT‘) [14], while edema risk is108

associated with markers of renal dysfunction and fluid overload (e.g., high ‘Urea Nitrogen‘, low109

‘Albumin‘) [15; 16]. The model also learns from missingness flags, using the pattern of which tests110

were ordered as a proxy for clinical suspicion. Second, the Mamba encoder learns a generalized111

signature of patient acuity from the ECG. Across all pathologies, leads fundamental for assessing112

heart rate, rhythm, and electrical axis (I, II, aVF, V2) consistently show the highest importance. This113

suggests the ECG provides a baseline of cardiorespiratory stress, which contextualizes the specific114

signals from the lab panel.115

5 Discussion116

Forecasting CXR findings from admission-time biosignals is tractable yet challenging. A macro-117

AUROC of 0.62 confirms that early signals contain trajectories that culminate in radiographic118

abnormalities. The pattern is clinically coherent: strong performance for acute, systemic processes119

(e.g., Fracture) and high recall for developing pulmonary disease (e.g., Pneumonia), supporting use120

as a screening and prioritization aid.121

Interpretability links model behavior to pathophysiology, utilizing coagulation/injury markers for122

fracture, renal/oncotic markers for edema, and ECG leads that capture a broad acuity signal comple-123

menting targeted laboratory information. Such mechanisms are consistent with clinical reasoning and124

can inform earlier risk stratification and the allocation of imaging.125

Limitations include reliance on a single dataset and conservative handling of uncertain labels (mapped126

to negative). Future work should test multi-center generalization and alternative label strategies.127

In conclusion, PULSE–LAB shifts from retrospective diagnosis to prospective forecasting using128

signals already available at admission, enabling earlier, more proactive care.129
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A Appendix: Model Interpretability Analysis176

This appendix provides detailed SHAP attribution analyses that were summarized in the main paper.177

A.1 Laboratory Feature Attributions178

Figure 3: Laboratory SHAP beeswarm plots across CXR findings. Each dot represents a patient: the
horizontal position indicates the SHAP effect on the logit, and the color represents the feature value
(red = high, blue = low).

Interpreting SHAP Beeswarm Plots (Figure 3) The beeswarm plots summarize per-patient SHAP179

values for each laboratory test. Each dot represents a single patient’s feature attribution for a specific180

disease or condition. The horizontal position indicates the SHAP value’s impact on the model’s181

output logit (positive values push the prediction towards 1, negative values towards 0). The color182

of the dot indicates the feature’s value, from low (blue) to high (red). This visualization reveals not183

only which features are important but also how their values relate to risk. For example, for Edema,184

high ‘Urea Nitrogen‘ values (red dots) cluster on the positive SHAP side, indicating that azotemia185

increases the predicted risk. Similarly, low ‘Albumin‘ values (blue dots) also push the prediction in186

a positive direction, reflecting the clinical link between hypoalbuminemia and fluid overload. The187

model also learns from missingness flags; for Atelectasis, the presence of a pO2 measurement (blue188

dots for Missing_pO2) is associated with a higher risk, suggesting that the clinical decision to order189

an arterial blood gas test itself serves as a predictive signal.190

Interpreting Top-20 Feature Importance (Figure 4) This figure aggregates the mean absolute191

SHAP values for each laboratory feature across all test patients, showing the top 20 most influential192

labs for each pathology. It highlights that the model learns distinct, task-specific laboratory profiles193

rather than relying on a single dominant test. For Fracture, coagulation, and injury markers like194

‘INR(PT)‘, ‘PTT‘, and ‘Creatine Kinase‘ are most influential. For Consolidation and Pneumonia,195

markers of hypoxemia and acid-base imbalance (‘pO2‘, ‘pH‘) are key. This demonstrates that the196

model discovers clinically plausible, multifaceted biomarker signatures for each condition.197
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Figure 4: Top-20 laboratory features per pathology, ranked by mean absolute SHAP value.

A.2 ECG Lead-Level Attributions (Figure 5)198

Figure 5 shows the mean absolute SHAP values for each of the 12 ECG leads across all pathologies.199

The analysis reveals a highly stable importance profile, where leads I, II, aVF, and V2 consistently200

show the highest contribution, regardless of the target pathology.201

A plausible interpretation is that the ECG encoder learns a generalized signature of overall patient202

acuity and cardiorespiratory stress, rather than distinct features for each pathology. Diverse conditions,203

from trauma (Fracture) to infection (Pneumonia), can trigger common systemic responses such as204

tachycardia or shifts in the heart’s electrical axis. The identified leads are important for assessing205

rate, rhythm, and the frontal plane axis, making them ideal for capturing such a non-specific "acuity"206

signal. The magnitude of the SHAP values varies by pathology, likely reflecting the degree to which207

each condition induces systemic stress. This suggests the ECG provides a contextual baseline of208

patient severity, which complements the more diagnostic-specific information from the laboratory209

panel.210
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Figure 5: ECG lead-level attributions summarized by mean absolute SHAP values.
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